National Library of Energy BETA

Sample records for blackbody calibration system

  1. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect (OSTI)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  2. Calibration Systems Final Report

    SciTech Connect (OSTI)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  3. FY2008 Calibration Systems Final Report

    SciTech Connect (OSTI)

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  4. Calibration method for spectroscopic systems

    DOE Patents [OSTI]

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  5. Calibration method for spectroscopic systems

    DOE Patents [OSTI]

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  6. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  7. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  8. Inspection system calibration methods

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2004-12-28

    An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.

  9. Tool calibration system for micromachining system

    DOE Patents [OSTI]

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  10. AUTOMATIC CALIBRATING SYSTEM FOR PRESSURE TRANSDUCERS

    DOE Patents [OSTI]

    Amonette, E.L.; Rodgers, G.W.

    1958-01-01

    An automatic system for calibrating a number of pressure transducers is described. The disclosed embodiment of the invention uses a mercurial manometer to measure the air pressure applied to the transducer. A servo system follows the top of the mercury column as the pressure is changed and operates an analog- to-digital converter This converter furnishes electrical pulses, each representing an increment of pressure change, to a reversible counterThe transducer furnishes a signal at each calibration point, causing an electric typewriter and a card-punch machine to record the pressure at the instant as indicated by the counter. Another counter keeps track of the calibration points so that a number identifying each point is recorded with the corresponding pressure. A special relay control system controls the pressure trend and programs the sequential calibration of several transducers.

  11. Rotary mode system initial instrument calibration

    SciTech Connect (OSTI)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  12. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    SciTech Connect (OSTI)

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C.; Yeo, G. H.; Chan, A. H. E-mail: phyck@nus.edu.sg

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  13. Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Thomson scattering diagnostic for fluctuation measurements a... H. D. Stephens, b͒ M. T. Borchardt, D. J. Den Hartog, A. F. Falkowski, D. J. Holly, R. O'Connell, and J. A. Reusch Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ͑Presented 13 May 2008; received 25 April 2008; accepted 30 June 2008; published online 31 October 2008͒ Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for

  14. Quantum driven dissipative parametric oscillator in a blackbody radiation field

    SciTech Connect (OSTI)

    Pachn, Leonardo A.; Department of Chemistry and Center for Quantum Information and Quantum Control, Chemical Physics Theory Group, University of Toronto, Toronto, Ontario M5S 3H6 ; Brumer, Paul

    2014-01-15

    We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in analytic closed formulae, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.

  15. Method for in-situ calibration of electrophoretic analysis systems

    DOE Patents [OSTI]

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  16. Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    techniques for a fast duo spectrometer J. T. Chapman and D. J. Den Hartog Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Presented on 13 May 1996͒ We have completed the upgrade and calibration of the ion dynamics spectrometer ͑IDS͒, a high-speed Doppler duo spectrometer which measures ion flow and temperature in the MST reversed-field pinch. This paper describes an insitu calibration of the diagnostic's phase and frequency response. A single clock was

  17. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect (OSTI)

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  18. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    SciTech Connect (OSTI)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  19. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave...

    Office of Scientific and Technical Information (OSTI)

    George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation ... of the cosmic microwave background radiation." '1 Smoot previously won the Ernest ...

  20. Research Division flammable gas system calibration procedure and stability studies

    SciTech Connect (OSTI)

    Semenchenko, A.; Hojvat, C.

    1993-03-01

    The number of detectors which shifted from initial 50% LEL calibration by more than 5% over 90 days period is small enough in order to increase the time interval between calibrations at least to 120 days, but with any further increase in time between the calibrations probability of SC100 failure greatly increases. In order to keep the number of detectors with abnormal sensitivity low, we would recommend 120 days to be the maximum allowable interval for our present environmental conditions. Information is also presentd on the calibration of the SC100 Combustible Gas Sensor and the DC110 controller. The sensorand controlled form part of the flammable gas detecting systems installed at Fermilab.

  1. The KamLAND Full-Volume Calibration System

    SciTech Connect (OSTI)

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  2. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect (OSTI)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  3. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  4. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  5. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  6. Device for calibrating a radiation detector system

    DOE Patents [OSTI]

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  7. Device for calibrating a radiation detector system

    DOE Patents [OSTI]

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  8. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect (OSTI)

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  9. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  10. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  11. Measurements of Martin-Puplett Interferometer Limitations using Blackbody

    Office of Scientific and Technical Information (OSTI)

    Source (Conference) | SciTech Connect Conference: Measurements of Martin-Puplett Interferometer Limitations using Blackbody Source Citation Details In-Document Search Title: Measurements of Martin-Puplett Interferometer Limitations using Blackbody Source Frequency domain measurements with Martin-Puplett interferometer is one of a few techniques capable of bunch length measurements at the level of ~ 100 fs. As the bunch length becomes shorter, it is important to know and be able to measure

  12. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  13. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect (OSTI)

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  14. System for Calibrating the Energy-Dependent Response of an Elliptical...

    Office of Scientific and Technical Information (OSTI)

    System for Calibrating the Energy-Dependent Response of an Elliptical Bragg-Crystal ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 74 ...

  15. Note: An improved calibration system with phase correction for electronic transformers with digital output

    SciTech Connect (OSTI)

    Cheng, Han-miao Li, Hong-bin

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  16. Verification/acceptance test report for the Acromag Calibration System for TMACS

    SciTech Connect (OSTI)

    Fordham, C.R.

    1995-04-25

    This document provides the Verification/Acceptance Test Report for the Acromag Calibration System (ACS) for the Tank Monitor and Control System. ACS will be implemented to check the calibration of the thermocouple input modules. Purpose of this document is to show that the ACS satisfies the system requirements in WHC-SD-WM-CSRS-009 (WHC 1993b).

  17. Radiometric characterization of a high temperature blackbody in the visible and near infrared

    SciTech Connect (OSTI)

    Taubert, R. D.; Hollandt, J.

    2013-09-11

    At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 C to 3000 C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 C to 3000 C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

  18. An accurate system for onsite calibration of electronic transformers with digital output

    SciTech Connect (OSTI)

    Zhi Zhang; Li Hongbin

    2012-06-15

    Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.

  19. Magnetic blackbody shift of hyperfine transitions for atomic clocks

    SciTech Connect (OSTI)

    Berengut, J. C.; Flambaum, V. V.; King-Lacroix, J.

    2009-12-15

    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T{sup 2} dependence only in the high-temperature limit. We also calculate the shift of ground-state p{sub 1/2} hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p{sub 3/2} fine-structure multiplet may be the dominant effect.

  20. Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2012-07-24

    Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.

  1. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    Energy Science and Technology Software Center (OSTI)

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  2. Measurements of Martin-Puplett Interferometer Limitations using Blackbody Source

    SciTech Connect (OSTI)

    Evtushenko, Pavel E.; Klopf, John M.

    2013-06-01

    Frequency domain measurements with Martin-Puplett interferometer is one of a few techniques capable of bunch length measurements at the level of ~ 100 fs. As the bunch length becomes shorter, it is important to know and be able to measure the limitations of the instrument in terms of shortest measurable bunch length. In this paper we describe an experiment using a blackbody source with the modified Martin-Puplett interferometer that is routine- ly used for bunch length measurements at the JLab FEL, as a way to estimate the shortest, measurable bunch length. The limitation comes from high frequency cut-off of the wire-grid polarizer currently used and is estimated to be 50 fs RMS. The measurements are made with the same Golay cell detector that is used for beam measure- ments. We demonstrate that, even though the blackbody source is many orders of magnitude less bright than the coherent transition or synchrotron radiation, it can be used for the measurements and gives a very good signal to noise ratio in combination with lock-in detection. We also compare the measurements made in air and in vacuum to characterize the very strong effect of the atmospheric absorption.

  3. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    SciTech Connect (OSTI)

    Deng, Zhiqun; Weiland, Mark A.; Carlson, Thomas J.; Eppard, M. B.

    2010-03-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by Portland District, the U.S. Army Corps of Engineers for detecting and tracking small fish. It is used at hydroelectric projects and in the laboratory for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a measurement and calibration system for evaluating the JSATS component, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The system consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated system has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. It provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The measurement and calibration system has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  4. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    SciTech Connect (OSTI)

    Watkins, J. G. [Sandia National Laboratories, Livermore, California (United States); Rajpal, R.; Mandaliya, H. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Watkins, M.; Boivin, R. L. [General Atomics, San Diego, California (United States)

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  5. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  6. 1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system

    SciTech Connect (OSTI)

    Arthur, R.J.

    1990-08-01

    This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.

  7. Calibration of LI-7500 sensor for 60m CO2/H20 flux system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  8. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect (OSTI)

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  9. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect (OSTI)

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (7486 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  10. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    SciTech Connect (OSTI)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J). Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  11. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    SciTech Connect (OSTI)

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  12. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45 135, 225, and 315, at each of four gantry angles (0, 90, 180, 270) using a 3 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 0.036, 0.121 0

  13. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect (OSTI)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  14. Method and system for calibrating acquired spectra for use in spectral analysis

    DOE Patents [OSTI]

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-09-14

    A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.

  15. Calibration grooming and alignment for LDUA High Resolution Stereoscopic Video Camera System (HRSVS)

    SciTech Connect (OSTI)

    Pardini, A.F.

    1998-01-27

    The High Resolution Stereoscopic Video Camera System (HRSVS) was designed by the Savannah River Technology Center (SRTC) to provide routine and troubleshooting views of tank interiors during characterization and remediation phases of underground storage tank (UST) processing. The HRSVS is a dual color camera system designed to provide stereo viewing of the interior of the tanks including the tank wall in a Class 1, Division 1, flammable atmosphere. The HRSVS was designed with a modular philosophy for easy maintenance and configuration modifications. During operation of the system with the LDUA, the control of the camera system will be performed by the LDUA supervisory data acquisition system (SDAS). Video and control status 1458 will be displayed on monitors within the LDUA control center. All control functions are accessible from the front panel of the control box located within the Operations Control Trailer (OCT). The LDUA will provide all positioning functions within the waste tank for the end effector. Various electronic measurement instruments will be used to perform CG and A activities. The instruments may include a digital volt meter, oscilloscope, signal generator, and other electronic repair equipment. None of these instruments will need to be calibrated beyond what comes from the manufacturer. During CG and A a temperature indicating device will be used to measure the temperature of the outside of the HRSVS from initial startup until the temperature has stabilized. This device will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing. This sensor will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing.

  16. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  17. Test report for calibration grooming and alignment of the LDUA purge air supply (LDUA SYSTEM 5230)

    SciTech Connect (OSTI)

    Potter, J.D.

    1996-05-21

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. National Electric Code requirements mandate that the in-tank portions of the LDUA be maintained at a positive pressure for entrances into a flammable atmosphere. The LDUA Purge Air Supply System (PASS) uses small portable air compressors to provide a constant low flow of instrument grade air for this purpose. This document contains the results, conclusions and recommendations arrived at by the calibration grooming and alignment tests performed on the PASS in accordance with WHC-SD-WM-TC-070.

  18. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry- Perot optical system M. M. Baltzer, D. Craig, D. J. Den Hartog, T. Nishizawa, and M. D. Nornberg Citation: Review of Scientific Instruments 87, 11E509 (2016); doi: 10.1063/1.4955491 View online: http://dx.doi.org/10.1063/1.4955491 View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/87/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Development of a tunable

  19. Distribution system model calibration with big data from AMI and PV inverters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  20. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOE Patents [OSTI]

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  1. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect (OSTI)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  2. Gain and offset calibration reduces variation in exposure-dependent SNR among systems with identical digital flat-panel detectors

    SciTech Connect (OSTI)

    Willis, Charles E.; Vinogradskiy, Yevgeniy Y.; Lofton, Brad K.; White, R. Allen

    2011-07-15

    Purpose: The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. Methods: The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 {mu}Gy air KERMA) to the detector. Results: The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r{sup 2} = 0.9999). The dependence was greater than unity (m = 1.101 {+-} 0.006), and the difference from unity was statistically significant (p < 0.005). The SD of mean SNR after calibration also

  3. Blackbody material

    SciTech Connect (OSTI)

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Trivelpiece, Alvin W.

    1994-01-01

    A light emitting article comprises a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light emitting composite article having a bulk density less than 1 g/cm.sup.3.

  4. Radiometer Calibration and Characterization

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  5. Frequency Shift of the Cesium Clock Transition due to Blackbody Radiation

    SciTech Connect (OSTI)

    Angstmann, E. J.; Dzuba, V. A.; Flambaum, V. V.

    2006-07-28

    We perform ab initio calculations of the frequency shift induced by a static electric field on the cesium clock hyperfine transition. The calculations are used to find the frequency shifts due to blackbody radiation. Our result [{delta}{nu}/E{sup 2}=-2.26(2)x10{sup -10} Hz/(V/m){sup 2}] is in good agreement with early measurements and ab initio calculations performed in other groups. We present arguments against recent claims that the actual value of the effect might be smaller. The difference ({approx}10%) between ab initio and semiempirical calculations is due to the contribution of the continuum spectrum in the sum over intermediate states.

  6. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect (OSTI)

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G.; Krebs, M.; Haedrich, S.; Limpert, J.; Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U.

    2013-02-15

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  7. RSA calibration accuracy of a fluoroscopy-based system using nonorthogonal images for measuring functional kinematics

    SciTech Connect (OSTI)

    Kedgley, Angela E.; Jenkyn, Thomas R.

    2009-07-15

    When performing radiostereometric analysis (RSA) in a clinical setting it may be desirable to orient the two imaging devices nonorthogonally to obtain the best views of an anatomical structure. In this study, a calibration frame was constructed that allowed the relative angles of fiducial and control planes to be adjusted. Precision and accuracy were quantified across multiple trials and orientations. The 90 deg. frame was always of equivalent or greater accuracy than a calibration frame with the fiducial and control planes aligned parallel to the image intensifiers. This study also showed that RSA may be performed with imaging devices at relative angles other than 90 deg. without compromising accuracy. This allows researchers greater freedom in positioning equipment.

  8. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOE Patents [OSTI]

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  9. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect (OSTI)

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  10. Aether Drift and the isotropy of the universe: a measurement of anisotropes in the primordial black-body radiation. Final report, 1 November 1978-31 October 1980

    SciTech Connect (OSTI)

    Smoot, G.F.

    1981-07-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ( Aether Drift ) was measured and the homogeneity and isotropy of the Universe (the Cosmological Principle ) was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  11. Internet-Based Calibration of a Multifunction Calibrator

    SciTech Connect (OSTI)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-12-19

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multijunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  12. Internet-based calibration of a multifunction calibrator

    SciTech Connect (OSTI)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  13. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  14. Leveraging AMI data for distribution system model calibration and situational awareness

    SciTech Connect (OSTI)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation and regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.

  15. Development of a Dynamic DOE Calibration Model

    Broader source: Energy.gov [DOE]

    A dynamic heavy duty diesel engine model was developed. The model can be applied for calibration and control system optimization.

  16. A Novel Neutron Imaging Calibration System Using a Neutron Generating Accelerator Tube

    SciTech Connect (OSTI)

    Ali, Z., Davis, B., Tinsley, J. R., Miller, E. K.

    2009-09-04

    Neutron Imaging is a key diagnostic for use in inertial confinement fusion (ICF) experiments, and has been fielded on experiments at Omega and Z. It will also be a key diagnostics at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) and eventually at the Laser Megajoule in France. Most systems are based on a neutron pinhole array placed at the target chamber while it is imaged by a scintillating fiber block. The light output of this scintillator is coupled via a reducer to a fiber bundle which transports the image to a CCD camera. Alternatively some systems use optical lens assemblies to focus the light onto a camera.For ICF applications the neutron imaging systems will primarily look at 14.2 MeV neutrons. However, 2.2 MeV and 20+ MeV neutrons will also be present and will potentially provide key information.

  17. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect (OSTI)

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  18. Integrated calibration sphere and calibration step fixture for...

    Office of Scientific and Technical Information (OSTI)

    Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration Title: Integrated calibration sphere and calibration step fixture ...

  19. Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light

    SciTech Connect (OSTI)

    Schachtner, Michael Prado, Marcelo Loyo; Reichmuth, S. Kasimir; Siefer, Gerald; Bett, Andreas W.

    2015-09-28

    It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.

  20. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  1. Exposure-rate calibration using large-area calibration pads

    SciTech Connect (OSTI)

    Novak, E.F.

    1988-09-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the DOE Grand Junction Projects Office (GJPO) in Grand Junction, Colorado, to standardize, calibrate, and compare measurements made in support of DOE remedial action programs. A set of large-area, radioelement-enriched concrete pads was constructed by the DOE in 1978 at the Walker Field Airport in Grand Junction for use as calibration standards for airborne gamma-ray spectrometer systems. The use of these pads was investigated by the TMC as potential calibration standards for portable scintillometers employed in measuring gamma-ray exposure rates at Uranium Mill Tailings Remedial Action (UMTRA) project sites. Data acquired on the pads using a pressurized ionization chamber (PIC) and three scintillometers are presented as an illustration of an instrumental calibration. Conclusions and recommended calibration procedures are discussed, based on the results of these data.

  2. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect (OSTI)

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within 1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  3. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  4. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  5. Mercury Continuous Emmission Monitor Calibration

    SciTech Connect (OSTI)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  6. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  7. Microfabricated field calibration assembly for analytical instruments

    DOE Patents [OSTI]

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.; Rodacy, Philip J.; Simonson, Robert J.

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  8. Test report for fine calibration grooming and alignment of the LDUA optical alignment scope (LDUA system 6250)

    SciTech Connect (OSTI)

    Potter, J.D., Westinghouse Hanford

    1996-07-15

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. The LDUA must be carefully aligned with the tank riser during the installation process. The Optical Alignment Scope (OAS) is used to determine when optimum alignment has been achieved between the LDUA and the riser. Calibration,grooming and alignment (CG{ampersand}A) is performed on the OAS to assure that the instrumentation and equipment comprising the OAS is properly adjusted in order to achieve its intended functions successfully. This document contains the results, conclusions and recommendations arrived at by the CG{ampersand}A tests performed on the OAS in accordance with WHC-SD-WM- TC-070.

  9. MMCR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23

    Calibration report for the Millimeter Wavelength Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  10. Self-calibrating multiplexer circuit

    DOE Patents [OSTI]

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  11. WACR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23

    Calibration report for the W-Band (95 GHz) ARM Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  12. SSC and G-2 calorimeter and optical calibration. Progress report, September 15, 1992--September 14, 1993

    SciTech Connect (OSTI)

    Winn, D.R.

    1993-11-01

    This report discusses: Task A: G-2 Photomultiplier & Calibration Systems (BNL E821) and Task B: Optical Calorimeter R&D & Calibration for High Rates & Colliders.

  13. Sandia WIPP calibration traceability

    SciTech Connect (OSTI)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  14. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  15. Next Generation Calibration Models with Dimensional Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Models with Dimensional Modeling Next Generation Calibration Models with ... Calibration Optimization for Next Generation Diesel Engines An Accelerated Aging ...

  16. Roundness calibration standard

    DOE Patents [OSTI]

    Burrus, Brice M.

    1984-01-01

    A roundness calibration standard is provided with a first arc constituting the major portion of a circle and a second arc lying between the remainder of the circle and the chord extending between the ends of said first arc.

  17. Digiquartz pressure transducer calibration test results

    SciTech Connect (OSTI)

    Bentzen, F.L.

    1980-12-01

    The safeguarding of strategic nuclear material in chemical fuel reprocessing plants requires the accurate determination of liquid level, which is translated to pressure through bubbler probes. To measure the pressure with sufficient accuracy requires transducers better than standard process units. The Paroscientific Inc. Digiquartz transducer meets the requirement when calibrated. Calibration was accomplished with an automatic data acquisition system using a Hewlett Packard 9825A computer and associated precision laboratory equipment and a Ruska DDR 6000 pressure calibrator. Data were taken from 0 to 15 psid over the range of 15 to 60/sup 0/C for 14 pressure transducers.

  18. Flow through electrode with automated calibration

    DOE Patents [OSTI]

    Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

    2002-08-20

    The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

  19. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOE Patents [OSTI]

    Clifford, Harry J.

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  20. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  1. Calibration Under Uncertainty.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  2. Towards Developing a Calibrated EGS Exploration Methodology Using...

    Open Energy Info (EERE)

    Towards Developing a Calibrated EGS Exploration Methodology Using the Dixie Valley Geothermal System, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Calibration Monitoring for Sensor Calibration Interval Extension: Gaps in the Current Science Base

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-10-09

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. International application of calibration monitoring has shown that sensors may operate for longer periods within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. Online monitoring (OLM) can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of OLM for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This paper summarizes a recent state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and OLM algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several technical needs were identified, including an understanding of the impacts of sensor degradation on measurements for both conventional and emerging sensors; the quantification of uncertainty in online calibration assessment; determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity.

  4. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  5. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect (OSTI)

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  6. U.S. Department of Energy Office of Legacy Management Calibration Facilities - 12103

    SciTech Connect (OSTI)

    Barr, Deborah; Traub, David; Widdop, Michael

    2012-07-01

    This paper describes radiometric calibration facilities located in Grand Junction, Colorado, and at three secondary calibration sites. These facilities are available to the public for the calibration of radiometric field instrumentation for in-situ measurements of radium (uranium), thorium, and potassium. Both borehole and hand-held instruments may be calibrated at the facilities. Aircraft or vehicle mounted systems for large area surveys may be calibrated at the Grand Junction Regional Airport facility. These calibration models are recognized internationally as stable, well-characterized radiation sources for calibration. Calibration models built in other countries are referenced to the DOE models, which are also widely used as a standard for calibration within the U.S. Calibration models are used to calibrate radiation detectors used in uranium exploration, remediation, and homeland security. (authors)

  7. Simultaneous multi-headed imager geometry calibration method

    DOE Patents [OSTI]

    Tran, Vi-Hoa; Meikle, Steven Richard; Smith, Mark Frederick

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  8. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect (OSTI)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  9. TIME CALIBRATED OSCILLOSCOPE SWEEP

    DOE Patents [OSTI]

    Owren, H.M.; Johnson, B.M.; Smith, V.L.

    1958-04-22

    The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

  10. Method and apparatus for calibrating a particle emissions monitor

    DOE Patents [OSTI]

    Flower, W.L.; Renzi, R.F.

    1998-07-07

    The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.

  11. Method and apparatus for calibrating a particle emissions monitor

    DOE Patents [OSTI]

    Flower, William L.; Renzi, Ronald F.

    1998-07-07

    The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.

  12. Calibration-free optical chemical sensors

    DOE Patents [OSTI]

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  13. Field Calibration Facilities for Environmental Measurement of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ... Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and ...

  14. Exposure-Rate Calibration Using Large-Area Calibration Pads ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Radium, Thorium, and Potassium (October 2013) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994) ...

  15. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    DOE Patents [OSTI]

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  16. Crop physiology calibration in the CLM

    SciTech Connect (OSTI)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  17. Crop physiology calibration in the CLM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  18. High-frequency calibration of inductive voltage dividers

    SciTech Connect (OSTI)

    Robinson, I.A.; Bryant, S.

    1994-12-31

    We have constructed a semi-automated system for calibrating Inductive Voltage Dividers (IVDs) in the frequency range 5-300 kHz, with a target measurement uncertain of lppm at 300 kHz.

  19. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOE Patents [OSTI]

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  20. Probabilistic methods for sensitivity analysis and calibration...

    Office of Scientific and Technical Information (OSTI)

    calibration in the NASA challenge problem Citation Details In-Document Search Title: Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem ...

  1. Calibration of optical particle-size analyzer

    DOE Patents [OSTI]

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  2. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    SciTech Connect (OSTI)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  3. Extending Sensor Calibration Intervals in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

    2012-11-15

    Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

  4. Recombinant fluorescent protein microsphere calibration standard

    DOE Patents [OSTI]

    Nolan, John P.; Nolan, Rhiannon L.; Ruscetti, Teresa; Lehnert, Bruce E.

    2001-01-01

    A method for making recombinant fluorescent protein standard particles for calibration of fluorescence instruments.

  5. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  6. Calibration Facilities Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Calibration Facilities » Calibration Facilities Documents Calibration Facilities Documents October 17, 2013 Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) The first edition of this report, released in October 1982, presented physical-characteristic information for the various DOE radiologic-instrument calibration facilities located throughout the U.S. Three subsequent editions have been released in an effort to update

  7. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  8. Calibration of electrical impedance tomography

    SciTech Connect (OSTI)

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  9. ARM - Evaluation Product - Calibrated KAZR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calibrated and corrected via a new value-added product (VAP) KAZRCAL. The nsakazrgeC1.a1 and nsakazrmdC1.a1 datastreams are used as input, in addition to a set of calibration...

  10. Spinning angle optical calibration apparatus

    DOE Patents [OSTI]

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  11. Calibrating thermal behavior of electronics

    DOE Patents [OSTI]

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  12. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  13. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOE Patents [OSTI]

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  14. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    SciTech Connect (OSTI)

    Hashemian, H M; Mitchell, D W; Petersen, K M; Shell, C S

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage.

  15. Calibration techniques for a fast duo-spectrometer

    SciTech Connect (OSTI)

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of the fastest, highest throughput diagnostics of its kind. Typical measurements are presented.

  16. Integration of remote measurement calibration with state estimation; A feasibility study

    SciTech Connect (OSTI)

    Adibi, M.M. ); Clements, K.A. ); Kafka, R.J. ); Stovall, J.P. )

    1992-08-01

    This paper describes the integration of measurement calibration and state estimation methodologies for increasing the confidence level in the real-time data base. The objectives are to improve performance of state estimators and to reduce the system engineering effort which goes into its installations and the related measurement calibrations.

  17. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  18. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  19. NREL: Measurements and Characterization - Reference Cell Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Cell Calibration The National Renewable Energy Laboratory (NREL) calibrates primary reference cells for in-house use and for use by other national laboratories. We also do so to provide our clients and partners with a path for traceability to standards. Our laboratory is one of only four facilities in the world certified to calibrate reference cells in accordance with the world photovoltaic scale, and these measurements are accredited to International Organization for Standardization

  20. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    (RCC) User's Manual: Windows Version 4.0 Citation Details In-Document Search Title: Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0 ...

  1. Radiometer Calibration and Characterization (RCC) User's Manual...

    Office of Scientific and Technical Information (OSTI)

    RCC provides a unique method of calibrating broadband atmospheric longwave and solar ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar ...

  2. Gearbox Reliability Collaborative Bearing Calibration

    SciTech Connect (OSTI)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  3. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    SciTech Connect (OSTI)

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  4. Bayesian calibration of the Community Land Model using surrogates

    SciTech Connect (OSTI)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Swiler, Laura Painton

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

  5. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect (OSTI)

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  6. Bayesian Calibration of the Community Land Model using Surrogates

    SciTech Connect (OSTI)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Sargsyan, K.; Swiler, Laura P.

    2015-01-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditioned on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that accurate surrogate models can be created for CLM in most cases. The posterior distributions lead to better prediction than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters distributions significantly. The structural error model reveals a correlation time-scale which can potentially be used to identify physical processes that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

  7. The design and fabrication of a calibrated hot box apparatus

    SciTech Connect (OSTI)

    Gatland, S.D. II; Goss, W.P.; Curcija, D.

    1997-11-01

    A second generation research calibrated hot box was designed and constructed at the University of Massachusetts`s Building Energy Research Laboratory. The hot box was built to meet the test methodologies specified in the American Society for Testing and Materials (ASTM) Standard Test Methods C 976 for calibrated hot boxes and C 1199 for fenestration system hot box test methods. The hot box has the capability of simulating both parallel and perpendicular weather side wind directions on building assemblies, including fenestration (window and door) systems. The weather side chamber has a temperature range of {minus}23.3 C to 60 C and the room side chamber has a temperature range of 21.1 C to 60 C. The design, fabrication, and instrumentation are described in detail.

  8. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  9. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  10. Jet energy calibration at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  11. The Observability Calibration Test Development Framework

    SciTech Connect (OSTI)

    Endicott-Popovsky, Barbara E.; Frincke, Deborah A.

    2007-06-20

    Abstract Formal standards, precedents, and best practices for verifying and validating the behavior of low layer network devices used for digital evidence-collection on networks are badly needed initially so that these can be employed directly by device owners and data users to document the behaviors of these devices for courtroom presentation, and ultimately so that calibration testing and calibration regimes are established and standardized as common practice for both vendors and their customers [1]. The ultimate intent is to achieve a state of confidence in device calibration that allows the network data gathered by them to be relied upon by all parties in a court of law. This paper describes a methodology for calibrating forensic-ready low layer network devices based on the Flaw Hypothesis Methodology [2,3].

  12. Accounting for Model Error in the Calibration of Physical Models...

    Office of Scientific and Technical Information (OSTI)

    Accounting for Model Error in the Calibration of Physical Models. Citation Details In-Document Search Title: Accounting for Model Error in the Calibration of Physical Models. ...

  13. Bayesian Calibration of the Community Land Model using Surrogates...

    Office of Scientific and Technical Information (OSTI)

    Bayesian Calibration of the Community Land Model using Surrogates Citation Details In-Document Search Title: Bayesian Calibration of the Community Land Model using Surrogates We ...

  14. ARM: GRAMS: calibration information for the total solar broadband...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: calibration information for the total solar broadband radiometer (TBBR) GRAMS: calibration information for the total solar ...

  15. Note: On the wavelength dependence of the intensity calibration...

    Office of Scientific and Technical Information (OSTI)

    Note: On the wavelength dependence of the intensity calibration factor of extreme ... Title: Note: On the wavelength dependence of the intensity calibration factor of extreme ...

  16. Model-Based Transient Calibration Optimization for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine...

  17. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984

  18. Cosmic Reionization On Computers I. Design and Calibration of...

    Office of Scientific and Technical Information (OSTI)

    I. Design and Calibration of Simulations Citation Details In-Document Search Title: Cosmic Reionization On Computers I. Design and Calibration of Simulations Authors: Gnedin, ...

  19. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 150GHz channel Microwave Radiometer: High Frequency, calibration data for 150GHz channel Authors: Maria ...

  20. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 90GHz channel Microwave Radiometer: High Frequency, calibration data for 90GHz channel Authors: Maria Cadeddu ...

  1. Microfabricated Field Calibration Assembly - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Industrial Technologies Industrial Technologies Find More Like This Return to Search Microfabricated Field Calibration Assembly Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (781 KB) Technology Marketing SummaryReliable determination of the presence and/or quantity of a particular analyte in the field can be greatly enhanced if the analytical instrument is equipped with a time-of-use calibration

  2. Calibration and Rating of Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Emery, K.

    2012-06-01

    Rating the performance of photovoltaic (PV) modules is critical to determining the cost per watt, and efficiency is useful to assess the relative progress among PV concepts. Procedures for determining the efficiency for PV technologies from 1-sun to low concentration to high concentration are discussed. We also discuss the state of the art in primary and secondary calibration of PV reference cells used by calibration laboratories around the world. Finally, we consider challenges to rating PV technologies and areas for improvement.

  3. Calibration facility for environment dosimetry instruments

    SciTech Connect (OSTI)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-16

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (∼10{sup −9} - 10{sup −8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  4. Calibrations and verifications performed in view of the ILA reinstatement at JET

    SciTech Connect (OSTI)

    Dumortier, P. Durodié, F.; Helou, W.; Monakhov, I.; Noble, C.; Wooldridge, E.; Blackman, T.; Graham, M.; Collaboration: EUROfusion Consortium

    2015-12-10

    The calibrations and verifications that are performed in preparation of the ITER-Like antenna (ILA) reinstatement at JET are reviewed. A brief reminder of the ILA system layout is given. The different calibration methods and results are then discussed. They encompass the calibrations of the directional couplers present in the system, the determination of the relation between the capacitor position readings and the capacitance value, the voltage probes calibration inside the antenna housing, the RF cables characterization and the acquisition electronics circuit calibration. Earlier experience with the ILA has shown that accurate calibrations are essential for the control of the full ILA close-packed antenna array, its protection through the S-Matrix Arc Detection and the new second stage matching algorithm to be implemented. Finally the voltage stand-off of the capacitors is checked and the phase range achievable with the system is verified. The system layout is modified as to allow dipole operation over the whole operating frequency range when operating with the 3dB combiner-splitters.

  5. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  6. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources

    SciTech Connect (OSTI)

    Brown, Steven W.; Eppeldauer, George P.; Lykke, Keith R

    2006-11-10

    Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However,uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement,are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responsivities are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.

  7. Calibration of a Modified Californium Shuffler

    SciTech Connect (OSTI)

    Sadowski, E.T.; Armstrong, F.; Oldham, R.; Ceo, R.; Williams, N.

    1995-06-01

    A californium shuffler originally designed to assay hollow cylindrical pieces of UA1 has been modified to assay solid cylinders. Calibration standards were characterized via chemical analysis of the molten UA1 taken during casting of the standards. The melt samples yielded much more reliable characterization data than drill samples taken from standards after the standards had solidified. By normalizing one well-characterized calibration curve to several standards at different enrichments, a relatively small number of standards was required to develop an enrichment-dependent calibration. The precision of this shuffler is 0.65%, and the typical random and systematic uncertainties are 0.53% and 0.73%, respectively, for a six minute assay of an ingot containing approximately 700 grams of {sup 235}U. This paper will discuss (1) the discrepancies encountered when UA1 standards were characterized via melt samples versus drill samples, (2) a calibration methodology employing a small number of standards, and (3) a comparison of results from a previously unused shuffler with an existing shuffler. A small number of UA1 standards have been characterized using samples from the homogeneous molten state and have yielded enrichment-dependent and enrichment-independent calibration curves on two different shufflers.

  8. Near-Blackbody Enclosed Particle Receiver

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. Direct Thermal Receivers Using Near Blackbody Configurations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high cost, and limited thermal conversion efficiency. To achieve the Department of Energy SunShot goal of high efficiency, low cost renewable power generation, a highly efficient ...

  10. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect (OSTI)

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  11. WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH

    SciTech Connect (OSTI)

    Pakhomov, Yu. V.; Zhao, G.

    2013-10-01

    We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

  12. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  13. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  14. Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (April 1984) | Department of Energy Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) (3.25 MB) More Documents & Publications Grade Assignments for Models Used for Calibration of Gross-Count

  15. Calibration Pad Assignments for Spectral Gamma (November 1985) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) Calibration Pad Assignments for Spectral Gamma (November 1985) (5.3 MB) More Documents & Publications Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Grade

  16. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    SciTech Connect (OSTI)

    Swift, Neil; Nield, Kathryn; Hamlin, John; Huelsen, Gregor; Groebner, Julian

    2013-05-10

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagree significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.

  17. Robotic calibration of the motional Stark effect diagnostic on Alcator C-Mod

    SciTech Connect (OSTI)

    Mumgaard, Robert T.; Scott, Steven D.; Ko, Jinseok

    2014-05-15

    The capability to calibrate diagnostics, such as the Motional Stark Effect (MSE) diagnostic, without using plasma or beam-into-gas discharges will become increasingly important on next step fusion facilities due to machine availability and operational constraints. A robotic calibration system consisting of a motorized three-axis positioning system and a polarization light source capable of generating arbitrary polarization states with a linear polarization angle accuracy of <0.05° has been constructed and has been used to calibrate the MSE diagnostic deployed on Alcator C-Mod. The polarization response of the complex diagnostic is shown to be fully captured using a Fourier expansion of the detector signals in terms of even harmonics of the input polarization angle. The system's high precision robotic control of position and orientation allow it to be used also to calibrate the geometry of the instrument's view. Combined with careful measurements of the narrow bandpass spectral filters, this system fully calibrates the diagnostic without any plasma discharges. The system's high repeatability, flexibility, and speed has been exploited to quantify several systematics in the MSE diagnostic response, providing a more complete understanding of the diagnostic performance.

  18. Absolute calibration of optical flats

    DOE Patents [OSTI]

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  19. AMS Ground Truth Measurements: Calibration and Test Lines

    SciTech Connect (OSTI)

    Wasiolek, P.

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  20. Calibrating feedwater flow nozzles in-situ

    SciTech Connect (OSTI)

    Caudill, M.; Diaz-Tous, I.; Murphy, S.; Leggett, M.; Crandall, C.

    1996-05-01

    This paper presents a new method for in-situ calibration of feedwater flow nozzles wherein feedwater flow is determined indirectly by performing a high accuracy heat balance around the highest-pressure feedwater heater. It is often difficult to reliably measure feedwater flow. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the piping and sent to a laboratory for recalibration, which can be an especially difficult, expensive, and time-consuming task when involving high pressure feedwater lines. ENCOR-AMERICA, INC. has developed an accurate and cost-effective method of calibrating feedwater nozzles in-situ as previously reported at the 1994 EPRI Heat Rate Improvement Conference. In this method, feedwater flow and differential pressure across the nozzle are measured concurrently. The feedwater flow is determined indirectly by performing a heat balance around the highest-pressure feedwater heater. Extraction steam to the feedwater heater is measured by use of a high accuracy turbine flowmeter. The meters used have been calibrated at an independent laboratory with a primary or secondary device traceable to the NIST. In this paper, a new variation on the above method is reported. The new approach measures the heater drains and vent flows instead of the extraction steam flow. Test theory and instrumentation will be discussed. Results of in-situ feedwater nozzle calibration tests performed at two units owned by Tri-State Generation and Transmission Association will be presented.

  1. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect (OSTI)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  2. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; Im, Piljae; O’Neill, Zheng; Garg, Vishal

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  3. Definition of energy-calibrated spectra for national reachback

    SciTech Connect (OSTI)

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  4. Calibration method for video and radiation imagers

    DOE Patents [OSTI]

    Cunningham, Mark F.; Fabris, Lorenzo; Gee, Timothy F.; Goddard, Jr., James S.; Karnowski, Thomas P.; Ziock, Klaus-peter

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  5. Appendix D: Facility Process Data and Appendix E: Equipment Calibration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Sheets | Department of Energy D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets Docket No. EO-05-01: Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Appendix D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets

  6. Two Approaches to Calibration in Metrology

    SciTech Connect (OSTI)

    Campanelli, Mark

    2014-04-01

    Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.

  7. Evaluation of Improved Pyrgeometer Calibration Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Pyrgeometer Calibration Method I. Reda, P. A. Gotseff, T. L. Stoffel, and C. Webb National Renewable Energy Laboratory Golden, Colorado Abstract Broadband longwave (atmospheric) irradiance measurements are important for determining the earth's total energy balance. The Atmospheric Radiation Measurement (ARM) Program has deployed more than 50 pyrgeometers for measuring the upwelling and downwelling longwave irradiance as part of Solar Infrared Station (SIRS), SKYRAD, and GNDRAD

  8. Calibration of the GLAST Burst Monitor Detectors

    SciTech Connect (OSTI)

    von Kienlin, Andreas; Bissaldi, Elisabetta; Lichti, Giselher G.; Steinle, Helmut; Krumrey, Michael; Gerlach, Martin; Fishman, Gerald J.; Meegan, Charles; Bhat, Narayana; Briggs, Michael S.; Diehl, Roland; Connaughton, Valerie; Greiner, Jochen; Kippen, R.Marc; Kouveliotou, Chryssa; Paciesas, William; Preece, Robert; Wilson-Hodge, Colleen

    2011-11-29

    The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2 BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV). The physical detector response of the GBM instrument for GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground calibration measurements, performed extensively with the individual detectors at the MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channel-relations, the dependences of energy resolution and effective areas on the energy and the angular responses were measured. Due to the low number of emission lines of radioactive sources below 100 keV, calibration measurements in the energy range from 10 keV to 60 keV were performed with the X-ray radiometry working group of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation facility, Berlin.

  9. Test surfaces useful for calibration of surface profilometers

    DOE Patents [OSTI]

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  10. Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows

    SciTech Connect (OSTI)

    Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R.; Williams, B. J.

    2013-07-01

    Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

  11. Recent DIII-D neutral beam calibration results

    SciTech Connect (OSTI)

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs.

  12. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this works calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the CIPS Validation Data Plan at the Consortium for Advanced Simulation of LWRs to enable

  13. PV Cell and Module Calibrations at NREL

    SciTech Connect (OSTI)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  14. The JANA Calibrations and Conditions Database API

    SciTech Connect (OSTI)

    David Lawrence

    2010-07-01

    Calibrations and conditions databases can be accessed from within the JANA Event Processing framework through the API defined in its JCalibration base class. The API is designed to support everything from databases, to web services to flat files for the backend. A Web Service backend using the gSOAP toolkit has been implemented which is particularly interesting since it addresses many modern cybersecurity issues including support for SSL. The API allows constants to be retrieved through a single line of C++ code with most of the context, including the transport mechanism, being implied by the run currently being analyzed and the environment relieving developers from implementing such details.

  15. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  16. Arctic Clouds Infrared Imaging Field Campaign Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods ...

  17. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here withmore » Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.« less

  18. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    SciTech Connect (OSTI)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrgeometer Calibrations at NREL Reda, I. and Stoffel, T., National Renewable Energy Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program has acquired a new Pyrgeometer Blackbody Calibration System to improve the data quality of longwave measurements from the SIRS, GNDRAD, and SKYRAD instrument platforms. Results of the acceptance tests and subsequent indoor and outdoor pyrgeometer calibrations at NREL's Solar Radiation Research Laboratory are

  20. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,morecomparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.less

  1. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  2. Evaluation and calibration of a Los Alamos National Laboratory L/sub III/-edge densitometer

    SciTech Connect (OSTI)

    McGonnagle, W.J.; Holland, M.K.; Reynolds, C.S.; Trahey, N.M.; Zook, A.C.

    1983-07-01

    The Department of Energy (DOE), New Brunswick Laboratory (NBL) has evaluated and calibrated an L/sub III/-edge densitometer for the Los Alamos National Laboratory. This prototype instrument was designed for nondestructive on-line measurement of uranium and/or plutonium solutions. The sensitivity was optimized for measuring the uranium and plutonium concentrations in mixed solutions typical of those produced by solvent extraction in the U-Pu fuel cycle. Foil assays were performed on a daily basis to monitor the measurement precision and the stability of the calibration. Traceable reference solutions prepared at NBL were used to calibrate and evaluate the system. For solutions containing approximately 50 grams of uranium and/or plutonium per liter, the relative standard deviation for the L-edge measurements was approximately 0.3%. This experimental evaluation demonstrated that the solution matrix did not influence the results. The instrument performance in a laboratory environment was excellent.

  3. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  4. High Accuracy Transistor Compact Model Calibrations

    SciTech Connect (OSTI)

    Hembree, Charles E.; Mar, Alan; Robertson, Perry J.

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  5. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  6. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  7. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect (OSTI)

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  8. High vacuum measurements and calibrations, molecular flow fluid transient effects

    SciTech Connect (OSTI)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.

  9. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased duringmore » set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  10. High vacuum measurements and calibrations, molecular flow fluidtransient effects

    SciTech Connect (OSTI)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.

  11. Working with SRNL - Our Facilities - Health Physics Instrument Calibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 4 SEARCH SRNL GO Main Campus ACTL Aiken County Technology Laboratory Applied Research Center: * HTRL Hydrogen Technology Research Laboratory * EMRL Energy Materials Research Laboratory F/H Lab Health Physics Instrument Calibration Laboratory Analytical Laboratories SRNL Home Instrument Calibration Laboratory Working with SRNL Our Facilities - Health Physics Instrument Calibration Laboratory Radiation detection and the creation of new technology is vital to the security of public

  12. Working Group Reports Calibration of Radiation Codes Used in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Calibration of Radiation Codes Used in Climate Models: Comparison of Clear-Sky Calculations with Observations from the Spectral Radiation Experiment and the ...

  13. Monitoring of the Airport Calibration Pads at Walker Field, Grand...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) UMTRCA Sites Fact Sheet Long-Term ...

  14. Logging Calibration Models for Fission Neutron Sondes (September...

    Energy Savers [EERE]

    A Model for Water Factor Measurements With Fission-Neutron Logging Tools (May 1983) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium ...

  15. Calibration and Comparison of Climate Models: Accounting for...

    Office of Scientific and Technical Information (OSTI)

    Models: Accounting for Structural and Discretization Error. Citation Details In-Document Search Title: Calibration and Comparison of Climate Models: Accounting for ...

  16. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS...

    Office of Scientific and Technical Information (OSTI)

    CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  17. An absolute calibration method of an ethyl alcohol biosensor...

    Office of Scientific and Technical Information (OSTI)

    biosensor based on wavelength-modulated differential photothermal radiometry Citation Details In-Document Search Title: An absolute calibration method of an ethyl alcohol biosensor ...

  18. QAS 2.4 Instrument Calibration 5/26/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the implementation of the contractor's program to routinely calibrate instruments, alarms, and sensors.  The Facility Representative observes...

  19. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE...

    Office of Scientific and Technical Information (OSTI)

    REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS Citation Details In-Document Search Title: STELLAR LOCUS REGRESSION: ...

  20. Pressure instrument calibration reaps SPC benefits

    SciTech Connect (OSTI)

    Kegel, T.M.

    1995-12-01

    Calibration laboratories are faced with the need to become accredited or registered to one or more quality standards. One requirement common to all of these standards is the need to have in place a measurement assurance program. What is a measurement assurance program? Brian Belanger, in Measurement Assurance Programs: Part 1, describes it as a {open_quotes}quality assurance program for a measurement process that quantifies the total uncertainty of the measurements (both random and systematic components of error) with respect to national or designated standards and demonstrates that the total uncertainty is sufficiently small to meet the user`s requirements.{close_quotes} Rolf Schumacher is more specific in Measurement Assurance in Your Own Laboratory. He states, {open_quotes}Measurement assurance is the application of broad quality control principles to measurements of calibrations.{close_quotes} Here, the focus is on one important part of any measurement assurance program: implementation of statistical process control (SPC). Paraphrasing Juran`s Quality Control Handbook, a process is in statistical control if the only observed variations are those that can be attributed to random causes. Conversely, a process that exhibits variations due to assignable causes is not in a state of statistical control. Finally, Carrol Croarkin states, {open_quotes}In the measurement assurance context the measurement algorithm including instrumentation, reference standards and operator interactions is the process that is to be controlled, and its direct product is the measurement per se. The measurements are assumed to be valid if the measurement algorithm is operating in a state of control.{close_quotes} Implicit in this statement is the important fact that an out-of-control process cannot produce valid measurements. 7 figs.

  1. Measurements, system response, and calibration of the SLAC T...

    Office of Scientific and Technical Information (OSTI)

    B.F. ; Washington U., St. Louis ; Romero-Wolf, A. ; Caltech, JPL ; Rotter, B. ; Hawaii U. UCLA Hawaii U. Delaware U. University Coll., London Chicago U. Stanford U., Phys. ...

  2. Self-calibrated active pyrometer for furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  3. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    SciTech Connect (OSTI)

    Heiser .

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  4. Mesoscale hybrid calibration artifact (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact ...

  5. Used to Calibrate Thermistors on In Situ Permeable Flow Sensors

    Energy Science and Technology Software Center (OSTI)

    1996-12-01

    The software package is comprised of three programs which together are used to calibrate thermistors in an In Situ Permable Flow Sensor. TBATH controls a temperature controlled bath/circulator. The code monitors the temperature of a set of previously calibrated thermistors located in a tank through which the fluid from the bath is circulated. After the temperature has reached and maintained thermal equilibrium for a specified period of time, the bath/circulator is instructed by the programmore » to change the temperature set point to the next specified temperature. An arbitrary number of temperature calibration points can be specified allowing thermistors to be calibrated on a continuous basis without human intervention. CALIB is used to merge two data files that are collected during a temperature calibration run. During calibration of the thermistors on an In Situ Permeable Flow Sensor, the known temperatures in the temperaure controlled tank are recorded in one computer file in one format while the electrical resistance of the thermistors being calibrated is collected in a different file with a different format. This software reads in the two files and writes out a third file with all of the data in it that is required to calculate the calibration coefficients of the thermistors on the probe. POLYFIT is used to calculate the calibration coefficients which permit the temperature of a thermistor to ba calculated from its electrical resistance. During calibration of a thermistor, the electrical resistance of the thermistor is measured at four or more known temperatures and the data sent to this software. The program calculates the coefficients of a fourth order polynomial relating the inverse of the absolute temperature to the natural log of the electrical resistance. Once these coefficients are known, the polynomial can be evaluated with any measured electrical resistance to calculate the equivalent temperature.« less

  6. Polarization imaging apparatus with auto-calibration

    DOE Patents [OSTI]

    Zou, Yingyin Kevin; Zhao, Hongzhi; Chen, Qiushui

    2013-08-20

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5.degree., a second variable phase retarder with its optical axis aligned 45.degree., a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I.sub.0, I.sub.1, I.sub.2 and I.sub.3 of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (.pi.,0), (.pi.,.pi.) and (.pi./2,.pi.), respectively. Then four Stokes components of a Stokes image, S.sub.0, S.sub.1, S.sub.2 and S.sub.3 were calculated using the four intensity images.

  7. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  8. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect (OSTI)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  9. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  10. Magnetic probe response function calibrations for plasma equilibrium reconstructions of CDX-U

    SciTech Connect (OSTI)

    Spaleta, J.; Zakharov, L.; Kaita, R.; Majeski, R.; Gray, T.

    2006-10-15

    A novel response function calibration technique has been developed to account for time-dependent nonaxisymmetric eddy currents near magnetic sensors in toroidal magnetic confinement devices. The response function technique provides a means to cross calibrate against all available external field coil systems to calculate the absolute sensitivity of each magnetic field sensor, even when induced eddy currents are present in the vacuum vessel wall. The response function information derived in the calibration process can be used in equilibrium reconstructions to separate plasma signals from signals due to externally produced eddy currents at magnetic field sensor locations, without invoking localized wall current distribution details. The response function technique was used for the first ever equilibrium reconstructions of spherical torus plasmas, when applied to the Current Drive Experiment-Upgrade (CDX-U) device. In conjunction with the equilibrium and stability code (ESC), equilibria were obtained for recent CDX-U experiments with lithium plasma-facing components. A description of the CDX-U magnetic sensor configuration and the response function calibration technique will be presented along with examples of resulting plasma equilibrium for CDX-U lithium wall operations.

  11. A general procedure for thermomechanical calibration of nano/micro-mechanical resonators

    SciTech Connect (OSTI)

    Hauer, B.D., E-mail: bhauer@ualberta.ca; Doolin, C.; Beach, K.S.D., E-mail: kbeach@ualberta.ca; Davis, J.P., E-mail: jdavis@ualberta.ca

    2013-12-15

    We describe a general procedure to calibrate the detection of a nano/micro-mechanical resonators displacement as it undergoes thermal Brownian motion. A brief introduction to the equations of motion for such a resonator is presented, followed by a detailed derivation of the corresponding power spectral density (PSD) function, which is identical in all situations aside from a system-dependent effective mass value. The effective masses for a number of different resonator geometries are determined using both finite element method (FEM) modeling and analytical calculations. -- Highlights: Model micro- and nanomechanical resonators displaced by their own thermal motion. Review the theoretical framework for describing thermomechanical systems. Present a recipe for measurement calibration on devices of arbitrary shape. Point out and correct inconsistencies in the existing literature. Provide an authoritative guide and reference for practitioners in this area.

  12. CALIBRATION OF PHOTOELASTIC MODULATORS IN THE VACUUM UV.

    SciTech Connect (OSTI)

    OAKBERG, T.C.; TRUNK, J.; SUTHERLAND, J.C.

    2000-02-15

    Measurements of circular dichroism (CD) in the UV and vacuum UV have used photoelastic modulators (PEMs) for high sensitivity (to about 10{sup -6}). While a simple technique for wavelength calibration of the PEMs has been used with good results, several features of these calibration curves have not been understood. The authors have calibrated a calcium fluoride PEM and a lithium fluoride PEM using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as a light source. These experiments showed calibration graphs that are linear bit do not pass through the graph origin. A second ''multiple pass'' experiment with laser light of a single wavelength, performed on the calcium fluoride PEM, demonstrates the linearity of the PEM electronics. This implies that the calibration behavior results from intrinsic physical properties of the PEM optical element material. An algorithm for generating calibration curves for calcium fluoride and lithium fluoride PEMs has been developed. The calibration curves for circular dichroism measurement for the two PEMs investigated in this study are given as examples.

  13. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  14. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (OSTI)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  15. Calibration and Collaboration: Important Tools to Design high-Performance Affordable Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Liu, Bing; Snell, John; Helmes, Dan

    2008-03-31

    When new technologies are installed in a building, it is difficult to know how various systems will interact and if the building will perform as well as expected. A widely used technique to verify and quantify the actual energy savings from the energy-efficient features in high-performance buildings is to use the calibrated energy simulation approach. Maverick Gardens Mid-Rise A is a six-story apartment building located in East Boston, Massachusetts. The building was designed and constructed to meet the ENERGY STAR Homes Program rating and the U.S. Green Building Councils Leadership in Energy and Environmental Design (LEED) certification. During the design phase, DOE-2.1E energy models for both budget building design and proposed building design were developed by the design team to demonstrate energy savings potential from various energy efficient technologies installed in this high-performance building. When comparing the energy use predicted by the proposed design energy model with utility bills, the design team observed that this buildings actual energy consumption was about one-third of what was estimated from the proposed design model, and therefore requested help from the authors through the U.S. Department of Energys Rebuild America Program to calibrate the proposed design energy model. This paper describes the energy simulation calibration approach using short-term metering data and utility bills. Details of the analysis, calibration results and the actual building energy performance are presented. This study also discusses lessons learned during the simulation calibration process and demonstrates the importance of collaboration among design professionals throughout the design, building, and commissioning process, as a way to ensure that high-performing building goals are met.

  16. Calibration of accelerometers on the 5000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1992-05-01

    This memorandum is a synopsis of the description and operation of the equipment used and the events occurring during the calibration of an accelerometer on the 5000 g centrifuge.

  17. Calibration of accelerometers on the 1000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1991-04-01

    This memorandum is a synopsis of the description and operation of the equipment used, and the events occurring during the calibration of an accelerometer on the 1000 G centrifuge. 2 refs., 1 tab.

  18. Calibration model for the DCXC x-ray camera

    SciTech Connect (OSTI)

    Fehl, D.L.; Chang, J.

    1980-01-01

    A physical model for the DCXC camera used in x-radiographic studies of inertial confinement fusion (ICF) targets is described. Empirical calibration procedures, based on pulsed, bremsstrahlung sources, are proposed.

  19. Method and apparatus for calibrating a linear variable differential transformer

    DOE Patents [OSTI]

    Pokrywka, Robert J.

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  20. Industry guidelines for the calibration of maximum anemometers

    SciTech Connect (OSTI)

    Bailey, B.H.

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  1. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GDP) Decommissioning | Department of Energy Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality safety purposes. Current practices used to perform NDA

  2. MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements Gary Hodges, CIRES/NOAA and John Schmelzer, PNL gary.hodges@noaa.gov, john.schmelzer@pnl.gov 17th Annual ARM Science Team Meeting 26-30 March 2006 Monterey, CA Head Refurbishment The Process Includes: * New filter detectors * Relocate internal thermistors * New connectors * Gain resistors moved to head * Improved insulation The Finished Heads: * Are lamp calibrated * Have filter profiles measured * Cosine characterized *

  3. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  4. Optical Measurement Methods used in Calibration and Validation of Modeled

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Spray Characteristics | Department of Energy Optical Measurement Methods used in Calibration and Validation of Modeled Injection Spray Characteristics Optical Measurement Methods used in Calibration and Validation of Modeled Injection Spray Characteristics Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-07_klyza.pdf (363.89 KB) More Documents & Publications Effect of Ambient Pressure

  5. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2 Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185 USA Hy D. Tran, PhD, PE Phone: (505)844-5417 Fax: (505)844-4372 hdtran@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  6. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  7. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Technical Report: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related

  8. Model-Based Transient Calibration Optimization for Next Generation Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Model-Based Transient Calibration Optimization for Next Generation Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_atkinson.pdf (585.55 KB) More Documents & Publications Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Integrated Engine and Aftertreatment Technology Roadmap for EPA

  9. Increased Efficiency with Model Based Calibration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency with Model Based Calibration Increased Efficiency with Model Based Calibration Meeting future TIER 4 emission limits requires the integration of many new technology elements. deer09_diewald.pdf (1.04 MB) More Documents & Publications Vehicle Evaluation of Downsized Dow ACM DPF Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Review of Emerging Diesel Emissions and Control

  10. The Role of Mathematical Methods in Efficiency Calibration and Uncertainty Estimation in Gamma Based Non-Destructive Assay - 12311

    SciTech Connect (OSTI)

    Venkataraman, R.; Nakazawa, D.

    2012-07-01

    Mathematical methods are being increasingly employed in the efficiency calibration of gamma based systems for non-destructive assay (NDA) of radioactive waste and for the estimation of the Total Measurement Uncertainty (TMU). Recently, ASTM (American Society for Testing and Materials) released a standard guide for use of modeling passive gamma measurements. This is a testimony to the common use and increasing acceptance of mathematical techniques in the calibration and characterization of NDA systems. Mathematical methods offer flexibility and cost savings in terms of rapidly incorporating calibrations for multiple container types, geometries, and matrix types in a new waste assay system or a system that may already be operational. Mathematical methods are also useful in modeling heterogeneous matrices and non-uniform activity distributions. In compliance with good practice, if a computational method is used in waste assay (or in any other radiological application), it must be validated or benchmarked using representative measurements. In this paper, applications involving mathematical methods in gamma based NDA systems are discussed with several examples. The application examples are from NDA systems that were recently calibrated and performance tested. Measurement based verification results are presented. Mathematical methods play an important role in the efficiency calibration of gamma based NDA systems. This is especially true when the measurement program involves a wide variety of complex item geometries and matrix combinations for which the development of physical standards may be impractical. Mathematical methods offer a cost effective means to perform TMU campaigns. Good practice demands that all mathematical estimates be benchmarked and validated using representative sets of measurements. (authors)

  11. PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY

    SciTech Connect (OSTI)

    Schlafly, E. F.; Finkbeiner, D. P.; Stubbs, C. W.; Juric, M.; Magnier, E. A.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Grav, T.; Martin, N. F.; Rix, H.-W.; Price, P. A.

    2012-09-10

    We present a precise photometric calibration of the first 1.5 years of science imaging from the Pan-STARRS1 survey (PS1), an ongoing optical survey of the entire sky north of declination -30 Degree-Sign in five bands. Building on the techniques employed by Padmanabhan et al. in the Sloan Digital Sky Survey (SDSS), we use repeat PS1 observations of stars to perform the relative calibration of PS1 in each of its five bands, simultaneously solving for the system throughput, the atmospheric transparency, and the large-scale detector flat field. Both internal consistency tests and comparison against the SDSS indicate that we achieve relative precision of <10 mmag in g, r, and i{sub P1}, and {approx}10 mmag in z and y{sub P1}. The spatial structure of the differences with the SDSS indicates that errors in both the PS1 and SDSS photometric calibration contribute similarly to the differences. The analysis suggests that both the PS1 system and the Haleakala site will enable <1% photometry over much of the sky.

  12. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect (OSTI)

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  13. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    SciTech Connect (OSTI)

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del; Legin, Andrey

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes. The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.

  14. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  15. Mach-zehnder based optical marker/comb generator for streak camera calibration

    SciTech Connect (OSTI)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  16. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    SciTech Connect (OSTI)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.

  17. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  18. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    SciTech Connect (OSTI)

    Tarifeo-Saldivia, Ariel E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo; Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago; Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago ; Mayer, Roberto E.

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  19. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a

  20. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (June 1994)

  1. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    SciTech Connect (OSTI)

    Hughen, K; Baille, M; Bard, E; Beck, J; Bertrand, C; Blackwell, P; Buck, C; Burr, G; Cutler, K; Damon, P; Edwards, R; Fairbanks, R; Friedrich, M; Guilderson, T; Kromer, B; McCormac, F; Manning, S; Bronk-Ramsey, C; Reimer, P; Reimer, R; Remmele, S; Southon, J; Stuiver, M; Talamo, S; Taylor, F; der Plicht, J v; Weyhenmeyer, C

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.

  2. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  3. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    SciTech Connect (OSTI)

    Landoas, Olivier; Rosse, Bertrand; Briat, Michelle; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc; Glebov, Vladimir Yu; Sangster, Thomas C.; Duffy, Tim; Disdier, Laurent

    2011-07-15

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat a l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  4. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect (OSTI)

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  5. Calorimetric calibration of pyroelectric gamma-radiation detectors

    SciTech Connect (OSTI)

    Strakovskaya, R.Y.; Sras', A.G.

    1985-07-01

    A method has been devised for calibrating a pyroelectric dosimeter, which is based on comparing the readings obtained with it in a gamma-ray beam with the readings of an integral calorimeter under stationary conditions, with the latter previously calibrated from Joule heat. The calorimeter used was in the form of a closed shell, whose overall thermo-emf was independent of the spatial distribution of the heat sources in it, the value being proportional to the integral heat flux through the shell. Measurements were made not only with a quasiisotropic radiation field but also in directed fields. The overall error in calibrating the pyroelectric detectors by this method was less than or equal to plus or minus 10%.

  6. Flight Calibration and Operations of the Swift X-ray Telescope (XRT)

    SciTech Connect (OSTI)

    Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Wells, A.A.; Osborne, J.P.; Mukerjee, K.; Chincarini, G.; Tagliaferri, G.; Campana, S.

    2004-09-28

    We present the current on-orbit calibration and operational plans for the Swift XRT. The XRT is a largely autonomous instrument and requires very little manual commanding for normal operations. A detailed calibration plan is being developed to verify the instrumental performance on-orbit, including effective area, point spread function, vignetting, spectroscopic performance, and timing accuracy. Operational plans include regular calibration measurements using on-board calibration sources as well as periodic calibration observations using celestial targets.

  7. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect (OSTI)

    Aucott, T.

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  8. Calibration of a Hopkinson Bar with a Transfer Standard

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bateman, Vesta I.; Leisher, William B.; Brown, Fred A.; Davie, Neil T.

    1993-01-01

    A program requirement for field test temperatures that are beyond the test accelerometer operational limits of −30° F and +150° F required the calibration of accelerometers at high shock levels and at the temperature extremes of −50° F and +160° F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Because there is no National Institute of Standards and Technology traceable calibration capability at shock levels of 5,000–15,000 g for the temperature extremes of −50° F and +160° F, a method for calibrating and certifying the Hopkinson barmore » with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The National Institute of Standards and Technology traceable accuracy for the standard accelerometer in shock is ±5%. The Hopkinson bar has been certified with an uncertainty of 6%.« less

  9. Cloud-Based Model Calibration Using OpenStudio: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Lisell, L.; Goldwasser, D.; Macumber, D.; Dean, J.; Metzger, I.; Parker, A.; Long, N.; Ball, B.; Schott, M.; Weaver, E.; Brackney, L.

    2014-03-01

    OpenStudio is a free, open source Software Development Kit (SDK) and application suite for performing building energy modeling and analysis. The OpenStudio Parametric Analysis Tool has been extended to allow cloud-based simulation of multiple OpenStudio models parametrically related to a baseline model. This paper describes the new cloud-based simulation functionality and presents a model cali-bration case study. Calibration is initiated by entering actual monthly utility bill data into the baseline model. Multiple parameters are then varied over multiple iterations to reduce the difference between actual energy consumption and model simulation results, as calculated and visualized by billing period and by fuel type. Simulations are per-formed in parallel using the Amazon Elastic Cloud service. This paper highlights model parameterizations (measures) used for calibration, but the same multi-nodal computing architecture is available for other purposes, for example, recommending combinations of retrofit energy saving measures using the calibrated model as the new baseline.

  10. In-situ calibration of feedwater flow nozzles

    SciTech Connect (OSTI)

    Murphy, S.; Mateos, M.; Crandall, C.

    1995-06-01

    Feedwater flow is often the most difficult power-plant parameter to measure reliably. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the thick wall feedwater piping and send to a laboratory for recalibration--an especially difficult, expensive, and time-consuming task in high-pressure lines. ENCOR-AMERICA, Inc. has developed an accurate and cost-effective method of in-situ calibration of feedwater nozzles by measuring (concurrently) feedwater flow and differential pressure across the nozzle at various flow rates. During the tests, feedwater flow is determined indirectly. Extraction steam to the highest pressure feedwater heater is measured by use of a high-accuracy turbine flowmeter. This meter is calibrated in an independent laboratory with a primary or secondary device traceable to the National Institute of Standards and Technology (NIST). The feedwater flow is then calculated by performing a heat balance around the feedwater heater. This paper discusses test theory and instrumentation. Also presented are test results of an in-situ feedwater nozzle calibration test performed at Montana Power Company`s Colstrip Unit 2 Power Plant.

  11. AN H-BAND SPECTROSCOPIC METALLICITY CALIBRATION FOR M DWARFS

    SciTech Connect (OSTI)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Ramsey, Lawrence W.; Bochanski, John J., E-mail: rct151@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-03-10

    We present an empirical near-infrared (NIR) spectroscopic method for estimating M dwarf metallicities, based on features in the H band, as well as an implementation of a similar published method in the K band. We obtained R {approx} 2000 NIR spectra of a sample of M dwarfs using the NASA IRTF-SpeX spectrograph, including 22 M dwarf metallicity calibration targets that have FGK companions with known metallicities. The H-band and K-band calibrations provide equivalent fits to the metallicities of these binaries, with an accuracy of {+-}0.12 dex. We derive the first empirically calibrated spectroscopic metallicity estimate for the giant planet-hosting M dwarf GJ 317, confirming its supersolar metallicity. Combining this result with observations of eight other M dwarf planet hosts, we find that M dwarfs with giant planets are preferentially metal-rich compared to those that host less massive planets. Our H-band calibration relies on strongly metallicity-dependent features in the H band, which will be useful in compositional studies using mid- to high-resolution NIR M dwarf spectra, such as those produced by multiplexed surveys like SDSS-III APOGEE. These results will also be immediately useful for ongoing spectroscopic surveys of M dwarfs.

  12. Calibration of a Hopkinson bar with a transfer standard

    SciTech Connect (OSTI)

    Bateman, V.I.; Leisher, W.B.; Brown, F.A.; Davie, N.T.

    1991-01-01

    During the past year, program field test temperatures, that are beyond the test accelerometer operational limits of {minus}30{degrees}F and +150{degrees}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degrees}F and +160{degrees}F. The purposes of these calibrations were to insure the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000g--15,000g for the temperature extremes of {minus}50{degrees}F and +160{degrees}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST accuracy for the standard accelerometer in shock is {plus minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%. 12 refs., 5 figs.

  13. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  14. Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration

    SciTech Connect (OSTI)

    Keller, J.; Guo, Y.; McNiff, B.

    2013-10-01

    The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

  15. The LHCD Launcher for Alcator C-Mod - Design, Construction, Calibration and Testing

    SciTech Connect (OSTI)

    J. Hosea; D. Beals; W. Beck; S. Bernabei; W. Burke; R. Childs; R. Ellis; E. Fredd; N. Greenough; M. Grimes; D. Gwinn; J. Irby; S. Jurczynski; P. Koert; C.C. Kung; G.D. Loesser; E. Marmar; R. Parker; J. Rushinski; G. Schilling; D. Terry; R. Vieira; J.R. Wilson; J. Zaks

    2005-06-27

    MIT and PPPL have joined together to fabricate a high-power lower hybrid current drive (LHCD) system for supporting steady-state AT regime research on Alcator C-Mod. The goal of the first step of this project is to provide 1.5 MW of 4.6 GHz rf [radio frequency] power to the plasma with a compact launcher which has excellent spectral selectivity and fits into a single C-Mod port. Some of the important design, construction, calibration and testing considerations for the launcher leading up to its installation on C-Mod are presented here.

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation that falls onto it. This lack of both transmission and reflection properties make blackbodies ideal sources for calibrating instruments that measure...

  17. DOE/SC-ARM/P-07-002.7 ACRF Instrumentation Status: New, Current...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 16 2.30.1 Develop Dynamic Rain Gauge Calibration Facility ... At blackbody temperatures less than -20C, the Dow Corning 200 fluid viscosity increases, ...

  18. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 17 2.30.1 Develop Dynamic Rain Gauge Calibration ... At blackbody temperatures less than -20C, the Dow Corning 200 fluid viscosity increases, ...

  19. Diode laser satellite systems for beamed power transmission

    SciTech Connect (OSTI)

    Williams, M.D.; Kwon, J.H.; Walker, G.H.; Humes, D.H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  20. WE-D-9A-06: Open Source Monitor Calibration and Quality Control Software for Enterprise Display Management

    SciTech Connect (OSTI)

    Bevins, N; Vanderhoek, M; Lang, S; Flynn, M

    2014-06-15

    Purpose: Medical display monitor calibration and quality control present challenges to medical physicists. The purpose of this work is to demonstrate and share experiences with an open source package that allows for both initial monitor setup and routine performance evaluation. Methods: A software package, pacsDisplay, has been developed over the last decade to aid in the calibration of all monitors within the radiology group in our health system. The software is used to calibrate monitors to follow the DICOM Grayscale Standard Display Function (GSDF) via lookup tables installed on the workstation. Additional functionality facilitates periodic evaluations of both primary and secondary medical monitors to ensure satisfactory performance. This software is installed on all radiology workstations, and can also be run as a stand-alone tool from a USB disk. Recently, a database has been developed to store and centralize the monitor performance data and to provide long-term trends for compliance with internal standards and various accrediting organizations. Results: Implementation and utilization of pacsDisplay has resulted in improved monitor performance across the health system. Monitor testing is now performed at regular intervals and the software is being used across multiple imaging modalities. Monitor performance characteristics such as maximum and minimum luminance, ambient luminance and illuminance, color tracking, and GSDF conformity are loaded into a centralized database for system performance comparisons. Compliance reports for organizations such as MQSA, ACR, and TJC are generated automatically and stored in the same database. Conclusion: An open source software solution has simplified and improved the standardization of displays within our health system. This work serves as an example method for calibrating and testing monitors within an enterprise health system.

  1. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave...

    Office of Scientific and Technical Information (OSTI)

    He shares the award with John C. Mather of NASA Goddard Space Flight Center. The citation ... In addition, one of the principal instruments for the NASA COBE experiment used to make ...

  2. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Authors: ...

  3. Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy. Citation Details In-Document Search Title: Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy. ...

  4. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega You are ...

  5. Calibration of the HAO standard opal filter set. Technical note

    SciTech Connect (OSTI)

    Streete, J.L.

    1989-10-01

    Solar radiation attenuators called opal filters have been used for several decades to calibrate photographic film in instruments used to measure the brightness of the solar corona. The primary component used in fabricating these filters is opal glass. New measurements of the transmittance of the HAO fundamental standard set of opal filters were begun in September, 1988. Since nearly two decades had passed from the time of the last calibration measurements, there was concern that the transmittance of the filters might have changed. Another motivation for recalibrating the opal filters was the desire to know the transmittance values in spectral regions above and below those used in 1970. The spectral regions chosen were 450 nm, 550 nm, 650 nm and 800 nm. Comparisons of transmittance are made with the previous values, and new transmittance values are given.

  6. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect (OSTI)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  7. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  8. Design and calibration of the AWCC for measuring uranium hexafluoride

    SciTech Connect (OSTI)

    Wenz, T.R.; Menlove, H.O.; WSalton, G.; Baca, J.

    1995-08-01

    An Active Well Coincidence Counter (AWCC) has been modified to measure variable enrichment uranium hexafluoride (UF{sub 6}) in storage bottles. An active assay technique was used to measure the {sup 235}U content because of the small quantity (nominal loading of 2 kg UF{sub 6}) and nonuniform distribution of UF{sub 6} in the storage bottles. A new insert was designed for the AWCC composed of graphite containing four americium-lithium sources. Monte Carlo calculations were used to design the insert and to calibrate the detector. Benchmark measurements and calculations were performed using uranium oxide resulted in assay values that agreed within 2 to 3% of destructive assay values. In addition to UF{sub 6}, the detector was also calibrated for HEU ingots, billets, and alloy scrap using the standard Mode 1 end-plug configuration.

  9. Design of Experiments, Model Calibration and Data Assimilation

    SciTech Connect (OSTI)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of emulation, calibration and experiment design for computer experiments. Emulation refers to building a statistical surrogate from a carefully selected and limited set of model runs to predict unsampled outputs. The standard kriging approach to emulation of complex computer models is presented. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Markov chain Monte Carlo (MCMC) algorithms are often used to sample the calibrated parameter distribution. Several MCMC algorithms commonly employed in practice are presented, along with a popular diagnostic for evaluating chain behavior. Space-filling approaches to experiment design for selecting model runs to build effective emulators are discussed, including Latin Hypercube Design and extensions based on orthogonal array skeleton designs and imposed symmetry requirements. Optimization criteria that further enforce space-filling, possibly in projections of the input space, are mentioned. Designs to screen for important input variations are summarized and used for variable selection in a nuclear fuels performance application. This is followed by illustration of sequential experiment design strategies for optimization, global prediction, and rare event inference.

  10. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    SciTech Connect (OSTI)

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rain gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.

  11. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect (OSTI)

    Harp, Dylan; Atchley, Adam; Painter, Scott L; Coon, Ethan T.; Wilson, Cathy; Romanovsky, Vladimir E; Rowland, Joel

    2016-01-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21$^{st}$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant

  12. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  13. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect (OSTI)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  14. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  15. Infrared systems, SPIE proceedings. Vol. 256

    SciTech Connect (OSTI)

    Sanmann, E.E.

    1980-01-01

    The seminar focused on infrared systems sensor specifications, applications of infrared thermography in the analysis of induced surface currents due to incident electromagnetic radiation on complex shapes, advanced optical ceramics for sensor windows, digital processing in calibrated infrared imagery, and calibration. Papers were presented on nearby object radiometry, homing overlay experiment radiometric error terminology, design of radiometric calibration sources and spectroradiometers, and the Lockheed sensor test facility.

  16. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOE Patents [OSTI]

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  17. Apparatus and method for field calibration of nuclear surface density gauges

    SciTech Connect (OSTI)

    Regimand, A.; Gilbert, A.B.

    1999-07-01

    Nuclear gauge density measurements are routinely used for compliance verification with specifications for road and construction projects. The density of construction materials is an important indicator of structural performance and quality. Due to speed of measurement, flexibility and accuracy, nuclear gauge density measurement methods are becoming the preferred standard around the world. Requirements dictate that gauges be verified or calibrated once every 12 to 18 months. Presently, there are no field portable devices available for verification of the gauge calibration. Also, the density references used for calibration of gauges, are large and not designed for field portability. Therefore, to meet the present standards, users are required to ship gauges back to a service facility for calibration. This paper presents results obtained by a newly developed device for field verification and calibration of nuclear density gauges from three different manufacturers. The calibrations obtained by this device are compared to the factory calibration methods and accuracies are reported for each gauge model.

  18. The M8 Power Calibration Experiment (M8CAL)

    SciTech Connect (OSTI)

    Robinson, W. R.; Bauer, T. H.

    1994-05-01

    The M8 calibration experiment was a series of 23 irradiations in TREAT performed to determine the relationship between the fission power generated in the TREAT core and the fission power generated in experiment fuel located in an in-core experiment vehicle and irradiated by core neutrons. The experiment was planned to provide the essential calibration information specifically needed for planning and analysis of the M8 test (and subsequent tests similar in geometry to M8) to be performed in the post-upgrade TREAT core. Irradiations were performed in TREAT cores loaded with a full-slotted (to optimize hodoscope performance) and with a half-slotted (to maximize energy deposition). Tests included a few selected low-power irradiations of fresh IFR-type U-Zr and U-Pu-Zr fuel pins supplemented by multiple irradiations of uranium-zirconium monitor wires ranging from low steady-state power to high-power maximal transients. This report describes the M8CAL test hardware, measurements, analysis assumptions, and methods used to deduce power coupling between the reactor and experiment fuel--including both absolute magnitudes and axial distributions. Power coupling results are reported for fresh IF fuel pins under high-power transient test conditions appropriate to the planned M8 transient test. In line with previous calibration data, measured dependence of power coupling on the specifics of each irradiation is also shown to correlate well with the in-core axial locations of the TREAT control rods. Estimates are made for maximal test fuel energy deposition capabilty in controlled transients.

  19. Calibration and Characterization of the Small Sample Calorimeter

    SciTech Connect (OSTI)

    Santi, Peter A.; Perry, Katherine A.

    2012-08-13

    An early component of the Joint Fuel Cycle Study (JFCS) between the United States and the Republic of Korea is a test of gram scale electrochemical recycling of spent fuel which is to be performed at Idaho National Laboratory (INL). Included in this test is the development of Nondestructive Assay (NDA) technologies that would be applicable for International Atomic Energy Agency (IAEA) safeguards of the electrochemical recycling process. Of upmost importance to safeguarding the fuel cycle associated with the electrochemical recycling process is the ability to safeguard the U/TRU ingots that will be produced in the process. For the gram scale test, the ingots that will be produced will have an expected thermal power of approximately 130 mW. To ascertain how well the calorimetric assay NDA technique can perform in assaying these ingots, Los Alamos National Laboratory (LANL) has characterized and calibrated a small solid-state calorimeter called the Small Sample Calorimeter (SSC3) to perform these measurements at LANL. To calibrate and characterize the SSC3, a series of measurements were performed using certified {sup 238}Pu heat standards whose power output is traceable back to the National Institute of Standards and Technology (NIST) electrical standards. The results of these measurements helped establish both the calibration of the calorimeter as well as the expected performance of the calorimeter in terms of its accuracy and precision as a function of thermal power of the item that is being measured. In this report, we will describe the measurements that were performed and provide a discussion of the results of these measurements.

  20. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  1. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  2. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  3. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    SciTech Connect (OSTI)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  4. Calibration of bremsstrahlung prefogged Kodak RAR 2492 film

    SciTech Connect (OSTI)

    Gorzen, D.F.; Armentrout, C.; Burek, A.; Bird, R.; Geddes, J.; Gerber, G. ); Rockett, P.D. )

    1990-10-01

    High-energy background radiation from PBFA II at Sandia National Laboratory introduces uncertainty regarding the effect of background fogging on the sensitivity of the x-ray film at soft x-ray energies. We have performed a calibration to determine how the sensitivity of the Kodak RAR 2492 film is affected by high-energy background radiation. To simulate the background radiation the film was fogged to various densities using a 10 keV bremsstrahlung spectrum. The film was then exposed to soft x-ray emission lines of Al {ital K}{alpha} and Ti {ital K}{alpha} selected by Bragg reflection from an electron bombardment source. The intensity of the x-ray flux was continuously monitored with a Si(Li) detector to eliminate error due to drift of the x-ray source's intensity. A microdensitometer with matched objectives was used to find the specular density of the exposed film. The results of the calibration are presented in the form of {ital D} vs log {ital l} for the various densities of the bremmstrahlung prefog exposures.

  5. Calibration and Characterization of the IceCube Photomultiplier Tube

    SciTech Connect (OSTI)

    IceCube Collaboration; Abbasi, R.; al., et

    2010-02-11

    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  6. Beam position monitor calibration for the Advanced Photon Source

    SciTech Connect (OSTI)

    Chung, Y.; Decker, G.; Kahana, E.; Lenkszus, F.; Lumpkin, A.; Sellyey, W.

    1993-07-01

    This paper describes the sensitivity and offset calibration for the beam position monitors (BPMs) using button-type pickups in the injector synchrotron, storage ring, and insertion devices of the Advanced Photon Source (APS). In order to reduce the overall offset and to isolate the error ({approx_lt} 100 {mu}m) due to the low fabrication tolerance in the extruded storage ring vacuum chamber, the electrical offset is minimized by carefully sorting and matching the buttons and cables according to the button capacitance and the characteristic impedances of the cable and the button feedthrough. The wire method is used for the sensitivity calibration, position-to-signal mapping, and measurement of resolution and long-term drift ({approx_lt} 1 mV) of the processing electronics. The processing electrons was also tested at Stanford Synchrotron Radiation Laboratory (SSRL) using a real beam, with results indicating better than 25 {mu}m resolution for the APS storage ring. Conversion between the BPM signal and the actual beam position is done by using polynomial expansions fit to the mapping data with absolute accuracy better than 25 {mu}m within {plus_minus}5 mm square. Measurement of the effect of button mispositioning and mechanical inaccuracy of the extruded storage ring vacuum chamber, including deformation under vacuum, will be also discussed.

  7. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect (OSTI)

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  8. The spectral irradiance traceability chain at PTB

    SciTech Connect (OSTI)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  9. Resolving small signal measurements in experimental plasma environments using calibrated subtraction of noise signals

    SciTech Connect (OSTI)

    Fimognari, P. J. Demers, D. R.; Chen, X.; Schoch, P. M.

    2014-11-15

    The performance of many diagnostic and control systems within fusion and other fields of research are often detrimentally affected by spurious noise signals. This is particularly true for those (such as radiation or particle detectors) working with very small signals. Common sources of radiated and conducted noise in experimental fusion environments include the plasma itself and instrumentation. The noise complicates data analysis, as illustrated by noise on signals measured with the heavy ion beam probe (HIBP) installed on the Madison Symmetric Torus. The noise is time-varying and often exceeds the secondary ion beam current (in contrast with previous applications). Analysis of the noise identifies the dominant source as photoelectric emission from the detectors induced by ultraviolet light from the plasma. This has led to the development of a calibrated subtraction technique, which largely removes the undesired temporal noise signals from data. The advantages of the technique for small signal measurement applications are demonstrated through improvements realized on HIBP fluctuation measurements.

  10. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect (OSTI)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  11. A new method of calibration and normalization for neutron detector families

    SciTech Connect (OSTI)

    Menlove, H.O.; Stewart, J.E.

    1988-04-01

    A calibration and cross-reference is presented for passive and active neutron assay instruments. The method reduces and number of physical standards required to calibrate families of neutron detectors and also ties together much of the calibration information currently available. The basic approach is to carefully calibrate one member of the family (reference detector) over the complete mass range of interest. Other members of the family can be cross-referenced to the calibrated detector using a single sample or radioactive source. Calibration and cross-reference information is presented for the Inventory Sample Counter, High-Level Neutron Coincidence Counter. Active Well Coincidence Counter, and the Neutron Collar. 1 ref., 15 figs., 20 tabs.

  12. Grade Assignments for Models Used for Calibration of Gross-Count...

    Broader source: Energy.gov (indexed) [DOE]

    Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013

  13. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOE Patents [OSTI]

    Campbell, Melvin D.

    1994-01-01

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

  14. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOE Patents [OSTI]

    Campbell, M.D.

    1994-01-11

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

  15. A Workflow for Parameter Calibration and and Model Validation in SST: Interim Report.

    SciTech Connect (OSTI)

    Pebay, Philippe Pierre; Wilke, Jeremiah J; Sargsyan, Khachik

    2014-12-01

    This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.

  16. Calibration Model Assignments expressed as U3O8, Summary Table ES-1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 Calibration Model Assignments expressed as U3O8, Summary Table ES-1 (25.9 KB) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Offshore Wind Market and Economic Analysis Report 2013 Natural

  17. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  18. Monocrystalline test structures, and use for calibrating instruments

    DOE Patents [OSTI]

    Cresswell, Michael W.; Ghoshtagore, R. N.; Linholm, Loren W.; Allen, Richard A.; Sniegowski, Jeffry J.

    1997-01-01

    An improved test structure for measurement of width of conductive lines formed on substrates as performed in semiconductor fabrication, and for calibrating instruments for such measurements, is formed from a monocrystalline starting material, having an insulative layer formed beneath its surface by ion implantation or the equivalent, leaving a monocrystalline layer on the surface. The monocrystalline surface layer is then processed by preferential etching to accurately define components of the test structure. The substrate can be removed from the rear side of the insulative layer to form a transparent window, such that the test structure can be inspected by transmissive-optical techniques. Measurements made using electrical and optical techniques can be correlated with other measurements, including measurements made using scanning probe microscopy.

  19. Doing it right the first time: Maintaining densitometer calibration

    SciTech Connect (OSTI)

    Burgwardt, L.C.

    1995-09-01

    A densitometer is a key tool for controlling the exposure and development process during radiographic film-based nondestructive testing (NDT) procedures. Yet it may be one of the most overlooked sources of problems affecting the quality of radiographic tests. Radiography labs that provide NDT pay a great deal of attention to their radiation sources, processing procedures, and skilled readings of sample defects in final images. Whether the exposure is created by light or a radiographic source, all photographic processes produce an image on film which consists of a range of densities. Reading the densities of a radiograph detects cracks or subtle fractures to determine if a flaw exists in an aircraft structure, a pipe weld, or any other hidden surface. The visibility of the defect is dependent upon proper exposure and processing of the film. A densitometer helps control those variables. And good densitometer habits, including regular calibration and testing of the densitometer, are an investment in good results.

  20. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect (OSTI)

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  1. TA-55 Hot CMM Calibration Tolerance Analysis (U)

    SciTech Connect (OSTI)

    Montano, Joshua D. [Los Alamos National Laboratory

    2012-06-12

    The Hot Coordinate Measuring Machine (CMM), a Brown and Sharpe Xcel 765, has specifications listed by the manufacture of 4.5 + L/250 {micro}m for volumetric performance, 3.5 {micro}m for probing and 4.5 {micro}m for scanning. An upgrade was performed on the machine increasing its performance capability. This document reviews calibration data gathered after the upgrade over a five year period (2005-2010) and recommends a new specification of 3.0 + L/250 {micro}m for size, 3.3 {micro}m for probing, and 4.3 {micro}m for scanning. The new equations are an approximate 30% increase in accuracy for size and approximately 5% increase for probing and scanning.

  2. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    SciTech Connect (OSTI)

    Schembri, Philip E.; Lewis, Matthew W.

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  3. Cosmic reionization on computers. I. Design and calibration of simulations

    SciTech Connect (OSTI)

    Gnedin, Nickolay Y.

    2014-09-20

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolution reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.

  4. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  5. Spectral calibration in the mid-infrared: Challenges and solutions

    SciTech Connect (OSTI)

    Sloan, G. C. [Cornell University, Center for Radiophysics and Space Research, Ithaca, NY 14853-6801 (United States); Herter, T. L.; Houck, J. R. [Cornell University, Astronomy Department, Ithaca, NY 14853-6801 (United States); Charmandaris, V. [Department of Physics and ITCP, University of Crete, GR-71003, Heraklion (Greece); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Burgdorf, M., E-mail: sloan@isc.astro.cornell.edu [HE Space Operations, Flughafenallee 24, D-28199 Bremen (Germany)

    2015-01-01

    We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 ?m increases for both later optical spectral classes and redder (BV){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths in the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 ?m.

  6. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect (OSTI)

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  7. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    SciTech Connect (OSTI)

    DeWard, L.A.; Micka, J.A.

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  8. Field calibration facilities for environmental measurement of radium, thorium, and potassium. Second edition

    SciTech Connect (OSTI)

    Steele, W.D.; George, D.C.

    1986-08-01

    A key component of Technical Measurements Center support is the development, identification, standardization, and maintenance of calibration facilities for environmental radioelement measurements. This report describes calibration facilities located at Grand Junction, Colorado, and at six secondary sites. These facilities are available to contractors for the calibration of radiometric field instrumentation for in-situ measurements of radium, thorium, and potassium. All of the calibration facilities described herein were constructed by the Department of Energy and its predecessor agencies for use in annual uranium-reserve determinations. The use of these facilities for the calibration of radiometric field instruments used in remedial action is made possible by the commonality of the radiometric measurement technique for uranium and for radium. The use of these facilities will standardize remedial action measurements in a cost-effective manner.

  9. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    DOE Patents [OSTI]

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  10. Calibration models for density borehole logging - construction report

    SciTech Connect (OSTI)

    Engelmann, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Two machined blocks of magnesium and aluminum alloys form the basis for Hanford`s density models. The blocks provide known densities of 1.780 {plus_minus} 0.002 g/cm{sup 3} and 2.804 {plus_minus} 0.002 g/cm{sup 3} for calibrating borehole logging tools that measure density based on gamma-ray scattering from a source in the tool. Each block is approximately 33 x 58 x 91 cm (13 x 23 x 36 in.) with cylindrical grooves cut into the sides of the blocks to hold steel casings of inner diameter 15 cm (6 in.) and 20 cm (8 in.). Spacers that can be inserted between the blocks and casings can create air gaps of thickness 0.64, 1.3, 1.9, and 2.5 cm (0.25, 0.5, 0.75 and 1.0 in.), simulating air gaps that can occur in actual wells from hole enlargements behind the casing.

  11. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect (OSTI)

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  12. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  13. Calibration and evaluation of a real-time cascade impactor

    SciTech Connect (OSTI)

    Fairchild, C.I.; Wheat, L.D.

    1984-04-01

    A 10-stage cascade impactor made by California Measurement Inc., can determine aerodynamic size distributions of dilute aerosols in a few minutes. Collection of impacted particles on greased, vibrating piezoelectric crystals produces changes in vibrational frequency proportional to the collected mass. Based on frequency changes and sampling time, a data reduction module calculates the mass collected on each stage. Calibration of the assembled impactor was performed with monodisperse polystyrene latex (PSL) and Eosin-Y (E-Y) aerosols for the lower stages (4-10), and PSL and pollen particles (ragweed and mulberry) for the upper stages (1-3). The stage experimental effective cutoff aerodynamic diameters (ECAD) were up to 22 percent different from theoretical ECADs with the exception of Stages 1 and 2 which were respectively 30 and 35 percent different from theoretical ECADs. The overall loss of particles > 3- and < 0.3-..mu..m was severe. Also, considerable scatter of particles was observed on the collection crystals of Stages 1 and 2. Although a majority of particles were in the impaction area, a large fraction was scattered over the outer portions of these crystals.

  14. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  15. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  16. A New Perspective for the Calibration of Computational Predictor Models.

    SciTech Connect (OSTI)

    Crespo, Luis Guillermo

    2014-11-01

    This paper presents a framework for calibrating computational models using data from sev- eral and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncer- tainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of obser- vations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it is a description of the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain (i.e., roll-up and extrapolation).

  17. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect (OSTI)

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (130 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  18. Balance Calibration A Method for Assigning a Direct-Reading Uncertainty to an Electronic Balance.

    SciTech Connect (OSTI)

    Mike Stears

    2010-07-01

    Paper Title: Balance Calibration A method for assigning a direct-reading uncertainty to an electronic balance. Intended Audience: Those who calibrate or use electronic balances. Abstract: As a calibration facility, we provide on-site (at the customers location) calibrations of electronic balances for customers within our company. In our experience, most of our customers are not using their balance as a comparator, but simply putting an unknown quantity on the balance and reading the displayed mass value. Manufacturers specifications for balances typically include specifications such as readability, repeatability, linearity, and sensitivity temperature drift, but what does this all mean when the balance user simply reads the displayed mass value and accepts the reading as the true value? This paper discusses a method for assigning a direct-reading uncertainty to a balance based upon the observed calibration data and the environment where the balance is being used. The method requires input from the customer regarding the environment where the balance is used and encourages discussion with the customer regarding sources of uncertainty and possible means for improvement; the calibration process becomes an educational opportunity for the balance user as well as calibration personnel. This paper will cover the uncertainty analysis applied to the calibration weights used for the field calibration of balances; the uncertainty is calculated over the range of environmental conditions typically encountered in the field and the resulting range of air density. The temperature stability in the area of the balance is discussed with the customer and the temperature range over which the balance calibration is valid is decided upon; the decision is based upon the uncertainty needs of the customer and the desired rigor in monitoring by the customer. Once the environmental limitations are decided, the calibration is performed and the measurement data is entered into a custom

  19. A precise in situ calibration of the RHIC H-Jet polarimeter

    SciTech Connect (OSTI)

    Poblaguev, A. A.

    2014-03-05

    Two new methods of calibration of the hydrogen jet target polarimeter (H-Jet) at RHIC are discussed. First method is based on the measurement of low amplitude signal time of fast particles penetrating through detector. The second, geometry based, method employs correlation between z-coordinate of the recoil proton and its kinetic energy. Both methods can be used for in situ calibration of the H-Jet polarimeter. These two methods are compared with a traditional calibration of the H-Jet which uses ?-sources.

  20. Construction and characterization of the TL/TH thorium calibration pads

    SciTech Connect (OSTI)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center (TMC) was established and was tasked with developing and/or recommending measurement methods for use in support of remedial action programs. Since one aspect of this technical support is the provision of calibration facilities for standardization of field measurements, four sets of thorium-232 enriched pads (two pads per set) were constructed for use by remedial action contractors in calibrating portable field instruments that are used to make direct, in-situ measurements of radium-226, thorium-232, and potassium-40. This report presents the design, construction, and characterization data of the eight calibration pads. 17 refs., 8 figs., 15 tabs.

  1. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A.

    2012-05-01

    With the intent of improving simulation tools, a 1/50th-scale floating wind turbine atop a TLP was designed based on Froude scaling by the University of Maine under the DeepCwind Consortium. This platform was extensively tested in a wave basin at MARIN to provide data to calibrate and validate a full-scale simulation model. The data gathered include measurements from static load tests and free-decay tests, as well as a suite of tests with wind and wave forcing. A full-scale FAST model of the turbine-TLP system was created for comparison to the results of the tests. Analysis was conducted to validate FAST for modeling the dynamics of this floating system through comparison of FAST simulation results to wave tank measurements. First, a full-scale FAST model of the as-tested scaled configuration of the system was constructed, and this model was then calibrated through comparison to the static load, free-decay, regular wave only, and wind-only tests. Next, the calibrated FAST model was compared to the combined wind and wave tests to validate the coupled hydrodynamic and aerodynamic predictive performance. Limitations of both FAST and the data gathered from the tests are discussed.

  2. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first edition of this report, released in October 1982, presented physical-characteristic information for the various DOE radiologic-instrument calibration facilities located throughout the U.S...

  3. Optimal Extraction of Cosmological Information from Supernova Datain the Presence of Calibration Uncertainties

    SciTech Connect (OSTI)

    Kim, Alex G.; Miquel, Ramon

    2005-09-26

    We present a new technique to extract the cosmological information from high-redshift supernova data in the presence of calibration errors and extinction due to dust. While in the traditional technique the distance modulus of each supernova is determined separately, in our approach we determine all distance moduli at once, in a process that achieves a significant degree of self-calibration. The result is a much reduced sensitivity of the cosmological parameters to the calibration uncertainties. As an example, for a strawman mission similar to that outlined in the SNAP satellite proposal, the increased precision obtained with the new approach is roughly equivalent to a factor of five decrease in the calibration uncertainty.

  4. High-Energy Calibration of a BGO Detector of the GLAST Burst...

    Office of Scientific and Technical Information (OSTI)

    the LAT response in the overlap region between approx20 MeV to 30 MeV. In November 2006 the high-energy calibration of the GBM-BGO spare detector was performed at the small...

  5. NaI (Tl) Calorimeter Calibration and Simulation for Coulomb Sum...

    Office of Scientific and Technical Information (OSTI)

    and Simulation for Coulomb Sum Rule Experiment in Hall-A at Jefferson Lab Citation Details In-Document Search Title: NaI (Tl) Calorimeter Calibration and Simulation for ...

  6. The x-ray calibration facility of the laser integration line...

    Office of Scientific and Technical Information (OSTI)

    A x-ray flat photocathode detector sensitivity calibration recently performed for a CEA Z-pinch facility is also presented. Authors: Hubert, S. ; Dubois, J. L. 1 ; Gontier, D. ; ...

  7. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect (OSTI)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  8. A versatile calibration scheme for the analysis of petroleum products with ICP-AES

    SciTech Connect (OSTI)

    Brenner, I.B.; Zander, A.; Shkolnik, J.

    1994-12-31

    The direct determination of trace metals in volatile organic solvents and petroliferous materials is problematic due to interference effects in the sample introduction system and in the plasma. As a result of high loading of the organic aerosols and vapors, their incomplete pyrolysis results in the formation of carbon in the torch components and occurrence deleterious spectral interferences due to prominent C-molecular bands. In addition to these factors, accurate determination can only be obtained if the variable viscosity of the diluents, the sample constituents and the standards are accurately matrix matched. In this presentation, the authors will detail several procedures designed to minimize these effects-spray chamber cooling, oxygen bleeding, tetralin dilution, Triton-X-100 emulsification, and selective removal of the organic matrix by membrane separation and thermal desolvation. Using scandium as the internal reference, data for a wide range of standard reference materials varying from gasoline to crude oils will be presented. A critical examination of the various procedures will be made using conventional figures of merit such as limits of detection, calibration universality, precision, accuracy, and convenience of operation.

  9. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    SciTech Connect (OSTI)

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  10. Design and calibration of a scanning tunneling microscope for large machined surfaces

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  11. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect (OSTI)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  12. High Accuracy Non-A/C Powered Leak Tester and Volume Calibrator - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal High Accuracy Non-A/C Powered Leak Tester and Volume Calibrator Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (733 KB) Technology Marketing SummaryThis novel invention relates to a portable, pneumatically -controlled instrument capable of generating a vacuum (less than 10 Torr), calibrating volumes, and performing quantitative leak tests, all without the use of A/C power.DescriptionThis means testing will

  13. Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster

    SciTech Connect (OSTI)

    Lebedev, V.A.; Prebys, E.; Petrenko, A.V.; Kopp, S.E.; McAteer, M.J.; /Texas U.

    2012-05-01

    We have calibrated the lattice model and measured the beta and dispersion functions in Fermilab's fast-ramping Booster synchrotron using the Linear Optics from Closed Orbit (LOCO) method. We used the calibrated model to implement ramped coupling, dispersion, and beta-beating corrections throughout the acceleration cycle, reducing horizontal beta beating from its initial magnitude of {approx}30% to {approx}10%, and essentially eliminating vertical beta-beating and transverse coupling.

  14. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  15. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect (OSTI)

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  16. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  17. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  18. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    SciTech Connect (OSTI)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems.

  19. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    SciTech Connect (OSTI)

    Doolan, P; Sharp, G; Testa, M; Lu, H-M; Bentefour, E; Royle, G

    2014-06-15

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences Research

  20. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    SciTech Connect (OSTI)

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be

  1. An algorithmic calibration approach to identify globally optimal parameters for constraining the DayCent model

    SciTech Connect (OSTI)

    Rafique, Rashid; Kumar, Sandeep; Luo, Yiqi; Kiely, Gerard; Asrar, Ghassem R.

    2015-02-01

    he accurate calibration of complex biogeochemical models is essential for the robust estimation of soil greenhouse gases (GHG) as well as other environmental conditions and parameters that are used in research and policy decisions. DayCent is a popular biogeochemical model used both nationally and internationally for this purpose. Despite DayCent’s popularity, its complex parameter estimation is often based on experts’ knowledge which is somewhat subjective. In this study we used the inverse modelling parameter estimation software (PEST), to calibrate the DayCent model based on sensitivity and identifi- ability analysis. Using previously published N2 O and crop yield data as a basis of our calibration approach, we found that half of the 140 parameters used in this study were the primary drivers of calibration dif- ferences (i.e. the most sensitive) and the remaining parameters could not be identified given the data set and parameter ranges we used in this study. The post calibration results showed improvement over the pre-calibration parameter set based on, a decrease in residual differences 79% for N2O fluxes and 84% for crop yield, and an increase in coefficient of determination 63% for N2O fluxes and 72% for corn yield. The results of our study suggest that future studies need to better characterize germination tem- perature, number of degree-days and temperature dependency of plant growth; these processes were highly sensitive and could not be adequately constrained by the data used in our study. Furthermore, the sensitivity and identifiability analysis was helpful in providing deeper insight for important processes and associated parameters that can lead to further improvement in calibration of DayCent model.

  2. System for Calibrating the Energy-Dependent Response of an Elliptical...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Marrs, R E ; Brown...

  3. Feedstock Quality Factor Calibration and Data Model Development

    SciTech Connect (OSTI)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  4. Nuclear Materials Identification System Operational Manual

    SciTech Connect (OSTI)

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  5. High-Energy Calibration of a BGO Detector of the GLAST Burst Monitor

    SciTech Connect (OSTI)

    von Kienlin, Andreas; Fishman, Gerald J.; Briggs, Michael S.; Godfrey, Gary L.; Steinle, Helmut; /Garching, Max Planck Inst., MPE

    2011-11-30

    The understanding of the instrumental response of the GLAST Burst Monitor BGO detectors at energies above the energy range which is accessible by common laboratory radiation sources (< 4.43 MeV), is important, especially for the later cross-calibration with the LAT response in the overlap region between {approx}20 MeV to 30 MeV. In November 2006 the high-energy calibration of the GBM-BGO spare detector was performed at the small Van-de-Graaff accelerator at SLAC. High-energy gamma-rays from excited {sup 8}Be* (14.6 MeV and 17.5 MeV) and {sup 16}O* (6.1 MeV) were generated through (p, {gamma})-reactions by irradiating a LiF-target. For the calibration at lower energies radioactive sources were used. The results, including spectra, the energy/channel-relation and the dependence of energy resolution are presented.

  6. Results of the PEP`93 intercomparison of reference cell calibrations and newer technology performance measurements

    SciTech Connect (OSTI)

    Osterwald, C.R.; Emery, K.; Anevsky, S.

    1996-05-01

    This paper presents the results of an international intercomparison of photovoltaic (PV) performance measurements and calibrations. The intercomparison, which was organized and operated by a group of experts representing national laboratories from across the globe (i.e., the authors of this paper), was accomplished by circulating two sample sets. One set consisted of twenty silicon reference cells that would, hopefully, form the basis of an international PV reference scale. A qualification procedure applied to the calibration results gave average calibration numbers with an overall standard deviation of less than 2% for the entire set. The second set was assembled from a wide range of newer technologies that present unique problems for PV measurements. As might be expected, these results showed much larger differences among laboratories. Methods were then identified that should be used to measure such devices, along with problems to avoid.

  7. COSMICFLOWS-2: I-BAND LUMINOSITY-H I LINEWIDTH CALIBRATION

    SciTech Connect (OSTI)

    Tully, R. Brent; Courtois, Helene M. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-04-10

    In order to measure distances with minimal systematics using the correlation between galaxy luminosities and rotation rates it is necessary to adhere to a strict and tested recipe. We now derive a measure of rotation from a new characterization of the width of a neutral hydrogen line profile. Additionally, new photometry and zero-point calibration data are available. Particularly the introduction of a new linewidth parameter necessitates the reconstruction and absolute calibration of the luminosity-linewidth template. The slope of the new template is set by 267 galaxies in 13 clusters. The zero point is set by 36 galaxies with Cepheid or tip of the red giant branch distances. Tentatively, we determine H{sub 0} {approx} 75 km s{sup -1} Mpc{sup -1}. Distances determined using the luminosity-linewidth calibration will contribute to the distance compendium Cosmicflows-2.

  8. Bias in segmented gamma scans arising from size differences between calibration standards and assay samples

    SciTech Connect (OSTI)

    Sampson, T.E. )

    1991-01-01

    Recent advances in segmented gamma scanning have emphasized software corrections for gamma-ray self-adsorption in particulates or lumps of special nuclear material in the sample. another feature of this software is an attenuation correction factor formalism that explicitly accounts for differences in sample container size and composition between the calibration standards and the individual items being measured. Software without this container-size correction produces biases when the unknowns are not packaged in the same containers as the calibration standards. This new software allows the use of different size and composition containers for standards and unknowns, as enormous savings considering the expense of multiple calibration standard sets otherwise needed. This paper presents calculations of the bias resulting from not using this new formalism. These calculations may be used to estimate bias corrections for segmented gamma scanners that do not incorporate these advanced concepts.

  9. Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

    SciTech Connect (OSTI)

    Carpenter, C.A.

    1995-03-02

    This Quality Assurance Program Plan (QAPP) is organized to address WHC`s implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE.

  10. Self-calibration of photometric redshift scatter in weak-lensing surveys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less

  11. Multivariate calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    SciTech Connect (OSTI)

    Long, C.L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers. 19 refs., 15 figs., 6 tabs.

  12. Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification

    SciTech Connect (OSTI)

    Yan Yulong; Papanikolaou, Nikos; Weng Xuejun; Penagaricano, Jose; Ratanatharathorn, Vaneerat

    2005-06-15

    Film dosimetry offers an advantageous in-phantom planar dose verification tool in terms of spatial resolution and ease of handling for quality assurance (QA) of intensity modulated radiation therapy (IMRT) plans. A critical step in the success of such a technique is that the film calibration be appropriately conducted. This paper presents a fast and efficient film calibration method for a helical tomotherapy unit using a single sheet of film. Considering the unique un-flattened cone shaped profile from a helical tomotherapy beam, a custom leaf control file (sinogram) was created, to produce a valley shaped intensity pattern. There are eleven intensity steps in the valley pattern, representing varying dose values from 38 to 265 cGy. This dose range covers the most commonly prescribed doses in fractionated IMRT treatments. An ion chamber in a solid water phantom was used to measure the dose in each of the eleven steps. For daily film calibration the whole procedure, including film exposure, processing, digitization and analysis, can be completed within 15 min, making it practical to use this technique routinely. This method is applicable to film calibration on a helical tomotherapy unit and is particularly useful in IMRT planar dose verification due to its efficiency and reproducibility. In this work, we characterized the dose response of the KODAK EDR2 ready-pack film which was used to develop the step valley dose maps and the IMRT QA planar doses. A comparison between the step valley technique and multifilm based calibration showed that both calibration methods agreed with less than 0.4% deviation in the clinically useful dose ranges.

  13. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  14. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  15. Self-calibration of photometric redshift scatter in weak-lensing surveys

    SciTech Connect (OSTI)

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-? level, but is unlikely to completely invalidate the self-calibration technique.

  16. Parameter assignments for spectral gamma-ray borehole calibration models. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Heistand, B.E.; Novak, E.F.

    1984-04-01

    This report documents the work performed to determine the newly assigned concentrations for the spectral gamma-ray borehole calibration models. Thirty-two models, maintained by the US Department of Energy, are included in this study, and are grouped into eight sets of four models each. The eight sets are located at sites across the United States, and are used to calibrate logging instruments. The assignments are based on in-situ logging data to ensure self-consistency in the assigned concentrations, and on laboratory assays of concrete samples from each model to provide traceability to the New Brunswick Laboratory (NBL) standards. 13 references, 7 figures, 17 tables.

  17. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies

    SciTech Connect (OSTI)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-01-30

    Different protocols for calibrating electron pair distribution function (ePDF) measurements are explored and described for quantitative studies on nanomaterials. It is found that the most accurate approach to determine the camera length is to use a standard calibration sample of Au nanoparticles from the National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  18. NotCal04 - Comparison / Calibration 14C records 26-50 cal kBP

    SciTech Connect (OSTI)

    der Plicht, J v; Beck, J; Bard, E; Baille, M

    2004-11-11

    The radiocarbon calibration curve, IntCal04, extends back to 26 cal kBP. While several high resolution records exist beyond this limit, these data sets exhibit discrepancies one to another of up to several millennia. As a result, no calibration curve for the time range 26-50 cal kBP can be recommended as yet, but in this paper the IntCal04 working group compares the available data sets and offers a discussion of the information that they hold.

  19. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  20. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    E.T. Coon; C.J. Wilson; S.L. Painter; V.E. Romanovsky; D.R. Harp; A.L. Atchley; J.C. Rowland

    2016-02-02

    This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  1. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    SciTech Connect (OSTI)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a {sup 241}Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long term storage.

  2. Real-time calibration of a feedback trap

    SciTech Connect (OSTI)

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2014-09-15

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

  3. A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models

    SciTech Connect (OSTI)

    Finsterle, S.; Kowalsky, M.B.

    2010-10-15

    We propose a modification to the Levenberg-Marquardt minimization algorithm for a more robust and more efficient calibration of highly parameterized, strongly nonlinear models of multiphase flow through porous media. The new method combines the advantages of truncated singular value decomposition with those of the classical Levenberg-Marquardt algorithm, thus enabling a more robust solution of underdetermined inverse problems with complex relations between the parameters to be estimated and the observable state variables used for calibration. The truncation limit separating the solution space from the calibration null space is re-evaluated during the iterative calibration process. In between these re-evaluations, fewer forward simulations are required, compared to the standard approach, to calculate the approximate sensitivity matrix. Truncated singular values are used to calculate the Levenberg-Marquardt parameter updates, ensuring that safe small steps along the steepest-descent direction are taken for highly correlated parameters of low sensitivity, whereas efficient quasi-Gauss-Newton steps are taken for independent parameters with high impact. The performance of the proposed scheme is demonstrated for a synthetic data set representing infiltration into a partially saturated, heterogeneous soil, where hydrogeological, petrophysical, and geostatistical parameters are estimated based on the joint inversion of hydrological and geophysical data.

  4. Method and apparatus of a portable imaging-based measurement with self calibration

    DOE Patents [OSTI]

    Chang, Tzyy-Shuh; Huang, Hsun-Hau

    2012-07-31

    A portable imaging-based measurement device is developed to perform 2D projection based measurements on an object that is difficult or dangerous to access. This device is equipped with self calibration capability and built-in operating procedures to ensure proper imaging based measurement.

  5. Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it

    DOE Patents [OSTI]

    Hoffman, Robert A.

    1980-01-01

    The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.

  6. Temperature compensated and self-calibrated current sensor using reference current

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2008-01-22

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference electrical current carried by a conductor positioned within the sensing window of the current sensor is used to correct variations in the output signal due to temperature variations and aging.

  7. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  8. Reprocessing input tank calibration; An international experiment under the auspices of ESARDA

    SciTech Connect (OSTI)

    Weh, R. )

    1991-01-01

    Within the framework of an experiment called CALDEX (Calibration Demonstration Exercise), the volume and weight determination of the reprocessing input solution for nuclear materials reprocessing was considered. The availability of the resulting data to interested parties led to an extraordinarily fruitful international cooperation which essentially took place within the ESARDA Working Group for Reprocessing Input Verification. A short summary is given in this paper.

  9. ADVANCES IN THE RXTE PROPORTIONAL COUNTER ARRAY CALIBRATION: NEARING THE STATISTICAL LIMIT

    SciTech Connect (OSTI)

    Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod

    2012-10-01

    During its 16 years of service, the Rossi X-Ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observations of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on board RXTE which provides data in 3-50 keV energy range with submillisecond time resolution in up to 256 energy channels. In 2009, the RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is based on the residual minimization between the model spectrum for Crab Nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am{sub 241} calibration source, uniformly covering the whole RXTE mission operation period. The new method led to a much more effective model convergence and allowed for better understanding of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF v11.7 (HEASOFT Release 6.7) along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

  10. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    SciTech Connect (OSTI)

    Wang, S; Chao, C; Chang, J

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  11. Environmental assessment for the satellite power system concept development and evaluation program-electromagnetic systems compatibility

    SciTech Connect (OSTI)

    Davis, K A; Grant, W B; Morrison, E L; Juroshek, J R

    1981-01-01

    The EMC analysis addressed only the direct effects of electromagnetic emissions from the SPS on other technological systems. Emissions were defined quite broadly, including not only those from the microwave system, but also thermal blackbody emission and scattered sunlight from the satellite. The analysis is based on the design for an SPS as described in the Reference System Report and some quantitative conclusions, e.g., ranges from rectenna sites at which effects are expected are specific to that design. The methodology and qualitative conclusions, however, apply to an SPS concept using microwave power transmission. Quantitative conclusions have been obtained parametrically and can be adjusted as SPS designs change. The electromagnetic environment that the Reference System would produce, and in which other systems would have to function, is described. As an early part of the EMC Assessment, the problems expected for a hypothetical rectenna site, in the Mojave Desert of southern California, were analyzed in detail. This effort provided an initial quantitative indication of the scope of potential EMC problems and indicated the importance of EMC considerations in rectenna site selection. The results of this analysis are presented. The effects of SPS microwave emissions on important categories of electronic systems and equipment are summarized, with many examples of test results and demonstrated techniques for mitigation of problems encountered. SPS effects on other satellite systems are presented. Astronomical research frequently involves measurement of extremely low levels of electromagnetic radiation and is thus very susceptible to interference. The concerns of both radio astronomy with microwave emissions from SPS and optical astronomy with sunlight scattered from SPS spacecraft are discussed. Summaries of mitigation techniques, cost estimates, and conclusions are presented. (WHK)

  12. Melter viewing system for liquid-fed ceramic melters

    SciTech Connect (OSTI)

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600/sup 0/C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs.

  13. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    SciTech Connect (OSTI)

    Rana, V K; Vijayan, S; Rudin, S R; Bednarek, D R

    2014-06-01

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different

  14. Passively damped vibration welding system and method

    DOE Patents [OSTI]

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  15. Design and calibration of a test facility for MLI thermal performance measurements below 80K. [Multilayer insulation (MLI)

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  16. ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT

    SciTech Connect (OSTI)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

    2007-07-06

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program at LLNL has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Several achievements in schema design, data visualization, synthesis, and analysis were completed this year. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. As data volumes have increased, scientific information management issues such as data quality assessment, ontology mapping, and metadata collection that are essential for production and validation of derived calibrations have negatively impacted researchers abilities to produce products. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Nearly a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes elements of stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable recording of processing flow and metadata. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode

  17. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect (OSTI)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  18. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect (OSTI)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  19. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    SciTech Connect (OSTI)

    Narlesky, Joshua Edward; Kelly, Elizabeth J.

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because the variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.

  20. Calibrating bead displacements in optical tweezers using acousto-optic deflectors

    SciTech Connect (OSTI)

    Vermeulen, Karen C.; Mameren, Joost van; Stienen, Ger J.M.; Peterman, Erwin J.G.; Wuite, Gijs J.L.; Schmidt, Christoph F.

    2006-01-15

    Displacements of optically trapped particles are often recorded using back-focal-plane interferometry. In order to calibrate the detector signals to displacements of the trapped object, several approaches are available. One often relies either on scanning a fixed bead across the waist of the laser beam or on analyzing the power spectrum of movements of the trapped bead. Here, we introduce an alternative method to perform this calibration. The method consists of very rapidly scanning the laser beam across the solvent-immersed, trapped bead using acousto-optic deflectors while recording the detector signals. It does not require any knowledge of solvent viscosity and bead diameter, and works in all types of samples, viscous or viscoelastic. Moreover, it is performed with the same bead as that used in the actual experiment. This represents marked advantages over established methods.

  1. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    J.C. Rowland; D.R. Harp; C.J. Wilson; A.L. Atchley; V.E. Romanovsky; E.T. Coon; S.L. Painter

    2016-02-02

    This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  2. Calibration models for measuring moisture in unsaturated formations by neutron logging

    SciTech Connect (OSTI)

    Engelman, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Calibration models containing known amounts of hydrogen have been constructed to simulate unsaturated earth formations for calibrating neutron well logging tools. The models are made of dry mixtures of hydrated alumina (Al(OH){sub 3}) with either silica sand (SiO{sub 2}) or aluminum oxide (Al{sub 2}O{sub 3}). Hydrogen in the hydrated alumina replaces the hydrogen in water for neutron scattering, making it possible to simulate partially saturated formations. The equivalent water contents for the models are 5%, 12%, 20%, and 40% by volume in seven tanks that have a diameter of 1.5 m and a height of 1.8 m. Steel casings of inside diameter 15.4 cm (for three models) and diameter 20.3 cm (for four models) allow logging tool access to simulate logging through cased boreholes.

  3. Note: Calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor

    SciTech Connect (OSTI)

    Sader, John E.; Friend, James R.

    2014-11-15

    A simplified method for calibrating atomic force microscope cantilevers was recently proposed by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012); Sec. III D] that relies solely on the resonant frequency and quality factor of the cantilever in fluid (typically air). This method eliminates the need to measure the hydrodynamic function of the cantilever, which can be time consuming given the wide range of cantilevers now available. Using laser Doppler vibrometry, we rigorously assess the accuracy of this method for a series of commercially available cantilevers and explore its performance under non-ideal conditions. This shows that the simplified method is highly accurate and can be easily implemented to perform fast, robust, and non-invasive spring constant calibration.

  4. HANFORD POSITION PAPER ON ACCURACY & CALIBRATION OF 3013 BALANCE & 9975 DRUM SCALE

    SciTech Connect (OSTI)

    PRITCHETT, B.D.

    2007-06-28

    Shipping of materials between different locations requires methods for confirming that the correct quantities and materials are shipped and received intact. The quickest method for confirming the correct quantity of material is to weigh the material on a balance. In order for the shipper's and receiver's balances to agree, the balances must use a traceable method of periodic calibration. Once calibrated, the balances must be rechecked periodically with accepted standards to confirm that the balances remain within the allowable tolerances. This letter affirms that the balances used for weighing 3013 containers and 9975 shipping packages are staying within allowable accepted tolerances and that there is no discernable ''drift'' in the weighings that might indicate future trouble with the balance.

  5. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect (OSTI)

    Anspaugh, B.E.; Weiss, R.S.

    1990-11-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  6. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    SciTech Connect (OSTI)

    Conte, V.; Moro, D.; Colautti, P.; Grosswendt, B.

    2013-07-18

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/{mu}m value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a {sup 137}Cs gamma source and a cylindrical TEPC equipped with a precision internal {sup 244}Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to {sup 137}Cesium sources, with an overall uncertainty of about 5%.

  7. Neutron collar calibration for assay of LWR (light-water reactor) fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the /sup 235/U content, and the /sup 238/U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities.

  8. Neutron collar calibration and evaluation for assay of LWR fuel assemblies containing burnable neutron absorbers

    SciTech Connect (OSTI)

    Henriksen, P.W.; Menlove, H.O.; Stewart, J.E.; Qiao, S.Z.; Wenz, T.R. ); Verrecchia, G.P.D. . Safeguards Directorate)

    1990-11-01

    The neutron coincidence collar is used to verify the uranium content in light water reactor fuel assemblies. An AmLi neutron source actively interrogates the fuel assembly to measure the {sup 235}U content and the {sup 238}U content can be verified from a passive neutron coincidence measurement. This report gives the collar calibration data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies both with and without cadmium liners. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and various fuel assembly sizes. The data were collected using the Los Alamos BWR and PWR test assemblies as well as fuel assemblies from several fuel fabrication facilities. 11 refs., 15 figs., 14 tabs.

  9. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect (OSTI)

    Meda, A.; Ruo-Berchera, I. Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  10. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    SciTech Connect (OSTI)

    Esposito, G.; Frunzo, L.; Panico, A.; Pirozzi, F.

    2011-12-15

    Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can

  11. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    SciTech Connect (OSTI)

    Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Brassard, P.; Steffen, M.

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  12. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, Michael D.; Sagan, Francis J.; Burkhardt, Mark R.

    1993-01-01

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  13. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  14. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    SciTech Connect (OSTI)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; Chowdhary, Kenny; Debusschere, Bert; Swiler, Laura P.; Eldred, Michael S.

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  15. Enhancing Seismic Calibration Research Through Software Automation and Scientific Information Management

    SciTech Connect (OSTI)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Harris, D B; Hauk, T F

    2009-07-07

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. In contrast to previous years, software development work this past year has emphasized development of automation at the data ingestion level. This change reflects a gradually-changing emphasis in our program from processing a few large data sets that result in a single integrated delivery, to processing many different data sets from a variety of sources. The increase in the number of sources had resulted in a large increase in the amount of metadata relative to the final volume of research products. Software developed this year addresses the problems of: (1) Efficient metadata ingestion and conflict resolution; (2) Automated ingestion of bulletin information; (3) Automated ingestion of waveform information from global data centers; and (4) Site Metadata and Response transformation required for certain products. This year, we also made a significant step forward in meeting a long-standing goal of developing and using a waveform correlation framework. Our objective for such a framework is to extract additional calibration data (e.g. mining blasts) and to study the extent to which correlated seismicity can be found in global and regional scale environments.

  16. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; Chowdhary, Kenny; Debusschere, Bert; Swiler, Laura P.; Eldred, Michael S.

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatoryepistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  17. Construction and characterization of the RH/RL radium calibration pads

    SciTech Connect (OSTI)

    Steele, W.D.; Marutzky, S.J.; Dickerson, J.W.

    1989-01-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology has as one of its goals the standardization of field measurements made by its remedial action contractors throughout the country. In support of this goal, the Technical Measurements Center (TMC) was established at the DOE Grand Junction Projects Office (GJPO) Facility, and was tasked with developing and/or recommending measurement methods for use in support of remedial action programs. One aspect of this technical support is the provision of calibration facilities for standardization of field measurements. The report presents the results of the design, construction, and characterization of 14 calibration pads enriched in radium-226. The 14 pads comprise 7 sets with a high and low activity pad in each set. The pads are concrete cylinders, approximately 5 feet in diameter by 2 feet in height. They are intended for use in calibrating portable field instruments that are used by remedial action contractors to make direct, in situ measurements of radium-226, thorium-232, and potassium-40. 23 refs., 6 figs., 14 tabs.

  18. Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO

    SciTech Connect (OSTI)

    Karus, Michael

    2015-02-24

    In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose a calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.

  19. Calibrating and training of neutron based NSA techniques with less SNM standards

    SciTech Connect (OSTI)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S; Freeman, Corey R; Newell, Matthew R

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Monte Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the

  20. Application of an EMCCD Camera for Calibration of Hard X-Ray Telescopes

    SciTech Connect (OSTI)

    Vogel, J K; Pivovaroff, M J; Nagarkar, V V; Kudrolli, H; Madsen, K K; Koglin, J E; Christensen, F E; Brejnholt, N F

    2011-11-08

    Recent technological innovations now make it feasible to construct hard x-ray telescopes for space-based astronomical missions. Focusing optics are capable of improving the sensitivity in the energy range above 10 keV by orders of magnitude compared to previously used instruments. The last decade has seen focusing optics developed for balloon experiments and they will soon be implemented in approved space missions such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and ASTRO-H. The full characterization of x-ray optics for astrophysical and solar imaging missions, including measurement of the point spread function (PSF) as well as scattering and reflectivity properties of substrate coatings, requires a very high spatial resolution, high sensitivity, photon counting and energy discriminating, large area detector. Novel back-thinned Electron Multiplying Charge-Coupled Devices (EMCCDs) are highly suitable detectors for ground-based calibrations. Their chip can be optically coupled to a microcolumnar CsI(Tl) scintillator via a fiberoptic taper. Not only does this device exhibit low noise and high spatial resolution inherent to CCDs, but the EMCCD is also able to handle high frame rates due to its controllable internal gain. Additionally, thick CsI(Tl) yields high detection efficiency for x-rays. This type of detector has already proven to be a unique device very suitable for calibrations in astrophysics: such a camera was used to support the characterization of the performance for all NuSTAR optics. Further optimization will enable similar cameras to be improved and used to calibrate x-ray telescopes for future space missions. In this paper, we discuss the advantages of using an EMCCD to calibrate hard x-ray optics. We will illustrate the promising features of this detector solution using examples of data obtained during the ground calibration of the NuSTAR telescopes performed at Columbia University during 2010/2011. Finally, we give an outlook on ongoing

  1. Dealing with the size-of-source effect in the calibration of direct-reading radiation thermometer

    SciTech Connect (OSTI)

    Saunders, P.

    2013-09-11

    The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood by the non-specialist user.

  2. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect (OSTI)

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  3. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect (OSTI)

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  4. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun; Zhu, Yimei; Billinge, Simon J. L.

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  5. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect (OSTI)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  6. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  7. Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee Task Group 190

    SciTech Connect (OSTI)

    Lin, Pei-Jan P.; Schueler, Beth A.; Balter, Stephen; Strauss, Keith J.; Wunderle, Kevin A.; LaFrance, M. Terry; Kim, Don-Soo; Behrman, Richard H.; Shepard, S. Jeff; Bercha, Ishtiaq H.

    2015-12-15

    Due to the proliferation of disciplines employing fluoroscopy as their primary imaging tool and the prolonged extensive use of fluoroscopy in interventional and cardiovascular angiography procedures, “dose-area-product” (DAP) meters were installed to monitor and record the radiation dose delivered to patients. In some cases, the radiation dose or the output value is calculated, rather than measured, using the pertinent radiological parameters and geometrical information. The AAPM Task Group 190 (TG-190) was established to evaluate the accuracy of the DAP meter in 2008. Since then, the term “DAP-meter” has been revised to air kerma-area product (KAP) meter. The charge of TG 190 (Accuracy and Calibration of Integrated Radiation Output Indicators in Diagnostic Radiology) has also been realigned to investigate the “Accuracy and Calibration of Integrated Radiation Output Indicators” which is reflected in the title of the task group, to include situations where the KAP may be acquired with or without the presence of a physical “meter.” To accomplish this goal, validation test protocols were developed to compare the displayed radiation output value to an external measurement. These test protocols were applied to a number of clinical systems to collect information on the accuracy of dose display values in the field.

  8. Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration

    SciTech Connect (OSTI)

    Stull, Christopher J.; Williams, Brian J.; Unal, Cetin

    2012-07-05

    This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models

  9. Intrinsically safe moisture blending system

    SciTech Connect (OSTI)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  10. A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers

    SciTech Connect (OSTI)

    Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan; Parker, Jack C.; Watson, David B; Jardine, Philip M

    2010-01-01

    Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code, the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.

  11. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less

  12. Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement

    SciTech Connect (OSTI)

    Marcano, Aristides; Cabrera, Humberto; Guerra, Mayamaru; Cruz, Renato A.; Jacinto, Carlos; Catunda, Tomaz

    2006-07-15

    We describe a calibrated two-beam mode-mismatched thermal lens experiment aimed at determination of the absorption coefficient and the photothermal parameters of a nearly transparent material. The use of a collimated probe beam in the presence of a focused excitation beam optimizes the thermal lens experiment. The signal becomes independent from the Rayleigh parameters and waist positions of the beams. We apply this method to determine the absolute value of the thermal diffusivity and absorption coefficient of distilled water at 533 nm.

  13. Electromagnetic coupling into two standard calibration shields on the Sandia cable tester

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Basilio, Lorena I.; Langston, William L.; Chen, Kenneth C.; Hudson, Howard Gerald; Morris, M. E.; Stronach, S. L.; Johnson, W. A.; Derr, W.

    2014-02-01

    This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.

  14. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect (OSTI)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  15. Results of experimental tests and calibrations of the surface neutron moisture measurement probe

    SciTech Connect (OSTI)

    Watson, W.T.; Bussell, J.H., Westinghouse Hanford

    1996-08-13

    The surface neutron moisture probe has been tested both to demonstrate that is is able to operate in the expected in-tank temperature and gamma-ray fields and to provide detector responses to known moisture concentration materials. The probe will properly function in a simultaneous high temperature (80 degrees C) and high gamma radiation field (210 rad/hr)environment. Comparisons between computer model predicted and experimentally measured detector responses to changes in moisture provide a basis for the probe calibration to in-tank moisture concentrations.

  16. Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.; Hewson, John C.; Kumar, Pritvi Raj; Ling, Julia; Najm, Habib N.; Ruiz, Anthony; Safta, Cosmin; Sargsyan, Khachik; Stewart, Alessia; Wagner, Gregory

    2015-09-01

    The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.

  17. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bates, C. R.; Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Friedrich, S.

    2016-07-15

    Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  18. Method and system for detecting an explosive

    DOE Patents [OSTI]

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  19. Mining Machine Control Signal Processing System

    SciTech Connect (OSTI)

    Fecitt, G.J.

    1984-01-31

    A signal processing system for an underground mining machine having a steerable mineral cutter and a sensor which senses natural radiation emitted from rock strata overlaying the radiation absorbing mineral and which derives a sensor signal representative of the cutting horizon of the cutter, comprises processing means for receiving and processing the sensor signal to derive an operational signal indicative of the cutter horizon of the cutter, calibration means for accepting a fed in calibration signal representative of a known existing condition of the cutting horizon and comparator means for comparing the derived operational signal with the calibration signal to determine an error in the derived operational signal and for instructing the processing means to apply a suitable correction to the derived operational signal.

  20. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less

  1. Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations

    SciTech Connect (OSTI)

    Hill, Larry G; Aslam, Tariq D

    2010-01-01

    We present a methodology for scaling the detonation shock dynamics D{sub n}[{kappa}] calibration function to accommodate variations in the HE starting material. We apply our model to the insensitive TATB-based explosive PBX 9502, for which we have enough front curvature rate stick data to characterize three material attributes: initial temperature T{sub 0}, nominal density {rho}{sub 0}, and manufacturing lot (representing different microstructures). A useful feature of the model is that it returns an absolute estimate for the reaction zone thickness, {delta}. Lacking demonstrated material metrics(s), we express microstructural variation indirectly, in terms of its effect on {delta}. This results in a D{sub n}[{kappa}] function that depends on T{sub 0}, {rho}{sub 0}, and {delta}. After examining the separate effects of each parameter on D{sub n}[{kappa}], we compute an arc geometry as a validation problem. We compare the calculation to a PBX 9502 arc experiment that was pressed from one of the calibrated HE lots. The agreement between the model and experiment is excellent. We compute worst, nominal, and best-performing material parameter combinations to show how much difference accrues throughout the arc.

  2. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect (OSTI)

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called “comb” pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  3. Calibration of Regional Seismic Stations in the Middle East with Shots in Turkey

    SciTech Connect (OSTI)

    Toksoz, M N; Kuleli, S; Gurbuz, C; Kalafat, D; Nekler, T; Zor, K; Yilmazer, M; Ogutcu, Z; Schultz, C A; Harris, D B

    2003-07-21

    The objective of this project is to calibrate regional travel-times and propagation characteristics of seismic waves in Turkey and surrounding areas in the Middle East in order to enhance detection and location capabilities in the region. Important data for the project will be obtained by large calibration shots in central and eastern Turkey. The first, a two-ton shot, was fired in boreholes near Keskin in central Anatolia on 23 November 2002. The explosives were placed in 14 holes, each 80 m deep, arranged in concentric circular arrays. Ninety temporary seismic stations were deployed within a 300 km radius around the shot. The permanent stations of the Turkish National Seismic Network provided a good azimuthal coverage as well as three radial traverses. Most stations within a radius of 200 km recorded the shot. Travel-time data have been analyzed to obtain a detailed crustal model under the shot and along the profiles. The model gives a 35 km thick crust, characterized by two layers with velocities of 5.0 and 6.4 km/s. The P{sub n} velocity was found to be 7.8 km/s. The crustal thickness decreases to the north where the profile crosses the North Anatolian fault. There is a slight increase in crustal velocities, but no change in crustal thickness to the west. Data analysis effort is continuing to refine the regional velocity models and to obtain station corrections.

  4. Measurement Uncertainty Analysis of an Accelerometer Calibration Using a POC Electromagnetic Launcher

    SciTech Connect (OSTI)

    Timpson, Erik J.; Engel, T. G.

    2012-06-12

    A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFN voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  5. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    SciTech Connect (OSTI)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of the control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.

  6. Derivation and calibration of semi-empirical gas geothermometers for Mahanagdong Geothermal Project, Philippines

    SciTech Connect (OSTI)

    Sanchez, D.R.

    1996-12-31

    The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2} and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.

  7. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    SciTech Connect (OSTI)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

  8. Comparison of the spectral response of a thinned, backside illuminated CCD with a CsI coated MCP system and Kodak 101 film

    SciTech Connect (OSTI)

    Li Yuelin; Crespo Lopex-Urrutia, J. R.; Tsakiris, G. D.; Sigel, R.; Volk, R.; Pina, L.

    1995-05-01

    A thinned backside illuminated CCD chip was calibrated by self consistently determining the thickness of its dead layer. Its spectral response and sensitivity were then compared with those of the calibrated Kodak 101 photographic plates and of a CsI coated microchannel plate detection system.

  9. Omega-X micromachining system

    DOE Patents [OSTI]

    Miller, Donald M.

    1978-01-01

    A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.

  10. ABSOLUTE FLUX CALIBRATION OF THE IRAC INSTRUMENT ON THE SPITZER SPACE TELESCOPE USING HUBBLE SPACE TELESCOPE FLUX STANDARDS

    SciTech Connect (OSTI)

    Bohlin, R. C.; Gordon, K. D.; Deustua, S.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Rieke, G. H.; Engelbracht, C.; Su, K. Y. L.; Ardila, D.; Tremblay, P.-E.

    2011-05-15

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of {approx}2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 {mu}m band-4 fluxes of Rieke et al. are about 1.5% {+-} 2% higher than those of Reach et al. and are also in agreement with our 8 {mu}m result.

  11. A Calibrated Maxey-Eakin Curve for the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin, which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Recharge rates are estimated on the basis that some fraction of annual precipitation will recharge, and that fraction will increase with increasing elevation. This results in a hypothetical curve relating annual groundwater recharge to annual precipitation. Field validation of recharge rates is critical in order to establish credibility to any estimate. This is due to the fact that the Maxey-Eakin model is empirical. An empirical model is derived from practical experience rather than basic theory. Therefore, a validated Maxey-Eakin model in one groundwater basin does not translate to a different one. In the WRD's Maxey-Eakin model, they used a curve calibrated against

  12. A Non-Destructive Investigation of Plutonium Reference Items Used for Calibration

    SciTech Connect (OSTI)

    Curtis, D.; Wormald, M.; Wilkins, C.G.; Croft, S.

    2008-07-01

    The calibration of Non-Destructive Assay (NDA) equipment relies on the availability of certified items of known content and construction. Increasing use is being made of calculational tools to create calibration data and so representative standards are no longer always needed. However, even with this approach it is invaluable to benchmark the tools against the measured response under well known conditions and to apply the Measured: Calculated ratio as a scaling factor. Reference sources for Pu are typically doubly encapsulated for safety reasons and contain Pu of well known chemical form, elemental composition, relative isotopic composition and mass. Destructive analysis techniques are used to characterize the materials and so these attributes are usually known with far greater accuracy than that achievable by the NDA methods to which they are being applied. Construction details are also usually provided in order to permit attenuation and related factors to be estimated. This work concerns the empirical investigation of a set of encapsulated PuO{sub 2} powder standards. The characterization and fabrication of the items is adequately documented with the exception of fill height. The fill height governs the powder density and in turn both the self attenuation of photons and the self multiplication of neutrons, consequently this is an important omission. Initially the location and dimensions of the internal plunger cup was used as a basis to estimate the packing density, but later records of plunger positions made at the time of filling were found and significant revisions followed. As a consequence of discrepancies observed in measurements designed to evaluate a new lump correction algorithm we were led to investigate the powder density and distribution directly by gamma-ray scanning. In some cases this resulted in revised density estimates. Equally importantly it was discovered that for the smallest mass items, the powder was not held fixed in the form of a uniform

  13. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect (OSTI)

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  14. Method for in-situ restoration of platinum resistance thermometer calibration

    DOE Patents [OSTI]

    Carroll, R.M.

    1987-10-23

    A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.

  15. Method for in-situ restoration of plantinum resistance thermometer calibration

    DOE Patents [OSTI]

    Carroll, Radford M.

    1989-01-01

    A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.

  16. Development of a quantum-voltage-calibrated noise thermometer at NIM

    SciTech Connect (OSTI)

    Qu, J.; Zhang, J. T.; Fu, Y.; Rogalla, H.; Pollarolo, A.; Benz, S. P.

    2013-09-11

    A quantum-voltage-calibrated Johnson-noise thermometer was developed at NIM, which measures the Boltzmann constant k by comparing the thermal noise across a 100 ? sense resistor at the temperature of the triple point of water with the pseudo-random frequency-comb voltage waveform synthesized with a bipolar-pulse-driven quantum-voltage-noise source. A measurement with integration period of 10 hours and bandwidth of 640 kHz resulted in a relative offset of 0.510{sup ?6} from the current CODATA value of k, and a type A relative standard uncertainty of 2310{sup ?6}. Benefiting from closely matched noise powers and transmission-line impedances and small nonlinearities in the cross-correlation electronics, the derived k shows self-consistent values and standard uncertainties for different measurement bandwidths.

  17. Results from electrostatic calibrations for measuring the Casimir force in the cylinder-plane geometry

    SciTech Connect (OSTI)

    Wei, Q.; Dalvit, D. A. R.; Lombardo, F. C.; Mazzitelli, F. D.; Onofrio, R.

    2010-05-15

    We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range. We also report on measurements performed in the parallel-plane configuration, showing that the dependence on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane geometries. General considerations on the interplay between the distance-dependent minimizing potential and the precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries are finally reported.

  18. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  19. Self-Calibrated Cluster Counts as a Probe of Primordial Non-Gaussianity

    SciTech Connect (OSTI)

    Oguri, Masamune; /KIPAC, Menlo Park

    2009-05-07

    We show that the ability to probe primordial non-Gaussianity with cluster counts is drastically improved by adding the excess variance of counts which contains information on the clustering. The conflicting dependences of changing the mass threshold and including primordial non-Gaussianity on the mass function and biasing indicate that the self-calibrated cluster counts well break the degeneracy between primordial non-Gaussianity and the observable-mass relation. Based on the Fisher matrix analysis, we show that the count variance improves constraints on f{sub NL} by more than an order of magnitude. It exhibits little degeneracy with dark energy equation of state. We forecast that upcoming Hyper Suprime-cam cluster surveys and Dark Energy Survey will constrain primordial non-Gaussianity at the level {sigma}(f{sub NL}) {approx} 8, which is competitive with forecasted constraints from next-generation cosmic microwave background experiments.

  20. Design of experiments and data analysis challenges in calibration for forensics applications

    SciTech Connect (OSTI)

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.; Ruggiero, Christy E.; Thomas, Edward V.

    2015-07-15

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were used to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as ? = f(?) + error, for each of the responses, based on a calibration experiment and then invert to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. We also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.

  1. Design of experiments and data analysis challenges in calibration for forensics applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.; Ruggiero, Christy E.; Thomas, Edward V.

    2015-07-15

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were usedmore » to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.« less

  2. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  3. Design of experiments and data analysis challenges in calibration for forensics applications

    SciTech Connect (OSTI)

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.; Ruggiero, Christy E.; Thomas, Edward V.

    2015-07-15

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were used to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.

  4. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  5. Single-fiber multi-color pyrometry

    DOE Patents [OSTI]

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  6. New tracking system of the SND detector

    SciTech Connect (OSTI)

    Avdeeva, E. G. Bogdanchikov, A. G.; Botov, A. A.; Bukin, D. A.; Vasiljev, A. V.; Vesenev, V. M.; Golubev, V.B.; Dimova, T.V.; Druzhinin, V. P.; Korol, A. A.; Koshuba, S. V.; Obrazovsky, A. E.; Pakhtusova, E. V.; Serednyakov, S. I.; Sirotkin, A. A.; Surin, I.K.; Usov, Yu.V.; Filatov, P.V.; Kharlamov, A.G.

    2010-11-15

    A new tracking system (TS) of the Spherical Neutral Detector (SND) for experiments at the VEPP-2000 e{sup +}e{sup -} collider is described. The TS is completely assembled, mounted on the detector, and ready for collecting data from the VEPP-2000. Test experiments with cosmic-ray events and VEPP-2000 beams showed a stable operation of the system. The simulation, calibration, and reconstruction procedures were debugged by using available data.

  7. CONSTRAINING THE OPTICAL EMISSION FROM THE DOUBLE PULSAR SYSTEM J0737-3039

    SciTech Connect (OSTI)

    Ferraro, F. R.; Pallanca, C.; Dalessandro, E.; Lanzoni, B.; Mignani, R. P.; Pellizzoni, A.; Possenti, A.; Burgay, M.; D'Amico, N.; Camilo, F.; Lyne, A. G.; Kramer, M.; Manchester, R. N.

    2012-04-10

    We present the first optical observations of the unique system J0737-3039 (composed of two pulsars, hereafter PSR-A and PSR-B). Ultra-deep optical observations, performed with the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope, could not detect any optical emission from the system down to m{sub F435W} = 27.0 and m{sub F606W} = 28.3. The estimated optical flux limits are used to constrain the three-component (two thermal and one non-thermal) model recently proposed to reproduce the XMM-Newton X-ray spectrum. They suggest the presence of a break at low energies in the non-thermal power-law component of PSR-A and are compatible with the expected blackbody emission from the PSR-B surface. The corresponding efficiency of the optical emission from PSR-A's magnetosphere would be comparable to that of other Myr-old pulsars, thus suggesting that this parameter may not dramatically evolve over a timescale of a few Myr.

  8. TU-A-18A-01: Basic Principles of PET/CT, Calibration Methods and Contrast Recovery Across Multiple Cameras

    SciTech Connect (OSTI)

    Kappadath, S; Nye, J

    2014-06-15

    This continuing education session will discuss the physical principles of PET/CT imaging and characterization of contrast recovery using accreditation phantoms. A detailed overview will be given on the physical principles of PET including positron decay physics, 2D and 3D data acquisition, time-of-flight, scatter correction, CT attenuation correction, and image reconstruction. Instrument quality control and calibration procedures will be discussed. Technical challenges, common image artifacts and strategies to mitigate these issues will also be discussed. Data will be presented on acquisition techniques and reconstruction parameters affecting contrast recovery. The discussion will emphasize the minimization of reconstruction differences in quantification metrics such as SUV and contrast recovery coefficients for the NEMA and ACR clinical trial phantoms. Data from new and older generation scanners will be shown including comparison of contrast recovery measurements to their analytical solutions. The goal of this session is to update attendees on the quality control and calibration of PET/CT scanners, on methods to establish a common calibration for PET/CT scanners to control for instrument variance across multiple sites. Learning Objectives: Review the physical principles of PET/CT, quality control and calibration Gain further understanding on how to apply techniques for improving quantitative agreement across multiple cameras Describe the differences between measured and expected contrast recovery for the NEMA and ACR PET phantoms.

  9. The calibration of the WISE W1 and W2 Tully-Fisher relation

    SciTech Connect (OSTI)

    Neill, J. D. [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Seibert, Mark; Scowcroft, Victoria [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Courtois, Hlne; Sorce, Jenny G. [Institut de Physique Nucleaire, Universit Claude Bernard Lyon I, F-69100 Lyon (France); Jarrett, T. H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa); Masci, Frank J. [Image Processing and Analysis Center (IPAC), California Institute of Technology, 1200 East California Boulevard, MC 100-22, Pasadena, CA 91125 (United States)

    2014-09-10

    In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminositiescapable of providing such distance measuresto the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 (3.4 ?m) and W2 (4.6 ?m) filters. We find a correlation of line width to absolute magnitude (known as the Tully-Fisher relation, TFR) of M{sub W1}{sup b,i,k,a}=?20.35?9.56(log?W{sub mx}{sup i}?2.5) (0.54 mag rms) and M{sub W2}{sup b,i,k,a}=?19.76?9.74(log?W{sub mx}{sup i}?2.5) (0.56 mag rms) from 310 galaxies in 13 clusters. We update the I-band TFR using a sample 9% larger than in Tully and Courtois. We derive M{sub I}{sup b,i,k}=?21.34?8.95(log?W{sub mx}{sup i}?2.5) (0.46 mag rms). The WISE TFRs show evidence of curvature. Quadratic fits give M{sub W1}{sup b,i,k,a}=?20.48?8.36(log?W{sub mx}{sup i}?2.5)+3.60(log?W{sub mx}{sup i}?2.5){sup 2} (0.52 mag rms) and M{sub W2}{sup b,i,k,a}=?19.91?8.40(log?W{sub mx}{sup i}?2.5)+4.32(log?W{sub mx}{sup i}?2.5){sup 2} (0.55 mag rms). We apply an I-band WISE color correction to lower the scatter and derive M{sub C{sub W{sub 1}}}=?20.22?9.12(log?W{sub mx}{sup i}?2.5) and M{sub C{sub W{sub 2}}}=?19.63?9.11(log?W{sub mx}{sup i}?2.5) (both 0.46 mag rms). Using our three independent TFRs (W1 curved, W2 curved, and I band), we calibrate the UNION2 Type Ia supernova sample distance scale and derive H {sub 0} = 74.4 1.4(stat) 2.4(sys) km s{sup 1} Mpc{sup 1} with 4% total error.

  10. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOE Patents [OSTI]

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  11. Production and characterization of a nitrogen-implanted Fe standard to calibrate PIGE measurements

    SciTech Connect (OSTI)

    Rodrigues, C. L.; Silva, T. F.; Added, N.; Santos, H. C.; Tabacniks, M. H.

    2014-11-11

    Three calibration standard was produced by ion implantation of nitrogen in samples of Armco iron (99.7% iron). The samples was irradiated with nitrogen ion beams at several different energies (between 4 keV and 40 keV), and the ion doses were adjusted to obtain an uniform depth profile, using simulations with SRIM code. Two standards, one thick and other a foil (1.62mg/cm{sup 2}), was irradiated at same time with total nominal dose of 6.6×10{sup −16} atoms/cm{sup 2} distributed in a region of 100 nm in depth, with an average concentration of 9.0% nitrogen in iron. The third sample uses the same profile, but with a small dose, 1.1×10{sup −16} atoms/cm{sup 2} and average concentration of 1.5% nitrogen. The characterization of the implanted samples was done using RBS and NRA techniques to quantification of nitrogen.

  12. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    SciTech Connect (OSTI)

    Wang, L. Laurent, J.; Brémond, G.; Chauveau, J. M.; Sallet, V.; Jomard, F.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.

  13. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    SciTech Connect (OSTI)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A. Belasri, A.

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  14. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    SciTech Connect (OSTI)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-15

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  15. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1998-10-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  16. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1998-01-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  17. Development of a low energy ion source for ROSINA ion mode calibration

    SciTech Connect (OSTI)

    Rubin, Martin; Altwegg, Kathrin; Jaeckel, Annette; Balsiger, Hans

    2006-10-15

    The European Rosetta mission on its way to comet 67P/Churyumov-Gerasimenko will remain for more than a year in the close vicinity (1 km) of the comet. The two ROSINA mass spectrometers on board Rosetta are designed to analyze the neutral and ionized volatile components of the cometary coma. However, the relative velocity between the comet and the spacecraft will be minimal and also the velocity of the outgassing particles is below 1 km/s. This combination leads to very low ion energies in the surrounding plasma of the comet, typically below 20 eV. Additionally, the spacecraft may charge up to a few volts in this environment. In order to simulate such plasma and to calibrate the mass spectrometers, a source for ions with very low energies had to be developed for the use in the laboratory together with the different gases expected at the comet. In this paper we present the design of this ion source and we discuss the physical parameters of the ion beam like sensitivity, energy distribution, and beam shape. Finally, we show the first ion measurements that have been performed together with one of the two mass spectrometers.

  18. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  19. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  20. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  1. Sci—Thur PM: Imaging — 05: Calibration of a SPECT/CT camera for quantitative SPECT with {sup 99m}Tc

    SciTech Connect (OSTI)

    Gaudin, Émilie; Montégiani, Jean-François; Després, Philippe; Beauregard, Jean-Mathieu

    2014-08-15

    While quantitation is the norm in PET, it is not widely available yet in SPECT. This work's aim was to calibrate a commercially available SPECT/CT system to perform quantitative SPECT. Counting sensitivity, dead-time (DT) constant and partial volume effect (PVE) of the system were assessed. A dual-head Siemens SymbiaT6 SPECT/CT camera equipped with low energy high-resolution collimators was studied. {sup 99m}Tc was the radioisotope of interest because of its wide usage in nuclear medicine. First, point source acquisitions were performed (activity: 30–990MBq). Further acquisitions were then performed with a uniform Jaszczak phantom filled with water at high activity (25–5000MBq). PVE was studied using 6 hot spheres (diameters: 9.9–31.2 mm) filled with {sup 99m}Tc (2.8MBq/cc) in the Jaszczak phantom, which was: (1) empty, (2) water-filled and (3) water-filled with low activity (0.1MBq/cc). The data was reconstructed with the Siemens's Flash3D iterative algorithm with 4 subsets and 8 iterations, attenuation-correction (AC) and scatter-correction (SC). DT modelling was based on the total spectrum counting rate. Sensitivity was assessed using AC-SC reconstructed SPECT data. Sensitivity and DT for the sources were 99.51±1.46cps/MBq and 0.60±0.04µs. For the phantom, sensitivity and DT were 109.9±2.3cps/MBq and 0.62±0.13µs. The recovery-coefficient varied from 5% for the 9.9mm, to 80% for the 31.2mm spheres. With our calibration methods, both sensitivity and DT constant of the SPECT camera had little dependence on the object geometry and attenuation. For small objects of known size, recovery-coefficient can be applied to correct PVE. Clinical quantitative SPECT appears to be possible and has many potential applications.

  2. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    SciTech Connect (OSTI)

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-15

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4 keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5 keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10 keV range.

  3. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    SciTech Connect (OSTI)

    Real, Diego [IFIC, Instituto de Fsica Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  4. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect (OSTI)

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  5. Characterization and calibration of compact array spectrometers in the ultraviolet spectral region

    SciTech Connect (OSTI)

    Shindo, Francois; Woolliams, Emma; Scott, Barry; Harris, Subrena

    2013-05-10

    Array-based spectrometers, with their compact size, low weight, low cost, and fast measurement time, are now frequently used in place of both conventional single-channel scanning monochromators, and broadband meters. Their rapid measurement capability makes them an attractive option for routine solar UV spectral measurements, where shortterm variability in signal is a challenge. However, compactness, portability, low cost and high speed are achieved at the expense of the spectrometer's optical and electronic performance. Thus such spectrometers are more prone to measurement error from environmental changes, and more prone to other intrinsic sources of error such as stray light and detector non-linearity, which significantly affect solar UV measurements, than a scanning monochromator. The effects of stray light and non-linearity can be reduced either by improved optical and detector design or by a detailed spectrometer characterization. We present in this paper our investigation of the performance of three different commercial array spectrometers: two mini-spectrometers, and a more elaborate array spectrometer with an on-board image amplifier device. These were tested for a subset of performance parameters: their wavelength accuracy and stability, electronic linearity, responsivity linearity, stray light sensitivity, and mechanical stability and repeatability. With all three spectrometers we found that these parameters, particularly but not limited to stray light, had a significant impact on the measurement of the incoming optical radiation. This meant that, without characterization, the instruments would be unable to accurately measure the UV component of any source with significant visible radiation. We discuss various simple and low-cost solutions for improving the performance of these instruments, and providing a rigorous calibration using a straightforward set-up including optical filters and the quasi-monochromatic light from a double monochromator.

  6. Lyman Alpha Emitting Galaxies at 2 < z < 3: Towards a Calibrated Probe of Dark Energy

    SciTech Connect (OSTI)

    Caryl Gronwall

    2012-12-03

    The goal of this project was to establish the physical properties of Ly{alpha} emitting galaxies from redshifts of 2 to 3 in order to better calibrate the use of LAEs as probes of the large scale structure of the universe for upcoming dark energy experiments, such as the Hobby Eberly Telescope Dark Energy Experiment (HETDEX). We have obtained narrow-band imaging of the Extended Chandra Deep Field South (ECDF-S) in two different narrow-band filters centered at Ly{alpha} at z=2.1 and 3.1. The resulting of samples of LAEs were used to determine the LAE luminosity function, equivalent width distribution and clustering properties (bias) of LAEs at these redshifts. While the results from the ECDF-S appear robust, they are based on a single field. To explore the effects of cosmic variance and galaxy environment on the physical properties of LAEs, we have also obtained narrow-band data at both redshifts (z = 2:1 and 3:1) in three additional fields (SDSS 1030+-05, the Extended Hubble Deep Field South, and CW 1255+01). The narrow-band imaging data has been reduced and LAE catalogs are being generated. We have calculated preliminary luminosity functions, equivalent width distributions, and clustering properties. We have also obtained follow-up spectroscopy in the optical (using VLT/FORS) and in the near-infrared (using Magellan/MMIRS). Since individual LAEs have too little S/N to enable meaningful fits for stellar population parameters, our previous work has analyzed stacked Spectral Energy Distributions (SEDs). SED fitting was performed on several subsets of LAEs selected by their rest-UV luminosity, UV spectral slope, Ly alpha luminosity, Equivalent Width, or rest-optical (IRAC) luminosity.

  7. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect (OSTI)

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  8. Note: On the wavelength dependence of the intensity calibration factor of extreme ultraviolet spectrometer determined with profile measurement of bremsstrahlung continuum

    SciTech Connect (OSTI)

    Yamaguchi, N.; Morita, S.; Dong, C. F.; Goto, M.; Maezawa, H.; Miyauchi, H.

    2015-06-15

    The absolute calibration factor of extreme ultraviolet spectroscopic instrument which has recently been determined from absolute radiation profile measurement of bremsstrahlung continuum has been investigated by comparing the calculated diffraction efficiency of grating. An overall tendency of the wavelength dependence of the calibration factor from 40 Å to 500 Å can be reproduced by that of the grating efficiency, especially the agreement between the measured calibration factor and the calculated grating efficiency has been found to be fairly good for the wavelength range 200 Å-500 Å.

  9. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect (OSTI)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  10. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect (OSTI)

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  11. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    SciTech Connect (OSTI)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  12. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  13. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    SciTech Connect (OSTI)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  14. HUBBLE SPACE TELESCOPE DETECTION OF THE DOUBLE PULSAR SYSTEM J07373039 IN THE FAR-ULTRAVIOLET

    SciTech Connect (OSTI)

    Durant, Martin; Kargaltsev, Oleg; Pavlov, George G. E-mail: kargaltsev@email.gwu.edu

    2014-03-01

    We report on detection of the double pulsar system J07373039 in the far-UV with the Advanced Camera for Surveys/Solar-blind Channel detector aboard Hubble Space Telescope. We measured the energy flux F = (4.6 1.0) 10{sup 17}ergcm{sup 2} s{sup 1} in the 1250-1550 band, which corresponds to the extinction-corrected luminosity L ? 1.5 10{sup 28}ergs{sup 1} for the distance d = 1.1kpc and a plausible reddening E(B V) = 0.1. If the detected emission comes from the entire surface of one of the neutron stars with a 13km radius, the surface blackbody temperature is in the range T ? (2-5) 10{sup 5}K for a reasonable range of interstellar extinction. Such a temperature requires an internal heating mechanism to operate in old neutron stars, or, less likely, it might be explained by heating of the surface of the less energetic Pulsar B by the relativistic wind of Pulsar A. If the far-ultraviolet emission is non-thermal (e.g., produced in the magnetosphere of Pulsar A), its spectrum exhibits a break between the UV and X-rays.

  15. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  16. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  17. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  18. Draft report on melt point as a function of composition for urania-based systems

    SciTech Connect (OSTI)

    Valdez, James A; Byler, Darrin D

    2012-06-08

    This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

  19. Defining the infrared systems for ITER

    SciTech Connect (OSTI)

    Reichle, R.; Andrew, P.; Drevon, J.-M.; Encheva, A.; Janeschitz, G.; Levesy, B.; Martin, A.; Pitcher, C. S.; Pitts, R.; Thomas, D.; Vayakis, G.; Walsh, M.; Counsell, G.; Johnson, D.; Kusama, Y.

    2010-10-15

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

  20. CO (Carbon Monoxide Mixing Ratio System) Handbook

    SciTech Connect (OSTI)

    Biraud, S

    2011-02-23

    The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.