Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sub-bituminous coal handling problems solved with bunker liner retrofit  

SciTech Connect (OSTI)

After switching to low-sulfur sub-bituminous coal, Northern States Power Co. (NSP) experience several fires and an explosion in the coal storage bunkers of its two-unit, 384-MW Riverside plant located in Minneapolis, Minn. The most recent incident occurred in November 1993 when a blast rocked Unit 7`s coal storage bunker. The spontaneous combustion explosion was touched off when coal dust from the dust collection system was being conveyed back into the bunker and came into contact with hot coal. Reaction to the incident was swift and NSP management established a task force known as ``Operation Cease Fire`` to investigate the situation and develop a solution to eliminate fires and explosions at all of its coal-fired plants. This article describes the problems found in the coal handling systems and the steps taken to correct them.

Steppling, K.P.; McAtee, K.L.; Huggins, J.

1995-09-01T23:59:59.000Z

2

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

3

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network [OSTI]

molten sodium hydroxide. coal ash. and glass. b, Ultimatealmost all the ash constituents of coal, and hence ofash composition The ash composition bituminous coals 39 are

Seth, M.

2010-01-01T23:59:59.000Z

4

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

July 22, 1974. Project Western Coal: Conversion of Coal Intoand Gasification of Western Coals", in proceedings of ERDA/Investigators' Conference - Coal Research, Colorado School

Holten, R.R.

2010-01-01T23:59:59.000Z

5

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

6

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

the loss of Zn to the coal ash (which appears to invoLve ionhydrocracking is the catalyst/coal ash interaction typifiedof chlorides of metals found in coal ash is of interest, and

Holten, R.R.

2010-01-01T23:59:59.000Z

7

THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

W. S. , "Solvent Treatment of Coal", Mills and Boon, London,of this solvent with the coal structure. When coupled withis indeed quite an unusual coal solvent. REFEREMCES Oele, A.

Grens III., Edward A.

2013-01-01T23:59:59.000Z

8

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network [OSTI]

I.D I.D XBL 7111- 11389 g. s urn coal iurn REfERENCES 1. W.H. Wiser, Coal Catalysis, Proceedings of the EPRIC. Howard. Chern; (John Wil of Coal Utilization H. H. lowry.

Seth, M.

2010-01-01T23:59:59.000Z

9

Hydrothermal Treatment of a Sub-bituminous Coal and Its Use in Coking Blends  

Science Journals Connector (OSTI)

Crucible coking determinations suggest that hydrothermal treatment can greatly increase the coke strength and the particle coke strength after reaction toward CO2 and decrease the coke reactivity when the hydrothermally treated coals were used in the coal blends instead of the raw coal. ... While the cokes from the crucible coking experiments were subjected to 800 rotations at a speed of 25 rpm, the weight percent of coke particles (>0.2 ... The coal charges were coked in the lab. ...

Hengfu Shui; Ye Wu; Zhicai Wang; Zhiping Lei; Changhui Lin; Shibiao Ren; Chunxiu Pan; Shigang Kang

2012-11-26T23:59:59.000Z

10

Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report  

SciTech Connect (OSTI)

Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

1993-03-01T23:59:59.000Z

11

Continuous bench-scale slurry catalyst testing: Direct coal liquefaction of rawhide sub-bituminous coal. Final topical report, June 1994--December 1994  

SciTech Connect (OSTI)

Supported catalysts, either in fixed bed or ebullating bed reactors, are subject to deactivation with time, especially if the feed contains deactivating species, such as metals and coke precursors. Dispersed catalyst systems avoid significant catalyst deactivation because there are no catalyst pores to plug, hence no pore mouth plugging, and hopefully, no relevant decline of catalyst surface area or pore volume. The tests carried out in 1994, at the Exxon Research and Development Laboratories (ERDL) for DOE covered a slate of 5 dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal, which is similar to the Black Thunder coal tested earlier at Wilsonville. The catalysts included three iron and two molybdenum types. The Bailey iron oxide and the two molybdenum catalysts have previously been tested in DOE-sponsored research. These known catalysts will be used to help provide a base line and tie-in to previous work. The two new catalysts, Bayferrox PK 5210 and Mach-1`s Nanocat are very finely divided iron oxides. The iron oxide addition rate was varied from 1.0 to 0.25 wt % (dry coal basis) but the molybdenum addition rate remained constant at 100 wppm throughout the experiments. The effect of changing recycle rate, sulfur and iron oxide addition rates, first stage reactor temperature, mass velocity and catalyst type were tested in the 1994 operations of ERDL`s recycle coal liquefaction unit (RCLU). DOE will use these results to update economics and plan future work. The test program will resume in mid 1995, with another 2-3 months of pilot plant testing.

Coless, L.A.; Poole, M.C.; Wen, M.Y.

1995-11-21T23:59:59.000Z

12

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

13

Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal  

SciTech Connect (OSTI)

This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2008-01-01T23:59:59.000Z

14

Continuous bench-scale slurry catalyst testing: Direct coal liquification of Rawhide sub-bituminous coal. Technical report, July 1995--December 1995  

SciTech Connect (OSTI)

In 1994 extensive tests were conducted in the Exxon Research and Engineering Recycle Coal Liquefaction Unit (RCLU) in Baton Rouge, Louisiana. The work conducted in 1994 explored a variety of dispersed iron molybdenum promoted catalyst systems for direct coal liquefaction of Rawhide subbituminus coal. The goal was to identify the preferred iron system. We learned that among the catalysts tested, all were effective; however, none showed a large process advantage over the others. In 1995, we tested dispersed molybdenum catalysts systems for direct coal liquefaction on a second subbituminous coal, Black Thunder. Catalyst properties are shown in Table 1. We also checked a molybdenum promoted iron case, as well as the impact of process variables, such as sulfur type, hydrogen treat rate, and catalyst addition rate, as shown in Table 2. In 1995, we ran 18 material balances over a 7 week period, covering 7 conditions. This report covers the 1995 operations and results.

Coless, L.A.; Poole, M.C.; Wen, M.Y.

1996-05-24T23:59:59.000Z

15

Impact of coal quality and gasifier technology on IGCC performance  

E-Print Network [OSTI]

it is estimated that 47 % of global coal reserves consist of lignite and sub-bituminous coals [2]. Several

16

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

17

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

18

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

19

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

20

INAA multielemental analysis of Nigerian bituminous coal and coal ash  

Science Journals Connector (OSTI)

Instrumental neutron activation analysis (INAA) was used to analyzed Nigerian bituminous coal and ash. Good statistical agreement (p...?0.05) between the literature and reported elemental values of USGS AGV-1 sam...

V. O. Ogugbuaja; W. D. James

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

Although lignite composes 16% of China’s coal reserves bys coal reserves are estimated to be 16% lignite by volume.reserves are classified as bituminous coal by volume, versus 29% sub-bituminous and 16% lignite.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

22

Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification  

Science Journals Connector (OSTI)

Co-gasification of biomass, namely, switchgrass, with coal and fluid coke was performed to investigate the availability of the gasification catalysts to the mixed feedstock, especially alkali and alkaline earth elements, naturally present on switchgrass. ...

Rozita Habibi; Jan Kopyscinski; Mohammad S. Masnadi; Jill Lam; John R. Grace; Charles A. Mims; Josephine M. Hill

2012-11-21T23:59:59.000Z

23

Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone  

Science Journals Connector (OSTI)

Present study was conducted for the purpose of producing low ash coal from LRC (low rank coals) such as lignite and sub-bituminous coal through thermal extraction using polar solvent. Extraction from bituminous coal

Sang Do Kim; Kwang Jae Woo; Soon Kwan Jeong…

2008-07-01T23:59:59.000Z

24

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

and P. Fugassi, Phenanthrene Extraction of Bituminous Coal,Coal Science, Advances in Chemistry Series No. 55, 448 C.Mechanism of High Volatile Coal, Coal Science, Advances in

Dorighi, G.P.

2010-01-01T23:59:59.000Z

25

Gasification of an Indonesian subbituminous coal in a pilot-scale coal gasification system  

Science Journals Connector (OSTI)

Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas was purified...2, and 5–8% CO2. Particulates in syngas were 99.8% removed by metal f...

Yongseung Yun; Seok Woo Chung

2007-07-01T23:59:59.000Z

26

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect (OSTI)

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

27

Liquefaction of calcium-containing subbituminous coals and coals of lower rank  

DOE Patents [OSTI]

A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

Gorbaty, Martin L. (Sanwood, NJ); Taunton, John W. (Seabrook, TX)

1980-01-01T23:59:59.000Z

28

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network [OSTI]

": lignite, subbituminous, bituminous, and anthracite. Indiana coals are bituminous and composed of 55 to 79 nearly 17 billion tons is recoverable. These reserves could last another 585 years at the current rate

Polly, David

29

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II  

SciTech Connect (OSTI)

Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

2008-10-31T23:59:59.000Z

30

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

.1146/annurev-earth-040610-133343 Copyright c 2011 by Annual Reviews. All rights reserved 0084 known as coalification; progresses from peat through lignite, subbituminous coal, bituminous coal

Macalady, Jenn

31

Hydrogen from Coal in a Single Step  

Science Journals Connector (OSTI)

The CO2 generated, a greenhouse gas with a potential to contribute to global warming, is generally released to the atmosphere. ... The H2/CH4 ratio in the product gases from three different rank coals Datong coal (bituminous), Taiheiyo coal (sub-bituminous), Wyoming coal (lignite) followed the order Datong>Taiheiyo>Wyoming. ...

Kanchan Mondal; Krzystof Piotrowski; Debalina Dasgupta; Edwin Hippo; Tomasz Wiltowski

2005-06-11T23:59:59.000Z

32

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

SciTech Connect (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

33

Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material  

Science Journals Connector (OSTI)

Abstract The effect of Ca catalysts prepared from CaCO3 on the steam gasification of Indonesian subbituminous coal at 700–800 °C is examined. The char obtained by pyrolyzing the coal with 0.59 wt.% of Ca (dry basis) showed conversions in steam gasification at 750 and 800 °C of around 70 and 90 wt.% (dry ash and catalyst free basis), which were 2 and 1.5 times larger than those of the coal without the Ca catalyst, respectively. The activity of this Ca catalyst was as high as that prepared using an aqueous solution of Ca(OH)2. The TPD and XRD measurements demonstrated that the Ca catalyst from CaCO3 was initially present in the ion-exchanged form, and as a finely dispersed calcium species after pyrolysis. These results confirm that CaCO3 is effective as a catalyst raw material in the steam gasification of subbituminous coal, even at low catalyst loadings.

Kenji Murakami; Masahiko Sato; Naoto Tsubouchi; Yasuo Ohtsuka; Katsuyasu Sugawara

2015-01-01T23:59:59.000Z

34

Development of a stack plume opacity index for subbituminous coal-fired utility boilers  

SciTech Connect (OSTI)

Powder River Basin subbituminous coals were burned using conventional and low-NO{sub x} combustion conditions in a drop-tube furnace equipped with a multicyclone ash collection device. Fine ash fractions (< 2 {micro}m in diameter) collected during the tests were analyzed using computer-controlled scanning electron microscopy (CCSEM). Advances in particulate sample preparation methods enabled the CCSEM analysis of individual ash particles with submicron diameters as small as 0.1 {micro}m. The fine ash samples produced from the conventional combustion of coal consisted of discrete spherical particles, whereas particle agglomerates were characteristic of the low-NO{sub x} ash samples. Particle-size distributions of the low-NO{sub x} fine ash fractions were coarser because of the agglomeration. Theoretical light-scattering calculations indicate that for a given coal, the ash produced in low-NO{sub x} conditions causes less opacity as compared to conventional combustion conditions. The following phases were abundant in the ashes: Ca aluminosilicate, Ca aluminate, aluminosilicate, silica, (Ca, Mg)O, CaSO{sub 4}, Na{sub 2} SO{sub 4}, and (Na, K)Cl. Primary mechanisms that produced the fine ash include the thermal metamorphism of small (0.1 to 5 {micro}m) mineral grains and the vaporization and subsequent condensation of organically bound Na, Mg, and Ca, Empirical equations for estimating the concentration of fine ash produced from burning subbituminous coals were formulated into an opacity index based on CCSEM coal mineral and fine ash analyses and on drop-tube furnace testing results. The effects of ash electrical resistivity on electrostatic precipitator collection efficiency are also considered in the index.

Galbreath, K.C.; Zygarlicke, C.J.; McCollor, D.P.; Toman, D.L. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

1995-12-31T23:59:59.000Z

35

Pore size distribution and accessible pore size distribution in bituminous coals  

SciTech Connect (OSTI)

The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Sakurovs, Richard [ORNL; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

36

Investigation of the combustion characteristics of Zonguldak bituminous coal using DTA and DTG  

SciTech Connect (OSTI)

Combustion characteristics of coking, semicoking, and noncoking Turkish bituminous coal samples from Zonguldak basin were investigated applying differential thermal analysis (DTA) and differential thermogravimetry (DTG) techniques. Results were compared with that of the coke from Zonguldak bituminous coal, a Turkish lignite sample from Soma, and a Siberian bituminous coal sample. The thermal data from both techniques showed some differences depending on the proximate analyses of the samples. Noncombustible components of the volatile matter led to important changes in thermal behavior. The data front both methods were, evaluated jointly, and some thermal properties were interpreted considering these methods in a complementary combination.

Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.; Okutan, H. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-06-21T23:59:59.000Z

37

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4 MPa and temperatures of 800, 900, 950, and 1000 °C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

38

Argonne Coal Structure Rearrangement Caused by Sorption of CO2  

Science Journals Connector (OSTI)

Argonne Coal Structure Rearrangement Caused by Sorption of CO2 ... The sorption of CO2 on seven Argonne premium coals was measured by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy as a function of time at constant CO2 pressure (0.62 MPa) and temperature (55 °C). ... The following seven Argonne premium coals were investigated:? Upper Freeport (medium volatile bituminous), Pittsburgh No. 8 (high volatile bituminous), Lewiston?Stockton (high volatile bituminous), Blind Canyon (high volatile bituminous), Illinois No. 6 (high volatile bituminous), Wyodak (sub-bituminous), and Beulah Zap (lignite). ...

A. L. Goodman; R. N. Favors; John W. Larsen

2006-10-05T23:59:59.000Z

39

Run 263 with Black Thunder Mine subbituminous coal and dispersed molybdenum catalysts  

SciTech Connect (OSTI)

This report presents the results of Run 263 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on October 31, 1991 and continued until February 23, 1992. Tests were conducted by operating the reactors in the Close-Coupled Integrated Two-Stage Liquefaction mode and by processing Black Thunder Mine subbituminous coal from Wyodak-Anderson seam in Wyoming Powder River Basin. Half volume reactors were used for the entire run. In the first part of Run 263, a dispersed molybdenum catalyst was evaluated for its performance without a supported catalyst in the second stage. Molyvan L and Molyvan 822 (commercially available as friction reducing lubricants) were used as precursors for the dispersed molybdenum catalyst. The effect of the dispersed catalyst on eliminating the solids buildup was also evaluated. For the second part of the run, the hybrid catalyst system was tested with supported Criterion 324 1/1611 catalyst in the second stage at catalyst replacement rates of 2 and 3 lb/ton of MF coal. The molybdenum concentration was 100--200 ppm based on MF coal. Iron oxide was used as a slurry catalyst precursor at a rate of 1--2 wt % MF coal throughout the run with dimethyl disulfide (DMDS) as the sulfiding agent. The close-coupled reactor unit was on-stream for 2482 hours for an on-stream factor of 91.2% and the ROSE-SR[sup sm] unit was on-feed for 2126 hours for an on-stream factor of 96.4% for the entire run.

Not Available

1992-12-01T23:59:59.000Z

40

Run 263 with Black Thunder Mine subbituminous coal and dispersed molybdenum catalysts. Technical progress report  

SciTech Connect (OSTI)

This report presents the results of Run 263 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on October 31, 1991 and continued until February 23, 1992. Tests were conducted by operating the reactors in the Close-Coupled Integrated Two-Stage Liquefaction mode and by processing Black Thunder Mine subbituminous coal from Wyodak-Anderson seam in Wyoming Powder River Basin. Half volume reactors were used for the entire run. In the first part of Run 263, a dispersed molybdenum catalyst was evaluated for its performance without a supported catalyst in the second stage. Molyvan L and Molyvan 822 (commercially available as friction reducing lubricants) were used as precursors for the dispersed molybdenum catalyst. The effect of the dispersed catalyst on eliminating the solids buildup was also evaluated. For the second part of the run, the hybrid catalyst system was tested with supported Criterion 324 1/1611 catalyst in the second stage at catalyst replacement rates of 2 and 3 lb/ton of MF coal. The molybdenum concentration was 100--200 ppm based on MF coal. Iron oxide was used as a slurry catalyst precursor at a rate of 1--2 wt % MF coal throughout the run with dimethyl disulfide (DMDS) as the sulfiding agent. The close-coupled reactor unit was on-stream for 2482 hours for an on-stream factor of 91.2% and the ROSE-SR{sup sm} unit was on-feed for 2126 hours for an on-stream factor of 96.4% for the entire run.

Not Available

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Iron Transformation and Ash Fusibility during Coal Combustion in Air and O2/CO2 Medium  

Science Journals Connector (OSTI)

(1) The successful design and operation of oxy-fired pulverized coal boilers require comprehensive knowledge of ash deposition characteristics, which have a major impact on the safety and economic performance of the boilers. ... Two bituminous coals (Utah coal and Illinois coal) and one sub-bituminous coal (PRB coal) were burned on a down-fired combustor under both oxy- and air-firing. ...

Dunxi Yu; Liang Zhao; Zuoyong Zhang; Chang Wen; Minghou Xu; Hong Yao

2011-12-26T23:59:59.000Z

42

Soft coal, hard choices: The economic welfare of bituminous coal miners, 1890-1930  

SciTech Connect (OSTI)

Price Fishback, an economist at the University of Arizona, has looked backward and studied the economic welfare of the bituminous coal miner during the industry's ascendancy, from 1890 to 1930. The result is an impressive work which should be of interest to all students of Appalachia. His account combines economic theory and quantitative evidence to examine the historical record. There are chapters on the coal market during the period as well as appendices presenting the technical basis for the author's work. Chapters are devoted to a discussion of wages and the role of the unions, accident/safety legislation and workers compensation. Living conditions in the company town and the role of the company store are explored as well as the economic development of the region. Labor shortages, subsequent hiring of minorities, and the social problems associated with discrimination and segragation are discussed. Finally, Fishback examines the strike data and draws conclusions about why miners chose to strike.

Fishback, P.V.

1992-01-01T23:59:59.000Z

43

ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

~. ~. ~. ~. Procedure . . . . . . . . . . . Coal and Solventon Subbiturninous Coal Below Pyrolysis Temperatures, LBL-Treatment of Extract Solution Coal Residue Treatment. Yield

Lindsey, D.

2011-01-01T23:59:59.000Z

44

Comparative analysis of structural transformations of two bituminous coals with different maximum fluidity during carbonization  

SciTech Connect (OSTI)

The variation of the volume of two bituminous coals with different maximum fluidity (MF) values has been determined using carbonization tests, and the quality of coke obtained has been examined using scanning electron microscopy (SEM) micrographs. The structural and chemical changes in bituminous coals at the pre-plastic stage during carbonization were studied using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques and compared to the changes in their electric and dielectric parameters. It was observed that the structural and chemical transformations occurred in the disordered phase of both coals in different ways. These differences are attributed to the different redistributions of hydrogen between the radicals generated in the aliphatic and aromatic parts of the macromolecule fragments. 42 refs., 12 figs., 2 tabs.

Valentina Zubkova; Victor Prezhdo; Andrzej Strojwas [Jan Kochanowski University, Kielce (Poland). Institute of Chemistry

2007-06-15T23:59:59.000Z

45

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect (OSTI)

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

46

Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

Science Journals Connector (OSTI)

These two coals represent the two main types of non-lignite coals currently used in the U.S.: a medium-sulfur eastern bituminous coal and a low-sulfur western sub-bituminous coal. ... At a commercial scale, this would likely mean that there could be a roughly 3-fold decrease in the size of the gasifier compared to the case of dry mixing coal and the regenerated calcium oxide. ...

Nicholas S. Siefert; Dushyant Shekhawat; Shawn Litster; David A. Berry

2013-03-03T23:59:59.000Z

47

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

from the original dry, ash-free coal; and E is the yield oforiginal dry or dry, ash-free coal charged to the system.6.3% of the original dry, ash-free coal. calculation of the

Dorighi, G.P.

2010-01-01T23:59:59.000Z

48

ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

just 51% of the coal on a dry, ash free basis. thatextracted 8.7% (dry, ash free basis) of the coal at 250 0 CAsh % Oxygen (difference) HIC Molcular Ratio Table II. Analysis of Roland Seam Coal

Lindsey, D.

2011-01-01T23:59:59.000Z

49

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

this substance could be added to a poor coking coal in ordersubstance from the coal called the "coking principle." Itcoking properties. These attempts failed, but they provided the starting point for further investigation of coal

Dorighi, G.P.

2010-01-01T23:59:59.000Z

50

Influence of operating conditions and coal properties on \\{NOx\\} and N2O emissions in pressurized fluidized bed combustion of subbituminous coals  

Science Journals Connector (OSTI)

This experimental study is aimed at finding effects of operating conditions in PFBC on nitrogen oxide emissions for subbituminous coals differing in ash content/composition, combustion/gasification reactivities and in particle size distribution. The experiments have been done on a smaller laboratory apparatus with ID=8 cm. The effects of operating pressure (0.1–1 MPa), temperature of the fluidized bed (800–900 °C), freeboard temperature and oxygen concentration (3–10 vol.%) on the nitrogen oxides emissions are relatively complex, coupled with temperature of burning coal particles. The coal ash content/composition (esp. CaO and Fe2O3) and fly ash freeboard concentration play an important role in formation/destruction chemistry of both NO and N2O. The \\{NOx\\} emissions decrease with increasing operating pressure at the same volumetric oxygen concentration and temperature. Temperature, volatile content, reactivities of coals and ash composition are the most important factors for N2O emissions. The N2O emissions are either almost constant or can exhibit a maximum at increasing operating pressure. Influence of increasing oxygen concentration on \\{NOx\\} and N2O emissions is more pronounced at lower operating pressures, esp. for the less reactive, medium ash coal. The particle size distribution of the coal (influence of coal dust) can cause characteristic changes in \\{NOx\\} and N2O emissions in PFBC, esp. at lower combustion temperatures (800–840 °C). The emission changes are dependent on ash properties/composition.

Karel Svoboda; Michael Poho?elý

2004-01-01T23:59:59.000Z

51

Low-Grade Coals: A Review of Some Prospective Upgrading Technologies  

Science Journals Connector (OSTI)

These are commonly lignites or sub-bituminous coals. ... The earliest upgrading of high-moisture lignite involved drying and manufacturing of briquettes. ... It can therefore be concluded that, because reserves for low-grade coals are quite plentiful, it is important to intensify efforts that will make these coals usable in an acceptable manner in terms of energy efficiency and environmental protection. ...

Hassan Katalambula; Rajender Gupta

2009-06-15T23:59:59.000Z

52

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

53

Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium  

SciTech Connect (OSTI)

Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminous coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.

Tian Wang; Jianmin Wang; Yulin Tang; Honglan Shi; Ken Ladwig [Missouri University of Science and Technology, Rolla, MO (United States). Department of Civil, Architectural, and Environmental Engineering, and Environmental Research Center (ERC)

2009-05-15T23:59:59.000Z

54

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

55

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

56

The First Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

57

Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char  

Science Journals Connector (OSTI)

Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char ... (1, 2) Extensive studies in both pilot-plant and lab scales have pointed out the pronounced influence of gas composition (air versus O2/CO2) on coal combustion performance. ... By augmenting a companion paper on ash formation in air versus O2/CO2,(17) this study aims to provide further evidence to promote the understanding on the role of CO2 on the combustion of bituminous coal and hence shed new lights into the retrofitting of existing power generation plants with oxy-firing technology. ...

Lian Zhang; Eleanor Binner; Luguang Chen; Yu Qiao; Chun-Zhu Li; Sankar Bhattacharya; Yoshihiko Ninomiya

2010-08-31T23:59:59.000Z

58

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal  

Science Journals Connector (OSTI)

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal ... Structural Characterization of Coal Tar Pitches Obtained by Heat Treatment under Different Conditions ...

Robert L. McCormick; Mahesh C. Jha

1994-03-01T23:59:59.000Z

59

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

60

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Final report, September 20, 1991--September 19, 1993  

SciTech Connect (OSTI)

One of the main goals for competitive coal liquefaction is to decrease gas yields to reduce hydrogen consumption. Complexing this element as methane and ethane decreases process efficiently and is less cost effective. To decrease the gas yield and increase the liquid yield, an effective preconversion process has been explored on the basis of the physically associated molecular nature of coal. Activities have been focused on two issues: (1) maximizing the dissolution of associated coal and (2) defining the different reactivity associated with a wide molecular weight distribution. Two-step soaking at 350{degrees}C and 400{degrees}C in a recycle oil was found to be very effective for coal solubilization. No additional chemicals, catalysts, and hydrogen are required for this preconversion process. High-volatile bituminous coals tested before liquefaction showed 80--90% conversion with 50--55% oil yields. New preconversion steps suggested are as follows: (1) dissolution of coal with two-step high-temperature soaking, (2) separation into oil and heavy fractions of dissolved coal with vacuum distillation, and (3) selective liquefaction of the separated heavy fractions under relatively mild conditions. Laboratory scale tests of the proposed procedure mode using a small autoclave showed a 30% increase in the oil yield with a 15--20% decrease in the gas yield. This batch operation projects a substantial reduction in the ultimate cost of coal liquefaction.

Not Available

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect (OSTI)

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

62

E-Print Network 3.0 - australian bituminous coal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Physics Institute Collection: Engineering 36 Impact of coal quality and gasifier technology on IGCC performance Summary: was captured and the two highest rank...

63

Gasification of New Zealand Coals: A Comparative Simulation Study  

Science Journals Connector (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. ... Coal is a nonrenewable resource; however, the world’s coal reserves amount to twice the combined oil and gas reserves. ... The reasons for the entrained flow gasifier selection include its high suitability to low rank coals (lignites) and the use of entrained flow gasifiers for an IGCC as the industrially preferred choice dictated through experience. ...

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

2008-06-10T23:59:59.000Z

64

A study on carbon dioxide emissions from bituminous coal in Korea  

Science Journals Connector (OSTI)

Consumption of primary energy in Korea increased 5.25 % per year over a 10 years span starting in 1990. Korea ranked 8th in primary energy consumption in 2011; coal consumption increased 35 % from 87,827 milli...

Jeongwoo Lee; Chang-Sang Cho; Ki-hyup Hong; Jae-Hak Jeong…

2013-10-01T23:59:59.000Z

65

Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating  

Science Journals Connector (OSTI)

Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2–3% at contacts, mostly due to elimination of functional groups (e.g., OH, COOH, NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ?2.5 to ?3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong ?13Ckerogen vs. ?15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back-reactions between mobile pyrolysis products from the hot zone as they encounter less hot kerogen. Vein and cell filling carbonate is most abundant in highest rank coals where carbonate ?13CVPDB and ?18OVSMOW values are consistent with thermal generation of 13C-depleted and 18O-enriched CO2 from decarboxylation and pyrolysis of organic matter. Lower background concentrations of 13C-enriched carbonate in thermally unaffected coal may be linked to 13C-enrichment in residual CO2 in the process of CO2 reduction via microbial methanogenesis. Our compilation and comparison of available organic H, C, N isotopic findings on magmatic intrusions result in re-assessments of majors factors influencing isotopic shifts in kerogen during magmatic heating. (i) Thermally induced shifts in organic ?D values of kerogen are primarily driven by the availability of water or steam. Hydrologic isolation (e.g., near Illinois dikes) results in organic D-depletion in kerogen, whereas more common hydrologic connectivity results in organic D-enrichment. (ii) Shifts in kerogen (or coal) ?13C and ?15N values are typically small and may follow sinusoidal patterns over short distances from magmatic contacts. Laterally limited sampling strategies may thus result in misleading and non-representative data. (iii) Fluid transport of chemically active, mobile carbon and nitrogen species and recombination reactions with kerogen result in isotopic changes in kerogen that are unrelated to the original, autochthonous part of kerogen.

Arndt Schimmelmann; Maria Mastalerz; Ling Gao; Peter E. Sauer; Katarina Topalov

2009-01-01T23:59:59.000Z

66

Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption  

Science Journals Connector (OSTI)

Abstract High pressure sorption experiments with carbon dioxide and methane were carried out at a temperature of 45 °C and at pressures up to 15 MPa with three samples of methane-bearing, medium-rank coals in a moisture-equilibrated state using a manometric method. The samples were taken from selected positions of drill cores from exploration boreholes in the Bohemian part of the Upper Silesian Basin, and were characterized by a narrow range of degree of coalification and markedly different petrographic compositions, including a different mineral matter content. The total porosity of the coal samples was between 9% and 10%. A positive correlation was found between the equilibrium moisture in the coal samples and the total abundance of oxygen functional groups determined by FTIR. The excess sorption capacities ranged from 0.78 to 0.91 mmol g?1 for CO2 and from 0.45 to 0.52 mmol g?1 for CH4, and after recalculation to coal organic matter, the excess sorption capacities increased by up to 14% in the coal with the highest mineral fraction. The highest CO2/CH4 ratio was found in the sample that had the highest inertinite and liptinite content. The experimental isotherm data was fitted by modified Langmuir and Dubinin–Radushkevich sorption isotherms. The parameters obtained by these two methods were in good agreement for carbon dioxide. It was found that the sorption capacity of the organic matter in a coal sample with prevalence of inertinite (63.0 vol.%) was lower only by 14% for CO2 and by 18% for CH4 than the sorption capacity of the organic matter in a coal sample with prevalence of vitrinite (65.3 vol.%). This provided confirmation that the petrographic composition of a coal has an ambiguous effect.

Zuzana Weishauptová; Old?ich P?ibyl; Ivana Sýkorová; Vladimír Machovi?

2015-01-01T23:59:59.000Z

67

JV Task-123 Determination of Trace Element Concentrations at an Eastern Bituminous Coal Plant Employing an SCR and Wet FGD  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC), in partnership with Babcock & Wilcox (B&W) and with funding from U.S. Department of Energy (DOE), conducting tests to prove that a high level of mercury control (>90%) can be achieved at a power plant burning a high-sulfur eastern bituminous coal. With funding from the Electric Power Research Institute (EPRI), DOE, and Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates Program, the EERC completed an additional sampling project to provide data as to the behavior of a number of trace elements across the various pollution control devices, with a special emphasis on the wet flue gas desulfurization (FGD) system. Results showed that the concentrations of almost all the elements of interest leaving the stack were very low, and a high percentage of the trace elements were captured in the electrostatic precipitator (ESP) (for most, >80%). Although, with a few exceptions, the overall mass balances were generally quite good, the mass balances across the wet FGD were more variable. This is most likely a result of some of the concentrations being very low and also the uncertainties in determining flows within a wet FGD.

Dennis Laudal

2008-05-01T23:59:59.000Z

68

Coal Ranks and Geothermal Gradients in High-volatile Bituminous Coalfields  

Science Journals Connector (OSTI)

... 380; Sw. No., 6. If it is assumed that no great changes in geothermal gradient have occurred since the early Pleistocene, this coal was metamorphosed at a temperature ... Silesia5. The most obvious explanation is that of a nearly two to one difference in geothermal gradient. Comparison of data from the Carboniferous coalfields of the Netherlands with analyses of ...

R. P. SUGGATE; J. O. ELPHICK

1964-07-04T23:59:59.000Z

69

Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals  

SciTech Connect (OSTI)

The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

Lili Huang; Schobert, H.H.; Chunshan Song

1998-01-01T23:59:59.000Z

70

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

71

Gasification of New Zealand coals: a comparative simulation study  

SciTech Connect (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

72

Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C  

SciTech Connect (OSTI)

HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

2008-11-15T23:59:59.000Z

73

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

74

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

SciTech Connect (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

75

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

76

Wide angle X-ray scattering study of the layering in three of the Argonne premium coals  

Science Journals Connector (OSTI)

Using wide angle X-ray scattering methods, the phase interference curves and the inter-layer structure curves of thee of the Argonne Premium Coals were measured. These analyses indicate the inter-layer structuring is rank dependent. In the sub-bituminous coal (Wyodak–Anderson), the number of layers in the average short-range structural domain is ca. 2.3, with the average inter-layer distance being 4.1 Å. For Pittsburgh #8 coal, the average inter-layer distance decreases slightly, to 4.0 Å, while the number of layers in the average short-range structural domain increases to ca. 3. For the more mature Pocahontas #3, a low-volatile bituminous coal, the inter-layer distance decreases to 3.7 Å, and the average short-range structural domain contains 4.5–5 layers.

D.L. Wertz; J.L. Quin

2000-01-01T23:59:59.000Z

77

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

78

Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption  

Science Journals Connector (OSTI)

CO2, CH4, and N2 adsorption and gas-induced swelling were quantified for block Blind Canyon, Pittsburgh #8 and Pocahontas Argonne Premium coals that were dried and structurally relaxed at 75 °C in vacuum. Strain measurements were made perpendicular and parallel to the bedding plane on ~ 7 × 7 × 7 mm3 coal blocks and gravimetric sorption measurements were obtained simultaneously on companion coal blocks exposed to the same gaseous environment. The adsorption amount and strain were determined after equilibration at P  ? 1.8 MPa. There is a strong non-linear correlation between strain and the quantity of gas adsorbed and the results for all gases and coals studied follow a common pattern. The dependence of the coal matrix shrinkage/swelling coefficient (Cgc) on the type and quantity of gas adsorbed is seen by plotting the ratio between the strain and the adsorbate concentration against the adsorbate concentration. In general, Cgc increases with increasing adsorbate concentration over the range of ~ 0.1 to 1.4 mmol/g. Results from the dried block coals are compared to CO2 experiments using native coals with an inherent level of moisture as received. The amount of CO2 adsorbed using native coals (assuming no displacement of H2O by CO2) is significantly less than the dried coals. The gas-induced strain (S) and adsorption amount (M) were measured as a function of time following step changes in CO2, CH4, and N2 pressure from vacuum to 1.8 MPa. An empirical diffusion equation was applied to the kinetic data to obtain the exponent (n) for time dependence for each experiment. The data for all coals were pooled and the exponent (n) evaluated using an ANOVA statistical analysis method. Values for (n) near 0.5 were found to be independent on the coal, the gas or type of measurement (e.g., parallel strain, perpendicular strain, and gas uptake). These data support the use of a Fickian diffusion model framework for kinetic analysis. The kinetic constant k was determined using a unipore diffusion model for each experiment and the data were pooled for ANOVA analysis. For dry coal, statistically significant differences for k were found for the gases (CO2 > N2 > CH4) and coals (Pocahontas >Blind Canyon > Pittsburgh #8) but not for the method of the kinetic measurement (e.g., strain or gas uptake). For Blind Canyon and Pittsburgh #8 coal, the rate of CO2 adsorption and gas-induced strain for dry coal was significantly greater than that of the corresponding native coal. For Pocahontas coal the rates of CO2 adsorption and gas-induced strain for dry and native coal were indistinguishable and may be related to its low native moisture and minimal amount of created porosity upon drying.

S.R. Kelemen; L.M. Kwiatek

2009-01-01T23:59:59.000Z

79

Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases  

SciTech Connect (OSTI)

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

2006-05-15T23:59:59.000Z

80

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Caking and coking properties of the thermal dissolution soluble fraction of a fat coal  

Science Journals Connector (OSTI)

Abstract In the coal blending for coke-making, fat coal has a very important role for the caking and coking properties of the coal blends. In this study, a fat coal was thermally dissolved, and the caking and coking properties of the thermal dissolution soluble factions (TDSFs) from different solvents and temperatures were characterized. It was found that the caking properties of \\{TDSFs\\} were better than that of fat raw coal. The \\{TDSFs\\} obtained from non-polar solvents have a higher caking property than those obtained from polar solvents at the same thermal dissolution (TD) temperature. During TD process, polar solvents can thermally dissolve more polyaromatic compounds into TDSF, thus increasing the softening temperature and decreasing the caking property of the TDSF. For the same TD solvent, the \\{TDSFs\\} obtained from higher temperatures have a lower caking property compared to those obtained from lower temperatures because of more aromatic components and oxygen functional groups entering them. Crucible coking determinations were carried out to evaluate the coking property of the TDSFs. The result suggests that when 5% of TDSF and 5% of non-caking sub-bituminous coal were used instead of the same amount of fat coal and gas coal, respectively in the coal blends, the quality of the coke obtained could get to the level of the coke obtained from the standard coal blends (i.e. without TDSF and sub-bituminous coal). Therefore, the use of TDSF in coal blending for coke-making is one of the effective methods for opening the coking coal resources.

Hengfu Shui; Wenjuan Zhao; Chuanjun Shan; Tao Shui; Chunxiu Pan; Zhicai Wang; Zhiping Lei; Shibiao Ren; Shigang Kang

2014-01-01T23:59:59.000Z

82

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 2: Coal  

Broader source: Energy.gov (indexed) [DOE]

2 2 Coal Coal is a mixture of organic mineral material produced by a natural process of growth and decay, or an accumulation of debris both vegetal and mineral with some sorting and stratification. The process is accomplished by chemical, biological, bacteriological and metamorphic action. 1 Forms of Coal Coal is a hydrocarbon that is classified according to the amount of heat it produces. Heat content depends upon the amount of fixed carbon it contains. Rank is the degree of progressive alteration in the transformation from lignite to anthracite. There are four primary ranks of coal: * Anthracite (semi-anthracite, anthracite, and meta-anthracite) * Bituminous (high-volatile, medium-volatile, and low-volatile) * Subbituminous * Lignite (brown coal and lignite)

83

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

84

NETL - Bituminous Baseline Performance and Cost Interactive Tool | Open  

Open Energy Info (EERE)

NETL - Bituminous Baseline Performance and Cost Interactive Tool NETL - Bituminous Baseline Performance and Cost Interactive Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bituminous Baseline Performance and Cost Interactive Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: Bituminous Baseline Performance and Cost Interactive Tool [1] Bituminous Baseline Performance and Cost Interactive Tool The Bituminous Baseline Performance and Cost Interactive Tool illustrates key data from the Cost and Performance Baseline for Fossil Energy Plants - Bituminous Coal and Natural Gas to Electricity report. The tool provides an

85

Coal plasticity at high heating rates and temperatures. Final technical progress report  

SciTech Connect (OSTI)

Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1995-05-01T23:59:59.000Z

86

Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel  

Science Journals Connector (OSTI)

Inorganic ash chemistry and petrology was investigated in coal-combustion by-products from the burning of tire-derived fuel (TDF) with a 1:1 blend of Colorado and Utah high volatile C bituminous coal and Powder River Basin subbituminous coal. Both coal components had high vitrinite contents. With the exception of Sr and Ba, the trace-element contents of the coals were not high. The fly ash was enriched in Zn, known to be a constituent of both the rubber and the wire in tires. Cu, also a constituent of the brass coatings of bead wire, was enriched in the same fractions with high Zn concentrations. Zn and Cu, along with several other elements, increased in concentration in the back, cooler row of the electrostatic precipitator. The enrichment of other elements, such as Se, As, and Pb, was more problematical. It is possible that the latter elements have more of a coal source than a tire source.

James C. Hower; J.David Robertson

2004-01-01T23:59:59.000Z

87

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

88

KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY  

SciTech Connect (OSTI)

The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

2013-10-29T23:59:59.000Z

89

The determination of the void structure of microporous coals by small?angle neutron scattering: Void geometry and structure in Illinois No. 6 bituminous coal  

Science Journals Connector (OSTI)

The access of solvents and reactants to the microvoid volume in porous materials such as coal plays an important role in determining the overall chemistry which takes place during a variety of chemical transformations including oxidation combustion and pyrolysis. The structure and surface composition of these voids were studied using small?angle neutron scattering techniques to examine selectively the subset of the overall void volume distribution which comprises the microvoid volume. Powdered Illinois No. 6 coal containing approximately 20% void volume was slurried in several different aqueous and cyclohexane solutions. The solutions used had various hydrogen?to?deuterium ratios in order to contrast match most of the open pore volume thereby making the microvoid volume visible. The microvoid volume observed is characterized as elongated voids having a fairly well?defined diameter and surface composition. The scattering intensity from the microvoid volume shows a well?defined Porod region indicating that the smallest void dimension is resolved by the instrumental configuration employed. A Guinier region exhibiting Q ? 1 behavior which is characteristic of elongated structures is also observed. The average radius of a circular cross section of these voids is found to be 25.4 Å. The microvoids are found to be completely filled by aqueous solutions so that the residual neutron scattering which is not eliminated by the contrast?matching aqueous solution is due to the organic matrix structure. Nonaqueous mixtures of cyclohexane cannot fill the entire microvoid volume as effectively as the aqueous mixtures. The scattering differences observed between the aqueous and nonaqueous filled coal indicates that the surface of the microvoids is predominantly aliphatic in character with the principal compositional variation being the presence or absence of acidic functionality on the surface.

Jon S. Gethner

1986-01-01T23:59:59.000Z

90

TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES  

SciTech Connect (OSTI)

This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

2002-05-30T23:59:59.000Z

91

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993  

SciTech Connect (OSTI)

The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [FWDC (United States); Chander, S. [Pennsylvania State Univ. (United States)

1993-12-31T23:59:59.000Z

92

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Coal Rank, 2012 Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 31. Average Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Bituminous Subbituminous Lignite Anthracite Total Alabama 106.57 - - - 106.57 Alaska - w - - w Arizona w - - - w Arkansas w - - - w Colorado w w - - 37.54 Illinois 53.08 - - - 53.08 Indiana 52.01 - - - 52.01 Kentucky Total 63.12 - - - 63.12 Kentucky (East) 75.62 - - - 75.62 Kentucky (West) 48.67 - - - 48.67 Louisiana - - w - w Maryland 55.67 - - - 55.67 Mississippi - - w - w Missouri w - - - w Montana w 17.60 w - 18.11 New Mexico w w - - 36.74 North Dakota - - 17.40 - 17.40 Ohio 47.80 - - - 47.80 Oklahoma 59.63 - - - 59.63 Pennsylvania Total 72.57

93

Coal in National Petroleum Reserve in Alaska (NPRA): framework geology and resources  

SciTech Connect (OSTI)

The North Slope of Alaska contains huge resources of coal, much of which lies within NPRA. The main coal-bearing units, the Corwin and Chandler Formations of the Nanushuk Group (Lower and Upper Cretaceous), underlie about 20,000 mi/sup 2/ (51,800 km/sup 2/) of NPRA. They contain low-sulfur, low-ash, and probable coking-quality coal in gently dipping beds as thick as 20 ft (6.1 m) within stratigraphic intervals as thick as 4500 ft (1370 m). Lesser coal potential occurs in other Upper Cretaceous units and in Lower Mississippian and Tertiary strata. The river-dominated Corwin and Umiat deltas controlled the distribution of Nanushuk Group coal-forming environments. Most organic deposits formed on delta plains; fewer formed in alluvial plain or delta-front environments. Most NPRA coal beds are expected to be lenticular and irregular, as they probably accumulated in interdistributary basins, infilled bays, or inland flood basins, whereas some blanket beds may have formed on broad, slowly sinking, delta lobes. The major controls of coal rank and degree of deformation were depth of burial and subsequent tectonism. Nanushuk Group coal resources in NPRA are estimated to be as much as 2.75 trillion short tons. This value is the sum of 1.42 trillion short tons of near-surface (< 500 ft or 150 m of overburden) bituminous coal, 1.25 trillion short tons of near-surface subbituminous coal, and 0.08 trillion shorts tons of more deeply buried subbituminous coal. These estimates indicate that the North Slope may contain as much as one-third of the United States coal potential.

Sable, E.G.; Stricker, G.D.

1985-04-01T23:59:59.000Z

94

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

95

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Number of Mines by State and Coal Rank, 2012" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing","Number...

96

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

Ömer Gül; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

97

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

98

Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report  

SciTech Connect (OSTI)

Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

1997-11-01T23:59:59.000Z

99

The Mesaba Energy Project: Clean Coal Power Initiative, Round 2  

SciTech Connect (OSTI)

The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

Stone, Richard; Gray, Gordon; Evans, Robert

2014-07-31T23:59:59.000Z

100

The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition  

Science Journals Connector (OSTI)

Abstract In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.

Seongyool Ahn; Gyungmin Choi; Duckjool Kim

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

102

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

SciTech Connect (OSTI)

By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration.

Croft, Gregory D. [University of California, Department of Civil and Environmental Engineering (United States); Patzek, Tad W. [University of Texas, Department of Petroleum and Geosystems Engineering (United States)], E-mail: patzek@mail.utexas.edu

2009-09-15T23:59:59.000Z

103

Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply  

E-Print Network [OSTI]

. The sample bank consists of eight coals, including lignite, subbituminous coal, high volatile, medium by a variety of techniques. Five-gallon carboys hold about 80% of the batch in reserve for filling more

Maranas, Costas

104

ZINC CHLORIDE-CATALYZED REACTIONS OF OXYGEN- AND SULFUR-CONTAINING COMPOUNDS WITH MODEL STRUCTURES IN COAL  

E-Print Network [OSTI]

H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,H. H. , ed. , "Chemistry of Coal Utilization", Suppl. Vol. ,Internat. Conf. Bituminous Coal, 3d Con£. , 2, 35 (1932);

Mobley, David Paul

2013-01-01T23:59:59.000Z

105

THE CHEMISTRY OF COAL MODEL COMPOUNDS -CLEAVAGE OF ALIPHATIC BRIDGES BETWEEN AROMATIC NUCLEI CATALYSED BY LEWIS ACIDS  

E-Print Network [OSTI]

and Background I. II. III. IV. II. Coal Liquefaction . •Coal Structure • • . Lewis Acid Catalysts. Scope andOrganic Structure of Bituminous Coal", Proceedings, Stanford

Taylor, Newell D.

2011-01-01T23:59:59.000Z

106

EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I  

SciTech Connect (OSTI)

All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

None

1984-02-01T23:59:59.000Z

107

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

108

Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal  

Science Journals Connector (OSTI)

Abstract Chemical Looping Combustion (CLC) of coal is an innovative combustion technology for CO2 inherent capture, which uses oxygen carrier (OC) to transfer lattice oxygen to coal. However, coal gasification is the rate-limiting process for CLC of coal. Although carbon conversion and gasification rate are substantially improved with oxygen carriers in the presence of alkali additives, alkali loss in oxygen carrier is still a serious problem in the process of CLC of coal. The present work focuses on the OC–potassium interaction for two preparation methods of K-decorated OC. Different contents of catalyst (K2CO3) were added into the preparation of Fe-based oxygen carrier by both co-precipitation and impregnation. And the effect of K-decorated methods on oxygen carriers was investigated in a fluidized bed reactor. For co-precipitated oxygen carriers, CO2 gas yields (fCO2) were higher and CO gas yields (fCO) were lower than the ones for impregnated oxygen carriers. Total carbon conversions for co-precipitated oxygen carriers were also higher than those for impregnated oxygen carriers, and a shorter time of fast reaction stage always corresponded to co-precipitated oxygen carrier. 9 redox cycles were also conducted to investigate the stability of oxygen carrier reactivity and the potassium loss with cycle number. It was concluded that the reactivity of co-precipitated oxygen carriers was more stable during 9 redox cycles. Especially for K10-cp (oxygen carriers of 10% potassium content by co-precipitation), fCO2 increased slightly and fCO changed very little with cycle number. According to morphological features of oxygen carriers, co-precipitation was superior to impregnation in preventing oxygen carrier particle sintering. On the other hand, although potassium contents of all K-decorated oxygen carriers decreased with cycle number, the potassium loss for co-precipitated oxygen carriers was smaller. K10-cp performed the best characteristic in avoiding potassium loss: the potassium content decreased from 8.47% (fresh oxygen carrier) to 7.79% (after 9 cycles). X-ray diffractometer (XRD) analysis showed that the potassium ferrite, K2Fe22O34, was presented in K-decorated oxygen carriers. Based on the peak intensity ratio of I K 2 Fe 22 O 34 / I Fe 2 O 3 , the higher the content of \\{K2Fe22O34\\} in K-decorated Fe2O3/Al2O3 oxygen carrier was, the larger the conversion of CO to CO2 was, and the shorter the time of fast reaction stage was. Therefore, it was inferred that \\{K2Fe22O34\\} acted as a support with catalytic effect. In addition, the content of \\{K2Fe22O34\\} was higher in co-precipitated oxygen carriers than that in impregnation oxygen carriers. It can be used to explain that why a better reactivity was always found for co-precipitated oxygen carriers.

Huijun Ge; Laihong Shen; Haiming Gu; Shouxi Jiang

2015-01-01T23:59:59.000Z

109

Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction  

SciTech Connect (OSTI)

Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

Polyakov, Oleg

2013-12-31T23:59:59.000Z

110

Utilization of Partially Gasified Coal for Mercury Removal  

SciTech Connect (OSTI)

In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

Chris Samuelson; Peter Maly; David Moyeda

2008-09-09T23:59:59.000Z

111

Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal  

SciTech Connect (OSTI)

One of the cost-effective mercury control technologies in coal-fired power plants is the enhanced oxidation of elemental mercury in selective catalytic reduction (SCR) followed by the capture of the oxidized mercury in the wet scrubber. This paper is the first in a series of two in which the validation of the SCR slipstream test and Hg speciation variation in runs with or without SCR catalysts inside the SCR slipstream reactor under special gas additions (HCl, Cl{sub 2}, SO{sub 2}, and SO{sub 3}) are presented. Tests indicate that the use of a catalyst in a SCR slipstream reactor can achieve greater than 90% NO reduction efficiency with a NH{sub 3}/NO ratio of about 1. There is no evidence to show that the reactor material affects mercury speciation. Both SCR catalysts used in this study exhibited a catalytic effect on the elemental mercury oxidation but had no apparent adsorption effect. SCR catalyst 2 seemed more sensitive to the operational temperature. The spike gas tests indicated that HCl can promote Hg{sup 0} oxidation but not Cl{sub 2}. The effect of Cl{sub 2} on mercury oxidation may be inhibited by higher concentrations of SO{sub 2}, NO, or H{sub 2}O in real flue-gas atmospheres within the typical SCR temperature range (300-350{sup o}C). SO{sub 2} seemed to inhibit mercury oxidation; however, SO{sub 3} may have some effect on the promotion of mercury oxidation in runs with or without SCR catalysts. 25 refs., 9 figs., 2 tabs.

Yan Cao; Bobby Chen; Jiang Wu; Hong Cui; John Smith; Chi-Kuan Chen; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2007-01-15T23:59:59.000Z

112

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect (OSTI)

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

113

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

Lignite Hydropower f Uranium U Unless otherwise noted, "reserves"Reserves * for Selected Countries Coal (Mt) Bituminous & Subbituminous Crude Oil Natural Gas Hydropower f Uranium H & Lignite (

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

114

Characteristics of carbonized sludge for co-combustion in pulverized coal power plants  

SciTech Connect (OSTI)

Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

Park, Sang-Woo [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

2011-03-15T23:59:59.000Z

115

Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture  

SciTech Connect (OSTI)

A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The modifications of the existing bench scale reactor were completed in order to use it in the next phase of the project. In Phase II, the optimum looping medium was selected, and bench scale demonstrations were completed using them. Different types of coal char such as those obtained from bituminous, subbituminous, and lignite were tested. Modifications were made on the existing sub-pilot scale unit for coal injection. Phase III focused on integrated CDCL demonstration in the sub-pilot scale unit. A comprehensive ASPEN® simulations and economic analysis was completed by CONSOL t is expected that the CDCL process will be ready for further demonstrations in a scale up unit upon completion of the proposed project.

Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

2013-09-30T23:59:59.000Z

116

FRAGMENTATION OF COAL AND IMPROVED DISPERSION OF LIQUEFACTION CATALYSTS USING IONIC LIQUIDS.  

E-Print Network [OSTI]

??Coal has been utilized for coal-to-liquid fuels and coal-to-chemical industries both historically in South Africa and recently in China. Abundant bituminous and low-rank coal reserves… (more)

Cetiner, Ruveyda

2011-01-01T23:59:59.000Z

117

Emissions of airborne toxics from coal-fired boilers: Mercury  

SciTech Connect (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

118

ENVIRONMENTAL ANALYSIS OF ILLINOIS COAL ENTRY INTO THE TRANSPORTATION MARKET.  

E-Print Network [OSTI]

??High oil prices and nationalist desires to reduce foreign dependency create opportunities for Illinois bituminous coal to be involved in the transportation market. Using Illinois… (more)

Starkey, Darin Michael

2009-01-01T23:59:59.000Z

119

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

120

Rapid Coal Analysis. Part II: Slurry Atomization DCP Emission Analysis of NBS Coal  

Science Journals Connector (OSTI)

A McCrone Micronising Mill is used to wet grind NBS bituminous coal to a median particle diameter of 5.7 ?m within 10 min. The finely divided coal slurry is immediately nebulized...

McCurdy, D L; Wichman, M D; Fry, R C

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Coal Production 1992  

SciTech Connect (OSTI)

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

122

A compact XRF unit for determining total sulphur content in coals  

SciTech Connect (OSTI)

A microcomputer based x-ray fluorescence (XRF) unit was developed for off-line determination of total sulphur content in coal samples. The unit consisted of the x-ray exciting/measuring set and the microcomputer with a plug-in interface card, An Fe-55 radioisotope was used as the exciting source while a krypton-filled proportional counter was used to measure x-rays from the samples. The x-ray spectrum was simultaneously displayed on the microcomputer screen. For quantitative determination of sulphur, the intensities of sulphur K x-rays as well as calcium K x-rays and scattered x-rays were taken into account. The unit was tested with finely-ground, dried and compressed lignite, subbituminous and bituminous samples. It was found that for low-calcium coals the results were in good agreement with those obtained from the standard chemical analysis method within {+-}0.2 %S and within {+-}0.5 %S for high-calcium coals.

Sumitra, T.; Chankow, N.; Punnachaiya, S.; Srisatit, S. [Chulalongkorn Univ., Bangkok (Thailand)

1994-12-31T23:59:59.000Z

123

Co-pyrolysis of low rank coals and biomass: Product distributions  

SciTech Connect (OSTI)

Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

2013-10-01T23:59:59.000Z

124

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1...

125

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 Table 7.9 Coal Prices, Selected Years, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3...

126

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

127

Problems of Expanding Coal Production  

Science Journals Connector (OSTI)

...metallurgical or coking coal marketed widely here and abroad. Appalachian coal generally has a high...are characteristic of Appalachia, al-though there has also been extensive strip mining including destructive...Mid-western bituminous coal has a large market as...

John Walsh

1974-04-19T23:59:59.000Z

128

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

129

Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal  

SciTech Connect (OSTI)

Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

Eric P. Robertson

2005-10-01T23:59:59.000Z

130

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

SciTech Connect (OSTI)

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

131

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL  

SciTech Connect (OSTI)

The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

Sharon Sjostrom

2004-03-01T23:59:59.000Z

132

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

133

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

134

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

135

Bituminous pavement recycling Aravind K. and Animesh Das  

E-Print Network [OSTI]

Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

Das, Animesh

136

A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992  

SciTech Connect (OSTI)

A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

Wiser, W.H.; Shabtai, J.

1994-04-01T23:59:59.000Z

137

Use of POTW biosolids in bituminous concrete  

SciTech Connect (OSTI)

Although wastewater treatment helps alleviate water pollution, it creates residual by-products that can pose a disposal dilemma. Four main practices are presently employed to dispose of wastewater treatment plant sludge: land application, composting, incineration, and landfilling. A fifth disposal method that may help to alleviate the sludge disposal problem in future years is the incorporation of sludge into useful end products such as fertilizer or construction materials. This research was designed to evaluate the properties of bituminous concrete mixes that had anaerobically digested sewage sludge incorporated into their design. In doing so, it was desired to verify the work of Wells concerning sludge incorporation into bituminous concrete mixes using today`s asphalts. Hot mix and cold mix designs were studied.

Smith, R.C. [Jones and Henry Engineers, Ltd., Toledo, OH (United States); Angelbeck, D.I. [Univ. of Toledo, OH (United States)

1995-11-01T23:59:59.000Z

138

Erroneous coal maturity assessment caused by low temperature oxidation  

E-Print Network [OSTI]

Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

Paris-Sud XI, Université de

139

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

140

Formation and retention of methane in coal. Final report  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

SciTech Connect (OSTI)

We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst–capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst–capture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steam–coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO–CaCO{sub 3} chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO–CaCO{sub 3} cycles. The increased steam–coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2–4% per CaO–CaCO{sub 3} cycle. We also discuss an important application of this combined gasifier–calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

2013-08-01T23:59:59.000Z

142

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network [OSTI]

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

143

PREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES  

E-Print Network [OSTI]

). The upper group consists of a bituminous soft coal, the lower coke coal. The field is sharply folded alongPREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES J.P. AMARTIN HJSJL a stricl methodology. It has been possjble then to resume coal winning, which has cor.tmued until

Boyer, Edmond

144

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

145

Study of physical and chemical properties of vitrinites. Inferences on depositional and coalification controls  

E-Print Network [OSTI]

, textural and coking properties was carried out on vitrains from the Puertollano, Blanzy­Montçeau, Asturias (subbituminous/high volatile C bituminous coals). The characteristics of the Puertollano vitrains described here can also be attributed to the telocollinite (>80% vol.) for the high volatile C bituminous coal

Paris-Sud XI, Université de

146

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

147

The Key Coal Producers ONLINE SUPPORTING MATERIALS to  

E-Print Network [OSTI]

, Shaanxi and Shanxi together accounted for 83 percent of China's proven coal reserves in 2000, and Shanxi is not considered reserves [8]. Of China's forecasted coal reserves, a broader category than proven reserves, only January 13, 2011 #12;shown in Figures 1 and 2. The production data for anthracite, bituminous and lignite

Patzek, Tadeusz W.

148

Evaluation of an alternative bituminous material as a soil stabilizer  

E-Print Network [OSTI]

Asphalt cements, cutback asphalts, and emulsified asphalts are used as bituminous stabilizing agents in the pavement systems. The emulsified asphalts are increasingly used in lieu of cutback asphalts because of environmental regulations and safety...

Kim, Yong-Rak

1999-01-01T23:59:59.000Z

149

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect (OSTI)

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

150

Portable stove intervention reduces lung cancer mortality risk in lifetime smoky coal users  

Science Journals Connector (OSTI)

...pattern that may be associated with household coal burning Howard D. Hosgood 1 William Pao...combustion, particularly from bituminous coal. To further explore the clinical and histological...all subjects with KRAS mutations burned coal indoors for heating and cooking, our findings...

H. Dean Hosgood; Min Shen; Robert Champan; Eric Chen; Tongzhang Zheng; Kyoung-mu Lee; Xingzhou He; Qing Lan

2008-05-01T23:59:59.000Z

151

Western fuels symposium. 19th international conference on lignite, brown, and subbituminous coals. Proceedings  

SciTech Connect (OSTI)

Topics covered at the conference include: advanced power systems; environmental issues and control technologies - multipollutants and mercury; power plant systems performance; fuel by-products utilization; fuel properties and upgrading; coalbed methane and water minimization; and carbon sequestration. A few of the papars only consist of a printout of the overheads/viewgraphs. The proceedings are also available on CD-ROM.

NONE

2004-07-01T23:59:59.000Z

152

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] ABB Combustion Engineering, Inc., and CQ, Inc. Pittsburgh, PA and Homer City, PA PROGRAM PUBLICATIONS Final Reports Final Report: Development of a Coal Quality Expert [PDF-6.9MB] (June 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Development of a Coal Quality ExpertT: A DOE Assessment [PDF-1.5MB] (Nov 2000) Interim Reports Characterization and Evaluation of the Cleanability of Subbituminous Coals from Powder River Basin [PDF-18.4MB] (June 1993) Coal Cleanability Characterization of Pratt and Utley Seam Coal [PDF-10.1MB] (Aug 1992) Coal Cleanability Characterization of Pratt and Utley Seam Coal, Trace Element Addendum [PDF-10.1MB] (June 1993)

153

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

154

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

155

Exploratory Research on Novel Coal Liquefaction Concept.  

SciTech Connect (OSTI)

Microautoclave tests confirmed that first-stage subbituminous coal conversions were greater in a more aromatic first-stage solvent. First-stage liquefaction tests with hydride ion `E` showed that high coal conversions can be obtained with a number of different first-stage water-gas-shift catalysts. Eight one-liter autoclave tests were completed. All tests used Black Thunder Mine subbituminous coal and Reilly Industries anthracene oil. Differences among the tests were the hydride ion reagent used, the post-run flash of water, and the shift catalyst. Filtration tests were conducted with five one-liter autoclave products of subbituminous coal. The filtration rates were slower than those that had been obtained with North Dakota lignite products, but were still within a commercially acceptable range. The influence of the first-stage shift catalyst on filtration rates is being investigated. Second-stage hydrotreating of products of tests made to simulate the British coal LSE process and the Wilsonville pilot plant preheaters had lower resid conversion and higher hydrogen uptake than the products of the hydride ion liquefaction reaction. The 300 mL second-stage reactor system went on line this quarter. Refinements in the experimental procedures are under way. A conceptual commercial plant design for the hydride ion reagent `A` case was completed. Evaluations of hydride ion reagent `D` and `E` cases were initiated, and an integrated liquefaction system balance for the hydride ion reagent `E` case was begun. A preliminary review of the final technical and economic reports from the Alberta Research Council study of low-rank coal conversion using the CO-steam process generated a number of questions on the published reports; further analysis of the reports is planned.

Brandes, S.D.; Winschel, R.A.

1997-06-12T23:59:59.000Z

156

Thermodynamic properties of materials derived from coal liquefaction  

SciTech Connect (OSTI)

Few measurements of the thermodynamic properties of materials obtained from the liquefaction of coal have been reported. Because several sets of well-defined fractions of coal-derived materials existed that had been separated and characterized by the Characterization Branch of the Division of Processing and Thermodynamics of this Center, the expertise of the Thermodynamics Research Branch was utilized to measure enthalpies of combustion and heat capacities of these materials. The sets of fractions came from five sources: a synthetic crude oil derived from western Kentucky coal by the char-oil-energy development (COED) process, a synthetic crude oil derived from Utah A-seam coal by the COED process, material derived from West Virginia Pittsburgh seam coal by the Synthoil process, material derived from Illinois No. 6 coal by the H-Coal process and materials derived from subbituminous coal by the Conoco Colstrip zinc chloride hydrocracking process.

Smith, N.K.; Lee-Bechtold, S.H.; Good, W.D.

1980-01-01T23:59:59.000Z

157

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

158

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period  

E-Print Network [OSTI]

tons in reserve. These reserves could last another 585 years at the current rate of production://IGS.indiana.edu Analyzing the Past to Provide for the Future Ro (%) Coal Rank 0.25 0.38 peat lignite subbituminous high

Polly, David

159

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

lb for anthracite. The reserves of lignite on a weight basisand reserves. Typical energy contents of coal range from about 7,000 for ligniteReserves of the United States, 1974 (Billion Tons). Underground Surface Total Energy Value (Quads) Subbituminous Lignite

Ferrell, G.C.

2010-01-01T23:59:59.000Z

160

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report.

Edward Levy

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT® Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

162

The British Association at Newcastle  

Science Journals Connector (OSTI)

... and widely prevalent coal-making conditions. For I find that of the actual and probable reserves of coal in the world, according to our present state of knowledge, about 43 ... of which is of Carboniferous age; while there are about 3 million million tons of lignites and sub-bituminous coals, mostly of Cretaceous and Tertiary age.

W. S. BOULTON

1916-10-05T23:59:59.000Z

163

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect (OSTI)

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

164

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit  

Science Journals Connector (OSTI)

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit ... Chinese anthracite and bituminous coals produce different amounts of emissions when burned in a fire pit that simulates common rural household use of these fuels. ... Here we present emissions from burning 15 different fuels in a laboratory system designed to mimic the fire pits used in Xuan Wei County, China. ...

Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

2008-02-21T23:59:59.000Z

165

The fate of char-N at pulverized coal conditions Jennifer P. Spinti*, David W. Pershing  

E-Print Network [OSTI]

-free oxidant was 50­60% for lignites and 40­50% for bituminous coals. In char flames doped with NOx The Combustion Institute. All rights reserved. Keywords: Pulverized coal combustion; Char nitrogen; NOx formation The Combustion Institute. All rights reserved. doi:10.1016/S0010-2180(03)00168-8 #12;the temperature

Utah, University of

166

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

167

Upgrading of low-rank coals for conventional and advanced combustion systems  

SciTech Connect (OSTI)

Low-rank coals, subbituminous, lignitic, and brown coals, have a ubiquitous presence in the world, being found in all continents. Close to half of the world`s estimated coal resources are low- rank coals. Many countries have no alternative economic source of energy. In the lower 48 states of the United States, there are 220 billion tons of economically recoverable reserves of lignite and subbituminous coal. Add to this quantity 5 trillion tons of predominantly subbituminous coal in Alaska, and the combined amount represents the largest supply of the lowest-cost fuels available for generating electric power in the United States. However, to use these coals cost-effectively and in an environmentally acceptable way, it is imperative that their properties and combustion/gasification behavior be well understood. The Energy and Environmental Research Center (EERC) takes a cradle-to-grave approach (i.e., mining, precleaning, combustion/gasification, postcleaning, and reuse and disposal of residues) for all aspects of coal processing and utilization. The environmental impact of these activities must be matched with the appropriate technologies. Experience over many years has shown that variations in coal and ash properties have a critical impact on design, reliability and efficiency of operation, and environmental compliance when low-rank coals are burned in conventional systems. This chapter reviews the significant technical issues of beneficiation, which includes reduction in moisture as well as ash (including sulfur), in relation to low-rank coal properties and their impact on conventional and advanced power systems. Finally, the development and utilization of low-rank coal resources are briefly discussed in view of policy, economic, and strategic issues.

Young, B.C.; Musich, M.A.; Jones, M.L.

1993-12-31T23:59:59.000Z

168

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

169

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect (OSTI)

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

170

Emissions mitigation of blended coals through systems optimization  

SciTech Connect (OSTI)

For coal fired power stations, such as those located in the US, that have installed NOx and SOx emissions abatement equipment substantial carbon dioxide reduction could be achieved by shifting from pure PRB coal to blended coals with local bituminous coal. Don Labbe explains how. The article is based on a presentation at Power-Gen Asia 2009, which takes place 7-9 October in Bangkok, Thailand and an ISA POWID 2009 paper (19th Annual Joint ISA POWID/EPRI Controlls and Instrumentation Conference, Chicago, Illinois, May 2009). 4 refs., 3 figs.

Don Labbe [IOM Invensys Operations Management (United States)

2009-10-15T23:59:59.000Z

171

Kinetics of coal pyrolysis and devolatilization  

SciTech Connect (OSTI)

An experimentally based, conceptual model of the devolatilization of a HV bituminous coal is outlined in this report. This model contends that the relative dominance of a process type-chemical kinetic, heat transport, mass transport -- varies with the extent of reaction for a given set of heating conditions and coal type and with experimental conditions for a given coal type and extent of reaction. The rate of devolatilization mass loss process is dominated initially by heat transfer processes, then coupled mass transfer and chemical kinetics, and finally by chemical processes alone. However, the chemical composition of the initial tars are determined primarily by the chemical characteristics of the parent coal. Chemically controlled gas phase reactions of the initial tars and coupled mass transfer and chemically controlled reactions of heavy tars determine the bulk of the light gas yields. For a HV bituminous coal this conceptual model serves to quantify the Two-Component Hypothesis'' of volatiles evolution. The model postulates that the overall rates of coal devolatilization should vary with coal type insofar as the characteristics of the parent coal determine the potential tar yield and the chemical characteristics of the initial tars. Experimental evidence indicates chemical characteristics and yields of primary'' tars vary significantly with coal type. Consequently, the conceptual model would indicate a shift from transport to chemical dominance of rate processes with variation in coal type. Using the conceptual model, United Technologies Research Center has been able to correlate initial mass loss with a heat transfer index for a wide range of conditions for high tar yielding coals. 33 refs., 30 figs., 6 tabs.

Not Available

1987-01-01T23:59:59.000Z

172

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect (OSTI)

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

173

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

174

Fluidized bed combustion of low-rank coals: (Task 4. 1)  

SciTech Connect (OSTI)

Results obtained in the second year of a second three-year program are described. Two 1000-hour tests were completed to evaluate corrosion/erosion effects on boiler materials. The coals tested were Kentucky {number sign}9 from the Pyro mine and Gibbons Creek, Texas, lignite. Of the variety of stainless and carbon steels tested, several meet commercial requirements despite a wide range in ash compositions of the test coals. In Fluidized Bed Combustion characterization, the River King Illinois {number sign}6 and Jacobs Ranch, Wyoming, subbituminous coals were extensively tested under a wide range of operating conditions and with and without limestone addition. The Jacobs Ranch coal was also successfully and satisfactorily fired as a coal/water fuel slurry. The low-rank coal slurry provided excellent ignition and combustion efficiency, and without ash agglomeration or accumulation. Continued progress was made in expanding the data base on FBC of low- rank coals. 11 refs., 59 figs., 22 tabs.

Mann, M.D.; Hajicek, D.R.; Zobeck, B.J.; Kalmanovitch, D.P.; Potas, T.A.

1988-04-01T23:59:59.000Z

175

CO2 Sequestration Potential of Texas Low-Rank Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

176

Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984  

SciTech Connect (OSTI)

Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

Paranjape, A.S.

1984-04-30T23:59:59.000Z

177

The Role of Semifusinite in Plasticity Development for a Coking Coal  

Science Journals Connector (OSTI)

Coal rank is a factor of great importance in plasticity development during carbonization, since only some bituminous coals swell in a satisfactory manner and then resolidify to produce good commercial cokes. ... Diessel studied the carbonization behavior of the inertinite macerals in Australian coals by carrying out tests up to 1000 °C where the optical characteristics of the coked entities were correlated with their noncoked counterparts. ... For instance, large-scale coking experiments of some Australian coals containing more than 45% inertinite produced good quality coke, while a Carboniferous coal with that high of an inertinite content gave only a very poor coke. ...

M. Mercedes Maroto-Valer; Darrell N. Taulbee; John M. Andrésen; James C. Hower; Colin E. Snape

1998-08-27T23:59:59.000Z

178

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

179

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

180

Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1994  

SciTech Connect (OSTI)

Previous research has suggested that using a more effective hydrogen donor solvent in the low severity coal liquefaction reaction improves coal conversion. In order to understand the results of these methods, both independently and combined, a factorial experiment was designed. Pretreating coal with hydrochloric and sulfurous acid solutions in both water and methanol is compared with pretreating coal using only methanol and with no pretreatment. The effects of these pretreatments on coal liquefaction behavior are contrasted with the ammonium acetate pretreatment. Within each of these, individual reactions are performed with the hydroaromatic 1,2,3,4-tetrahydronaphthalene (tetralin, TET) and the cyclic olefin 1,4,5,8-tetrahydronaphthalene (isotetralin, ISO). The final aspect of the factorial experiment is the comparison of Wyodak subbituminous coal (WY) from the Argonne Premium Sample Bank and Black Thunder subbituminous coal (BT) provided by Amoco. Half of the reactions in the matrix have now been completed. In all but one case, Black Thunder-HCl/H{sub 2}O, the ISO proved to be more reactive than TET. After the other four reactions using this combination are complete, the average conversion may be greater with the cyclic olefin. The second part of this paper describes the current and future work with Fourier transform infrared spectroscopy. The objective of this work is to determine the kinetics of reaction of isotetralin at high temperatures and pressures. This quarter combinations of three products typically produced from isotetralin were used in spectral subtraction.

Curtis, C.W.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

182

Performance of Low Energy Crumb Rubber Modified Bituminous Mixes  

Science Journals Connector (OSTI)

Abstract Rising energy costs and increased awareness of emission problems in the production of Hot Mix Asphalt (HMA) have brought attention to the potential benefits of Warm Mix Asphalt (WMA) in India. Warm-mix asphalt is the generic term for a variety of technologies that allow the producers of hot-mix asphalt pavement material to lower the temperatures at which the material is mixed and placed on the road. Crumb Rubber Modified Bitumen (CRMB) is a popular binder in India. CRMB is composed of bitumen binder and tyre rubber. Tyre rubber, at various percentages, is added to the binder, addition of tyre rubber into binder results in a new product, which requires higher mixing temperatures compared to the conventional one, as well as increased mixing time, so as to get the uniformity of the product. A laboratory study was conducted at CSIR-Central Road Research Institute (CRRI) to investigate, how a commercially available chemical additive can be used to bring down the mixing and compaction temperature of CRMB mix as compared to the hot mix CRMB. Four different temperature ranges were considered in this study viz 1000C to 1050C, 1100C to 1150C, 1200C to 1250C and 1300C to 1350C to determine the various performance characteristics. The CRMB bituminous mix was prepared in these four temperature ranges and various mix tests were carried out to indicate to how the lower production and compaction temperatures affect the properties and performance characteristics of the mixes. After the laboratory evaluation it was found that CRMB Warm mix can be successfully produced at temperature as low as 110 °C and can be compacted at 80- 900C as compared to CRMB hot mix (155 °C). Full scale performance study indicate that process is highly energy efficient and environment friendly, warm mixes performed equivalent to “Hot Bituminous Mixes” and indicated encouraging results. After laboratory evaluation, a test track was successfully laid using low energy Crumb Rubber Modified Bitumen.

Ambika Behl; Gajendra Kumar; Girish Sharma

2013-01-01T23:59:59.000Z

183

Characteristics of airborne coal mine dust and its implication to coal workers' pneumoconiosis  

SciTech Connect (OSTI)

Size selective airborne dust samples were collected using 4-stage cassette impactors at nine different locations in continuous mining sections in each of five coal seams located in the Appalachian bituminous coal field. These coal seams were the Upper Freeport, Pittsburgh, Kittanning, Coalburg, and Pocahontas. Mineralogical analyses were performed by an x-ray powder diffraction photographic technique. The distributions of total and respirable dust concentrations were fit best by a log-normal distribution. The effects of the coal seam and the sampling location on dust levels were significant. The results of the particle size distribution analyses suggest that coal mine dust has a multi-modal distribution. The effects of the coal seam and the sampling locations were significant. The distributions obtained were often affected by such mine-related variables as ventilation rate, relative humidity, and the section dimensions. Nine minerals commonly found in the coal mine dust samples collected from the coal seams studied were illite, calcite, kaolinite, quartz, dolomite, siderite, gypsum, anhydrite, and pyrite in descending order of magnitude. Relative abundance of all mineral species except siderite and gypsum was coal seam specific and suggests that existence of coal seam variability of mineral content. Although mineral content was affected by sampling locations and the sections within a mine, the magnitude was small when compared with that of cal seams. Mineral content also appears to be affected by particle size, although no particular pattern was observed.

Kim, H.

1989-01-01T23:59:59.000Z

184

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment  

SciTech Connect (OSTI)

The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

Baldwin, R.M.; Miller, R.L.

1990-01-01T23:59:59.000Z

185

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

186

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

factor of bituminous coal, coking coal, and coke consumed inprice of Bituminous coal, coking coal, and coke consumed in

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

187

Thermo-Viscoelastic-Viscoplastic-Viscodamage-Healing Modeling of Bituminous Materials: Theory and Computation  

E-Print Network [OSTI]

Time- and rate-dependent materials such as polymers, bituminous materials, and soft materials clearly display all four fundamental responses (i.e. viscoelasticity, viscoplasticity, viscodamage, and healing) where contribution of each response...

Darabi Konartakhteh, Masoud

2012-10-19T23:59:59.000Z

188

Exploratory Research on Novel Coal  

SciTech Connect (OSTI)

The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

Winschel, R.A.; Brandes, S.D.

1998-05-01T23:59:59.000Z

189

Carnegie Mellon University A Technical and Economic Assessment of  

E-Print Network [OSTI]

develops a general modeling framework to provide tools for assessing gasification-based energy conversion systems with various CO2 capture options on a systematic and consistent basis. Many factors influence other factors). For low rank coals (sub-bituminous and lignite) costs increased significantly relative

190

Washington Briefs  

Science Journals Connector (OSTI)

An assured and abundant source of fuel will be available when needed to supply synthetic fuel plants, according to a recent appraisal made by the U. S. Geological Survey of coal reserves in Montana. More than 28 billion tons of lignite and sub-bituminous ...

1949-09-12T23:59:59.000Z

191

Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

192

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

193

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

194

Co-gasification of Biomass with Coal and Oil Sand Coke in a Drop Tube Furnace  

Science Journals Connector (OSTI)

From this work, a synergistic effect was observed for blends of coal with petcoke and an increase in the production of H2 and CO was obtained. ... Finally, blending biomass with coal?petcoke blends did not produce any significant change in H2 production, although slight variations were observed in the production of CO and CO2. ... In addn., co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted to study the effect of blending on gas prodn. ...

Chen Gao; Farshid Vejahati; Hasan Katalambula; Rajender Gupta

2009-10-13T23:59:59.000Z

195

Matrix endor studies of the carbonization of West Canadian coking coals  

Science Journals Connector (OSTI)

Cretaceous bituminous coals of known rank R?0 max vitrinite reflectance) have been examined by ESR (electron spin resonance) and ENDOR (electron nuclear double resonance) techniques. Both highly oxidised (outcrop) and unoxidised mine?run Balmer coal from the Crowsnest field have been subjected to heat treatment (200?900°C) and the matrix proton ENDOR signal studied as a function of applied microwave and rf power. Changes in ENDOR line shape and intensity are described with particular emphasis on the presoftening region of the unoxidised coal. A comparative study of the carbonization of hvb and 1vb coking coal from the Crowsnest is reported.

P. R. West; S. E. Cannon

1981-01-01T23:59:59.000Z

196

Delayed Coking of Decant Oil and Coal in a Laboratory-Scale Coking Unit  

Science Journals Connector (OSTI)

The fact that coke quality varies with the chemical composition of the precursor feedstock creates a significant incentive to examine the process of coking and how it relates to the composition of the feedstock. ... (7)?Derbyshire, F. J.; Odoerfer, G. A.; Rudnick, L. R.; Varghese, P.; Whitehurst, D. D. Fundamental studies in the conversion of coals to fuels of increased hydrogen content. ... Bituminous coal/petroleum co-cokes were produced by coking 4:1 blends of vacuum resid (VR)/coal and decant oil (DO)/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 h, under autogenous pressure in microautoclave reactors. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2006-05-18T23:59:59.000Z

197

The Dust Explosion Characteristics of Coal Dust in an Oxygen Enriched Atmosphere  

Science Journals Connector (OSTI)

The ability to mix pulverised coal with oxygen at concentrations greater than the currently applied 21% may well provide advantages for burner design in oxy/coal fired systems. However the risk of dust explosions increases significantly with increasing oxygen concentration and temperature. In this study the influence of enriched oxygen concentrations is researched on the dust explosion characteristics of Indonesian (Sebuku) high volatile bituminous coal dust and on Pittsburgh Coal n¡8. Both ignition sensitivity characteristics (minimum ignition energy and minimum ignition temperatures) and explosion severity characteristics (maximum explosion pressure, Pmax, and maximum rate of pressure rise, Kst) are investigated.

Frederik Norman; Jan Berghmans; Filip Verplaetsen

2012-01-01T23:59:59.000Z

198

Carbon Dioxide Emission Factors for U.S. Coal by Origin and Destination  

Science Journals Connector (OSTI)

In-ground coal quality data, including C, S, ash, fixed carbon, and heating values, are from COALQUAL (11), IGS (12), and Keystone (13, 14). ... For example, examination of 2082 bituminous Kentucky coals led Sakulpitakphon et al. (28) to reject the notion that a single CO2 emission factor can “be used as typical for any given rank of coal.” ... Quick, J. C.; Tabet, D. E.; Wakefield, S.; Bon, R. L. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants: A GIS Study of Coal Chemistry, ...

Jeffrey C. Quick

2010-03-16T23:59:59.000Z

199

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

2006-03-01T23:59:59.000Z

200

Status of the Development of EDS Coal Liquefaction  

Science Journals Connector (OSTI)

...commercial plant and their...vacuum bottoms) back to...petroleum gas. Ash ence ofgaseous...to relate performance to donor...subjecting the mixture to pressures...commercial plant. Of all...showing that bituminous coal quickly...increased the laboratory's ability...Early in the investigation of the donor...structural characteristics of a good...consisted of material boiling in...atmospheric bottoms are pumped...

G. K. Vick; W. R. Epperly

1982-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2001 and Foreign Distribution of U.S. Coal by State of Origin, 2001 State / Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143 Arkansas 13 - 13 Colorado 32,427 894 33,321 Illinois 33,997 285 34,283 Indiana 36,714 - 36,714 Kansas 176 - 176 Kentucky Total 131,546 2,821 134,367 East 107,000 2,707 109,706 West 24,547 114 24,660 Louisiana 3,746 - 3,746 Maryland 4,671 319 4,990 Mississippi 475 - 475 Missouri 366 - 366 Montana 38,459 485 38,944 New Mexico 28,949 - 28,949 North Dakota 30,449 - 30,449 Ohio 25,463 12 25,475 Oklahoma 1,710 - 1,710 Pennsylvania Total 64,392 6,005 70,397 Anthracite 2,852 205 3,057 Bituminous 61,540 5,800 67,340 Tennessee 3,346 28 3,374 Texas 45,019 31 45,050 Utah 24,761 2,144 26,905 Virginia 25,685 7,071 32,756 Washington 4,623 - 4,623 West Virginia Total 144,584

202

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

SciTech Connect (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

203

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

204

Physical and mechanical properties of bituminous mixtures containing oil shales  

SciTech Connect (OSTI)

Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

Katamine, N.M.

2000-04-01T23:59:59.000Z

205

China Energy Primer  

E-Print Network [OSTI]

reserves, 54.4% were bituminous (including anthracite), 29.4% were sub-bituminous, and 16.2% were lignite.

Ni, Chun Chun

2010-01-01T23:59:59.000Z

206

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately

207

Anaerobic biprocessing of low rank coals. Final technical report, September 12, 1990--August 10, 1993  

SciTech Connect (OSTI)

Coal solubilization under aerobic conditions results in oxygenated coal product which, in turn, makes the coal poorer fuel than the starting material. A novel approach has been made in this project is to remove oxygen from coal by reductive decarboxylation. In Wyodak subbituminous coal the major oxygen functionality is carboxylic groups which exist predominantly as carboxylate anions strongly chelating metal cations like Ca{sup 2+} and forming strong macromolecular crosslinks which contribute in large measure to network polymer structure. Removal of the carboxylic groups at ambient temperature by anaerobic organisms would unravel the macromoleculer network, resulting in smaller coal macromolecules with increased H/C ratio which has better fuel value and better processing prospects. These studies described here sought to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. Efforts were made to establish anaerobic microbial consortia having decarboxylating ability, decarboxylate coal with the adapted microbial consortia, isolate the organisms, and characterize the biotreated coal products. Production of CO{sup 2} was used as the primary indicator for possible coal decarboxylation.

Jain, M.K.; Narayan, R.

1993-08-05T23:59:59.000Z

208

Experimental studies on hydrophobic flocculation of coal fines in aqueous solutions and flotation of flocculated coal  

Science Journals Connector (OSTI)

Hydrophobic flocculation of fine bituminous coal particles in aqueous solutions under mechanical conditioning and without any surfactants has been experimentally studied through the measurements of aggregative efficiency, zeta potential and contact angle in this work. The results have shown that the hydrophobic coal fines strongly aggregated in a wide pH range (3.5â??9.5), even though the particle surfaces were highly charged. This hydrophobic flocculation closely correlated with particle hydrophobicity, having a stronger aggregation for more hydrophobic coal fines. It reaches the maximum degree only if a sufficient kinetic energy is applied to the coal slurry. Also, it has been found that the hydrophobic flocculation could be greatly enhanced by adding a little amount of nonpolar oil. In addition, the flotation of flocculated coal fines was tested on the fine Prince coal for the deep elimination of ash and pyrite from coals in this work. An ultraclean coal with 1.3% ash remaining was produced with 87% combustible recovery. The ash rejection and pyritic sulfur rejection were about 93% and 66%, respectively.

Shaoxian Song

2008-01-01T23:59:59.000Z

209

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994  

SciTech Connect (OSTI)

Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

1995-04-01T23:59:59.000Z

210

POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE  

SciTech Connect (OSTI)

The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

B.K. PAREKH; D. TAO; J.G. GROPPO

1998-02-03T23:59:59.000Z

211

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

212

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

213

Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence  

SciTech Connect (OSTI)

Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

1989-09-01T23:59:59.000Z

214

Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993  

SciTech Connect (OSTI)

Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

Huffman, G.P. [ed.

1996-03-01T23:59:59.000Z

215

The status of coal briquetting technology in Korea  

SciTech Connect (OSTI)

Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

Choi, Woo-Zin

1993-12-31T23:59:59.000Z

216

The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report  

SciTech Connect (OSTI)

Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

1995-02-01T23:59:59.000Z

217

Role of Fly Ash in the Removal of Organic Pollutants from Wastewater  

Science Journals Connector (OSTI)

In India the problem is further compounded by the use of wet fly ash collection systems by a large number of power plants, which results in degradation of the pozzolanic characteristics of ash, an essential ingredient for several ash-based products. ... To accommodate the many new subbituminous fly ashes, the American Society for Testing and Materials (ASTM) established two classes of fly ash, Class F from bituminous coal and Class C from subbituminous and lignite coal. ... Thermal power plant waste material (bottom ash) was utilized as a potential adsorbent for the textile dye malachite green. ...

M. Ahmaruzzaman

2009-02-27T23:59:59.000Z

218

Pilot plant assessment of blend properties and their impact on critical power plant components  

SciTech Connect (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

219

NETL: Mercury Emissions Control Technologies - Advanced Utility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

220

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Quarterly technical progress report, March--May 1990  

SciTech Connect (OSTI)

The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

Baldwin, R.M.; Miller, R.L.

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Adequacy of low-sulfur coal supplies for meeting acid rain requirements  

SciTech Connect (OSTI)

As we have shown, acid rain legislation would create a large demand for low-sulfur bituminous coals. These coals are primarily found in Central Appalachia and in parts of the West, and would displace much of the highersulfur coal production now coming from the Midwest and Northern Appalachia. The magnitude of the related shifts in coal production are potentially huge. Previously, it has been assumed that these shifts in demands could be met by the industry. This paper has tried to highlight possible difficulties in actually meeting such demands. In the near-term, these difficulties concern the ability of the industry to develop mines and of the transportation industry to ship the coal. In the longer-term, questions can be raised regarding the amount, the quality, and the mineability of low-sulfur bituminous coal reserves. These potential difficulties in coal supply could affect attainment of the legislative goals. If not addressed and resolved in a timely fashion, the results could be a higher cost to meeting legislative goals and/or a longer time required to meet them.

Klein, D.E.

1983-06-01T23:59:59.000Z

222

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

223

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

224

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

225

Deep coal resources in the Cherokee Group (middle Pennsylvanian) in eastern Kansas  

SciTech Connect (OSTI)

Evaluation of over 800 gamma-ray/density and gamma-ray/neutron logs run for oil and gas tests in eastern Kansas shows a wide distribution of coal in the Cherokee Group in this area. With nearly 300 million tons (270 million metric tons) of high-volatile bituminous coal produced in southeastern Kansas, this group was important for further evaluation. Studies of the coals in the Cherokee Group too deep to strip mine in the Cherokee basin and the Forest City basin indicate a coal resource of nearly 50 billion tons (45 billion metric tons). This figure represents coal from 27 different coal beds in the three reliability categories of measured, indicated, and inferred. Most of the coal is recognized as thin bedded (< 28 in. or < 70 cm) like most of the coal beds in the outcrop belt in southeastern Kansas. Six coals beds with a total of over 1.4 billion tons (1.3 billion metric tons) of resources are present where coal thicknesses exceed 42 in. (105 cm) in parts of 12 different counties. Resource quantities of the Cherokee Group coal beds were made using Pacer and Garnet software developed for the National Coal Resources Data System (NCRDS) of the US Geological Survey.

Brady, L.L.; Livingston, N.D.

1989-03-01T23:59:59.000Z

226

The structural alignment of coal and the analogous case of Argonne Upper Freeport coal  

Science Journals Connector (OSTI)

It has long been recognized that coal is somewhat aligned. Multiple techniques imply a structural alignment but its quantification has been challenging. Moreover, discrepancies exist among techniques as to whether low-rank coals are aligned. The extent of structural alignment for the rank range was quantified directly via image analysis of high-resolution transmission electron micrograph lattice fringes. Alignment was quantified, for each coal, by the contribution to the total fringe length within the prominent 45° of orientation over random orientation (1/4 of the possible orientations). It was evident that there is structural alignment across the rank range. Thus it is time for the community to desist from making the erroneous statement that: low-rank coals are randomly oriented. The slight orientation was similar for low-rank Beulah-Zap lignite and Illinois No. 6 bituminous coals (24% and 22%) with Pocahontas (lvb) coal showing slightly greater (39%) alignment with extensive alignment (65%) in the case of an anthracite coal. The degree of ordering is illustrated with the aid of false-color lattice fringe images and Rose diagrams. The fringe contribution 90° opposed to the maximum length contribution had the minimum or near minimum percentage length contribution for all coals except Upper Freeport and to a lesser degree Illinois No. 6. For the Upper Freeport coal the alignment is lower than expected given its mvb rank (14% over random) and is attributed to a variant of T-stacking for the small aromatic moieties sited perpendicular and between horizontal displaced fringes.

Jonathan P. Mathews; Atul Sharma

2012-01-01T23:59:59.000Z

227

Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993  

SciTech Connect (OSTI)

This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

1993-06-01T23:59:59.000Z

228

Coal to methanol to gasoline by the hydrocarb process  

SciTech Connect (OSTI)

The HYDROCARB Process converts coal or any other carbonaceous material to a clean carbon fuel and co-product gas or liquid fuel. By directing the co-product to liquid methanol, it becomes possible to produce methanol at costs as low as $0.13 to $0.14/gal as shown in Table 1 for a Western Lignite and Table 2 for an Eastern Bituminous coal. In the case of Western lignite, it is assumed that the carbon black fuel product can be sold at $3.00/MMBtu ($18/Bbl FOE) and for the Eastern coal at $2.50/MMBtu ($15/Bbl FOE). A methanol market is expected to develop due to the need for an automotive fuel with reduced pollutant emissions. However, should the methanol market not materialize as expected, then methanol can be readily converted to conventional gasoline by the addition of an MTG, methanol to gasoline process step. 1 fig., 3 tabs.

Steinberg, M.

1989-08-01T23:59:59.000Z

229

Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

2007-01-01T23:59:59.000Z

230

Advanced direct coal liquefaction. Quarterly technical progress report No. 1, September-November 1983  

SciTech Connect (OSTI)

Wyoming subbituminous coal was liquefied using three different two-stage process configurations in bench-scale tests. These process configurations differed in the type of fractionated deashing resid being recycled to the individual stages. The objective of these runs was to determine whether, by recycle of specific resid streams to the thermal stage, the second stage catalyst life could be improved without detrimentally affecting distillate yield or hydrogen consumption. The results indicate that the two-stage process configuration consisting of hydrotreating the Light Deashed Resid and direct recycle of heavy Deashed Resid to the thermal stage produced the best results. This process configuration resulted in a distillate yield of 54 wt % (MAF coal basis) and overall coal conversion in the 93 to 95% range, as measured by pyridine-soluble analytical test while operating in a total distillate mode. These results are very encouraging from the lower rank Wyoming subbituminous coal. Among the three two-stage process configurations tested, the particular process configuration of hydrotreating Light Deashed Resid resulted in the least amount of catalyst deactivation. As a part of this research effort, a test procedure for quick evaluation of various resids and catalysts in terms of coke precursors was also developed. This procedure utilizing as-produced oxide-form extrudates of catalyst is able to simulate closely in a batch reactor test the performance of a presulfided and extrudate form of catalyst in a continuous reactor. The CSD unit, being able to not only deash but also fractionate the resid, greatly increased the flexibility of options for coal liquefaction. New process concepts evolved incorporating reside fractionation and selective resid recycle in coal liquefaction. 17 figures, 28 tables.

Paranjape, A.S.

1984-02-07T23:59:59.000Z

231

Site clean up of coal gasification residues  

SciTech Connect (OSTI)

The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

Wilson, J.W.; Ding, Y. [Univ. of Missouri, Rolla, MO (United States)

1995-12-31T23:59:59.000Z

232

Injury experience in coal mining, 1991  

SciTech Connect (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

Not Available

1991-12-31T23:59:59.000Z

233

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect (OSTI)

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

234

Effects of Surface Chemistry on the Porous Structure of Coal  

SciTech Connect (OSTI)

In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 ? and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the chemical shift of xenon in this coal.

Ljubisa R. Radovic; Patrick G. Hatcher

1997-05-01T23:59:59.000Z

235

Modelling of NO{sub x} reduction strategies applied to 350 MW(e) utility boilers  

SciTech Connect (OSTI)

A computational fluid dynamics model has been combined with a NO{sub x} chemistry post-processor to predict the formation and destruction of nitric oxide in three-dimensional furnaces burning pulverized fuel. The model considers the complex interaction of turbulent flow, heat transfer, combustion, and NO{sub x} reaction chemistry. Lagrangian particle dynamics are used to track burning pulverized coal particles through the computational cells. Fuel nitrogen is released in proportion to the burnout of the particle. A range of combustion NO{sub x} reduction strategies has been applied to two 350 MW(e) utility boilers burning different coals. A medium volatile bituminous coal is fired using low NO{sub x} burners in one furnace and a sub-bituminous coal is burnt using conventional swirl burners in a different furnace. The strategies include: burner out of service, overfire air, reduction in excess air, change in particle size, and fuel reburn. In general NO{sub x} predictions are better for the sub-bituminous coal than for the medium volatile bituminous coal. Typical NO{sub x} prediction errors are {+-} 10 percent.

Visona, S.P.; Singh, B. [AUSTA Electric, Brisbane (Australia); Stanmore, B.R. [Dept. of Chemical Engineering, Brisbane (Australia)

1997-07-01T23:59:59.000Z

236

Look taken at coal mining costs and trends for the 1980s  

SciTech Connect (OSTI)

The author examines the trends in US bituminous coal production and consumption over the past 40 years, and then looks at the growth rates than can be expected for the rest of the 1980s. Increases are likely to be substantial in absolute terms, although nominal when expressed as a percentage. Surface minable reserves in the eastern US are rapidly being depleted, so that underground mining will gain in importance in these regions. A significant contribution to supplying increased domestic coal consumption will eventually come from new longwall mines in the Illinois Basin and northern Appalachia.

Weir, J.P.

1984-07-01T23:59:59.000Z

237

Small boiler uses waste coal  

SciTech Connect (OSTI)

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

238

Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke  

SciTech Connect (OSTI)

The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment

2006-08-15T23:59:59.000Z

239

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

240

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect (OSTI)

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Investigate the effectivness of calcium-treated coals in the capture of sulfur gases generated in staged fired combustors. Third quarterly technical progress report, May 1-July 31, 1983  

SciTech Connect (OSTI)

In this quarter's work, a new procedure was developed to add calcium to pulverized coal. The method has been found to increase the calcium content of bituminous coal to 12% calcium by weight, which corresponds to a Ca/S ratio of greater than 2. Progress was also made on the combustion test facility this quarter. A new modification of the low-flow coal feeder has made that system steady and reliable. With the furnace wired and plumbed, and the other subsystems complete, the facility is almost ready to burn the treated coals.

Porter, J. H.; Manning, M. P.; Benedek, K. R.; Sharma, P. K.

1983-09-01T23:59:59.000Z

242

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Underground Mining Method, 2012 Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 29. Average Sales Price of Coal by State and Underground Mining Method, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Continuous 1 Conventional and Other 2 Longwall 3 Total Alabama w - w 107.73 Arkansas w - - w Colorado w - 37.18 w Illinois 48.08 - 59.51 54.18 Indiana 52.94 - - 52.94 Kentucky Total w w - 62.24 Kentucky (East) w w - 79.23 Kentucky (West) 50.18 - - 50.18 Maryland w - - w Montana - - w w New Mexico - - w w Ohio w - w 49.39 Oklahoma w - - w Pennsylvania Total 94.53 w 65.01 w Pennsylvania (Anthracite) w w - 82.71 Pennsylvania (Bituminous) w - w 72.67 Tennessee w - - w Utah w - 34.99

243

Characterization of air toxics from a laboratory coal-fired combustor  

SciTech Connect (OSTI)

Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

NONE

1995-04-03T23:59:59.000Z

244

Evaluation of Oxy-coal Combustion Modelling at Semi-industrial Scale  

Science Journals Connector (OSTI)

Duringthe oxy-fuelcombustion processpulverizedcoalisburntinan atmosphere consistingofpureO2mixedwith recycled ?uegas whereas during the conventional process air serves as the only oxidant. This entails speci?c conditions regarding thermo-physical properties which impact both combustion characteristics and heat transfer. Accordingly, adjustments within CFD codes are required in order to maintain accuracyand prediction quality criteria within simula–tions of oxy-coal combustion. The CFD code AIOLOS was used to evaluate recent oxy-coal speci?c implementations concerning the global chemistry mechanism and the heat transfer. For validation purposes extensive tests have been carried out at IFK's semi-industrial scale furnace (500kWth). Simulations have been performed for both, conventional air-?ring and oxy-coal combustion conditions with US bituminous coal, and a comparison of simulation results and corresponding experimental data is given. In general, satisfactory agreement is observed.

Michael Müller; Uwe Schnell; Simon Grathwohl; JörgMaier; Günter Scheffknecht

2012-01-01T23:59:59.000Z

245

Correlation method for chemical communication of coal  

SciTech Connect (OSTI)

In spite of many experimental studies of the chemical comminution of coal, there have been only a few reported attempts to correlate experimental data and mathematically model the process. This paper presents a strain energy model based on the thermodynamic analysis. The capillary-imbibition number is proposed as an important parameter for characterization of chemicals used in comminution. The authors discuss the development of a phenomenological model for chemical comminution to study the relative effects of the governing process. Sensitivity studies carried out with this model indicated that the mechanism of chemical transfer into bedding planes and comminution of coal is dominantly a capillary-imbibition-induced flow phenomenon and to a lesser extent a diffusion-controlled process. The authors also tested this hypothesis using experimental data. As reported, the maximum comminution rates for the middle Pennsylvania Cherokee C-bituminous coal with NaOH solutions were within the range of 6-8% caustic concentration. Hence, it is concluded that this contradicts the author's earlier work (1988), which reported that capillary-imbibition number (reciprocal of the surface-tension number) decreases with increasing caustic concentration. This conclusion is misleading because the authors simply present a set of data on capillary-imbibition number vs NaOH concentration, and it alone cannot determine the caustic concentration for the maximum comminution rate.

Civan, F.; Knapp, R.M. (School of Petroleum and Geological Engineering, Univ. of Oklahoma, Norman, OK (US))

1991-06-01T23:59:59.000Z

246

Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995  

SciTech Connect (OSTI)

Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metric tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.

Young, B.C.; Musich, M.A.

1995-10-01T23:59:59.000Z

247

Interlaboratory comparisons of petrography of liquefaction residues from three Argonne premium coals  

Science Journals Connector (OSTI)

Three Argonne Premium coal samples, the Beulah-Zap lignite (North Dakota), the high volatile A bituminous Stockton (West Virginia), and the low volatile Pocahontas No. 3 Virginia), were ground to three initial sizes: ?20 mesh, ?100 mesh, and “micronized”. The samples were each subjected to liquefaction at 673 K for 30 min at a 2:1 tetralin: coal ratio and in an H2 atmosphere at 13.79 \\{MPa\\} (?2000 psi). Polished pellets of the uncoverted residues were circulated to three laboratories for a study designed to determine, albeit on a limited scale, the interlaboratory consistency in constituent identification and the problem areas in maceral/neo-maceral/mineral recognition. Within broad categories, the agreement for the Beulah-Zap and Pocahontas No. 3 residues is good. The high volatile A bituminous Stockton coal was the most plastic and most altered, resulting in a residue lending itself to more subjective interpretations. The biggest discrepancy between the laboratories is in the distinction of granular residue and mineral matter and in the transitions between “partially reacted macerals” and “vitroplast” and between “vitroplast” and “granular residue”. The initial size of the feed coal appears to influence the recognition of material in the residue.

James C. Hower; Ken B. Anderson; Glenda Mackay; Henrique Pinheiro; Deolinda Flores; Manuel J. Lemos de Sousa

1995-01-01T23:59:59.000Z

248

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

249

Modelling fly ash generation for UK power station coals  

SciTech Connect (OSTI)

An in-depth characterization has been made of three UK bituminous coals and the combustion products from these coals when burned at a power station and on a range of experimental combustion facilities. The coals were chosen to represent the range of ash compositions and slagging propensities found at UK power stations. CCSEM analysis of the pulverized coals has been performed to provide quantitative data on the size and chemical composition of individual mineral occurrences, and to determine the nature of the mineral-mineral and mineral-organic associations in the pulverized fuel. In a similar way the size and chemical composition of individual fly ash particle has been determined. The mineral-mineral association information has been used to predict the effects of mineral coalescence, the dominant mineral transformation process for UK power station coals. The CCSEM information correctly identifies the types of mineral-mineral association and hence the predicted effects of coalescence. The limitations of the information are inherent in the analysis of a cross-section, but useful information for the modelling of ash generation may still be obtained.

Wigley, F.; Williamson, J. [Imperial Coll., London (United Kingdom). Dept. of Materials

1996-12-31T23:59:59.000Z

250

Research and development of CWM technology toward clean coal use  

SciTech Connect (OSTI)

In this chapter, three subjects were presented from among our technical efforts to develop clean coal applications to improve environmental quality. The three subjects are briefly summarized as follows: development of technology aimed at producing and utilizing exclusively low ash CWM; development of technology to produce CWM from various pond coals; development of technology to upgrade LRC and utilize CWM for both a boiler fuel and a gasification feedstock. We are fully convinced that the first and second of the above technologies have reached the level of practical use through demonstration tests. As to the third, we have almost finished a 10 kg/h coal slurry bench-scale test and have a plan to construct an upgrading pilot plant of 350 kg/h which will be completed in the fall 1994. We will hopefully establish upgrading technology through pilot-scale demonstration testing in 1995. With this technology, not just utilization of LRCs will be expanded, but also highly efficient use of coal will be accelerated. Thus, C0{sub 2} emission will also be strongly reduced. In ending, we would like to stress our efforts on research and development of environmentally friendly technologies as well as COM and CWM technologies based on bituminous and steaming coals.

Shibata, Kazuhiro

1993-12-31T23:59:59.000Z

251

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

252

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

253

Liquefaction of coal in a petroleum fraction under mild conditions  

Science Journals Connector (OSTI)

Experimental studies on a mild coal liquefaction process for extending the petroleum fuel supply are presented. In this process, coal is dissolved in bottoms from fluid catalytic cracking (FCC), a thermally stable, highly aromatic refinery stream, without added hydrogen and under mild conditions. After ash removal, the product mixture of coal liquid and FCC bottoms is a pumpable fluid and can be used as a boiler fuel. Further upgrading to turbine fuel may be possible. At 600–800°F, 0.1 to 5 h, and 0–1000 psig, conversion of a bituminous coal to pyridine soluble, gas and water was about 90%, while that of lignite was about 60%. Improved product quality was favored by increased reaction pressure. The operable solvent to coal ratio can be as low as 1.3. This ratio can be further reduced if provisions are made to recycle part of the solvent. However, the efficiency of the recovered solvent decreases with each recycle due to a gradual replacement of labile ? hydrogen by ? hydrogen.

T.Y. Yan; W.F. Espenscheid

1983-01-01T23:59:59.000Z

254

Effects of Steam and CO2 in the Fluidizing Gas when Using Bituminous Coal in Chemical-Looping Combustion  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel in order to...2 is inherently separated from the flue gases with...

H. Leion; A. Lyngfelt; T. Mattisson

2010-01-01T23:59:59.000Z

255

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

256

Lignin-assisted coal depolymerization. [Final] technical report, September 1, 1991--August 31, 1992  

SciTech Connect (OSTI)

Liquefaction of an Illinois bituminous and a caustic lignin was studied in an initial hydrogen pressure of 140 psig. Experiments were conducted in the temperature range of 325-375{degree}C in tetralin. The addition of lignin to coal was found to be synergistic in that it significantly improves the quality and yield of the liquid products obtained. Kinetic data for coal conversion enhancement due to lignin addition were obtained. A mathematical model describing the reaction chemistry, using lignin, has been proposed and developed. The analysis of the results indicates that the intermediates produced from lignin were responsible for enhancement in coal depolymerization rate, however, the intermediates are short-lived as compared to the time needed for a significant coal conversion yield. Coal depolymerization rate was found to be a function of time; compared to processing coal alone, it doubled upon reacting coal with lignin at 375{degree}C and after 67 minutes from the beginning of the experiment. Overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained. A careful statistical analysis of the data shows that coal depolymerization yield is enhanced by 11.9% due to the lignin addition. The liquids obtained were examined for their elemental composition, and molecular weight determination by size exclusion chromatography. The stability of liquid products was characterized by determining their solubility in pentane and benzene, and by evaluating the molecular weight.

Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won [Southern Illinois Univ., Carbondale, IL (United States)

1992-12-31T23:59:59.000Z

257

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

258

Geochemistry of coal from Cretaceous Corwin and Chandler formations, National Petroleum Reserve in Alaska (NPRA)  

SciTech Connect (OSTI)

Ninety coal samples from these formations within NPRA were collected and analyzed in order to evaluate coal quality and elemental distribution. Their apparent rank ranges from lignite A in the northern part of NPRA to high-volatile AS bituminous coal in the southern part. Mean vitrinite reflectance values range from 0.65 to 0.74%. Some Corwin Formation coal samples west of NPRA have coking potential with free-swelling indexes between 3.0 and 5.0. Compared to other western United States Cretaceous coal, NPRA coal is significantly lower in ash, volatile matter, O, Si, Al, Ca, Fe, Ti, Cu, F, Li, Mn, Mo, Pb, Sb, Se, Th, and Zn. Statistical comparisons of element concentrations indicate that the mean content of Si, Al, K, Li, Sc, Y, and Yb increases as the mean ash content increases (correlation coefficient at least 0.7). Sulfur values are extremely low (0.1%), and elements that normally show positive correlation with sulfur, such as Fe, As, Cd, Co, Cu, Mo, Pb, and Zn, are also low. Therefore, coal from NPRA can be characterized by low ash and sulfur contents and low contents of elements of environmental concern, such as As, Be, Hg, Mo, Sb, and Se. The elements found to have positive correlations with ash content are probably present as aluminosilicate or stable oxide minerals. Variations in element content and quality of NPRA coal were probably influenced by the geochemical conditions that existed in the Corwin and Umiat delta systems.

Affolter, R.H.; Stricker, G.D.

1985-04-01T23:59:59.000Z

259

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

260

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: January 2012 Electric Power Sector Coal Stocks: January 2012 Stocks Above normal temperatures in January have allowed electric utilities to significantly replinish stockpiles of coal. The upswing in coal stockpiles corresponds to decreasing consumption of coal at electric generators seen in the resource use section across all regions of the country. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. Along with coal stockpiles at electric power plants, the supply of coal significantly increased in January of 2012. Total bituminous coal days of burn increased 10 percent from January 2011 to 87, while subbituminous supply increased nearly 10

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gasification Â… Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

262

Determination of the Effects Caused by Different Polymers on Coal Fluidity during Carbonization Using High-Temperature 1H NMR and Rheometry  

Science Journals Connector (OSTI)

The bituminous coal (K6) used throughout this work and the light fraction of a plastic waste in the form of shredder fluff that is used in car interiors were supplied by Voestalpine Stahl GmbH. ... The car shredder fluff is basically a shredded polyurethane waste, and its ultimate composition is shown in Table 2. ... Thus, the fraction C17-C31 showed a higher increase of n-alkenes/n-alkanes ratio than other fractions. ...

Miguel Castro Díaz; Lucky Edecki; Karen M. Steel; John W. Patrick; Colin E. Snape

2007-11-27T23:59:59.000Z

263

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

264

The application of spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy  

E-Print Network [OSTI]

Measurements of carbon content in coal using laser-induced breakdown spectroscopy (LIBS) is limited by its low measurement precision and accuracy. A spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal with LIBS. The proposed method utilized the molecular carbon emissions to compensate the diminution of atomic carbon emission caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with fixed plasma temperature, electron density, and total number density of elemental carbon, which is proportional to its concentration in the coal samples. In addition, in order to obtained better compensation for total carbon number density fluctuations, an iterative algorithm was applied, which is different from our previous standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal sa...

Li, Xiongwei; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

2014-01-01T23:59:59.000Z

265

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

266

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

267

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

268

Investigation of mechanisms of ash deposit formation from low-rank coal combustion: Final report  

SciTech Connect (OSTI)

This project was undertaken to determine the chemical behavior of alkali metal and other species implicated in the ash fouling which can occur during the combustion of low rank coals. The coal combustion was studied in unaugmented premixed pulverized coal flames. Vapor species were measured by molecular beam mass spectrometry. Temperatures were also measured, and time-resolved coal/ash particulate samples were collected and analyzed. A major part of the research on this project was devoted to: (1) the development and refinement of techniques for the MBMS analysis of trace quantities of unstable and reactive high temperature vapor species from the pulverized coal flames; and (2) the time-resolved sampling and collection of particulates. The equipment is now operating very satisfactorily. Inorganic species, some of which were present at parts-per-million levels, were quantitatively sampled and measured in the pulverized coal flames. Time-resolved particulate samples which were free of vapor deposited contaminants were collected without the use of an interfering substrate. Profiles of the alkali metal species in Beulah lignite and Decker subbituminous coal flames were obtained. It was found in both flames that sodium is volatilized as the atomic species early (milliseconds) in the combustion process. The gaseous Na reacts, also in milliseconds, to form an unknown species which is probably an oxide fume, but which is not NaOH or Na/sub 2/SO/sub 4/. This is probably the mechanism for the formation of the alkali ''fumes'' observed in other systems. Measurements were also made of a number of other gaseous species, and time-resolved coal/ash samples were obtained and analyzed. 27 refs., 23 figs., 8 tabs.

Greene, F.T.; O'Donnell, J.E.

1987-08-01T23:59:59.000Z

269

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

270

Coal distribution, January-June 1985. [USA; January-June; 1981 to 1985; producing district; destination; transport means  

SciTech Connect (OSTI)

This Energy Information Administration (EIA) report continues the quarterly series on coal distribution started in 1957 by the Bureau of Mines, Department of the Interior, as a Mineral Industry Survey, Distribution of Bituminous Coal and Lignite Shipments. The publication provides volume data on coal distribution by coal-producing district of origin, consumer use, method of transportation, and State of destination necessary for EIA to fulfill its data colletion functions as authorized by the Federal Energy Administration Act of 1974. All data for 1985 in this report are preliminary. Data for 1981-1984 are final. Coal shipments from mines in Appalachia were 10.2% lower, while shipments from western mines were up by 13.7%, reaching a record 6-month high. Export shipments moved ahead of their 1984 pace by 9.2% despite a 27.0% decline in shipments to Canada. Texas expanded its lead as the Nation's top State to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases totaled 438.4 million short tons, 2.2% below last year's level. 6 figs., 33 tabs.

McNair, M.B.

1985-09-26T23:59:59.000Z

271

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

272

Controlling mercury emissions from coal-fired power plants  

SciTech Connect (OSTI)

Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

2009-07-15T23:59:59.000Z

273

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

274

Modeling the behavior of selenium in Pulverized-Coal Combustion systems  

SciTech Connect (OSTI)

The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel [Reaction Engineering International, 77 W. 200 South, Salt Lake City, UT 84101 (United States)

2010-11-15T23:59:59.000Z

275

Petrological evolution of the Paleogene coal deposits of Jammu, Jammu and Kashmir, India  

Science Journals Connector (OSTI)

A detailed macro- and micro-petrological investigation of 8 coal seam profiles of Eocene age from the sub-Himalayan zone of Jammu was undertaken in order to characterize them petrographically and to focus on their evolution. The quantitative data suggest that these coals are vitrinite rich, with low concentrations of inertinite and rare occurrences of liptinite. According to microlithotype concentration these coals may be characterized as vitrinite rich, with minor amounts of clarite, vitrinertite and trimacerite. The dominant minerals are clays, siderite and pyrite (occurring mostly as disseminations, cavity filling and in framboidal state). These coals are vitric in type, low volatile bituminous in rank and ashy in grade. The petrographic character and the presence of teleutospores suggest that, similar to other Tertiary coal deposits in the world, the angiosperm flora contributed chiefly to the development of coal facies in the area. The maceral and microlithotype composition shows that these coals originated from the low forest and undisturbed (in situ) peat in foreland basins under limno-telmatic depositional conditions. The water was brackish with regular influxes of fresh water.

Mahendra P. Singh; G.P. Singh

1995-01-01T23:59:59.000Z

276

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

SciTech Connect (OSTI)

This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.

G.A. Robbins; R.A. Winschel; S.D. Brandes

1999-05-01T23:59:59.000Z

277

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

278

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

279

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

280

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect (OSTI)

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

282

Clean Coal Power Initiative  

Broader source: Energy.gov [DOE]

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

283

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

284

Plastic wastes as modifiers of the thermoplasticity of coal  

SciTech Connect (OSTI)

Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base component of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.

M.A. Diez; C. Barriocanal; R. Alvarez [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

2005-12-01T23:59:59.000Z

285

American Coal Council 2004 Spring Coal Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

286

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

287

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

288

Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification  

Science Journals Connector (OSTI)

Abstract This research focused on the feasibility and stability of applying the forward and reverse combustion approach to the in situ gasification of lignite and bituminous coal with oxygen or oxygen–steam mixtures as gasification agents, especially reverse combustion gasification. A high-quality syngas (H2 and CO) could be obtained using the reverse combustion gasification technique combined with forward combustion gasification in a pilot system for in situ gasification. The gasification time was extended more than 25% using the reverse combustion approach. The controlling conditions for reverse combustion gasification were obtained by comparing and analyzing experimental data. The results show the relationship between the inject gas flow within certain limits and velocity of the gasification flame was linear during reverse combustion. The underground conditions of the coal seam and strata were simulated in a pilot-scale underground gasifier during experiments. The combustion gasification of coal was carried out experimentally for over 5 days. The average effective content (H2 and CO) of syngas was in the range of 60–70%, meeting the requirement of synthesis gas. The optimal ranges of gasifying lignite and bituminous coal were found to be 1.5–2.0 and 1.3–1.75, respectively. The product gas flow was proportional to oxygen blast. These are expected to provide useful guidance on practical underground coal gasification operations and to give experimental evidence in support of theory.

Yong Cui; Jie Liang; Zhangqing Wang; Xiaochun Zhang; Chenzi Fan; Dongyu Liang; Xuan Wang

2014-01-01T23:59:59.000Z

289

Coal liquefaction  

DOE Patents [OSTI]

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

290

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Coal Stocks: October 2013 Electric Power Sector Coal Stocks: October 2013 Stocks In October 2013, total coal stocks increased 0.8 percent from the previous month. This follows the normal seasonal pattern for this time of year as the country begins to build up coal stocks to be consumed during the winter months. Compared to last October, coal stocks decreased 17.7 percent. This occurred because coal stocks in October 2012 were at an extremely high level. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The total bituminous supply decreased from 85 days the previous month to 78 days in October 2013, while the total subbituminous supply decreased from 63 days in September 2013 to

291

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

292

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

293

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

294

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

295

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

296

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect (OSTI)

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

297

Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station  

Science Journals Connector (OSTI)

Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both showed an ultrafine mode centered at approximately 0.1 ?m. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 ?m. The morphology of the particles indicated that supermicron particles were primarily formed by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were depleted in ultrafine particles. The observed high volatility of Ca was likely related with the high combustion temperature and relative low oxygen condition in the boiler which may promote vaporization of Ca during char oxidation. The discrepancies on the observed volatilities of Ca and alkalis between some laboratory experiments and full-scale measurements were discussed. The composition of the fine particles from co-combustion was generally similar to those from coal combustion. The ultrafine particles from co-combustion were of slightly higher Ca, P, and K contents, and lower S content.

H. Wu; A.J. Pedersen; P. Glarborg; F.J. Frandsen; K. Dam-Johansen; B. Sander

2011-01-01T23:59:59.000Z

298

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

299

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

300

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: August 2011 Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2% Natural Gas Price, Henry Hub -6% -9% Bituminous Coal Stocks -14% -14% Subbituminous Coal Stocks -10% -17% Heat wave drives record demand and wholesale prices in Texas A prolonged August heat wave in Texas stressed available generating capacity and produced very high wholesale prices in the Electric

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama  

Broader source: Energy.gov [DOE]

This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

302

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

303

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

304

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

305

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

306

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

307

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

308

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

309

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

310

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect (OSTI)

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

311

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

312

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

313

Carbon dioxide transport and sorption behavior in confined coal cores for carbon sequestration  

SciTech Connect (OSTI)

Measurements of sorption isotherms and transport properties of carbon dioxide (CO{sub 2}) in coal cores are important for designing enhanced coalbed-methane/CO{sub 2}-sequestration field projects. Many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh no. 8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO{sub 2}. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core and that diffusion and sorption progressed slowly. The amounts of CO{sub 2} sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh no. 8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO{sub 2} source. Also, the calculated isotherms showed that less CO{sub 2} was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure because of CO{sub 2} sorption.

Jikich, S.A.; McLendon, R.; Seshadri, K.; Irdi, G.; Smith, D.H. [Parsons Corporation, New York, NY (USA)

2009-02-15T23:59:59.000Z

314

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

315

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

316

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

317

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

318

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

319

Indonesian coal mining  

SciTech Connect (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

320

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

322

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

323

Ore components in coal  

SciTech Connect (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

324

Resource targets for advanced underground coal-extraction systems. [Identification of location and geology of deposit for which greatest savings can be realized by advanced mining systems in 2000  

SciTech Connect (OSTI)

This report identifies resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems. In contrast to previous research, which focused on a particular resource type, this study made a comprehensive examination of both conventional and unconventional coals, with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry. The major thrust of the targeting analysis was forecasting which coals would be of clear commercial significance at the beginning of the 21st century under three widely different scenarios for coal demand. The primary measure of commercial importance was an estimate of the aggregate dollar savings realized by consumers if advanced technology were available to mine coal at prices at or below the price projected for conventional technology in the year 2000. Both deterministic and probabilistic savings estimates were prepared for each demand scenario. The results indicate that the resource of primary importance is flat-lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat-lying multiple seams and thin seams (especially those in Appalachia). The rather substantial deposits of bituminous coal in North Alaska and the deeply buried lignites of the Gulf Coast present transportation and ground control problems which appear to postpone their commercial importance well beyond 2000. Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions or sub-regions, but the limited tonnage available places them in a position of tertiary importance.

Hoag, J.H.; Whipple, D.W.; Habib-Agahi, H.; Lavin, M.L.

1982-08-01T23:59:59.000Z

325

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

326

Coal Study Guide for Elementary School  

Broader source: Energy.gov [DOE]

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

327

Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary  

SciTech Connect (OSTI)

This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.

Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.; Fuchs, W. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA))

1991-06-01T23:59:59.000Z

328

Coalbed gases and hydrocarbon source rock potential of upper Carboniferous coal-bearing strata in upper Silesian Coal Basin, Poland  

SciTech Connect (OSTI)

The Upper Silesian Coal Basin (USCB) is one of the major Upper Carboniferous coal basins in the world. Its coalbed gas reserves to the depths of 1,000 m are estimated to be about 350 billion cubic meters (about 12.4 TCF). Coalbed gases in the USCB are variable in both molecular and stable isotope composition [{delta}{sup 13}C(CH{sub 4}), {delta}D(CH{sub 4}), {delta}{sup 13}C(C{sub 2}H{sub 6}), {delta}{sup 13}C(C{sub 3}H{sub 8}), {delta}{sup 13}C(CO{sub 2})]. Such variability suggests the effects of both primary reactions operating during the generation of gases and secondary processes such as mixing and migration. Coalbed gases are mostly thermogenic methane in which depth-related isotopic fractionation has resulted from migration but not from mixing with the microbial one. The stable carbon isotope composition indicates that the carbon dioxide, ethane and higher gaseous hydrocarbons were generated during the bituminous coal stage of the coalification process. The main stage of coalbed gas generation occurred during the Variscan orogeny, and generation was completed after the Leonian and Asturian phases of this orogeny. The coals and carbonaceous shales have high gas generation potential but low potential for generation and expulsion of oil compared to the known Type III source rocks elsewhere. In general, the carbonaceous shales have slightly higher potential for oil generation, but probably would not be able to exceed expulsion thresholds necessary to expel economic quantities of oil.

Kotarba, M.J.J. [Univ. of Mining and metallurgy, Cracow (Poland); Clayton, J.L.; Rice, D.D. [Geological Survey, Denver, CO (United States)

1996-12-31T23:59:59.000Z

329

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

330

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

331

CO{sub 2} SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. There were three main objectives for this reporting period, which related to obtaining accurate parameters for reservoir model description and modeling reservoir performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. The first objective was to collect and desorb gas from 10 sidewall core coal samples from an Anadarko Petroleum Corporation well (APCL2 well) at approximately 6,200-ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. The second objective was to measure sorptive capacities of these Wilcox coal samples for CO{sub 2}, CH{sub 4}, and N{sub 2}. The final objective was to contract a service company to perform pressure transient testing in Wilcox coal beds in a shut-in well, to determine permeability of deep Wilcox coal. Bulk density of the APCL2 well sidewall core samples averaged 1.332 g/cc. The 10 sidewall core samples were placed in 4 sidewall core canisters and desorbed. Total gas content of the coal (including lost gas and projected residual gas) averaged 395 scf/ton on an as-received basis. The average lost gas estimations were approximately 45% of the bulk sample total gas. Projected residual gas was 5% of in-situ gas content. Six gas samples desorbed from the sidewall cores were analyzed to determine gas composition. Average gas composition was approximately 94.3% methane, 3.0% ethane, and 0.7% propane, with traces of heavier hydrocarbon gases. Carbon dioxide averaged 1.7%. Coal from the 4 canisters was mixed to form one composite sample that was used for pure CO{sub 2}, CH{sub 4}, and N{sub 2} isotherm analyses. The composite sample was 4.53% moisture, 37.48% volatile matter, 9.86% ash, and 48.12% fixed carbon. Mean vitrinite reflectance was 0.54%. Coal rank was high-volatile C to B bituminous. Comparison of the desorbed gas content (395 scf/ton, as received) at reservoir pressure (2,697 psi) with the sorption isotherm indicates that Lower Calvert Bluff coal at this well site is oversaturated, but lost gas may have been overestimated. This high gas content suggests that little or no depressurization would be required to initiate methane production. Sorption isotherms results indicate that the sorptive capacity of CO{sub 2} is about 2.5 times that of CH{sub 4} at 1,000 psia. This ratio is similar to that of higher rank bituminous coals from other basins (e.g., Carroll, and Pashin, 2003), and it is very low in comparison to results of other low-rank coals and to the values that we used in our preliminary reservoir modeling. If this value from the APCL2 well is representative, Wilcox coals in this area will sequester less CO{sub 2} on a per ton basis than we had earlier inferred. However, because measured methane contents are higher, enhanced coalbed methane production potential is greater than we earlier inferred. Pressure transient testing for determining coal fracture permeability will be conducted soon by Pinnacle Technologies. The data from these analyses will be used to finalize our coal model for the reservoir simulation phase of the project.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2005-02-01T23:59:59.000Z

332

file://J:\mydocs\Coal\Distribution\2003\distable1.HTML  

U.S. Energy Information Administration (EIA) Indexed Site

and Foreign Distribution of U.S. Coal by State of Origin, 2003 and Foreign Distribution of U.S. Coal by State of Origin, 2003 (Thousand Short Tons) State / Region Domestic Foreign Total Alabama 16,639 3,902 20,541 Alaska 856 232 1,088 Arizona 12,093 - 12,093 Arkansas 6 - 6 Colorado 34,997 898 35,895 Illinois 31,751 55 31,806 Indiana 35,350 - 35,350 Kansas 154 - 154 Kentucky Total 113,241 906 114,146 East 92,391 890 93,282 West 20,849 15 20,865 Louisiana 3,959 - 3,959 Maryland 4,955 596 5,551 Mississippi 3,739 - 3,739 Missouri 345 - 345 Montana 36,181 541 36,721 New Mexico 27,138 - 27,138 North Dakota 31,077 - 31,077 Ohio 21,770 176 21,945 Oklahoma 1,645 - 1,645 Pennsylvania Total 57,362 3,562 60,924 Anthracite 2,805 68 2,873 Bituminous 54,557 3,494 58,051 Tennessee 2,551 2 2,553 Texas 47,506 8 47,513 Utah 23,276 318 23,594 Virginia 26,000 6,117 32,117 Washington 6,232 - 6,232 West Virginia Total 134,359

333

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

334

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

335

Coal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

336

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

337

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

338

A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal by laser-induced breakdown spectroscopy  

E-Print Network [OSTI]

Successful quantitative measurement of carbon content in coal using laser-induced breakdown spectroscopy (LIBS) is suffered from relatively low precision and accuracy. In the present work, the spectrum standardization method was combined with the dominant factor based partial least square (PLS) method to improve the measurement accuracy of carbon content in coal by LIBS. The combination model employed the spectrum standardization method to convert the carbon line intensity into standard state for more accurately calculating the dominant carbon concentration, and then applied PLS with full spectrum information to correct the residual errors. The combination model was applied to the measurement of carbon content for 24 bituminous coal samples. The results demonstrated that the combination model could further improve the measurement accuracy compared with both our previously established spectrum standardization model and dominant factor based PLS model using spectral area normalized intensity for the dominant fa...

Li, Xiongwei; Fu, Yangting; Li, Zheng; Ni, Weidou

2014-01-01T23:59:59.000Z

339

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect (OSTI)

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

340

Investigation of coal char-slag transition during oxidation: effect of temperature and residual carbon  

SciTech Connect (OSTI)

The transition of coal char to molten slag at high conversion was studied for a bituminous coal using a laminar entrained-flow reactor under oxidizing conditions. Post-oxidized char particles were analyzed by various techniques including loss-on-ignition, gas adsorption analysis, and scanning electron microscopy to determine carbon content, internal surface area and pore size distribution, and char morphology, respectively. These analyses provide information concerning the effect of temperature and residual carbon on the transition from porous char to molten slag. Results showed that, at temperatures above the ash flow temperature, the transition from porous char to molten slag occurred at about 90% conversion for the coal used in this study. No transition occurred at temperatures below the ash flow temperature. This finding explains previous observations that there is a coal-dependent critical carbon conversion at which the ash stickiness increases dramatically. This result also indicates that surface area can be used as a criterion for determining the critical conversion of the transition. In addition, it was found that the randomly overlapping pore model cannot be directly applied to predict the surface area evolution of char particles during the transition without considering the reopening of closed micropores during the initial reaction and the ash fusion effect. 33 refs., 9 figs., 2 tabs.

Suhui Li; Kevin J. Whitty [University of Utah, Salt Lake City, UT (United States). Institute for Clean and Secure Energy

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect (OSTI)

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

342

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

343

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

344

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

345

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

346

WCI Case for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

347

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

348

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

349

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

350

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

351

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

352

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

353

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

354

Weekly Coal Production Estimation Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

355

Sandia National Laboratories: Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

356

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

357

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

358

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

359

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

360

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

362

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

363

Coal liquefaction quenching process  

DOE Patents [OSTI]

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

364

Handbook of coal analysis  

SciTech Connect (OSTI)

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

365

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

366

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

367

 

U.S. Energy Information Administration (EIA) Indexed Site

Origin and Method of Transportation, 2006 Origin and Method of Transportation, 2006 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to

368

Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report  

SciTech Connect (OSTI)

This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1993-02-01T23:59:59.000Z

369

Catalyst dispersion and activity under conditions of temperature-staged liquefaction  

SciTech Connect (OSTI)

This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1993-02-01T23:59:59.000Z

370

Advances and new directions in direct liquefaction  

SciTech Connect (OSTI)

With advance in single stage processes such as H-Coal, EDS and SRC, and refining and upgrading of coal liquids by Chevron and UOP, the direct liquefaction process has continuously evolved to the present two-stage catalytic configuration, which produces the highest liquid yield and product quality of any process worldwide. The Two Stage Liquefaction (TSL) process has been successfully applied to bituminous and subbituminous coals, overcoming problems associated with earlier processes. But, potential for additional improvement is recognized in several areas: cleaning coal prior to liquefaction; low temperature and pressure preconditioning of feed coal; novel catalysts development to arrest regressive reactions and improve hydrotreatment and cracking reactions; improvement in hydrocarbon value recovery and reduced energy rejection by alternate bottoms processing techniques. In this paper, after discussing briefly the history of liquefaction and development of the TSL process, present potential areas for research and development are presented.

Rao, S.N.; Schindler, H.D.; McGurl, G.V.

1988-01-01T23:59:59.000Z

371

 

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Consumer, Origin and Method of Transportation, 2007 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A

372

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to determine the mode of transportation from the synfuel plant to the electric generating

373

Application of TG–FTIR to the determination of organic oxygen and its speciation in the Argonne premium coal samples  

Science Journals Connector (OSTI)

During rapid pyrolysis of coal, TG–FTIR (thermogravimetry – Fourier transform infrared) technique can be effectively used to simultaneously detect and measure the three main O-containing gases, namely H2O, CO and CO2. Their sum corresponds to the quantitative amount of oxygen in the coal and is, in general, inherently more accurate than the ‘by-difference’ values. In this paper, we first attempt to relate the ‘by-difference’ values for %O reported for the Argonne premium coal samples (lignite to bituminous rank) (Argonne Users Handbook) to those determined from a TG–FTIR examination of the pyrolysis gases evolved. Another objective of the work is to relate the pyrolysis gases (H2O, CO and CO2) evolved to oxygen-containing functional groups found in coals as well as the evolution of these functional groups as a function of rank. Correlations are also developed between the TG–FTIR oxygen values and other parameters determined for the Argonne Premium Coals. In particular, comparisons of our results using TG–FTIR with analyses carried out by other workers on functional group analysis of acidic groups are considered.

J.A. MacPhee; J.-P. Charland; L. Giroux

2006-01-01T23:59:59.000Z

374

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

375

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

376

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

377

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

378

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

379

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

380

Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Turkey)  

Science Journals Connector (OSTI)

Abstract Coal channel samples of Middle Miocene age are collected from the first (Tv) and second (Tb) seams from underground mines and from exploration boreholes within the Çayirhan coal field in the Beypazari Basin (Turkey). They are investigated in order to detect spatial and temporal changes in maceral and molecular composition of coal and to relate them to changes in vegetation and depositional environment. The mean random reflectance values of ulminite (0.40% Rr) indicate a lignite to subbituminous-C coal in rank. Maceral composition and biomarker ratios of the samples from both seams at the Çayirhan deposit argue for coal formation in a limno-telmatic environment under dysoxic to anoxic conditions. Alkaline surface waters of changing pH-values and a high and unstable water level at the palaeomire are evidenced by moderate to high gelification index (GI) and ground water influence (GWI) values, as well as high sulphur contents. Variations in tissue preservation index (TPI) and vegetation index (VI) values point to minor variations in the palaeovegetation during peat formation. Herbaceous plants dominated in both Tb and Tv palaeomires (low TPI and VI values), whereas in the surroundings arboreal vegetation were predominant. The decreasing trends in pristane/phytane ratios and carbon preference index (CPI) values towards the NE are suggested to reflect oxygen deficient conditions during peat formation due to a higher (ground)water level in this part of the basin. The occurrence of C29 diasterenes in low abundances provides evidence for periods of lower pH in the mire. The borehole samples from the NE show slightly enhanced contributions of n-alkanes from algal and microbial sources. The terpenoid hydrocarbons present in the lignite argue for a major contribution of angiosperms to peat formation and slightly enhanced proportions of gymnosperms in the Tv palaeomire in the NE. Based on the high concentrations of lupane-type triterpenoids in the coal seams from the underground mine, a higher density of Betulaceae in the arboreal vegetation in the SW is indicated.

Achim Bechtel; Ali Ihsan Karayi?it; Reinhard F. Sachsenhofer; Hülya ?naner; Kimon Christanis; Reinhard Gratzer

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

382

Incentives boost coal gasification  

SciTech Connect (OSTI)

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

383

HS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

384

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

385

Trace elements in co-combustion of solid recovered fuel and coal  

Science Journals Connector (OSTI)

Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~ 2.5 ?m, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations. The results indicated that As, Cd, Pb, Sb and Zn were highly volatile when co-firing coal and SRF, whereas the volatility of Cr was relatively low. Compared with coal combustion, co-firing of coal and SRF slightly enhanced the volatility of Cd, Pb and Zn, but reduced the volatility of Cr and Sb. The Cl-based additives increased the volatility of Cd, Pb and As, whereas addition of ammonium sulphate generally decreased the volatility of trace elements. Addition of kaolinite reduced the volatility of Pb, while the influence on other trace elements was insignificant. The results from the present work imply that trace element emission would be significantly increased when coal is co-fired with SRF, which may greatly enhance the toxicity of the dusts from coal-fired power plant. In order to minimize trace element emission in co-combustion, in addition to lowering the trace element content in SRF, utilizing SRF with low Cl content and coal with high S and aluminosilicates content would be desirable.

Hao Wu; Peter Glarborg; Flemming Jappe Frandsen; Kim Dam-Johansen; Peter Arendt Jensen; Bo Sander

2013-01-01T23:59:59.000Z

386

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

387

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

388

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

389

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

390

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

391

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

392

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

393

Appalachian coal miner mortality study: a 14-year follow-up  

SciTech Connect (OSTI)

From 1963 to 1965, the U.S. Public Health Service examined 3,726 underground Appalachian bituminous coal miners who were living in 1962. Their vital status was verified on January 1, 1973 (10 years of follow-up) and again on January 1, 1976 (14 years of follow-up). Mortality was studied after 10 years and results were published by Ortmeyer (1974) and Costello (1974, 1975). The results of a study of the mortality after 14 years are the subject of this report. The cause of death was determined from the underlying cause recorded on the death certificate. Death from all causes, ischemic heart disease, non-malignant respiratory disease (NMRD), cancer of the trachea, bronchus, and lung, digestive cancer, and accidents were studied.

Amandus, H.

1982-06-08T23:59:59.000Z

394

Fluidized bed combustion of a high-sulphur eastern Canadian coal  

SciTech Connect (OSTI)

A high-sulphur bituminous coal from Nova Scotia has been tested in a pilot scale FBC (Fluidized Bed Combustor) and an industrial FBC boiler. A comprehensive pilot plant program involved 28 tests at a nominal bed temperature of 850/sup 0/C (1560/sup 0/F) and fluidizing velocities of 1.2, 2.1 and 3 m/s (4,7 and 10 ft/sec) with and without fly ash recycle. Two different sizes of limestone were used for sulphur sorption. The industrial boiler trials involved two tests at 65% and 100% MCR (Maximum Continuous Rating). Pilot scaling results indicate that high combustion efficiencies are achievable. Sulphur capture of over 80% (meeting the SO/sub 2/ emission standard of 705 ng/J or 1.64 lbs/MBTU input) is possible with a Ca/S molar ratio <3 with fly ash recycle.

Desai, D.L.; Anthony, E.J.; Friedrich, F.D.; Razbin, V.V.

1986-01-01T23:59:59.000Z

395

Determination of the effects caused by different polymers on coal fluidity during carbonization using high-temperature {sup 1}H NMR and rheometry  

SciTech Connect (OSTI)

The effects of blending polyethylene (PE), polystyrene (PS), poly(ethyleneterephthalate) (PET), a flexible polyurethane (FPU), and a car shredded fluff waste (CSF) on fluidity development of a bituminous coal during carbonization have been studied by means of high-torque, small-amplitude controlled-strain rheometry and in situ high-temperature {sup 1}H NMR spectroscopy. The most detrimental effects were caused by PET and PS, which completely destroyed the fluidity of the coal. The CSF had a deleterious effect on coal fluidity similar to that of PET, although the deleterious effect on the viscoelastic properties of the coal were less pronounced than those of PET and PS. On the contrary, the addition of 10 wt % PE caused a slight reduction in the concentration of fluid hydrogen and an increase in the minimum complex viscosity, and the addition of 10 wt % FPU reduced the concentration of fluid hydrogen without changing the viscoelastic properties of the coal. Although these results suggest that these two plastics could potentially be used as additives in coking blends without compromising coke porosity, it was found that the semicoke strengths were reduced by adding 2 wt % FPU and 5 wt % PE. Therefore, it is unlikely that more than 2 wt % of a plastic waste could be added to a coal blend without deterioration in coke quality. 35 refs., 11 figs., 3 tabs.

Miguel Castro Diaz; Lucky Edecki; Karen M. Steel; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2008-01-15T23:59:59.000Z

396

Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite.  

E-Print Network [OSTI]

??Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged… (more)

Nyathi, Mhlwazi

2011-01-01T23:59:59.000Z

397

Uncovering Coal's Secrets Through the University Coal Research Program |  

Broader source: Energy.gov (indexed) [DOE]

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

398

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

399

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

400

Coal Science: Basic Research Opportunities  

Science Journals Connector (OSTI)

...carbon is arranged in coal becomes real. What...NMR experiments at high temperatures. This...of characterizing high-boiling coal "liquids" which...reactions. Coal mineral matter. Most U.S. coals...burned is called ash. Techniques are...

Martin L. Gorbaty; Franklin J. Wright; Richard K. Lyon; Robert B. Long; Richard H. Schlosberg; Zeinab Baset; Ronald Liotta; Bernard G. Silbernagel; Dan R. Neskora

1979-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Structure and thermoplasticity of coal  

SciTech Connect (OSTI)

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

402

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

403

MS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

404

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

405

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

406

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

407

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

408

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

409

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

410

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

411

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

412

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

413

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

414

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

415

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

416

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

417

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

418

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

419

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

420

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

422

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

423

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

424

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

425

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

426

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

427

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

428

Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier  

SciTech Connect (OSTI)

Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)

Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); Song, Qilei [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Lu, Zuoji [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); GCL Engineering Limited, Zhujiang No. 1, Nanjing 210008 (China)

2010-06-15T23:59:59.000Z

429

Final_Tech_Session_Schedule_and_Location.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring and Modeling Sorption- Induced Coal Strain Eric P. Robertson, Idaho National Laboratory Richard L. Christiansen, Colorado School of Mines FOURTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION DOE/NETL May 2-5, 2005 Abstract Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With

430

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

431

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

432

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

433

Pore Structure of the Argonne Premium Coals  

Science Journals Connector (OSTI)

Pore Structure of the Argonne Premium Coals ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

John W. Larsen; Peter Hall; Patrick C. Wernett

1995-03-01T23:59:59.000Z

434

Density Measurements of Argonne Premium Coal Samples  

Science Journals Connector (OSTI)

Density Measurements of Argonne Premium Coal Samples ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

He Huang; Keyu Wang; David M. Bodily; V. J. Hucka

1995-01-01T23:59:59.000Z

435

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

436

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

437

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

438

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

439

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network [OSTI]

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

440

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bituminous coal subbituminous" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.