Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pelletizing lignite  

DOE Patents (OSTI)

Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

Goksel, Mehmet A. (Houghton, MI)

1983-11-01T23:59:59.000Z

2

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

3

Lignite Fuel Enhancement  

SciTech Connect

Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

Charles Bullinger; Nenad Sarunac

2010-03-31T23:59:59.000Z

4

Metalliferous lignite in North Dakota  

SciTech Connect

Thin, impure, lignite beds in a belt across portions of North Dakota and South Dakota are highly enriched in U, Mo, and As. These beds contained on the order of 0.25% U/sub 3/O/sub 8/, and equal amounts of Mo. The metals were leached from overlying volcanic ash, and infiltrated through the lignites with the ground water, where they were precipitated on formed metallo-organic complexes. The belt of metalliferous lignites concides with a major surface drainage divide, where water moves generally downward and laterally.

Noble, E.A.

1972-01-01T23:59:59.000Z

5

Lignite Fuel Enhancement  

Science Conference Proceedings (OSTI)

The Design Team continues to conference this quarter albeit not as often. Primary focus this quarter is the continued procurement of material, receiving, and construction/installation. Phase 1 extension recommendation, and subsequent new project estimate. Forms 424 and 4600 were submitted to Ms. Zysk. The NETL technology team subsequently agreed that the increase is justified and made their recommendation to DOE HQ. All major mechanical equipment was delivered this quarter. Three hot water in-bed coils are all that remains for delivery. Two of the five are installed above the dryer air distribution bed. The dryer, baghouse, bucket elevator, control room, exhaust fan, process ductwork, and piping have all been installed. The mezzanine level over the inlet ductwork for access to the dryer was installed. Instrumentation was delivered and locations were identified. Cable is being pulled and connections made from the Control Room to the Motor Control Center. ''Emergency Stop'' equipment logic conditions were discussed and finalized. The functional description was competed and reviewed with Honeywell Controls. Piping & Instrument diagrams are completed. Some electrical schematics have been delivered for equipment south of Q-line. Dry & Wet coal conveyors are not completed. The exhaust chimney was installed. An Open House and ribbon cutting took place on August 9th. GRE project manager gave a presentation of the technology. Joe Strakey, NETL, also spoke. The Open House was attended by Governor Hoevon and Senator Conrad who also spoke about Clean Coal and helped kick-off Blue Flint ethanol and a potential Liquefaction plant. The deign team met the following day to discuss test plan and progress update. Headwaters Energy Incorporated also attended the Open House. A meeting was conducted with them to begin planning for the marketing and finalize our memorandum of understanding. Headwaters still plans to contact all US lignite plants and all bituminous plants who have switched to PRB. Major pieces of equipment received this quarter included the Dryer, Exhaust Fan, additional duct work, and control cabinets.

Charles Bullinger

2005-10-03T23:59:59.000Z

6

Increasing Power Plant Efficiency: Lignite Fuel Enhancement ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Power Plant Efficiency: Lignite Fuel Enhancement (Completed March 31, 2010) Project Description The objectives of this project are to demonstrate a unique system for...

7

Self oxidation of Romanian lignite during storage  

Science Conference Proceedings (OSTI)

Due to large emissions of pollutants, the Romanian coal fired power plants will operate less frequently, but they will play an important role in ensuring the stability of power system. A long storage period leads to a devaluation of lignite. The paper ... Keywords: calorific value, lignite, spontaneous heating, stock pile, storage period

Mihai Cruceru; Bogdan Diaconu; Popescu Lumini?a

2011-02-01T23:59:59.000Z

8

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

9

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

10

Bioprocessing of lignite coals using reductive microorganisms  

Science Conference Proceedings (OSTI)

In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

Crawford, D.L.

1992-03-29T23:59:59.000Z

11

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized.

Darren D. Schmidt

2001-09-30T23:59:59.000Z

12

Microsoft Word - LB-Lignite-Oct09  

NLE Websites -- All DOE Office Websites (Extended Search)

rate of 1.4 gpm, the overall economic cost to drill and complete lignite storage wells for CO 2 injection can be less than 3% of the delivered cost of CO 2 . The delivered...

13

Swelling of lignites in organic solvents  

SciTech Connect

Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

R.G. Makitra; D.V. Bryk [Institute of the Geology and Geochemistry of Fossil Fuels, Lviv (Ukraine)

2008-10-15T23:59:59.000Z

14

Selective oil agglomeration of lignite  

SciTech Connect

In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder [Dicle University, Diyarbakir (Turkey). Department of Mining Engineering

2009-01-15T23:59:59.000Z

15

Improving the technology of creating water-coal fuel from lignites  

Science Conference Proceedings (OSTI)

This paper describes the preparation of coal-water fuel slurries from lignite. The heat of combustion as related to the preparation of the lignite was investigated. The hydrobarothermal processing of suspensions of lignites was studied in autoclaves.

Gorlov, E.G.; Golovin, G.S.; Zotova, O.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

16

Microsoft Word - LB-Lignite.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Name Organization E-Mail Darin Damiani, U.S. Department of Energy, Darin.Damiani@netl.doe.gov Principal Investigator Edward Steadman Field Test Information: Field Test Name Lignite in North Dakota Field Validation Test Test Location Section 36-T159N-R90W in Burke County, North Dakota Amount and Source of CO 2 Tons Less than 500 tons for the project Source Commercial source - Praxair Flatland Exploration Company, subsidiary of Fischer Oil and Gas ND State Land Department Eagle Operating, Inc. Schlumberger Field Test Partners (Primary Sponsors) Praxair Summary of Field Test Site and Operations: CO 2 in an Unminable Lignite Seam - The site for the pilot-scale CO 2 sequestration-enhanced coalbed methane (ECBM) project operated by the Energy & Environmental Research Center is

17

(Bioprocessing of lignite coals using reductive microorganisms)  

SciTech Connect

The objectives of this report are to: (1) characterize selected aerobic bacterial strains for their abilities to depolymerize lignite coal polymers, and isolate and identify the extracellular enzymes responsible for depolymerization of the coal; (2) characterize selected strictly anaerobic bacteria, that were previously shown to reductively transform coal substructure model compounds, for the ability to similarly transform polymeric coal; and (3) isolate more strains of anaerobic bacteria by enrichment using additional coal substructure model compounds and coal as substrates.

Crawford, D.L.

1990-01-01T23:59:59.000Z

18

Emissions estimation for lignite-fired power plants in Turkey  

SciTech Connect

The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

2010-01-15T23:59:59.000Z

19

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

around a coal-burning power plant: a case study in the Czechdepositions from a lignite power plant Susanne Klose 1* ,DEPOSITIONS FROM A LIGNITE POWER PLANT Susanne Klose 1* ,

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

20

NETL: News Release - More Electricity, Lower Emissions from Lignite Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2004 25, 2004 More Electricity, Lower Emissions from Lignite Plants Are Goals of New Clean Coal Project Fuel Enhancement System Expected to Boost Generating Capacities WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced the testing of the Lignite Fuel Enhancement System, a new process that could dramatically reduce air emissions from certain coal-based power plants while boosting overall generating capacity. The project, conducted by Great River Energy, is expected to boost the generating capacity and efficiency of power plants that burn high-moisture lignite coal, thereby reducing air pollutants and greenhouse gases. The new technology uses waste heat to dry nearly a quarter of the moisture in the coal before it is fed into the power plant boiler.

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Preventing ash agglomeration during gasification of high-sodium lignite  

Science Conference Proceedings (OSTI)

Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand [Southern Research Institute and Southern Company Services, Wilsonville, AL (USA). Power Systems Development Facility

2009-01-15T23:59:59.000Z

22

Lignites and Low Rank Coals Conference: Proceedings 2001  

Science Conference Proceedings (OSTI)

EPRI and the Technische Vereinigung des Grosskraftswerkbetreiber (Technical Association of Large Power Plant Operators) (VGB) jointly held a Conference on Lignites and Low Rank Coals in Wiesbaden, Germany, May 16-18, 2001. These Proceedings include the plenary papers, technical session papers, and rapporteurs' summaries from the conference.

2002-03-25T23:59:59.000Z

23

Oxydesulfurization of a Turkish lignite using trona solutions  

SciTech Connect

This article investigates the possibility of using trona minerals in the oxydesulfurization of coal. The experiments were performed on a Turkish lignite having high organic and high pyritic sulfur content from the Gediz area. Oxydesulfurization of the lignite sample using trona minerals was studied at 423--473 K, under 0--1 MPa oxygen partial pressure at 0--0.3 M equivalent alkalinity of Na{sub 2}CO{sub 3} for 2.5--60 min. Almost all of the pyritic sulfur content and, depending on the working conditions, an important part of the organic sulfur content were removed. Unless the temperature reached 473 K, solid product yield was not negatively affected. Trona minerals were seen as a suitable alkaline to use in oxydesulfurization of coal.

Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey). Chemical and Metallurgical Engineering Faculty

1996-06-01T23:59:59.000Z

24

Production of mineral wool from lignite coal slag  

SciTech Connect

This is a report of research conducted at the University of North Dakota concerning the utilization of the ''molten state'' condition of lignite coal slag for the fabrication of a mineral wool insulant. The research was funded by the Mercer County Energy Development Board with monies allocated from the Department of Energy. The objective of the research was to investigate, on a preliminary basis, some critical criteria such as the chemical nature of the raw material, the ability of the slag to be fiberized, as well as the possibilities that such a insulant could indeed have a market in the immediate area. In essence it was felt that a mineral wool product could be produced at coal fired power plants which burn lignite at a minimal cost. The major cost saving would come from the fact that the raw material that would be used would not have to have a great deal of energy added at the expense of the consumer.

Manz, O.E.; Eaton, L.C.

1983-03-01T23:59:59.000Z

25

Properties and reserves of lignite in the Aydin-Sahinali field, Turkey  

SciTech Connect

This study focuses on some lignite properties and calculation of lignite reserves with two classical (isopach and polygon) methods in the Aydin-Sahinali field, Turkey, which is located in the western Turkey. This field has been mined by a private coal company since 1960 by open-cast and mainly underground mining methods. The producing lignites are consumed in domestic heating and industrial factories around Aydin. The metamorphic rocks of Palaezoic age form the basement of the coal field. The lignite-bearing unit of Miocene age, from bottom to the top, consists mainly of pebblestone, lignite and clayey lignite, siltstone with sandstone lenses, white colored claystone, clayey limestone and silisified limestone lenses. This unit in the lignite field was unconformably overlain by Pliocene unconsolidated sands and gravels. Three hundred seventy-three borehole data have been evaluated, and this study shows that a relatively thick and lateral extensive lignite seam has a mineable thickness of 1.6-14.4 m. The core samples from boreholes in panels in the lignite field indicate that the coal seam, on an as-received basis, contains high moisture contents (17.95-23.45%, average), high ash yields (16.30-26.03%, average), relatively high net calorific values (3,281-3,854 kcal/kg, average), and low total sulfur contents (1.00-1.22%, average). The remaining lignite potential in the Aydin-Sahinali lignite field was calculated as a 4.7 Mt of measured and a 2.9 Mt of mineable lignite-reserves.

Kirhan, S.; Inaner, H.; Nakoman, E.; Karayigit, A.I. [Dokuz Eylul University, Izmir (Turkey). Dept. of Geological Engineering

2007-07-01T23:59:59.000Z

26

PROGRAM TOPIC: GASIFICATION TECHNOLOGIES PREVENTING AGGLOMERATION PROBLEMS DURING GASIFICATION OF HIGH-SODIUM LIGNITE  

E-Print Network (OSTI)

Previous gasification studies have shown that sodium vapor released from high-sodium lignites can react with silica to form sticky sodium silicates. 1,2,3

Robert S. Dahlin; Johnny R. Dorminey; Southern Company Services; Wanwang Peng; Southern Company Services; Pannalal Vimalch; Southern Company Services

2008-01-01T23:59:59.000Z

27

Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal  

E-Print Network (OSTI)

of lignite coal Shayan Karimipour a , Regan Gerspacher b , Rajender Gupta a , Raymond J. Spiteri c. " The syngas quality was defined based on conversion, H2/CO, CH4/H2, yield, and gasifier efficiency. " Low coal 2012 Keywords: Lignite coal Gasification Fluidized bed Design of experiments a b s t r a c t A series

Spiteri, Raymond J.

28

Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive  

Science Conference Proceedings (OSTI)

North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

Buchsbaum, L.

2009-08-15T23:59:59.000Z

29

Impact of risk and uncertainty on sustainable development of Kolubara lignite basin  

Science Conference Proceedings (OSTI)

The paper analyzes the various risks and uncertainties and their possible impact on the future development of the Kolubara lignite basin area (Belgrade metropolitan region). What has been examined are the risks caused by the global financial crisis to ... Keywords: energy policy, lignite coal basin, privatisation, risks, sustainable development, uncertain

Slavka Zekovic; Miodrag Vujosevic

2009-02-01T23:59:59.000Z

30

Comparative risk analysis of development of the lignite basins in Serbian part of the Danube region  

Science Conference Proceedings (OSTI)

The paper gives an overview of the global business risks and risks in the mining development in the Kolubara and Kostolac lignite basins in the area of the Danube river in Serbia. An identification of main risks is undertaken by application of a comprehensive ... Keywords: danube region, lignite basin, mining and energetics, strategic business risks, sustainable development

Slavka Zekovi?; Tamara Mari?i?

2011-02-01T23:59:59.000Z

31

JV Task 90 - Activated Carbon Production from North Dakota Lignite  

Science Conference Proceedings (OSTI)

The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

2008-03-31T23:59:59.000Z

32

DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiates CO2 Injection in Lignite Coal Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately, geologic carbon sequestration is expected to play an important role in mitigating greenhouse gas emissions and combating climate change. The Lignite Field Validation Test is being conducted by the Plains CO2 Reduction (PCOR) Partnership, one of seven regional partnerships under DOE's Regional Carbon Sequestration Partnership Program. The seven

33

Hydroliquefaction of Big Brown lignite in supercritical fluids  

E-Print Network (OSTI)

Big Brown lignite was liquefied in a fixed bed tube reactor. Three solvents were used in the liquefaction studies, toluene, cyclohexane and methanol. Two co-solvents, tetralin and water were used with toluene. The effects of the solvents and co-solvents were investigated. Supercritical fluid is the fluid at the temperature and pressure above its critical values. Toluene was the main supercritical fluid used in this study. Tetralin and water as co-solvents can contribute hydrogen to stabilize the free radicals produced during liquefaction reaction. The total conversion of Big Brown lignite and yield of liquid were increased. Water is not as good as tetralin in producing hydrogen, but it can increase the polarity of the solvent, which increases the solvency of supercritical fluids. The liquid product was found to consist primarily of saturated hydrocarbons. It illustrated that the free radicals were saturated by hydrogen during liquefaction. Alkylated aromatics and furans are also common chemical species present in the liquid products. The aromatic species were predominantly alkylated phenols, benzenes, indenes, pyridines and naphthalenes. At the supercritical conditions of this study, temperature and flowrate of the solvent were not important to the conversion of Big Brown lignite and yield of liquid, since supercritical fluids have gas-like viscosities with very high solubilities. To get more liquid products, the main point is to produce more free radicals from coal, inhibit the recombination of these radicals, and prevent the decomposition of these radicals to gas. Tetralin and water are good co-solvents for coal hydroliquefaction. Further research on the mechanism of water as a co-solvent in coal hydroliquefaction was recommended.

Chen, Hui

1996-01-01T23:59:59.000Z

34

RECONNAISSANCE FOR URANIFEROUS LIGNITES IN NORTH DAKOTA, SOUTH DAKOTA, MONTANA, AND WYOMING  

SciTech Connect

Detailed studies were made at Bullion and Sentinel Buttes, in Slope, Billings, and Golden Valley Counties, N. Dak. Investigations of these areas were followed by a general reconnaissance for uraniferous lignites in North Dakota, eastern Montana, north-central Wyoming, and northwestern South Dakota. Deposits of uraniferous lignites were discovered at Blue Buttes, eastern Montana; and at North Cave Hills, South Cave Hills, and at Slim Buttes in northwestern South Dakota. The only lignites that contain appreciable amounts of uranium are in the upper part of the Sentinel Butte shale member of the Fort Union formation in southwestern North Dakota and eastern Montana, and in the Ludlow formation in northwestern South Dakota. The uranium content of the individual lignite beds ranges from 0.002 to 0.033% uranium and after ignition the uranium content of the ash ranges from 0.010 to 0.091% uranium. Natural ash contains as much as 0.025% uranium; natural clinker or scoria and carbonuceous clay are lower grade than the lignites; and some spring waters contain as much as 0.09 ppm of uranium. The inferred reserves of uranlferous lignites in North Dakota, South Dakota, and Montana are estimated to be 163,320,000 short tons that contain a weighted average of 0.009% uranium. The potential energy and amount of material available for liquid fuel conversion in this quantity of lignite is very large. The inferred reserve of ash which would result from the burning of these uraniferous lignites is detail amount of uranium (metal) in the known uraniferous lignite in North Dakota, South Dakota, and Montana is estimated to be about 12,600 short tons. The prospect or finding additional radioactive lignite beds is believed to be good. (auth)

Beroni, E.P.; Bauer, H.L. Jr.

1952-07-01T23:59:59.000Z

35

Radiation intensity of lignite-fired oxy-fuel flames  

SciTech Connect

The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE - 412 96 Goeteborg (Sweden)

2008-10-15T23:59:59.000Z

36

NO emission during oxy-fuel combustion of lignite  

SciTech Connect

This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B. [Chalmers, Gothenburg (Sweden). Division of Energy Technology

2008-03-15T23:59:59.000Z

37

Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992  

SciTech Connect

In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

Crawford, D.L.

1992-03-29T23:59:59.000Z

38

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

39

Lignite slime as activator in production of oxidized asphalts  

Science Conference Proceedings (OSTI)

The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

1988-03-01T23:59:59.000Z

40

Co-combustion of pellets from Soma lignite and waste dusts of furniture works  

Science Conference Proceedings (OSTI)

In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a prompt effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.

Deveci, N.D.; Yilgin, M.; Pehlivan, D. [Firat University, Elazig (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

around a coal-burning power plant: a case study in the Czechfrom coal-fired power plants probably had a positive effectdepositions from a lignite power plant Susanne Klose 1* ,

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

42

JV Task - 129 Advanced Conversion Test - Bulgarian Lignite  

SciTech Connect

The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were achieved, a heating value very close to that needed to fire a gas turbine would be achieved; however, some operational issues associated with utilizing recycled syngas or carbon dioxide as the transport gas would also have to be resolved. Use of a coal with a quality similar to the core samples provided earlier in the test program would also improve the gasifier performance. Low cold-gas efficiencies on the order of 20% calculated for oxygen-blown tests resulted in part from specific difficulties experienced in trying to operate the pilot-scale TRDU on this very high-ash lignite. These low levels of efficiency are not believed to be representative of what could be achieved in a commercial KRB transport gasifier. Combustion tests were also performed in the EERC's circulating fluidized-bed combustor (CFBC) to evaluate this alternative technology for use of this fuel. It was demonstrated that this fuel does have sufficient heating value to sustain combustion, even without coal drying; however, it will be challenging to economically extract sufficient energy for the generation of steam for electrical generation. The boiler efficiency for the dried coal was 73.5% at 85% sulfur capture (21.4% moisture) compared to 55.3% at 85% sulfur capture (40% moisture). Improved boiler efficiencies for this coal will be possible operating a system more specifically designed to maximize heat extraction from the ash streams for this high-ash fuel. Drying of the coal to approximately 25% moisture probably would be recommended for either power system. Fuel moisture also has a large impact on fuel feedability. Pressurized gasifiers generally like drier fuels than systems operating at ambient pressures. The commercially recommended feedstock moisture for a pressurized transport reactor gasifier is 25% moisture. Maximum moisture content for a CFB system could be approximately 40% moisture as has been demonstrated on the Alstom CFB operating on Mississippi lignite. A preliminary economic evaluation for CO{sub 2} was performed on the alternatives of (1) precombustion separation of CO{sub 2} in

Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

2009-03-27T23:59:59.000Z

43

Report on the survey of abandoned uraniferous lignite mines in southwestern North Dakota  

Science Conference Proceedings (OSTI)

A radiation survey was conducted in October 1983 as part of the proposed reclamation plan of abandoned uraniferous lignite mines in southwestern North Dakota. The survey was made to determine the extent of contamination caused by mining operations in the 1960's. Radiation measurements were made and soil samples were taken at approximately 300 locations around six mine sites comprising eleven lignite mine pits. Toxic element analysis was also done on 50 of the soil samples.

Lyon, R.J.; Prochaska, D.; Burgess, J.L.; Patrick, D.

1986-03-01T23:59:59.000Z

44

Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data  

SciTech Connect

Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

2010-07-15T23:59:59.000Z

45

Polygeneration of SNG, hydrogen, power, and carbon dioxide from Texas lignite  

Science Conference Proceedings (OSTI)

This feasibility study has shown that siting a mine mouth lignite fed gasification plant in Texas to produce hydrogen, SNG, electric power, and carbon dioxide could be economically feasible in an era of high natural gas prices. Because of the high moisture content of the lignite the choice of gasification system becomes an important issue. Hydrogen produced from Texas lignite in a coproduction plant could be produced in the range $5.20-$6.20/MMBTU (HHV basis) equivalent to between $0.70 and $0.84 per kilogram. This range of hydrogen costs is equivalent to hydrogen produced by steam methane reforming of natural gas if the natural gas feed price was between $3.00 and $4.00/MMBTU. With natural gas prices continuing to remain above $5.00/MMBTU this concept of using Texas lignite for hydrogen production would be economically viable. For the production of SNG from Texas lignite, the costs range from $6.90-$5.00/MMBTU (HHV basis). If natural gas prices remain above $5.00/MMBTU then the configuration using the advanced dry feed gasification system would be economically viable for production of SNG. This option may be even more attractive with other low rank coals such as Wyoming subbituminous and North Dakota lignite coals that are priced lower than Texas lignite. Production of electric power from these conceptual coproduction plants provides a valuable revenue stream. The opportunity to sell carbon dioxide for EOR in Texas provided another valuable revenue stream for the plants. The break even cost of recovering the carbon dioxide ranged from about $5.50 to $7.75 per ton depending on whether SNG or hydrogen was the product.

Gray, D.; Salerno, S.; Tomlinson, G.; Marano, J.J. [Mitretek Systems, Falls Church, VA (United States)

2004-12-15T23:59:59.000Z

46

Lignite mine spoil characterization and approaches for its rehabilitation  

SciTech Connect

Open cast mining of lignite leaves behind stockpiles of excavated materials (dumps) and refilled mining pits (spoils). Physicochemical and biochemical properties of both kinds of sites were estimated to identify the reasons for their barrenness. Subsequently, surface modifications were attempted, first in a greenhouse and later infield to develop a suitable approach for their rehabilitation. Dumps had low pH (4.8) and high Na{sup +} (2.5 mg g{sup -1}), spoils high pH (8.7) and high Na{sup +} (1.59 mg g{sup -1} soil). Both sites had low available nitrogen and phosphorus and showed very low dehydrogenase and phosphatases activity but no nitrification. The extreme physicochemical conditions and inert nature of damps and spoils explained their barrenness. In the greenhouse experiment, 14 plant species sown in surface materials of dumps and spoils after spreading a 0.15 m thick layer of dune sand, germinated ({gt}85%), and their seedlings survived for two months. This technique was followed at a spoil site (modified spoil site). After three years of stabilization the modified spoil site had only one-fifth Na{sup +} of that in spoil surface in the beginning and also showed higher dehydrogenase and phosphatase activity and nitrification. Pearl millet and Cenchrus ciliaris grown in modified spoil produced 128 to 394 kg and 2.25 to 3.50 Mg dry matter ha{sup -1}. Addition of farmyard manure with N and P fertilizers increased pearl millet yields.

Praveen-Kumar; Kumar, S.; Sharma, K.D.; Choudhary, A.; Gehlot, K. [Central Arid Zone Research Inst., Jodhpur (India)

2005-01-15T23:59:59.000Z

47

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. Prior to 2010, no power generating units firing Texas lignite were equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a two-phase program at the Sandow Station, located near Rockdale, Texas. The test pro...

2010-09-06T23:59:59.000Z

48

Impacts of Texas Lignite on Selective Catalytic Reduction System Life and Performance  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems for NOx control are being broadly applied to U.S. power generating units fired with western subbituminous and eastern bituminous coals and natural gas. To date, no power generating units firing Texas lignite are equipped with SCR. To develop an understanding of the potential deactivation and erosion of SCR catalyst by Texas lignite, a pilot-scale SCR reactor was used in a one-year program to test a plate-type catalyst at the Sandow Station, located near Rockdal...

2009-06-30T23:59:59.000Z

49

Concentration of major and trace elements in the Miocene lignite from the Canakkale-Can coalfield  

SciTech Connect

This study focuses on major and trace element concentrations of three lignite samples, of which two are from the working lignite seam and one from a feed coal to an thermal power plant. The Canakkale-Can lignite deposit is currently being mined by open-cast mining methods despite its high sulfur content. The production lignites are mainly consumed by a fluidized-bed thermal power plant with 2 160 MW capacity and less domestic heating and industrial factories around Can. Major oxide compositions of the coal ash samples imply that the more abundant oxides are SiO{sub 2} and Al{sub 2}O{sub 3} and less CaO and Fe2O{sub 3}. Trace element concentrations in the samples on whole-coal basis show that three samples analyzed were enriched in V, and also concentrations of B, Sc, Sn, Th, Tl, and U in one sample that exceed the range values of most world coals.

Inaner, H.; Karayigit, A. [Dokuz Eylul University, Izmir (Turkey). Dept. of Geological Engineering

2008-07-01T23:59:59.000Z

50

Petrographic characteristics of the Kardia lignites (core KT6A-3), Ptolemais basin (Greece)  

Science Conference Proceedings (OSTI)

The aim of this study is to provide useful coal-petrographic data, which will further help the characterization, exploitation, and utilization of the Kardia lignite deposit and also initially to access the depositional conditions mainly in terms of water table level and subsidence rate of the fen substrate. Ash contents, as well as the C, H, N, O, and S were determined in nine lignite samples from core KT6A-3. The ash contents (750{sup o}C) of the studied lignite seams range among 14-37% (on dry basis). Contents of C, H, N, and O have values between 34-52%, 2.5-4.2%, 0.8-2%, and 21-30.6%, respectively. Sulfur does not exceed 1.2%. Huminite group dominates with values between 84-99 vol%, mmf. All samples display a distinct prevalence in detrohuminite (up to 82 vol%) with attrinite being most abundant. Liptinite and inertinite macerals have low contents, which do not exceed 8% and 12%, respectively. The Kardia lignites are medium to very low-grade coals. They formed in fens under limnotelmatic regime and originated from herbaceous vegetation. During peat deposition, conditions were well moist, intense reducing, and favored increased bacterial activity. The ratio of plant growth and peat accumulation versus rise of water table due to the subsidence rate was not well balanced. The petrographical composition of the Kardia lignites is related either to a long residence time of the organic matter in the acrotelm or to an herbaceous vegetation origin.

Antoniadis, P.; Mavridou, E.; Papazisimou, S.; Christanis, K.; Gentzis, T. [CDX Canada Co., Calgary, AB (Canada)

2006-03-15T23:59:59.000Z

51

Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters  

SciTech Connect

In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I. [Inonu University, Malatya (Turkey). Faculty of Engineering

2009-07-01T23:59:59.000Z

52

Evaluation of an on-line ash analysis system for low-grade and inhomogeneous Greek lignite  

Science Conference Proceedings (OSTI)

The possibility of using commercial on-line analysis systems for monitoring the ash content of low-grade lignites was investigated by carrying out numerous bench- and pilot-scale trials in the mines of Public Power Corporation SA, Greece. Pilot-scale trials were based on a dual-energy {gamma}-ray transmission analyzer, which was installed on the conveyor belt that transports lignite from the pit to the bunker of Kardia mine, Ptolemais. According to the obtained results, the accuracy of the on-line measurements was not adequate and did not allow lignite quality monitoring in real time. The deterioration of the on-line measurements' accuracy, compared to previous applications in other mining sites, was related to the intense variation of the lignite ash content and ash composition, which distorted the calibration of the analyzer. The latter is based on certain assumptions regarding the average atomic number of the organic and mineral matter contained in the lignite. Further experimental work is needed to investigate solutions for successful implementation of this method to low-grade lignites that exhibit large variation in ash content and composition. 17 refs., 15 figs., 7 tabs.

Konstantinos V. Kavouridis; Francis F. Pavloudakis [Public Power Corporation SA, Athens (Greece). General Division of Mines

2007-08-15T23:59:59.000Z

53

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-Wet FGD  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control for Plants firing Mercury control for Plants firing texas lignite and equiPPed with esP-wet fgd Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. One promising mercury control technology involves the use of sorbents such as powdered activated carbon. Full-scale sorbent injection tests conducted for various combinations of fuel and plant air pollution control devices have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance, and data gaps remain for specific plant configurations. Sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite coal, which are responsible for about 10 percent of annual U.S. power plant

54

Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Background Significant progress has been made in recent years in controlling emissions resulting from coal-fired electricity generation in the United States through the research, development, and deployment of innovative technologies such as gasification. Gasification is a process that converts solid feedstocks such as coal, biomass, or blends

55

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

56

Formation and prevention of agglomerated deposits during the gasification of high-sodium lignite  

Science Conference Proceedings (OSTI)

A high-sodium lignite from the Freedom mine in North Dakota was tested in the transport gasifier at the Power Systems Development Facility (PSDF). During the first use of the high-sodium lignite in October 2003, agglomerated deposits formed at various locations in the transport gasifier system. An extensive laboratory testing program was carried out to characterize the deposits, understand the mechanism of the deposit formation, and test various methods of preventing or minimizing the agglomeration. The results of the deposit analysis and initial lab studies suggested that sodium released from the lignite was deposited on the surface of the sand bed material, resulting in the formation of sticky sodium silicates. Additional laboratory tests indicated that the agglomeration could be avoided or minimized by replacing the sand with a nonreactive bed material (e.g., coarse coal ash), operating at slightly reduced temperatures and using certain types of additives. By using these procedures, we completely eliminated the deposition problems in a subsequent gasification run in August 2004. 10 refs., 10 figs.

Robert S. Dahlin; WanWang Peng; Matt Nelson; Pannalal Vimalchand; Guohai Liu [Southern Research Institute and Southern Company Services, Wilsonville, AL (United States). Power Systems Development Facility

2006-12-15T23:59:59.000Z

57

Advanced power assessment for Czech lignite. Task 3.6, Volume 1  

SciTech Connect

The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

1995-12-01T23:59:59.000Z

58

Co-firing of olive residue with lignite in bubbling FBC  

SciTech Connect

The effect of biomass share on gaseous pollutant emissions from fluidized bed co-firing of various biomass fuels with high calorific value coals have extensively been investigated to date. However, effect of co-firing of olive residues with low calorific value lignites having high ash and sulfur contents has not been studied in bubbling fluidized bed combustors. In this study, experimental results of various runs pertaining to gaseous emissions (O{sub 2}, CO{sub 2}, CO, SO{sub 2}, NO, N{sub 2}O) from METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig co-firing olive residue with indigenous lignite at different biomass shares are presented. The results reveal that co-firing increases combustion efficiency irrespective of the biomass share and that increase in biomass share reduces N{sub 2}O and SO{sub 2} emissions considerably while increasing CO emission. O{sub 2}, CO{sub 2} and NO emissions are not found sensitive to increase in biomass share. Olive residues are co-fired with high ash and sulfur containing lignite without any operational problems.

Gogebakan, Z.; Gogebakan, Y.; Selcuk, N. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

2008-07-01T23:59:59.000Z

59

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems  

Science Conference Proceedings (OSTI)

This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

2008-06-30T23:59:59.000Z

60

Petcoke and Low-Rank Coal/Lignite Supply Outlook for IGCC Evaluations  

Science Conference Proceedings (OSTI)

Petroleum coke, a by-product of petroleum refining, is used in many industries, with the highest-sulfur forms of petcoke disposed of as fuel for power generation. Because of its high heat content and low moisture, petcoke holds benefits in a fuel blend with lower grade fuels such as lignite for integrated coal gasification. This report reviews the characteristics of petroleum coke, presents its supply and demand outlook, and estimates the relative costs of various coals and petroleum coke at locations in...

2006-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Continuous Ammonia Slip Measurements on a Lignite-Fired Unit with a Selective Catalytic Reduction System  

Science Conference Proceedings (OSTI)

Ammonia slip measurements that were made by a tunable diode laser (TDL) were conducted on a lignite-fired unit with a selective catalytic reduction (SCR) system using a newly developed adjustable flange assembly for dynamic alignment of cross-duct measurements. The single path optics were integrated with a fiber optic–coupled TDL system (Unisearch LasIR) and two shields to allow measurements over the 25-foot (7.62-meter) flue gas duct dimension. The nominal 4.5-foot (1.67-meter) shields were required to ...

2011-10-24T23:59:59.000Z

62

Impacts of Texas Lignite Coal on SCR Catalyst Life and Performance: Field Data from TXU's Martin Lake Plant  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) systems are being broadly applied to power generating units fired with Power River Basin (PRB) and bituminous coals and natural gas. To develop an understanding of the potential deactivation and erosion of SCR catalyst in Texas-lignite-fired units, an in-situ mini SCR reactor was used to test two types of catalyst at TXU Energy's Martin Lake Unit 3. Prior to this test program, no long-term test data on the effects of Texas lignite on SCR catalyst life and performance e...

2003-12-11T23:59:59.000Z

63

Exploration of a lignite-bearing basin in Northern Ireland using ground magnetic and VLF-EM methods  

SciTech Connect

In an exploration technique feasibility study, a detailed magnetic and VLF-EM survey was carried out on the poorly exposed, lignite-bearing Crumlin subbasin within the Lough Neagh Basin, Co. Antrim, Northern Ireland. The faulted and onlapped margins of the basin, as well as lithological units and structures within the basin, were delineated by simple processing techniques applied to the data. The combination of the two methods overcomes the limitations of each method when it is used alone. These techniques could be successfully applied to other lignite-bearing basins sited on strongly magnetic basement worldwide.

McCaffrey, R.J.; McElroy, W.J.; Leslie, A.G. [Queen`s Univ. of Belfast (United Kingdom)

1995-03-01T23:59:59.000Z

64

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

Science Conference Proceedings (OSTI)

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

65

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

SciTech Connect

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

66

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect

The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

2005-02-01T23:59:59.000Z

67

LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young Unit 2 and TXU Monticello Unit 3. The work involves establishing Hg oxidation levels upstream of air pollution control devices (APCDs) and removal rates across existing ESP and FGD units, determining costs associated with those removal rates, investigating the possibility of the APCD acting as a multipollutant control device, quantifying the balance of plant impacts of the control technologies, and facilitating technology commercialization.

Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

2004-03-01T23:59:59.000Z

68

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 2  

Science Conference Proceedings (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23, 1985. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions plus two luncheons and a banquet were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. All the papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

69

Advanced power assessment for Czech lignite task 3.6. Topical report  

SciTech Connect

Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

1995-12-01T23:59:59.000Z

70

Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD  

Science Conference Proceedings (OSTI)

Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

2007-03-31T23:59:59.000Z

71

Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

1989-09-01T23:59:59.000Z

72

Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

1989-09-01T23:59:59.000Z

73

Environmental assessment of remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 authorized the US Department of Energy (DOE) to perform remedial actions at Belfield and Bowman inactive lignite ashing sites in southwestern North Dakota to reduce the potential public health impacts from the residual radioactivity remaining at the sites. The US Environmental Protection Agency (EPA) promulgated standards (40 CFR 192) that contain measures to control the residual radioactive materials and other contaminated materials, and proposed standards to protect the groundwater from further degradation. Remedial action at the Belfield and Bowman sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The Belfield and Bowman designated sites were used by Union Carbide and Kerr-McGee, respectively, to process uraniferous lignite in the 1960s. Uranium-rich ash from rotary kiln processing of the lignite was loaded into rail cars and transported to uranium mills in Rifle, Colorado, and Ambrosia Lake, New Mexico, respectively. As a result of the ashing process, there is a total of 158,400 cubic yards (yd{sup 3}) [121,100 cubic meters (m{sup 3})] of radioactive ash-contaminated soils at the two sites. Windblown ash-contaminated soil covers an additional 21 acres (8.5 ha) around the site, which includes grazing land, wetlands, and a wooded habitat.

1993-09-01T23:59:59.000Z

74

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD  

Science Conference Proceedings (OSTI)

This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

Katherine Dombrowski

2009-12-31T23:59:59.000Z

75

Water table recovery in a reclaimed surface lignite mine, Grimes County, Texas  

E-Print Network (OSTI)

Water table recovery in four reclaimed mine blocks containing replaced overburden has been monitored at Gibbons Creek Lignite Mine in Grimes County, Texas since 1986. Recovery analysis was conducted based on data recorded at 27 wells installed in the reclaimed land and 23 wells installed in adjacent unmined land. It was found that water table recovery in reclaimed mine blocks is predictable: recovery is an exponential function of time and may be described by the following equation: Ew = RC log (t) + Eo where Ew equals any water table elevation above the mine floor to which recovery has occurred over the time, t, transpired between the time recovery began to the time Ew is attained. The constant Eo is the y-intercept which approximates the water table elevation at the beginning time of recovery, to referenced from the time of spoil replacement. The Recovery Coefficient (RC) is the average slope of the recovery curve. RC is proportional to inflow rate and the magnitude (potential saturated thickness) of water table recovery. As RC increases, recovery rate and/or magnitude increases. If recovery is uniform with respect to mine floor elevation, RC distributions for wells in a mine block can be standardized with respect to the mine block dimensions such that one RC value is attained for each mine block. RC is controlled by the complex interrelationships of several factors which may be described by the following factorial equation: RC= f (MD, HS, HP, MB, S 99 where MD = Mine block Dimensions, HS = Hydrostratigraphic Setting, HP = Hydraulic Properties of the spoil, MB = Moisture Balance for the mine area, and SW = Surface Water contribution to spoil resaturation. Based on the analyses the following conclusions were made pertaining to water table recovery at Gibbons Creek Lignite Mine: 1) rate of recovery does not appear to be controlled by the amount of sand in the pre-mine overburden, 2) surface water impoundments do not significantly recharge the mine blocks, 3) water table drawdown during mining can impact the local water table down-gradient of the mined land, 4) mining in several locations over an area composed of fluvial-deltaic sediments forces hydraulic connection of many of the stratigraphic units producing an unconfined water table aquifer from the pre-mine confined ground-water systems.

Peace, Kelley H.

1995-01-01T23:59:59.000Z

76

Functional and taxonomic diversity of microbial communities in reclaimed East Texas lignite mine soils  

E-Print Network (OSTI)

A two-year study was conducted at Big Brown lignite mine in Freestone County, Texas, to determine the influence of surface mining and reclamation on the functional and taxonomic diversity in soil microbial communities. Quarterly soil samples were collected along a chronosequence including sites of 0, 1, 4, 12, and 28 years following mining and reclamation. In addition to these sites, an unmined reference site, and a tree mott (reclamation age of 20 years) were included in the study. The functional diversity of the microbial communities was assessed using the Biolog sole-carbon source utilization (SCSU) assay. Taxonomic diversity was measured using whole-soil fatty acid methyl ester (FAME) analysis. Results indicated that surface mining had a transient influence on both the functional and taxonomic diversity of the soil microbial communities reducing complexity during disturbance and early reclamation. However, the effect was reversed as the reclamation process matured. Principal component analysis (PCA) was able to separate the younger sites from the older sites in both the SCSU profiles and the FAME profiles of the soils. The separation of sites was greater, however, in the analysis of the FAME profiles suggesting a more significant change in the level of taxonomic diversity. Results from the SCSU analysis revealed a return to similarity with the reference site between one and four years. Fatty acid methyl ester profiles indicated a return to similarity with the reference site in approximately 12 years.

Peach, Allen Edward

2001-01-01T23:59:59.000Z

77

Regional Studies Program. Extraction of North Dakota lignite: environmental and reclamation issues  

SciTech Connect

This study, sponsored by the U.S. Energy Research and Development Administration, addresses the environmental implications of extraction of coal in North Dakota. These implications are supported by details of the geologic and historical background of the area of focus, the lignite resources in the Fort Union coalfield portion. The particular concentration is on the four-county area of Mercer, Dunn, McLean, and Oliver where substantial coal reserves exist and a potential gasification plant site has been identified. The purposes of this extensive study are to identify the land use and environmental problems and issues associated with extraction; to provide a base of information for assessing the impacts of various levels of extraction; to examine the economics and feasibility of reclamation; and to identify research that needs to be undertaken to evaluate and to improve reclamation practices. The study also includes a description of the physical and chemical soil characteristics and hydrological and climatic factors entailed in extraction, revegetation, and reclamation procedures.

LaFevers, J.R.; Johnson, D.O.; Dvorak, A.J.

1976-12-01T23:59:59.000Z

78

Management of lignite fly ash for improving soil fertility and crop productivity  

Science Conference Proceedings (OSTI)

Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and bioferfertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

Ram, L.C.; Srivastava, N.K.; Jha, S.K.; Sinha, A.K.; Masto, R.E.; Selvi, V.A. [Central Fuel Research Institute, Dhanbad (India)

2007-09-15T23:59:59.000Z

79

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 2: Flighted drum case  

SciTech Connect

In Part 2 of this work a flighted pilot rotating cylindrical drum, intended to be used as either a dryer or calciner (kiln), has been used to investigate the flow, through it, of pulverized moist lignite. Tracer pulse input-response experiments have been performed. Residence Time Distribution (RTD) data have been deduced for three types of flight geometry, namely: Rectangular (RA), Equal Angular Distribution (EAD) and Equal Horizontal Distribution (EHD). For each flight shape, mean residence time {bar t} has been correlated with drum operating conditions. The sequence {bar t}{sub EAD} < {bar t}{sub RA} < {bar t}{sub EHD} has been validated. A comparison between the residence time predictions for the flighted and the bare drum has indicated that {bar t} for the former may be higher by up to 3.5 times than that for the latter. Exceptionally high solids hold-up values (i.e., Z = 0.13--0.42) have been observed and compared to theoretical predictions. Particle size segregation during lignite flow through the flighted drum was not confirmed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

80

Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota  

SciTech Connect

This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Soil microbial biomass: an estimator of soil development in reclaimed lignite mine soil  

E-Print Network (OSTI)

A two-year study was conducted at the Big Brown lignite mine in Fairfield, Texas, to determine the rate and extent of recovery of the soil microbial biomass (SMB) in mixed overburden. The relationships between SMB carbon (SMBC), basal respiration and soil organic carbon (SOC) accretion was evaluated using the respiratory quotient (qCO2) and the ratio of the SMB to SOC (SMBC:SOC ratio). Newly leveled, 1-, 3-, 5-, 10-, 15-, and 23-year-old reclaimed mixed overburden as well as an unmined soil were sampled bimonthly to measure SMIBC and other parameters. Three methods [chloroform fumigation incubation (FI), chloroform fumigation extraction (FE), and substrate-induced respiration (SIR)] were used to measure SMB and compared as estimators of SMB in reclaimed mine soils. Basal respiration (CO2 evolved from untreated soil), metabolic quotient (i.e. specific respiratory activity; qCO2; C02 produced per unit mass of SMB), and the SMBC:SOC ratio (the abundance of SMB relative to SOC) were used to determine trends in microbial biomass dynamics relative to SOC accumulation. A nearly linear increase in SMB was observed over the chronosequence of mine soils (r--O.98 to 0.99) for each of the three biomass methods. Mean values of SMB from 12 sample dates ranged from 41 pg SMIBC g-1 at the 0-year site to 291 ptg SMBC g-' at the 23-year site. The unmined reference soil averaged 84 jig SMBC g-1 through the period of the study. The qCO2 declined from 0.24 to 0. 12 Mg C02-C Mg SMBC d-' during the first year and tended to stabilize near 0.06 to 0.09 as reclaimed sites matured. The ratios of SMBC:SOC increased linearly with age of site through 23 years (r--O. 97). A substantial amount of seasonal variation in SMB was observed during the two-year study. Older sites (15-and 23-years) showed significant fluctuations of SMB that correlated well with the growing season of Coastal bermudagrass. Microbial biomass peaked during mid to late summer and declined to a minimum during the cold, wet winter months. Younger sites were less affected by seasonal influences, and changes at these sites appeared more related to changes in soil moisture.

Swanson, Eric Scott

1996-01-01T23:59:59.000Z

82

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers for lignite gasification with KRW gasifiers for gasification of coal fines. Topical report (Final), April 1985-January 1986  

Science Conference Proceedings (OSTI)

A first-pass design and cost estimate was prepared for a plant to convert lignite to substitute natural gas (SNG) using Lurgi dry-bottom gasifiers to gasify the coal and the KRW fluid-bed gasifiers to gasify the coal fines. The overall plant thermal efficiency is between that of the Lurgi and KRW base case designs. The study-case design is of commercial interest compared to a Lurgi plant when the Lurgi plant coal fines cannot be sold. The study case is more capital-intensive because it requires more-expensive boilers and more of different types of process units than either base case. There is no advantage over a KRW plant design that provides a 30% lower cost of gas.

Smelser, S.C.

1986-01-01T23:59:59.000Z

83

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 1: Bare drum case  

SciTech Connect

In Part 1 of the present work a pilot rotating cylindrical drum, without an internal lifting flight system (bare), has been employed for the study of lignite motion through it, at ambient temperature. Tracer pulse stimulus-response experiments have been carried out to deduce residence time distribution (RTD) data and relate them to the operating conditions (slope, speed of revolution, etc.). Mean residence time, space-time and solids hold-up have been correlated with the drum operating conditions. Experimental data of mean axial velocity of solids have been compared with theoretical predictions and found to deviate within a {+-}15% margin. A size segregation of particles during their motion through the kiln under a variety of operating conditions has been confirmed and quantified. An average maximum divergence of 20% between the residence time of the smallest and that of the largest nominal particle sizes has been assessed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

84

Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains  

SciTech Connect

Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

Hartman, J.H.; Roth, B.; Kihm, A.J.

1997-08-11T23:59:59.000Z

85

JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING  

SciTech Connect

The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

2003-10-01T23:59:59.000Z

86

Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota  

SciTech Connect

The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

1997-06-01T23:59:59.000Z

87

Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

1994-08-01T23:59:59.000Z

88

Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification  

Science Conference Proceedings (OSTI)

The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M. [Ankara University, Ankara (Turkey). Dept. of Chemistry

2008-07-01T23:59:59.000Z

89

LIGNITE FUEL ENHANCEMENT  

Science Conference Proceedings (OSTI)

The Design Team continued to conference this quarter. Their primary task during this timeframe was to finalize the dryer design based on information learned from the NDIC Pilot work and detailed design discussions at Barr offices in August. Heyl-Patterson was tasked with incorporating all comments and drafting drawings. They submitted a preliminary proposal which spawned detailed discussions about tube bundle, air locks, and fire suppression systems. The type of fire protection specified dictated the final structural arrangement. Three meetings were spent discussing the pro's and con's of suppression vs. ventilation systems. In the end, the dryer and bucket elevator will have suppression systems and the remaining equipment will be explosion vented. This is in agreement with GRE's current insurer, FM Global. Three inlet airlocks were reduced to two and four outlets were reduced to three. The inlet plenum was subdivided for greater flexibility and sparging air added in the outlet plenum. It was also decided to use bundles with varied material, diameter, and tube & fin spacing. This will be completed in an effort to identify for us which configuration has the best heat transfer characteristics using coal as the fluidizing medium. The dryer will also be delivered in four pieces. This will allow for installation through the current access door on the Air Heater deck. The Input/Output list and functional description was completed and forwarded to Honeywell to finalize controls. Major pieces of equipment received this quarter were the Bucket Elevator, Liewell Screen, conveyors, and Motor Control Center. ICI completed removal of the wall separating Silo 28 from the dryer area; handrail and grating between the two areas has also been removed. They relocated a blowdown line. They moved an Air Heater basket access hatch.

Charles Bullinger

2005-02-07T23:59:59.000Z

90

Copyrolysis of Seyitomer-lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization  

SciTech Connect

Pyrolytic behaviors of biomass/coal mixtures were investigated under a heating rate of 7{sup o}C min{sup -1}, over a range of pyrolysis temperatures between 400 and 700{sup o}C, and the blending ratio of coal in mixtures was varied between 0 and 100 wt %. The results indicated that considerable synergistic effects were observed during the copyrolysis in a fixed-bed reactor leading to an increase in the oil yield at lower than coal blending ratios of 33%. At the lower blending coal ratio conditions, the oil yields are higher than the expected ones, calculated as the sum of oil fractions produced by pyrolysis of each separated component. The maximum pyrolysis oil yield of 39.5% was obtained with 5% of lignite mixed with safflower seed. The obtained oils are characterized by Fourier transform infrared spectroscopy, {sup 1}H nuclear magnetic resonance, gas chromatography mass spectrometry, and elemental analysis. These findings can potentially help to understand and predict the behavior of coal/biomass blends in practical liquefaction systems. 33 refs., 8 figs., 4 tabs.

Ozlem Onay; Evren Bayram; O. Mete Kockar [Anadolu University, Eskisehir (Turkey). Porsuk Vocational School

2007-09-15T23:59:59.000Z

91

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

92

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

93

Recovery of Carbon and Nitrogen Cycling and Microbial Community Functionality in a Post-Lignite Mining Rehabilitation Chronosequence in East Texas  

E-Print Network (OSTI)

Surface mining for coal alters the original soil profile characteristics and the associated physical, chemical, and biological conditions. Our objectives were to compare soil characteristics and the distribution of nutrients to 1 m depth over a chronosequence of 40 years to determine when a reclaimed mine soil (RMS) returned to premined conditions. We sampled 5 sites aged 0 to 20 years reclaimed by the crosspit spreader technique (CP) and 3 sites aged 20 to 40 years reclaimed by the mixed overburden technique (MO). An unmined site (UM) served as a control. Changes in soil texture (sand to clay loam) after mining corresponded with increased macroaggregation (>2 mm) and enhanced C sequestration up to ~250 Mg C ha-1 at the MO20 site. Soil chemical [pH, electrical conductivity (EC), and sodium adsorption ratio (SAR)] and physical properties [bulk density (BD) and texture] met or exceeded reclamation and revegetation standards. Most soil C was associated with organic matter, but a small amount of lignitic C was detected in some samples. Soil organic C and N reached or exceeded premined concentrations after 0 and 10 years, respectively. Soil NO3--N and P did not reach premined conditions, but soil K, Ca, Mg and S exceeded premined conditions and stratified after 10-15 years. Micronutrients exceeded premined concentrations. Soil microbial biomass and mineralization rates recovered after 16 years of reclamation. Bacteria and fungi recovered to premined levels after 20 years. The CP20 site was most closely related to the UM site, but sites 10 years and older were comparable. Dominant phyla (Actinobacteria, Acidobacteria and Proteobacteria; 70% of all sequences) returned to premined levels after 10 years, which correlated with soil quality indicators, suggesting the importance of these phyla in soil health. Community-level physiological profiles did not differ between sites and metabolic diversity peaked at CP15 and CP20. GeoChip showed separation between the UM sites and reclamation sites. Soil microbial functionality appeared to recover faster than taxonomic composition of the soil microbial community. Further analysis of functional genes will expand upon this research so that we may better quantify soil quality in RMS.

Ng, Justin

2012-08-01T23:59:59.000Z

94

Microsoft Word - LB-Lignite.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal in ND Revised Deliverable Schedule Additional Information In the upcoming months, well stimulation will continue as necessary to ready the wells for CO 2 injection. The...

95

Separating lignite hydrogenation sludge by vacuum distillation  

SciTech Connect

Vacuum distillation was studied as a means to separate coal hydrogenation sludge. Additives containing mainly aromatic hydrocarbons intensified the process. 4 refs., 2 figs., 5 tabs.

Gorlov, E.G.; Grobanova, L.T.; Belyavtseva, N.V. [Rossiskaya Akademiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

96

Annotated bibliography of coal in the Caribbean region. [Lignite  

SciTech Connect

The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

Orndorff, R.C.

1985-01-01T23:59:59.000Z

97

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

coal, lignite, peat, and oil shale, Crude oil and naturalcoal, lignite, peat, and oil shale, Crude oil and naturalcoal, lignite, peat, and oil shale. Crude oil and natural

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

98

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

coal, lignite, peat, and oil shale. [2] Crude oil, naturalcoal, lignite, peat, and oil shale. [2] Crude oil, naturalcoal, lignite, peat, and oil shale. [2] Crude oil, natural

Fridley, Ed., David

2008-01-01T23:59:59.000Z

99

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

100

Reduction in Mercury Emissions with Lignite Coke W. Esser-Schmittmann, J. Wirling and U. Lenz  

E-Print Network (OSTI)

). Therefore, without cooling the flue gas, significant quantities of mercury will pass through the particulate, page 4824. Licata, A., et al, June 1994, "An Economic Alternative to Controlling Acid Gases, Mercury electrostatic precipitator combination. -Selective Non-Catalytic Reduction System to reduce nitrogen oxide

Columbia University

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

deposition from coal-fired power plants probably had akm downwind of a coal-fired power plant (sites Ia, II, andterm emissions from coal-fired power plants to forest soils

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

102

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Production [1] Hard coal, lignite, peat, and oil shale. [2]Production Changes Imports Exports Russian Federation World [1] Hard coal, lignite, peat, and oil shale. [Production India Russian Federation Japan World [1] Hard coal, lignite, peat, and oil shale. [

Fridley, Ed., David

2008-01-01T23:59:59.000Z

103

Program 054  

NLE Websites -- All DOE Office Websites (Extended Search)

FF 405 - 605 Basin Electric Antelope Valley 1 ND Lignite FF 404 - 504 Great River Energy Stanton 1 ND Lignite ESP 305 - 505 Minnkota Power Milton R. Young 2 ND Lignite...

104

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

105

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

in Lignite Coal in Lignite Coal Plains CO 2 Reduction (PCOR) Partnership RCSP Annual Meeting Pittsburgh, Pennsylvania November 17, 2009 Darren Schmidt, P.E. Energy & Environmental Research Center Lignite Field Validation Test Burke County, North Dakota Goal and Objectives Goal * Determine the feasibility of simultaneous carbon dioxide (CO 2 ) sequestration and natural gas production from a lignite coal seam. Objectives * Inject CO 2 into lignite coal seam and monitor CO

106

Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe  

Science Conference Proceedings (OSTI)

On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

1995-12-01T23:59:59.000Z

107

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network (OSTI)

higher for the hard coal-fired plants, at about 180 to 300for the hard coal- and lignite-fired plants, but the net GHGlower than for coal- and lignite-fired plants. This is due

Sathre, Roger

2011-01-01T23:59:59.000Z

108

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

control technologies at the pilot scale that show promise for application at plants burning Gulf Coast lignite, or a blend with subbituminous coal. Gulf Coast lignite is one of...

109

Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

110

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 7 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

111

Table 8.4c Consumption for Electricity Generation by Energy Source ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

112

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur ...

113

www.eia.gov  

U.S. Energy Information Administration (EIA)

Coal includes anthracite, bituminous, subbituminous and lignite coal. ... DOE, Office of Electricity Delivery and Energy Reliability, Form OE-781R, ...

114

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network (OSTI)

kerosene other kerosene shale oil gas/diesel oil residualbituminous coal lignite oil shale other petroleum products (

Fridley, David

2011-01-01T23:59:59.000Z

115

Notes for International Energy Statistics  

U.S. Energy Information Administration (EIA)

... lignite, brown coal, and for Estonia, oil shale. Coal / Consumption. United States coal consumption is from Energy Information Administration, ...

116

Table 8.2d Electricity Net Generation: Commercial and ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Batteries, chemicals, hydrogen, pitch, purchased steam, ...

117

Coordinating author Maurizio Cocchi  

E-Print Network (OSTI)

and agricul- tural wastes, natural gas, petroleum, oil shale, coal, lignite) and used in a number of ways

118

Present coal potential of Turkey and coal usage in electricity generation  

SciTech Connect

Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

2009-07-01T23:59:59.000Z

119

DOE/NETL's Mercury Emissions Control Technology R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Emissions Control Mercury Emissions Control Technology R&D Program LRC and Lignite Industry Meeting August 27-28, 2002 Bismarck, ND Thomas J. Feeley, III, Product Manager Innovations for Existing Plants LigniteResearch_TJF,082702 Presentation Outline * About NETL * IEP Program * Hg Background * Hg and lignite coals * Hg Control R&D LigniteResearch_TJF,082702 About NETL LigniteResearch_TJF,082702 * One of DOE's 17 national labs * Government owned / operated * Sites in: - Pennsylvania - West Virginia - Oklahoma - Alaska * More than 1,100 federal and support contractor employees National Energy Technology Laboratory LigniteResearch_TJF,082702 Electric Power Using Coal Clean Liquid Fuels Natural Gas Coal Production Environmental Control V21 Next Generation Carbon Sequestration Exploration & Production Refining &

120

The Investigation of Sponge Iron Production Parameters by Using ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... In the present work, the possibilities of coal-based sponge iron production for industrial applications by using domestic lignite coal were ...

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(CREST) Optimize catalysts used for conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby TX refineries and power plants for devel of...

122

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

123

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

into the substantial reserves of mid- and high-sulfur bituminous coal in Illinois, Indiana, and western Kentucky and from lignite mines in Texas and Louisiana. Appalachian coal...

124

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2011 Bituminous Subbituminous Lignite Census Division and State Receipts...

125

Great Plains Coal Gasification Project: Quarterly technical progress report, third fiscal quarter 1987-1988, January-March 1988  

SciTech Connect

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-05-31T23:59:59.000Z

126

Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)  

Science Conference Proceedings (OSTI)

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-07-29T23:59:59.000Z

127

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

- Lehigh University This project determines the feasibility of using low grade power plant waste heat to dry lignite and sub-bituminous coals before they are burned in...

128

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

of a pulverized coal power plant with post-combustionassessment of fossil fuel power plants with carbon capturestorage from lignite power plants. Int J GHG Control 2009;

Sathre, Roger

2013-01-01T23:59:59.000Z

129

Coal - Energy Explained, Your Guide To Understanding Energy ...  

U.S. Energy Information Administration (EIA)

Solar Thermal Power Plants; Solar Thermal Collectors; ... Lignite is mainly burned at power plants to generate electricity. Also on Energy Explained. Use of Coal;

130

Today in Energy | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Note: Rolling figures above represent moving 12-month averages to compensate for seasonality. Coal represents gross inland consumption of hard coal, lignite, and peat.

131

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Development National Energy Technology Laboratory (NETL) 1. Polygeneration of SNG, Hydrogen, Power, and Carbon Dioxide from Texas Lignite PDF-334KB (Dec 2004) D. Gray,...

132

Treatment of acid mine lakes.  

E-Print Network (OSTI)

??Mining of lignite in Lusatia has a long history of over 100 years. The extracted brown coal is utilized to generate electricity in three large… (more)

Schipek, Mandy

2011-01-01T23:59:59.000Z

133

NETL: News Release - DOE Regional Partnership Initiates CO2 Injection...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as four Canadian provinces (British Columbia, Alberta, Saskatchewan, and Manitoba).The Lignite Field Validation Test is one of four tests the partnership is conducting...

134

Table 8.2c Electricity Net Generation: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Solar thermal and photovoltaic (PV) energy. 2 Distillate fuel oil ...

135

www.eia.gov  

U.S. Energy Information Administration (EIA)

Anthracite kg CO2 / MMBtu Bituminous Sub-bituminous Lignite Electric Power Sector Industrial Coking ... Office of Energy Efficiency and Renewable Energy, ...

136

"Table A42. Average Prices of Purchased Energy Sources by...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonutility(c)","Total","from Utility(b)","from Nonutility(c)","Total","Total","Anthracite","Coal","Lignite","Coal Coke","Breeze","Petroleum Coke","Waste","from...

137

PURPOSE - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Waste/Other Coal (including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal) RC. tons. 20. 29. ... the Government Accountability Office, ...

138

International Energy Annual 2001 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Office of Energy Markets and End Use U.S. Department of Energy ... Coal includes anthracite, subanthracite, bituminous, subbituminous, lignite, and brown coal.

139

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forks, North Dakota Capitalizing on CO2 Storage in Lignite Coal: Biological In Situ Methane Production Subtask 2.10 would investigate potential economically viable methods for...

140

Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 ...  

U.S. Energy Information Administration (EIA)

1 Lignite resources are not mined underground in the United States. (s)=Less than 0.05 billion short tons. 2 Georgia, Maryland, North Carolina, and ...

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Industrial Sector by State, July 2013 Bituminous Subbituminous Lignite; Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight

142

Page 1 of 35 Department's 2003 milestones on page  

E-Print Network (OSTI)

of Supply Crude Oil Natural Gas B sugar Hard coal lignite fossil Conversion Gasification gy ­ Cement industry ­ Fermentation industry (Medicine, food, and bioethanol production

143

THE HYDROGEN ECONOMY A non-technical review  

E-Print Network (OSTI)

of Supply Crude Oil Natural Gas B sugar Hard coal lignite fossil Conversion Gasification gy ­ Cement industry ­ Fermentation industry (Medicine, food, and bioethanol production

144

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2011 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

145

Table 8.5b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

1 Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel. 9 Municipal solid waste from biogenic sources, landfill gas, ...

146

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Rank By Mining Method By Location 200 U.S. Energy Information Administration Annual Energy Review 2011 Anthracite Lignite Subbituminous Coal Subbituminous coal and...

147

CO2 Workshop Final Report  

Science Conference Proceedings (OSTI)

... o Great Plains Coal Gasification Plant (ND) – fueled with North Dakota lignite (2.7 million ... Most of these plants are located in China and South Africa ...

2010-08-12T23:59:59.000Z

148

Analysis of Michigan, North Dakota, South Dakota, and Texas coals  

SciTech Connect

Report gives analytical data that show composition and quality of coal, including lignite, by states. Coal fields, mining methods, and production, distribution, and use of coal are discussed.

1948-01-01T23:59:59.000Z

149

SCIENTIFIC CORRESPONDENCE CURRENT SCIENCE, VOL. 82, NO. 5, 10 MARCH 2002 507  

E-Print Network (OSTI)

the success of a long-continued search in Kachchh. Recently, from a broadly coeval (Ypresian) coal mine near in the well-known open cast lignite mines at Panandhro. The ossi- ferous outcrops are located in an opera- tional mine (HD Mine) in the Panandhro lignite field and consist of grey silty shales occurring near

Thewissen, J. G. M. "Hans"

150

ISSN 1745-9648 Bulgarian Electricity Market  

E-Print Network (OSTI)

and most of the rest is brown coal. About 90% of extraction is opencast. Most locally mined coal is used East III 840 Local lignite TPP Maritza-3 120 Local lignite TPP Bobov Dol 630 Local brown coal TPP Varna 1,260 Imported black coal TPP Russe 400 Imported black coal Cogen & autoproducers 1,800 Natural gas

Feigon, Brooke

151

Alternative anodic reactions in water splitting. Final report  

DOE Green Energy (OSTI)

An anodic depolarization path to hydrogen production through water electrolysis has been examined, using lignite, grass and household wastes. Iron was removed from lignite by extensive washing. The degree of dissolution of lignite in 5 M H/sub 2/So/sub 4/ at 100/sup 0/C is ca. 0.1 wt %. Washed lignite dissolves less than unwashed material. Cyclic voltammograms showed peaks arising from dissolved organics. Increase of temperature produced more peaks. In alkaline solution, peaks disappeared. Oxidation currents were three times greater if the lignite particles were in contact with the electrode compared with their absence from solution. Platinum anodes oxidized lignite better than PbO/sub 2/. Redox systems, added to the electrolyte, helped compound formation. Grass and household wastes gave similar results but lower oxidation currents. Compounds present in solution prior to electrolysis dissolve off the internal surfaces of lignite particles. Increased oxidation currents, caused when lignite particles came in contact with the anode, arose, not because of enhanced electrochemical reactions, but from enhanced lignite dissolution following erosion. The organic compounds eventually form CO/sub 2/; the presence of heavy oils lasts for 10 hr. Current densities up to 750 mA cm/sup -2/ at ca. 1 V should be obtainable. The hydrocarbons are formed via a Kolbe mechanism from carboxylic acids. Speculative economic considerations show that the final cost of hydrogen produced, using lignite as an anode depolarizer, is considerably cheaper than that from natural gas: $0.40 per GJ, or less, compared to $5 per GJ.

Murphy, O.J.; Bockris, J. O'M.

1984-10-01T23:59:59.000Z

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

including lignite and sub-bituminous coal, make up about half of U.S. coal production and reserves. They have lower energy and sulfur contents than bituminous coal, but higher...

153

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

coals (e.g., Powder River Basin lignite), which account for half of the worldwide coal reserves but are often considered uneconomic as energy sources due to high moisture and...

154

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

155

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: Coal Ranks Coal: Coal Ranks CLICK ON GRAPHIC TO ENLARGE This figure shows the locations and type for all of the coal deposits in the U.S. This figure shows the locations and type for all of the coal deposits in the U.S.2 Coal Types The four main types, or ranks, of coal are: Lignite - Sometimes called "brown coal," lignite is the youngest of the coal types, and has the lowest energy content, containing between 25 and 35 percent carbon. Lignite usually has not been subjected to the extreme temperatures and pressures typical of the higher energy content coal types. It is crumbly, has a high moisture content, and is typically burned in power plants for electrical production. About 20 lignite mines produce about 7 percent of total US produced coal, mostly in Texas and

156

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1...

157

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Crude oil refining Shale oil production Total of which:Crude oil refining Shale oil production Total of which:Production Changes Imports Exports I.I II.1 Hard coal, lignite, peat, and oil shale,

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

158

An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use  

E-Print Network (OSTI)

, lignite, natural gas, diesel, nuclear, wind, and hydropower. QDPV modules may have the potential carbon-based energy sources but they have longer EPBT than wind and hydropower and higher GWP. Ă? 2010

Illinois at Chicago, University of

159

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

index.htm 17. Higman C. Gasification. 2 nd edition. Boston:J, Cheremisinoff NP. Gasification Technologies: A Primer forof lignite char pressurized gasification with CO 2 , H 2 and

Lu, Xiaoming

2012-01-01T23:59:59.000Z

160

Word Pro - Untitled1  

Annual Energy Outlook 2012 (EIA)

subbituminous coal, and lignite. 2 Fuel oil nos. 1, 2, and 4. For 1973-1979, data are for gas turbine and internal combustion plant stocks of petroleum. For 1980-2000, electric...

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guidelines for Manuscript Preparation for Publication in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

cement pyroprocess. The European Cement Research Academy (ECRA) has estimated that modern anthracite- and lignite-fired power plants emit 750 or 950 grams(g) CO 2 kWh,...

162

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

163

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capitalizing on Carbon Dioxide Storage in Lignite Coal: Biological In Situ Methane Production CX(s) Applied: B3.6 Date: 06022010 Location(s): Grand Forks, North...

164

Use of Coal Drying to Reduce Water Consumed in Pulverized Coal...  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS METHODOLOGY AND ASSUMPTIONS 41 Fuel 41 Dryer Design 41 Air Preheater (APH) 41 Fan Power 42 Mill Power 42 Combustion Calculations 43 Energy Balance 45 RESULTS FOR LIGNITE...

165

NETL: Utilization Projects - Western Research Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Applications Background Montana-Dakota Utilities operates fluidized bed combustor burning North Dakota lignite in a sand bed. The ash material can't be used in conventional...

166

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

fuel, lignite, and petroleum coke and/ or crude oil), 86% ofalternatives such as petroleum coke and/ or crude oil withinEFj,js relevant to petroleum coke and crude oil were not

McKone, Thomas E.

2011-01-01T23:59:59.000Z

167

Mesaba Energy Project  

NLE Websites -- All DOE Office Websites (Extended Search)

ConocoPhillips E-Gas(tm) gasifier that converts carbonaceous feedstock-coal, petroleum coke, lignite or other high-carbon solids-to hydrogen-rich synthesis gas (syngas) and a...

168

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

169

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

170

Mineral Leases by Political Subdivisions (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes local political subdivisions to lease lands they own for the development of mineral interests, including coal and lignite. A public hearing process is required prior to...

171

Southern Company Services, Power Systems Development Facility  

E-Print Network (OSTI)

Lignite coal presents opportunities as well as challenges as a feedstock for an integrated gasification combined cycle power plant. It is relatively inexpensive, easily accessible for mining, highly reactive and thus readily converted to syngas, and it is abundant—accounting for nine percent of demonstrated U.S. coal reserves (EIA, 2007). On the other hand, lignite is characterized by high moisture and ash contents and low heating value compared to higher rank coals. While these physical

Johnny Dorminey; John Northington; Roxann Leonard; Ruth Ann Yongue

2009-01-01T23:59:59.000Z

172

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

173

Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil  

SciTech Connect

To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R. [Rutherglen Center, Rutherglen, Vic. (Australia)

2008-07-15T23:59:59.000Z

174

Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece  

SciTech Connect

West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R. [Technological Educational Institute (TEI) of West Macedonia, Department of Pollution Control Technologies, Koila, Kozani, 50100 (Greece)

2008-08-07T23:59:59.000Z

175

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

Edward K. Levy; Nenad Sarunac; Wei Zhang

2004-10-01T23:59:59.000Z

176

NETL: News Release - Regional Partner Launches Drilling Test in DOE's  

NLE Websites -- All DOE Office Websites (Extended Search)

August 30, 2007 August 30, 2007 Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program Project Focuses on Greenhouse Gas Storage in Lignite Seam, Methane Gas Recovery MORGANTOWN, WV - As an integral part of the U.S. Department of Energy's effort to develop carbon sequestration technologies to capture and permanently store greenhouse gases, the Plains CO2 Reduction (PCOR) Partnership has begun drilling operations to determine the suitability of a North Dakota lignite coal seam to simultaneously sequester the greenhouse gas carbon dioxide and produce valuable coalbed methane. The PCOR Partnership-one of seven partnerships in the Department of Energy's Regional Carbon Sequestration Partnership Program, which is managed by the National Energy Technology Laboratory-plans to inject at least 400 tons of CO2 to a depth of approximately 1,200 feet into an unminable lignite seam in Burke County, ND.

177

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 2: Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Coal Coal is a mixture of organic mineral material produced by a natural process of growth and decay, or an accumulation of debris both vegetal and mineral with some sorting and stratification. The process is accomplished by chemical, biological, bacteriological and metamorphic action. 1 Forms of Coal Coal is a hydrocarbon that is classified according to the amount of heat it produces. Heat content depends upon the amount of fixed carbon it contains. Rank is the degree of progressive alteration in the transformation from lignite to anthracite. There are four primary ranks of coal: * Anthracite (semi-anthracite, anthracite, and meta-anthracite) * Bituminous (high-volatile, medium-volatile, and low-volatile) * Subbituminous * Lignite (brown coal and lignite)

178

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

179

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

180

Role of char during reburning of nitrogen oxides. First quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

Customarily, coal and lignite have not been considered viable reburning fuels for a number of reasons. NO reduction through homogeneous gas phase mechanisms is generally believed more important than the heterogeneous NO reduction on char; and coal devolatilization in the fuel rich environment generates only about 50% of the volatile hydrocarbon radicals than gaseous hydrocarbons under the same fuel-to-oxidant stoichiometry. In addition, the fuel nitrogen could result in additional nitrogen oxide emissions in the burnout stage. What has not been anticipated is the highly active nature of lignite char surface. First, it has been demonstrated in the literature that lignite char can be gasified by nitrogen oxide; second, the minerals in lignite char can catalyze the CO + NO and gasification reaction; and third, lignite char has a highly porous structure which is desirable for gas/solid reactions. The unique NO activity on char surface is expected to benefit the utilities which are involved in coal combustion and have to meet the stringent Clean Air Act Amendments of 1990. This program is aimed at a better understanding of the chemical and physical mechanisms involved in the reburning with chars. Char gasification rates will be measured with and without the presence of CO. Further, the rate of the char catalyzed CO + NO reaction will also be measured. Experiments have been conducted with a flow reactor which simulates the reburning stage. One bituminous coal and two lignites, one from North Dakota and the other from Mississippi, are used in these tasks. A unique component of this program is the use of the fractal concept in the estimations of these gas/solid reaction rates. The proposed program is designed to investigate the relative importance of these two reactions (char gasification and ash catalyzed CO + NO reactions) under reburning conditions.

Chen, Wei-Yin

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Monticello Steam Electric Station, Mount Pleasant, Texas  

SciTech Connect

Why does Monticello, a 30 year old plant, deserve recognition as one of Power's Top Plants of 2006? Because TXU has been blending Powder River Basin (PRB) coal with local lignite at the plant for the past decade, and steady reductions in air-pollutant emission rates have been the result. That positive experience has made the company confident enough to propose building nearly 9,100 MW of new coal or lignite-fired capacity in Texas by 2010 at a cost of $10 billion. The article records some of the lessons that TXU has learned about handling PRB coal safely. 4 figs., 3 tabs.

Javetski, J. [TXU Power (United States)

2006-07-15T23:59:59.000Z

182

Special precautions for multiple short-delay blasting in coal mines  

SciTech Connect

Special precautions for multiple short-delay blasting of coal in underground mines are presented in this circular to guide safety engineers, shot firers, and coal-mine inspectors. These new safety recommendations are suggested in addition to those normally followed in blasting, as outlined in the Federal Mine Safety Codes for bituminous-coal, lignite, and anthracite mines.

Nagy, J.; Hartmann, I.; Van Dolah, R.W.

1959-01-01T23:59:59.000Z

183

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

184

Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil  

DOE Patents (OSTI)

Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

Rodgers, Billy R. (Concord, TN); Edwards, Michael S. (Knoxville, TN)

1977-01-01T23:59:59.000Z

185

Land reclamation beautifies coal mines  

Science Conference Proceedings (OSTI)

The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

Coblentz, B. [MSU Ag Communications (United States)

2009-07-15T23:59:59.000Z

186

US Army Corps of Engineers  

E-Print Network (OSTI)

Mine in Freestone, Leon, and Limestone Counties, Texas by Texas Westmoreland Coal Company. APPLICANT 96° 12' 36" W. The Jewett Mine began extracting lignite (coal) in 1985. The project areaUS Army Corps of Engineers Fort Worth District Public Notice Applicant: Texas Westmoreland Coal

US Army Corps of Engineers

187

Leonardite char adsorbents  

SciTech Connect

A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750.degree. C. in the presence of a flow of an inert gas.

Knudson, Curtis L. (Grand Forks, ND)

1993-01-01T23:59:59.000Z

188

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network (OSTI)

of coal (i.e. hard coal and lignite) have different sulphur contents and as natural gas has its hydrogen: Emission Factors Emission Emission factors (grams/GJ) Natural gas Oil Coal CO2 (weight of C) 14000 19000 changes in market structure and regulation have larger impacts than privatization itself. We ask what

de Gispert, AdriĂ 

189

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

190

Polish plant beats the odds to become model EU generator  

SciTech Connect

Once a Soviet satellite, Poland is now transforming into a thoroughly modern nation. To support its growing economy, this recent European Union member country is modernizing its power industry. Exemplifying the advances in the Polish electricity generation market is the 460 MW Patnow II power plant - the largest, most efficient (supercritical cycle) and environmentally cleanest lignite-fired unit in the country. 3 photos.

Neville, A.

2009-03-15T23:59:59.000Z

191

The Politically Correct Nuclear Energy Plant  

E-Print Network (OSTI)

- and downstream processes Risks due to power plant emissions Coal Lignite Gas CC Nuclear PV (amorph) Wind Hydro-proliferation and waste. Then BUILD one! #12;Modular Pebble Bed Reactor Thermal Power 250 MW Core Height 10.0 m Core Product Barrier · Core Physics · Safety · Balance of Plant Design · Modularity Design · Core Power

192

Refuse Composition And flue-Gas Analyses from Mun;c;pal  

E-Print Network (OSTI)

(see Figure 3 and 4). In the fixed-bed or moving-bed process, the pollutant-loaded flue gases in the flue gases which occur during combustion and total approx. 350,000 m3(STP, dryt/hr is separatedReduction in Mercury Emissions with Lignite Coke W. Esser-Schmittmann, J. Wirling and U. Lenz Due

Columbia University

193

Proceedings. 20th symposium on western fuels  

SciTech Connect

This conference on lignite, brown coal and subbituminous coal covered advanced power systems, CCBs and power plant auxiliary systems, environmental issues and control technologies - mercury and multipollutants, fuel properties and upgrading, energy and water, power plant systems performance, and carbon sequestration. The poster papers are also included. Some of the papers only consist of a printout of the overheads/viewgraphs.

NONE

2006-07-01T23:59:59.000Z

194

Evaluation of a Dow-Based Gasification-Combined-Cycle Plant Using Low-Rank Coals  

Science Conference Proceedings (OSTI)

This feasibility study developed performance and cost data for two different Dow-based gasification-combined-cycle (GCC) power plants, designed to fire either Texas lignite or Wyoming subbituminous coals at a Gulf Coast location. It demonstrated the cost-effectiveness and efficiency of these plants for generating power from low-rank coals.

1989-04-25T23:59:59.000Z

195

CX-002497: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Capitalizing on Carbon Dioxide Storage in Lignite Coal: Biological In Situ Methane ProductionCX(s) Applied: B3.6Date: 06/02/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

196

Intensification of hydrologic regimes due to climate change will have important impacts on biogeochemical processes and ecosystem services, but quantifying these impacts  

E-Print Network (OSTI)

, Arsenic, and Iron Biogeochemistry at Abandoned Mining Sites Abandoned Uranium Mine Tailings in Harding Roosendaal Impact of Climate Change on Iron and Organic Carbon Chemistry: Molecular to Field Scale Uranium and surface waters. Background The site of interest, at which uraniferous lignite mining occurred

Borch, Thomas

197

Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study  

SciTech Connect

Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R. [Rutgers Centre, Rutherglen, Vic. (Australia)

2008-04-15T23:59:59.000Z

198

Development of Silica/Vanadia/ Titania Catalysts for Removal of  

E-Print Network (OSTI)

(subbituminous or lignite) coals. Therefore, need exists for a low cost Hg oxidation/capturing process. Activated power plants. However, the incremental cost of Hg control via ACI is estimated to range from $3810. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg

Li, Ying

199

Leonardite char adsorbents  

DOE Patents (OSTI)

A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750 C in the presence of a flow of an inert gas. 1 figure.

Knudson, C.L.

1993-10-19T23:59:59.000Z

200

National Waste Processing Conference Proceedings ASME 1994 A NEW PROCESSING SYSTEM FOR THE  

E-Print Network (OSTI)

it suitable for pneumatic transport and potential co-firing with pulverized coal with out modification value near that of western lignite. Fluff RDF can be co-fired with coal in a utility suspension for Co-firing Refuse Derived Fuel in Electric Utility Boilers Vol. I: Executive Summary", Electric Power

Columbia University

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Conference on "Developing Unconventional  

E-Print Network (OSTI)

Gas hydrate o Shale gas o Lignite Exploration and production o Peat Gas o Biodiesel o Oil sand o in 2009 to train manpower and to pursue research in the area of upstream Oil & Gas explorationInternational Conference on "Developing Unconventional Oil & Gas Resources" (DUOG 2013) st nd 1 , 2

Bhashyam, Srikrishna

202

The Potential of Deep Seismic Profiling for Hydrocarbon Exploration _ B. Pinet, C. Bois (Editors) and Editions Technip, Paris 1990, pp. 141-160  

E-Print Network (OSTI)

for deep hydrocarbon exploration at the time of World War II when the demand for oil rose (Sloss, 1987 producer of oil, gas, lignite and potash. The major bordering, and to, some extent, controlling structures) Geological Survey of Canada, 1 Observatory Crescent, Ottawa, Ontario KIA OY3, Canada. (2) ARCO Oil & Gas Co

Jones, Alan G.

203

Geology of the Cannonball Formation (Paleocene) in the Williston basin, with reference to uranium potential. Report of investigation No. 57  

SciTech Connect

The Paleocene Cannonball Formation is a marine, non-lignitic-bearing clastic sequence in the lower part of the Fort Union Group. It is overlain by the lignite-bearing Tongue River Formation in places and both overlain and underlain by the lignite-bearing Ludlow Formation in places. The Cannonball crops out primarily in southwest-central North Dakota and probably occurs throughout the western one-half of the state. It occurs also in northwestern South Dakota and may extend into parts of Saskatchewan and Manitoba. Poorly consolidated, very fine- to fine-grained, light to medium brownish yellow-weathering sandstone and light gray-weathering, sandy mudstone are the principal types of lithology. Mudstone generally predominates in North Dakota whereas sandstone seems to predominate in South Dakota. Although uranium in the Williston basin has been found almost entirely in lignite and nonmarine carbonaceous rocks, its occurrence in the marine Cannonball Formation is possible. If the Cannonball, Ludlow, Tongue River, and Sentinel Butte Formations are at least partly penecontemporaneous, a variety of depositional environments were in areal juxtaposition during the Paleocene. Streams originating or passing through coastal plain bogs could have carried uranium ions (derived from volcanic materials) to the Cannonball sea where they were deposited syngenetically. Epigenetic uranium may occur in Cannonball mudstones or sandstones that directly underlie the Ludlow Formation, which is known to contain volcanic materials.

Cvancara, A.M.

1976-01-01T23:59:59.000Z

204

Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report  

SciTech Connect

A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

1997-10-01T23:59:59.000Z

205

Definition: Bituminous coal | Open Energy Information  

Open Energy Info (EERE)

Bituminous coal Bituminous coal Jump to: navigation, search Dictionary.png Bituminous coal A dense coal, usually black, sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke; contains 45-86% carbon.[1][2] View on Wikipedia Wikipedia Definition Bituminous coal or black coal is a relatively soft coal containing a tarlike substance called bitumen. It is of higher quality than lignite coal but of poorer quality than anthracite. Formation is usually the result of high pressure being exerted on lignite. Its composition can be black and sometimes dark brown; often there are well-defined bands of bright and dull

206

NETL: C&CBTL - Development of Kinetics and Mathematical Models for High  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Georgia Tech Research Corporation Project Number: FE0005339 Project Description The objectives of the proposed study are to obtain experimental reactor data and develop kinetic rate expressions for pyrolysis and char gasification for the coal-biomass blends under conditions free from transport limitations, to develop a detailed understanding of the effect of pyrolysis conditions on the porous char structure, to build mathematical models that combine true kinetic rate expressions with transport models for predicting gasification behavior for a broad range of pressures and temperatures, and to investigate the physical and chemical parameters that might lead to synergistic effects in coal-biomass blends gasification.

207

Microsoft PowerPoint - ACC032503_V2_1.PPT  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council Mercury & Multi- Emissions Compliance: Strategies & Tactics March 26-27, 2003 Charlotte, NC Thomas J. Feeley, III National Energy Technology Laboratory TJF_ACC_March2003 Presentation Outline * Regulatory drivers * Program objectives * Current program * Future plans TJF_ACC_March2003 Power Plant Mercury Emissions Coal Plants Emit ~ 48 tons/year NETL Boiler Database 0 2 4 6 8 10 0 10 20 30 Lignite SubB Bituminous Lignite SubB Bituminous Total US Hg Emissions (tons per year) 0 10 20 30 0 2 4 6 8 10 Hg Emission Rate (lb per TBtu) TJF_ACC_March2003 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: Dec. 2007 Clean Power Act of 2003 * Re-introduced in Senate (S.

208

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

209

Prog054  

NLE Websites -- All DOE Office Websites (Extended Search)

PILOT-SCALE TESTING OF POTENTIAL MERCURY PILOT-SCALE TESTING OF POTENTIAL MERCURY CONTROL TECHNOLOGIES FOR TXU Description Objective This project is intended to identify and evaluate potential mercury control technologies at the pilot scale which show promise for application at plants burning Gulf Coast lignite or a blend with subbituminous coal. Gulf Coast lignite is one of the most challenging coals in regard to mercury control because of its high mercury concentration and the high percentage of elemental mercury. Background Of all the mercury control options available to be deployed to meet pending mercury control regulations, activated carbon injection (ACI) is considered to be among the most mature and, therefore, most readily available for commercial use in coal-fired power plants. However, very small amounts of carbon (generally

210

FE Press Releases and Techlines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 4, 2010 November 4, 2010 DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. November 2, 2010 Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security. October 13, 2010 National Lab Celebrates a Century of Science

211

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

Burn Non-Lignite Coal Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: October 2010 Section 1. Commentary Electric Power Data In October 2010, the contiguous United States experienced temperatures that were above average. Accordingly, the total population-weighted heating degree days for the United States were 15.6 percent below the October normal. Retail sales of electricity remained relatively unchanged from October 2009. Over the same period, the average U.S. retail price of electricity increased 1.8 percent. For the 12-month period ending October 2010, the average U.S.

212

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2009 March 17, 2009 DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations. March 10, 2009 DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam A U.S. Department of Energy/National Energy Technology Laboratory team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

213

Microsoft Word - 41763 FINAL _NETL Comments_11AUG2010_NS.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGNITE FUEL ENHANCEMENT LIGNITE FUEL ENHANCEMENT Final Technical Report Reporting Period: July 9, 2004 to March 31, 2010 DOE Award Number: DE-FC26-04NT41763 Date Report Issued: June 29, 2010 Report Submitted by: Great River Energy Authors: Charles W. Bullinger, PE Dr. Nenad Sarunac Senior Principle Engineer Principle Research Engineer Great River Energy Energy Research Center 1611 E. Century Avenue 117 ATLSS Drive, Imbt Labs Bismarck, ND 58503 Lehigh University Bethlehem, PA 18015 © 2010 Great River Energy. All Rights Reserved. This copyrighted data was produced in the performance of U.S. Department of Energy cooperative agreement no. DE-FC26-04NT41763. The copyright owner has granted to the Government, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide

214

NETL: Mercury Emissions Control Technologies - University of North Dakota,  

NLE Websites -- All DOE Office Websites (Extended Search)

Table Of Contents for Field Testing Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems Mercury Oxidation Upstream of an ESP and Wet FGD Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems The scope of the project consists of attempting to control mercury at four different power plants using two novel concepts. The first concept is using furnace additives that will enhance the sorbent effectiveness for mercury capture. The other concept involves using novel treated carbons to significantly increase sorbent reactivity and resultant capture of Hg. The furnace additives will be tested at Leland Olds Station and Antelope Valley Station while the novel sorbents will be tested at Stanton Station Units 1 &10. Related Papers and Publications:

215

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

216

Underground Coal Gasification at Tennessee Colony  

E-Print Network (OSTI)

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet technology which was acquired under a license agreement in 1975, is a continuation of the field testing program to examine the feasibility of in situ lignite gasification in Texas which began with a 27-day test burn at a site near Fairfield in August of 1976. The objectives of the Tennessee Colony Project are to examine the economic, technological and environmental aspects of a commercial project. The Project which began in August of 1978 utilizes air as the oxidizing agent and is comprised of two channels of gasification operating simultaneously. The test is presently still in progress and producing gas with a heat content in the range of 8-100 Btu.

Garrard, C. W.

1979-01-01T23:59:59.000Z

217

Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995  

Science Conference Proceedings (OSTI)

ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

NONE

1998-12-31T23:59:59.000Z

218

Progress in two major CCPI projects  

SciTech Connect

Two projects under the US Department of Energy (DOE) sponsored Clean Coal Power initiative have made significant progress in demonstrating new technologies to remove mercury from coal and enhance use of low-Btu lignite coals while increasing energy efficiency. The Wisconsin Electricity Power Company is demonstrating the TOXECON{trademark} mercury control process at its Presque Isle Power Plant near Marquette, Michigan, while Great River Energy (GRE) is showing the viability of lignite fuel enhancement at its Coal Creek Station in Underwood, North Dakota. Both projects were awarded in 2004 under Round I of the Clean Coal Power Initiative. Elsewhere in the program, six projects are in various phases of planning or operation. Plans for a third round under the CCPI were announced on May 23, 2007. 2 figs.

NONE

2007-07-01T23:59:59.000Z

219

Optimization of fossil fuel sources: An exergy approach  

SciTech Connect

We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

Camdali, U. [Development Bank of Turkey, Ankara (Turkey)

2007-02-15T23:59:59.000Z

220

Leaching and toxicity behavior of coal-biomass waste cocombustion ashes  

Science Conference Proceedings (OSTI)

Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischen) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn.

Skodras, G.; Prokopidou, M.; Sakellaropoulos, G.P. [Aristotle University in Thessaloniki, Thessaloniki (Greece). Dept. for Chemical Engineering

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

222

Thermal transformations of nitrogen and sulfur forms in peat related to coalification  

Science Conference Proceedings (OSTI)

The chemical pathways for nitrogen and sulfur transformations during coalification are elucidated by comparing the chemical forms of unaltered peats, lignites, and coals and pyrolyzed peats using a combination of spectroscopic techniques in unaltered peats, the NMR and XPS spectra are consistent with the presence of amide nitrogen. The spectra indicate that a thermal transformation of amide nitrogen into pyrrolic and pyridinic forms occurs after thermal stress that is roughly equivalent to lignitification. High total nitrogen levels are found in pyrolyzed peats relative to lignites and higher-rank coals, suggesting that some amides initially found in peat are lost via nonthermal pathways during coalification. Lignites contain the highest levels of quaternary nitrogen, and they are associated with protonated pyridinic structures. Most quaternary nitrogen is formed during lignitification as a result of the creation and interaction of basic nitrogen species with acidic functionalities and is lost completely during bitumenization. Sulfur X-ray absorption near-edge structure spectroscopy (S-XANES) of unaltered peats detect the presence of disulfide, mercapto, aliphatic sulfide, and aromatic forms of organically bound sulfur. XPS and S-XANES results show that the relative level of aromatic sulfur increases as the severity of peat pyrolysis increases. The relative level of aromatic sulfur increases through the selective loss of disulfide, aliphatic sulfide, and SO{sub 3} groups and through the transformation of aliphatic sulfur forms. Aliphatic sulfur is present mostly as mercapto and disulfide species in peats and in lignites but not in higher-rank coals. These results indicate that mercapto and disulfide species are lost after lignitification. Organic sulfur in peats exist mainly as aromatic forms, consistent with the level of aromatic sulfur increasing with the increasing degree of coalification. 91 refs., 22 figs., 6 tabs.

S.R. Kelemen; M. Afeworki; M.L. Gorbaty; P.J. Kwiatek; M. Sansone; C.C. Walters; A.D. Cohen [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

2006-03-15T23:59:59.000Z

223

Mercury Emissions from Curing Concretes that Contain Fly Ash and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the release of mercury from concrete containing fly ash and powdered activated carbon sorbents used to capture mercury. The concretes studied in this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing powdered activated carbon (PAC). Minute quantities of mercury were emitted from five concretes during the standard 28-day curing process and throughout an additional 28 days of curing for two of these concretes. Ge...

2006-09-07T23:59:59.000Z

224

Energy & Society Toolkit Appendices Toolkit Appendices  

E-Print Network (OSTI)

Bituminous Coal 25.8 25.8 24.4 27.2 Sub-bituminous Coal 26.2 26.2 25.3 27.3 Lignite 27.6 27.6 24.8 31.3 Oil Shale (& Tar Sandsc ) 29.1 29.1 24.6 34 Peat 28.9 28.9 28.4 29.5 Secondary Fuels / Products BKB & Patent

Kammen, Daniel M.

225

Anaerobic bioprocessing of low-rank coals  

SciTech Connect

The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (1) continuation of microbial consortia development and maintenance, (2) crude enzyme study using best decarboxylating organisms, (3) decarboxylation of lignite, demineralized Wyodak coal and model polymers, and (4) characterization of biotreated coals.

Jain, M.K.; Narayan, R.; Han, O.

1992-04-15T23:59:59.000Z

226

Coal plasticity at high heating rates and temperatures  

SciTech Connect

Effects of coal type on coal plasticity are investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, are studied. Different indices and structural data of a coal are shown to affect its plastic behavior. A coal-specific parameter incorporating the effects of labile bridges, oxygen, and hydrogen on plasticity has been used to successfully correlate measured values of maximum plasticity (i.e. minimum apparent viscosity) at elevated temperature with coal type.

Gerjarusak, S.; Peters, W.A.; Howard, J.B.

1992-01-01T23:59:59.000Z

227

Great Plains makes 100 billion cubic feet  

SciTech Connect

The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

Not Available

1987-03-01T23:59:59.000Z

228

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

229

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

230

Luminant's Big Brown Plant wins for continuous improvement and safety programs  

SciTech Connect

Staff from Luminant's Big Brown Plant accepted the PRB Coal Users' Group's top honour for innovative improvements to coal-handling systems and a sterling safety record. The numbers reveal their accomplishments: an average EFOR less than 4%, an availability factor averaging 90% for a plant that burns a lignite/PRB mix, and staff who worked more than 2.6 million man-hours since March 2000 without a lost-time injury. 13 photos., 1 tab.

Peltier, R.

2008-07-15T23:59:59.000Z

231

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

232

(Great Plains Gasification Associates) quarterly technical progress report, 1st quarter 1985  

SciTech Connect

This quarterly report covers the following subjects: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) raw material and energy consumption for the mine; (8) plant modifications-1985 budget; (9) plant maintenance; (10) safety; (11) industrial hygiene; (12) medical services; and (13) quality assurance/quality control activities.

Not Available

1985-04-30T23:59:59.000Z

233

Model documentation of the Short-Term Coal Analysis System  

Science Conference Proceedings (OSTI)

The short-term coal analysis system (SCOAL) is used by the Data Analysis and Forecasting Branch (DAFB) as an analytic aid to support preparation of short-term projections of bituminous coal and lignite production at the state level, and anthracite production, domestic imports of coal, and domestic and export demand for US coal at the national level. A description of SCOAL is presented which includes a general overview of the model and its analytical capabilities. (DMC)

Not Available

1983-04-01T23:59:59.000Z

234

Optimizing the physical and technological properties of cement additives in concrete mixtures  

Science Conference Proceedings (OSTI)

In this article, the physical and technological properties of phosphogypsum, borogypsum, sludges and reactor residue recovered from boric acid factor, lignite ashes, and steel making slags samples were investigated. Physical test results obtained from these cement additives were studied with comparison to the control mix. The optimal values of cementitious additives are replacement of cement and/or of replacement of natural aggregates were conducted.

Demirbas, A. [Technical Univ. of Black Sea, Akcaabat-Trabzon (Turkey). Educational Faculty] [Technical Univ. of Black Sea, Akcaabat-Trabzon (Turkey). Educational Faculty

1996-11-01T23:59:59.000Z

235

Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output  

E-Print Network (OSTI)

III that we sub- sume supply technologies in different groups. To be more precise, we distinguish 16 supply technology groups (nuclear, three lignite, four hard coal, two combined cycle gas turbine, three open cycle gas turbine, two oil... shifts between periods. Finally, higher variable costs, incurred if power stations are operated below their optimal rating, are allocated to the locally lowest de- mand. For inflexible power stations like nuclear, combined cycle gas turbines or coal...

Musgens, Felix; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

236

Program on Technology Innovation: Feasibility of Laser-Induced Breakdown Spectroscopy for Fuel Analysis—Phase II  

Science Conference Proceedings (OSTI)

In the first phase of this project, researchers evaluated the capabilities of laser-induced breakdown spectroscopy (LIBS) for fuel characterization in gasification applications. A LIBS system was assembled and optimized to identify and measure the elemental spectra from the following gasifier feedstocks: bituminous coal, lignite coal, and petroleum coke, including three blends of coal and pet coke as well as coal treated with limestone. Laboratory LIBS data were acquired and processed using artificial ne...

2011-12-30T23:59:59.000Z

237

Great Plains gasification project  

SciTech Connect

This paper describes organizational and research work on a coal gasification project which is based on North Dakota lignite. Many design changes have been incorporated into this plant, which is now being built after years of delay due to environmental, financial, and regulatory problems. Engineering and operational details are given for a project designed for conversion of 22,000 tons/day of liquid into fuel gas and several by products. Economic considerations are included.

Kuhn, A.K.

1982-04-01T23:59:59.000Z

238

Prospects for future projections of the basic energy sources in Turkey  

Science Conference Proceedings (OSTI)

The main goal of this study is to develop the energy sources estimation equations in order to estimate the future projections and make correct investments in Turkey using artificial neural network (ANN) approach. It is also expected that this study will be helpful in demonstrating energy situation of Turkey in amount of EU countries. Basic energy indicators such as population, gross generation, installed capacity, net energy consumption, import, export are used in input layer of ANN. Basic energy sources such as coal, lignite, fuel-oil, natural gas and hydro are in output layer. Data from 1975 to 2003 are used to train. Three years (1981, 1994 and 2003) are only used as test data to confirm this method. Also, in this study, the best approach was investigated for each energy sources by using different learning algorithms (scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM)) and a logistic sigmoid transfer function in the ANN with developed software. The statistical coefficients of multiple determinations (R{sup 2}-value) for training data are equal to 0.99802, 0.99918, 0.997134, 0.998831 and 0.995681 for natural gas, lignite, coal, hydraulic, and fuel-oil, respectively. Similarly, these values for testing data are equal to 0.995623, 0.999456, 0.998545, 0.999236, and 0.99002. The best approach was found for lignite by SCG algorithm with seven neurons so mean absolute percentage error (MAPE) is equal to 1.646753 for lignite. According to the results, the future projections of energy indicators using ANN technique have been obviously predicted within acceptable errors. Apart from reducing the whole time required, the importance of the ANN approach is possible to find solutions that make energy applications more viable and thus more attractive to potential users.

Sozen, A.; Arcaklioglu, E. [Gazi University, Ankara (Turkey). Technical Education Facility

2007-07-01T23:59:59.000Z

239

Additive Evaluation at Luminant Sandow Unit 4: Environmental Energy Services CoalTreat™ 500 and CoalTreat™ 710  

Science Conference Proceedings (OSTI)

BackgroundThe use of high-ash Texas lignite at the Luminant Sandow station has resulted in heavy and tenacious deposits on the furnace walls and on the superheat/reheat tube surfaces. Environmental Energy Services (EES) has developed several additives for use in coal-fired boilers to mitigate or reduce the formation and deposition of these types of deposits. Two of these additives were used during a 20-day evaluation in November 2011.ObjectivesThe objectives of ...

2013-03-06T23:59:59.000Z

240

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Task 3.8 - pressurized fluidized-bed combustion  

DOE Green Energy (OSTI)

The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

NONE

1995-03-01T23:59:59.000Z

242

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

243

Impacts of feral hogs on reclaimed surface-mined lands in eastern Texas: a management perspective  

E-Print Network (OSTI)

During the last decade, surface lignite mines in eastern Texas have experienced damage to reclaimed lands by feral hogs (Sus scrota). Specifically, feral hogs have caused damage to vegetative plantings used in the reclamation process of surface lignite mines. In addition to vegetative losses, erosion control problems and water quality impacts have been noted. Box and corral traps were evaluated for their effectiveness in capturing feral hogs. Six male and 10 female hogs were radiomonitored from January 1998 - January 1999 at Big Brown Lignite Mine in Freestone County, Texas. Annual range size, habitat use, habitat selection, and diel movements of the feral hogs were determined using a geographic information system. Corral traps were more efficient than box traps in capturing feral hogs (P reclaimed wildlife vegetation plantings and unmixed riparian corridors on the mine site. Screening cover and free water were important landscape features that influenced hog movements. Feral hogs moved greater distances from free water and screening cover deleing nighttime hours. In addition, seasonal effects of distance from these landscape features were significant. Feral hogs traveled greater distances from both gee water and screening during winter and spring, but during fall and summer months, they remained closer (P < 0.0001) to water and cover sources. Based on the information obtained from the data analysis, management strategies for reducing hog impacts at the mine site were developed. In order to decrease feral hog impacts on the mine site, use of corral traps, box traps, and vegetation management was recommended.

Mersinger, Robert C.

1999-01-01T23:59:59.000Z

244

Flash hydropyrolysis of coal. Quarterly report No. 4, October 1--December 31, 1977  

SciTech Connect

The principal objective of this program is to experimentally study the process variables and chemistry of the Flash Hydropyrolysis Process, a rapid gas-phase, non-catalytic coal hydrogenation technique developed at BNL for the conversion to gaseous and liquid fuels. The experimental equipment used for this purpose is a highly instrumented 1 inch down-flow tubular reactor originally designed to operate at up to 4000 psi and 800/sup 0/C, with coal feed up to 1 lb/hr. These conditions are being extended to include temperatures to 900/sup 0/C at pressures equal to or less than 2500 psi and coal feed to 2 lbs/hr. Coal and char analyses are performed on a routine basis. A second distillation curve was performed on the total organic liquid product, this time extending the distillation temperature range to 350/sup 0/C. The results were similar to the first curve indicating that the liquid contains approximately 50% BTX (benzene, toluene, xylene) and 50% heavier hydrocarbons. A major portion of the experimental effort was devoted to the study of the effect of coal particle residence time. A number of exploratory runs were also conducted and results are reported here, including the use of a Battelle Treated Coal (BTC-caking coal treated with CaO), a New Mexico sub-bituminous coal, a mixture of lignite and lignite char and a lignite impregnated with iron.

1978-02-01T23:59:59.000Z

245

An efficient process for recovery of fine coal from tailings of coal washing plants  

SciTech Connect

Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

2008-07-01T23:59:59.000Z

246

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures am chemical activity within the bed to limit S02 am NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Recent tests on commercial units have proven the concept. This paper reviews the progress that has been trade in the development of fluidized bed combustion boilers, as well as work currently under way in the United States and overseas. Details on the installation at Georgetown University in Washington, D.C., am at other locations are presented, am operational results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is also examined.

Mesko, J. E.

1982-01-01T23:59:59.000Z

247

State of Fluidized Bed Combustion Technology  

E-Print Network (OSTI)

A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600oF, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway, in the United States and overseas, is reviewed. Details on the fluidized bed boiler installations at Alexandria, Virginia (5,000 lbs/hr), Georgetown University (100,000 lbs/hr), and Rivesville, West Virginia (300,000 Ibs/hr) are presented, and test results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is examined. The impact of proposed new DOE and EPA regulations on solid fuels burning is also examined.

Pope, M.

1979-01-01T23:59:59.000Z

248

Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent  

SciTech Connect

Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

1995-08-01T23:59:59.000Z

249

Studies on coal devolatilization and char reactivity under PFBC conditions  

SciTech Connect

A fundamental combustion study was performed at Babcock and Wilcox's Alliance Research Center to characterize the combustion properties of Pittsburgh No. 8 and Texas lignite coals under conditions simulating pressurized fluidized-bed combustion (PFBC) using a bench-scale reactor. Over 400 combustion tests were performed at temperatures ranging from 1425{degree} to 1,725{degree}F, a maximum pressure of 280 psig, maximum superficial gas velocities of approximately 5 ft/sec to 20 ft/sec, and several oxygen concentrations using six coal particle sizes. A database of combustion profiles at PFBC conditions was obtained. A fundamental model of the chemical kinetics of the coal combustion at elevated pressures was developed based on this database. The kinetic models were used to derive the rate constants and activation energies of coal combustion for the two coals. For coal devolatilization, the effects of each test variable on the rate of reaction, the volatile yield, and the reaction order were evaluated. The apparent orders of coal devolatilization for Pittsburgh No. 8 and Texas lignite coals were determined to be less than one and vary with coal properties and test conditions. For char oxidation, the rates were reported as apparent kinetic rates and were derived based on the information which was obtained at the early stage of char oxidation. The kinetic rate constant of Pittsburgh No. 8 coal was found to be insensitive to the tested particle sizes. Increasing temperature, pressure, and superficial gas velocity increased the kinetic rate constant. The kinetic rate constant of Texas lignite coal was found to be approximately 2.5 times that of Pittsburgh No. 8 coal. The kinetic data obtained from this study in the low-temperature range was comparable to those reported by others in the literature. 40 refs., 37 figs., 15 tabs.

Not Available

1990-12-01T23:59:59.000Z

250

Studies on coal devolatilization and char reactivity under PFBC conditions  

SciTech Connect

A fundamental combustion study was performed at Babcock and Wilcox's Alliance Research Center to characterize the combustion properties of Pittsburgh No. 8 and Texas lignite coals under conditions simulating pressurized fluidized-bed combustion (PFBC) using a bench-scale reactor. Over 400 combustion tests were performed at temperatures ranging from 1425{degree} to 1,725{degree}F, a maximum pressure of 280 psig, maximum superficial gas velocities of approximately 5 ft/sec to 20 ft/sec, and several oxygen concentrations using six coal particle sizes. A database of combustion profiles at PFBC conditions was obtained. A fundamental model of the chemical kinetics of the coal combustion at elevated pressures was developed based on this database. The kinetic models were used to derive the rate constants and activation energies of coal combustion for the two coals. For coal devolatilization, the effects of each test variable on the rate of reaction, the volatile yield, and the reaction order were evaluated. The apparent orders of coal devolatilization for Pittsburgh No. 8 and Texas lignite coals were determined to be less than one and vary with coal properties and test conditions. For char oxidation, the rates were reported as apparent kinetic rates and were derived based on the information which was obtained at the early stage of char oxidation. The kinetic rate constant of Pittsburgh No. 8 coal was found to be insensitive to the tested particle sizes. Increasing temperature, pressure, and superficial gas velocity increased the kinetic rate constant. The kinetic rate constant of Texas lignite coal was found to be approximately 2.5 times that of Pittsburgh No. 8 coal. The kinetic data obtained from this study in the low-temperature range was comparable to those reported by others in the literature. 40 refs., 37 figs., 15 tabs.

1990-12-01T23:59:59.000Z

251

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report for the period ending March 31, 1986  

SciTech Connect

The principal goal of coal char-steam gasification research at the University of North Dakota Energy Research Center (UNDERC) is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process, thereby simplifying operation and improving process economics. The study included evaluations of temperature and catalyst loading effects, coal and catalyst screening, and determinations of the apparent activation energies of the steam gasification reaction. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

252

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report  

Science Conference Proceedings (OSTI)

The principal goal of coal char-steam gasification research is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Reaction conditions for these tests were based on the results of earlier work at UNDERC in which product gases from fixed-bed, atmospheric pressure, steam gasification at temperatures of 700/sup 0/ to 750/sup 0/C were found to contain 63 to 65 mole % hydrogen, with the remainder being carbon dioxide, carbon monoxide, and less than 1 mole % methane. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results of this study showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring, alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

253

Gasification of New Zealand coals: a comparative simulation study  

Science Conference Proceedings (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

254

U.S. Department of Energy Information Bridge MARC Records System  

Office of Scientific and Technical Information (OSTI)

Subject Category Subject Category Active Subject Categories ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND PEAT CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIRECT ENERGY CONVERSION ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ENERGY PLANNING, POLICY, AND ECONOMY ENERGY STORAGE ENGINEERING ENVIRONMENTAL SCIENCES FOSSIL-FUELED POWER PLANTS GENERAL AND MISCELLANEOUS GENERAL STUDIES OF NUCLEAR REACTORS GEOSCIENCES GEOTHERMAL ENERGY HYDRO ENERGY HYDROGEN INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ISOTOPE AND RADIATION SOURCES KNOWLEDGE MANAGEMENT AND PRESERVATION

255

Slide03 | OSTI, US Dept of Energy, Office of Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Slide03 Slide03 Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND PEAT CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIRECT ENERGY CONVERSION EFFECTS OF RADIATION AND OTHER POLLUTANTS ON BIOLOGICAL MATERIALS AND ORGANISMS ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ENERGY PLANNING, POLICY, AND ECONOMY ENERGY STORAGE ENGINEERING ENVIRONMENTAL SCIENCES FOSSIL-FUELED POWER PLANTS GENERAL STUDIES OF NUCLEAR REACTORS GEOSCIENCES GEOTHERMAL ENERGY HYDRO ENERGY HYDROGEN INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY INSTRUMENTATION

256

Fuels and chemicals made from solar energy. Options for the 1990's and beyond  

SciTech Connect

The concept and feasibility of using solar thermal systems to produce gaseous and liquid fuels and feedstocks from non-renewable resources such as coal, lignite, and peat and from renewable resources such as water and waste organic materials are discussed. Some of the commercially important reactions now being considered as candidates for solar thermal technology are mentioned including synthesis gas production, shale oil processing, decomposition of water, ammonia production, styrene manufacture, and inorganic chemicals processes. DOE research programs in this area are briefly discussed. (WHK)

1980-08-01T23:59:59.000Z

257

Circumferential Cracking Investigation on a Supercritical Boiler — Martin Lake Unit 3  

Science Conference Proceedings (OSTI)

Luminants Martin Lake unit 3 is one of three supercritical boilers at the site. Lignite from nearby mines is the principal source of fuel, which is mixed with 10-20% Powder River Basin or western coal to assist combustion. The boiler was originally designed to generate around 750 MW, although it is now generating up to 850 MW. In 2000, water cannons were installed in the walls as a replacement for the wall blowers. At about the same time, after 21 years of operation without signs of cracking, the unit wa...

2010-06-30T23:59:59.000Z

258

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

259

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

260

Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal  

DOE Patents (OSTI)

The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

Sheldon, Ray W. (Huntley, MT)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The place of hard coal in energy supply pattern of Turkey  

Science Conference Proceedings (OSTI)

Lignite and hard coal are the major sources of domestic energy sources of Turkey. Hard coal is produced at only one district in the country. Zonguldak Hard Coal Basin is the major power for development of the Turkish steel-making industry. It is the only hard coal basin in the country and it has, to date, supplied approximately 400 million tons of run-of-mine hard coal. This article investigates the potential of hard coal as an energy source and discusses the measures to activate the region for the future energy supply objectives of the country.

Yilmaz, A.O.; Aydiner, K. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

2009-07-01T23:59:59.000Z

262

Sulfur emissions reduction at the Great Plains coal gasification facility: Technical and economic evaluations  

SciTech Connect

This report provides an in-depth technical and economic review of over 40 sulfur control technologies that were considered for use at the Great Plains coal gasification facility in Beulah, North Dakota. The review was based on the production of substitute natural gas at rates of 152.5 {times} 10{sup 6} and 160 {times} 10{sup 6} scf/d from lignite containing 1.7% sulfur. The factors considered in evaluating each technology included the reduction of SO{sub 2} emissions, capital and operating costs, incremental cost per unit of produced gas, cost-effectiveness, and probability of success. 21 figs., 37 tabs.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy Systems Div.); Joseph, T.W. (USDOE Chicago Operations Office, Argonne, IL (USA))

1990-01-01T23:59:59.000Z

263

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

264

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

265

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

266

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

267

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

268

Wyoming geo-notes No. 2  

Science Conference Proceedings (OSTI)

After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

Glass, G.B.

1984-01-01T23:59:59.000Z

269

Process for producing electrodes from carbonaceous particles and a boron source  

Science Conference Proceedings (OSTI)

A method is described of making an electric arc furnace graphite electrode comprising: (a) calcining a carbonaceous material selected form the group consisting of anthracite coal, bituminous coal, lignites, and nos. 2 and 3 cokes; (b) mixing the calcined carbonaceous material with pitch, a lubricant, and a boron source selected from the group consisting of elemental boron, boron carbide, silicon tetraboride, and iron boride, in an amount such that the boron content is from about 0.1 to about 5.0 percent by weight of the graphite electrode to form a mixture; (c) extruding the mixture into an electrode form; (d) and graphitizing the electrode form to provide a graphite electrode.

Sara, R.V.

1988-09-13T23:59:59.000Z

270

Demonstrated reserve base of coal in the United States on January 1, 1980  

Science Conference Proceedings (OSTI)

This is the second in a series of annual summaries on minable coal in the United States, pursuant to the power plant and industrial fuel use act. The demonstrated reserve base of coal in the United States on January 1, 1980 by area, rank, and potential method of mining is given. Reserve data are given by state and by type of coal (anthracite, bithiminous, subbituminous, and lignite). An introduction, summary, and a glossary of selected coal classification terms is also included. The appendix provides the demonstrated reserve base adjustments and related notions by state. References are also included. Coal reserves for 1979 are given for comparison. 7 figures, 6 tables.

Not Available

1982-05-01T23:59:59.000Z

271

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

1993-01-01T23:59:59.000Z

272

Supercritical plants to come online in 2009  

Science Conference Proceedings (OSTI)

A trio of coal-fired power plants using supercritical technology set to enter service this year. These are: We Energies is Elm Road Generating Station in Wisconsin, a two-unit, 1,230 MW supercritical plant that will burn bituminous coal; a 750 MW supercritical coal-fired power plant at the Comanche Generating Station in Pueblo, Colo., the third unit at the site; and Luminant's Oak Grove plant in Texas which will consist of two supercritical, lignite-fueled power generation units. When complete, the plant will deliver about 1,6000 MW. Some details are given on each of these projects. 2 photos.

Spring, N.

2009-07-15T23:59:59.000Z

273

Mercury Controls Update 2011  

Science Conference Proceedings (OSTI)

In light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011, the requirement to reduce emissions of mercury and other HAPs is one of the key challenges for coal-fired power plants. The proposed MACT ruling limits mercury emissions to 1.2 lb/TBtu at the stack (4.0 lb/TBtu for lignite-fired units), based on a 30-day rolling average including startup and shutdown periods. To help electri...

2011-12-21T23:59:59.000Z

274

Fuels and chemicals made from solar energy. Options for the 1990's and beyond  

DOE Green Energy (OSTI)

The concept and feasibility of using solar thermal systems to produce gaseous and liquid fuels and feedstocks from non-renewable resources such as coal, lignite, and peat and from renewable resources such as water and waste organic materials are discussed. Some of the commercially important reactions now being considered as candidates for solar thermal technology are mentioned including synthesis gas production, shale oil processing, decomposition of water, ammonia production, styrene manufacture, and inorganic chemicals processes. DOE research programs in this area are briefly discussed. (WHK)

Not Available

1980-08-01T23:59:59.000Z

275

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

276

Proceedings of the sixteenth biennial low-rank fuels symposium  

SciTech Connect

Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.

Not Available

1991-01-01T23:59:59.000Z

277

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

278

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

279

Fusibility and sintering characteristics of ash  

Science Conference Proceedings (OSTI)

The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

2012-03-15T23:59:59.000Z

280

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

282

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, June 1--August 31, 1993  

SciTech Connect

One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. However, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. To conduct this study two coals, the North Dakota Beulah Zap lignite and the Utah Blind Canyon coals were chosen. These coals represent a low and high rank coal, respectively. In addition, the Beulah Zap lignite has a high moisture content whereas the Blind Canyon coal (hvA) bituminous has a very low moisture content. The overall objectives of this study are to develop a nuclear magnetic resonance (NMR) method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water may impact coal reactivity toward liquefaction. Different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. The objectives for this quarterly report period were (1) to measure the volumetric swelling ratio for initial and chemically-dried coals and (2) to conduct preliminary experiments concerning the exchange of water in coal with deuterium oxide (D{sub 2}O).

Netzel, D.A.

1993-11-01T23:59:59.000Z

283

NYU-DOE Pressurized Fluidized Bed Combustor Facility  

Science Conference Proceedings (OSTI)

New York University (NYU), under a Department of Energy (DOE) Contract, has designed and constructed a sub-pilot scale Pressurized Fluidized-Bed Combustor (PFBC) Facility at the Antonio Ferri Laboratories, Westbury, Long Island. The basic feature of this Experimental Research Facility is a well-instrumented, 30-inch diameter coal combustor capable of operating up to 10 atm and provided with a liberal number of ports, making it a versatile unit for study of fundamental in-bed phenomena. Additionally, the overall design features make it a flexible facility for solving a variety of industrial research problems. The main objectives of the facility are two-fold: (1) to perform research in important areas of Pressurized Fluidized-Bed Combustion like low-grade fuel combustion under pressure; and (2) to provide the PFBC community with a experimental research tool for basic and applied research in order to accelerate the commercialization of this technology. New York University will initially test the facility of burning low-grade fuels under pressure. During the test program, emphasis will be placed on burning North Dakota lignite under pressures up to 7 atm. The performance of lignite with regard to its feeding, combustion efficiency, sulfur adsorption and sorbent requirements will be investigated. This report describes the various systems of the PFBC facility and operating procedures, and presents an outline of the test program planned for the facility. Other details are provided in the Equipment and Maintenance Manual, Test Program and Data Acquisition Manual, and Training Manual.

Zakkay, V.; Kolar, A.; Sellakumar, K.; Srinivasaragavan, S.; Miller, G.; Panunzio, S.; Joseph, A.; Sundaresan, C.

1983-01-01T23:59:59.000Z

284

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-01-01T23:59:59.000Z

285

A novel approach to highly dispersing catalytic materials in coal for gasification. First quarterly report, October 1, 1989--December 31, 1989  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-12-31T23:59:59.000Z

286

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

287

Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988  

DOE Green Energy (OSTI)

We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

Schulz, J.G.; Porowski, E.N.; Straub, A.M.

1988-05-01T23:59:59.000Z

288

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advance coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less then 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. North Dakota and Texas lignite chars were slightly more reactive than a Wyoming subbituminous coal char and eight to ten times more reactive than an Illinois bituminous coal char. Pure and mineral (trona nd nahcolite) alkali carbonates and recycled ash from K/sub 2/CO/sub 3/-catalyzed steam gasification tests substantially improved low-rank coal steam gasification rates. The reactivities obtained using trona and nahcolite to catalyze the steam gasification were the highest, at nearly 3.5 times those without catalysts.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-01-01T23:59:59.000Z

289

Role of char during reburning of Nnitrogen oxides. Second quarterly report, 1996  

SciTech Connect

Reburning is an emerging three-stage combustion technology designed for the reduction of NO by introducing a small amount of reburning fuel above the primary flame where the majority of NO is chemically reduced to nitrogen. While coal, in general, has not been considered an effective reburning fuel, research at the University of Mississippi suggested that lignite has a reburning efficiency even higher than that of methane. Furthermore, heterogeneous mechanisms are more important than homogeneous mechanisms for char/NO reaction. The objectives of this research are to investigate: (1) implications of pore structure analysis, (2) parameters governing heterogeneous reactions, and (3) estimation of rates of NO reduction and mass transfer limitations. Experiments have been performed in a flow reactor with a simulated fuel gas at a stoichiometric ratio (SR) 1.1. Reburning fuels in this study include chars derived from Pittsburgh No.8 bituminous coal and Mississippi lignite. Chars were produced in N{sub 2} by suspending a sample basket in a tube furnace. Pore structure analyses include BET-N{sub 2}, BET-CO{sub 2}, and DR-CO{sub 2} surface pore size distribution, micropore volume, total pore volume, and average pore radius. These studies suggest that neither BET-N{sub 2} nor DR- CO{sub 2} surface area is a normalization factor of chars of different origin. Reaction with NO leads to closures of pores, which may be contributed by formation of surface complexes.

Chen, Wei-Yin [Mississippi Univ., University, MS (United States); Fan, L.T. [Kansas State Univ., Manhattan, KS (United States); Lu, Te-Chang; Tang, Lin [Mississippi Univ., University, MS (United States); Meng, Fang [Kansas State Univ., Manhattan, KS (United States)

1996-07-01T23:59:59.000Z

290

Organic emissions from coal pyrolysis: mutagenic effects. Environ. Health Perspect. 73  

E-Print Network (OSTI)

Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53,um) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous> high volatile bituminous> lignite> anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous>> subbituminous = lignite>> anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production.

Andrew G. Braun; Mary J. Wornat; T Amitava Mitra; Adel F. Sarofimt

1987-01-01T23:59:59.000Z

291

APEC experts` group on clean coal technology  

SciTech Connect

These proceedings are the result of a Technical Seminar of the APEC Experts Group on Clean Coal Technology, held in Thailand, September 6-10, 1993. The National Energy Policy Council of Thailand requested the seminar in response to growing public, government and private sector environmental concerns related to increased use of lignite for electricity generation in Thailand. The core of the seminar was a two-day series of 25 technical papers contained in these proceedings. The goals were: (1) to inform government officials and electric utility managers on the range of CCTs, their commercial status, environmental performance, and suitability for various types of coal, including lignite; and (2) to hold a public seminar to inform the public about the same issues set in the context of energy policy concerns that were articulated by the National Energy Policy Council. Sixty people participated in the technical seminar held in Chiang Mai, and approximately 170 people attended the public seminar in Bangkok, Thailand. All papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

1993-12-31T23:59:59.000Z

292

Turkey opens electricity markets as demand grows  

Science Conference Proceedings (OSTI)

Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

2009-06-15T23:59:59.000Z

293

Numerical investigation of the grinding process in a Beater Wheel mill with classifier  

SciTech Connect

A numerical investigation is presented for a two-dimensional simulation of the gas flow field and of the dynamic behavior of lignite particles inside Beater Wheel mills with classifier, installed in large coal-fired plants. A large number of representative particles are tracked using Lagrangian equations of motion, in combination with a stochastic model for particle turbulent dispersion. All the important mechanisms associated with the particle motion through the mill (particle-surface collisions and rebounding phenomena, fuel moisture evaporation and erosion wear of internal surfaces) are modeled. A special model is constructed to simulate the fragmentation of impacting particles and to calculate the size distribution of the final mill product. The models are regulated on the basis of available data from grinding mills of the Greek lignite power stations. The numerical code is capable of predicting the locations of significant erosion and to estimate the amount of particle mass that circulates through the mill via the classifying chamber. Mean impact velocity and impingement angle distributions along all the internal surfaces are also provided. The results indicate remarkable differences in the extent of the erosion caused at different locations of the mill. Also, the significant role of the leading blades arrangement inside the classifier on its classification performance and efficiency is elucidated.

Anagnostopoulos, J.; Bergeles, G. [National Technical Univ. of Athens (Greece)

1997-07-01T23:59:59.000Z

294

ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE  

DOE Green Energy (OSTI)

This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

2003-09-01T23:59:59.000Z

295

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

Gary Blythe

2007-05-01T23:59:59.000Z

296

The fate of alkali species in advanced coal conversion systems  

SciTech Connect

The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950[degree]C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800[degree] to 950[degree]C, the concentrations of vapor phase sodium species (Na, Na[sub 2]O, NaCl, and Na[sub 2]SO[sub 4]) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820[degree]. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na[sub 2]SO[sub 4] increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 [mu]m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

Krishnan, G.N.; Wood, B.J.

1991-11-01T23:59:59.000Z

297

The fate of alkali species in advanced coal conversion systems. Final report  

Science Conference Proceedings (OSTI)

The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950{degree}C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800{degree} to 950{degree}C, the concentrations of vapor phase sodium species (Na, Na{sub 2}O, NaCl, and Na{sub 2}SO{sub 4}) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820{degree}. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na{sub 2}SO{sub 4} increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 {mu}m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

Krishnan, G.N.; Wood, B.J.

1991-11-01T23:59:59.000Z

298

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report.

Edward Levy

2005-10-01T23:59:59.000Z

299

Facies architecture of the upper Calvert Bluff Formation exposed in the highwall of Big Brown Mine, Fairfield, Texas  

E-Print Network (OSTI)

The facies architecture and geometry of stratigraphic surfaces within a lignite bearing interval of the Paleocene upper Calvert Bluff Formation is mapped on a photomosaic of the 150 ft (50 m) high and 12,000 ft (4km) long �C� area highwall of Big Brown Mine, near Fairfield, Texas. Observed bedding and facies architecture are interpreted in terms of temporal changes, depositional environments and sequence stratigraphic setting. A three dimensional grid of 89 subsurface logs is correlated to this photomosaic to characterize log response patterns of facies. Six facies are observed: 1) lignite, 2) interdistributary bay mud, 3) prograding delta, 4) delta top mud, 5) distributary channels, and 6) incised valley fill. The six facies were defined by a combination of mapped photomosaic observations and subsurface log correlations. The lignite deposit formed in a low depositional energy, low sediment input, high-organic productivity interchannel basin. Overlying mud records overbank flooding followed by avulsion and progradation of delta deposits. Tidal-flat deposits overlying prograding delta deposits record fluctuating energy conditions on the emerging delta top. Channel deposits cutting into the delta top record lateral channel migration across delta top floodplains. These regressive delta deposits are capped by a local incised sequence boundary overlain by fluvial channel deposits inferred to have allowed sediment to bypass further basinward during lowstand. A sheet of channel deposits capping this highwall exposure records more recent erosion, followed by development of modern soil horizons. The Big Brown Mine highwall exposes a relatively complete high-frequency Paleocene stratigraphic sequence developed in an area landward of the shoreline position during maximum transgression, that progresses upsection from: 1) highstand alluvial flood basin coals, 2) a thin condensed maximum flooding interdistributary shale, 3) a thick succession of regressive deltaic strata, and 4) a high-relief, sequence-bounding erosion surface overlain by a lowstand to transgressive fill of channel deposits. Correlations with regional Wilcox Group stratigraphic studies spanning coeval shoreline and shelf strata indicate that this high-frequency sequence is within the transgressive systems tract of a 3rd order stratigraphic sequence. It appears that high-frequency sequences of sub-regional extent control the complex distribution of coal seams within central Texas.

Sturdy, Michael Dale

2006-08-01T23:59:59.000Z

300

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

Science Conference Proceedings (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in high pressure flames.

Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

2004-01-01T23:59:59.000Z

302

A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)  

SciTech Connect

Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

Lee, S.H.D.; Swift, W.M.

1990-01-01T23:59:59.000Z

303

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

DOE's STI Program and Products DOE's STI Program and Products Slide01 DOE's STI Program and Products Sharon Jordan Assistant Director for Program Integration CENDI Meeting May 5, 2010 DOE's STI Program and Products Slide02 Focus of DOE's STI Program Priority #1: * Create a centrally managed, authoritative collection of DOE STI for long-term use and access Priority #2: * Ensure worldwide scientific knowledge and discoveries are accessible to DOE researchers, thus accelerating the advancement of science DOE's STI Program and Products Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND

304

Reply to comment | OSTI, US Dept of Energy, Office of Scientific and  

Office of Scientific and Technical Information (OSTI)

Reply to comment Reply to comment Slide03 Submitted by gibsone on Fri, 2013-08-30 07:28 FY2010-cendi-jordan Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND PEAT CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIRECT ENERGY CONVERSION EFFECTS OF RADIATION AND OTHER POLLUTANTS ON BIOLOGICAL MATERIALS AND ORGANISMS ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ENERGY PLANNING, POLICY, AND ECONOMY ENERGY STORAGE ENGINEERING ENVIRONMENTAL SCIENCES FOSSIL-FUELED POWER PLANTS GENERAL STUDIES OF NUCLEAR REACTORS GEOSCIENCES GEOTHERMAL ENERGY HYDRO ENERGY HYDROGEN

305

 

U.S. Energy Information Administration (EIA) Indexed Site

Origin and Method of Transportation, 2006 Origin and Method of Transportation, 2006 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to

306

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf Coast Carbon Gulf Coast Carbon Center: Exploring Carbon Public Policy Initiatives for Texas Ian J. Duncan GCCC Vision Statement The GCCC seeks to impact global levels of GHG in the atmosphere by doing science and engineering studies that will support reduction of CO2 and methane emissions and enable the development of an economically viable, multifaceted, CO2 sequestration industry in the Gulf Coast GCCC Industry Partners KEY PUBLIC POLICY STAKEHOLDERS * Texas Legislature * State Agencies * NGO's * General Public * Power Generating Companies * Coal/Lignite Mining industry * Refineries * Chemical Industry * Cement Industry * CO2 EOR Industry * Pipeline operators PUBLIC POLICY PROJECT CLASS UT's LBJ SCHOOL Course Goal: To explore the notion ......."CO2 EOR can drive the development of infrastructure

307

NBP RFI: Communications Requirements | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleco Corporation greatly appreciates the opportunity to provide Cleco Corporation greatly appreciates the opportunity to provide information to the Department of Energy (DOE) on the communications needs of utilities. Cleco is an energy services company based in central Louisiana, serving approximately 276,000 residential, commercial and industrial customers since 1934. Cleco manages over 3,000 megawatts of electric capacity through its regulated Cleco Power LLC and unregulated Cleco Midstream Resources LLC businesses, utilizing a diverse fuel mix of lignite, coal, petcoke and natural gas. With 1,300 employees, Cleco manages and operates 70 transmission substations connected via 1,300 miles of transmission lines, together feeding over 350 distribution substations, dispersed over approximately 7,000 square miles. NBP RFI: Communications Requirements

308

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

309

NETL: Gasification Systems - Power Systems Development Facility (PSDF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Development Facility (PSDF) Power Systems Development Facility (PSDF) Project No.: DE-FC21-90MC25140 Power Systems Development Facility (PSDF) Project ID: DE-FC21-90MC25140 NETL Contact: Morgan Mosser (304) 285-4723 Organization: Southern Company Services, Inc. - Birmingham, AL Project Timeline: Start: 09/14/1990 End: 01/31/2009 Power Systems Development Facility The objectives of the work at the Power Systems Development Facility (PSDF) are two-fold; development of the Transport Gasifier for a wide range of US coals from high sodium lignite to Midwestern bituminous and provide a test platform to test various critical components that are likely to appear in future advanced coal-based power facilities producing power and fuels such as hydrogen with zero emissions. With regard to the development of the

310

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 6410 of 29,416 results. 01 - 6410 of 29,416 results. Download CX-005044: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 01/19/2011 Location(s): Tulsa County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-005044-categorical-exclusion-determination Download CX-005045: Categorical Exclusion Determination Subtask 2.14 ? Beneficial Use of Carbon Dioxide for North Dakota Lignite-Fired Plants CX(s) Applied: A9, B3.6 Date: 01/19/2011 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-005045-categorical-exclusion-determination Download CX-005046: Categorical Exclusion Determination

311

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

9/20/2011 9/20/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: July 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures

312

Gasification Â… Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

313

Drilling Waste Management Fact Sheet: Using Muds and Additives with Lower  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Muds & Additives with Lower Impacts Using Muds & Additives with Lower Impacts Fact Sheet - Using Muds and Additives with Lower Environmental Impacts Introduction to Drilling Muds Drilling fluids or muds are made up of a base fluid (water, diesel or mineral oil, or a synthetic compound), weighting agents (most frequently barium sulfate [barite] is used), bentonite clay to help remove cuttings from the well and to form a filter cake on the walls of the hole, lignosulfonates and lignites to keep the mud in a fluid state, and various additives that serve specific functions. Mud Additives click to view larger image Mud Additives Historically, the drilling industry has used primarily water-based muds (WBMs) because they are inexpensive. The used mud and cuttings from wells drilled with WBMs can be readily disposed of onsite at most onshore

314

NETL: Mercury Emissions Control Technologies - Field Demonstration of  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Demonstration of Enhanced Sorbent Injection for Mercury Control Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM will test their proprietary activated carbon-based sorbent which promotes oxidation and capture of mercury via preparation with chemical additives. ALSTOM proposes to test the sorbents at three utilities burning different coals, PacificCorpÂ’s Dave Johnston (PRB), Basin ElectricÂ’s Leland Olds (North Dakota Lignite) and Reliant EnergyÂ’s Portland Unit (bituminous). Other project partners include Energy and Environmental Research Center, North Dakota Industrial Commission and Minnkota Power who will be a non-host utility participant. Upon completion of this two year project, ALSTOM will demonstrate the capability of controlling mercury emissions from units equipped with electrostatic precipitators, a configuration representing approximately 75% of the existing units.

315

NBP RFI: Communications Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NBP RFI: Communications Requirements NBP RFI: Communications Requirements NBP RFI: Communications Requirements Cleco Corporation greatly appreciates the opportunity to provide information to the Department of Energy (DOE) on the communications needs of utilities. Cleco is an energy services company based in central Louisiana, serving approximately 276,000 residential, commercial and industrial customers since 1934. Cleco manages over 3,000 megawatts of electric capacity through its regulated Cleco Power LLC and unregulated Cleco Midstream Resources LLC businesses, utilizing a diverse fuel mix of lignite, coal, petcoke and natural gas. With 1,300 employees, Cleco manages and operates 70 transmission substations connected via 1,300 miles of transmission lines, together feeding over 350 distribution substations,

316

Microsoft Word - DOE RFI - NBP RFI Communications Requirements.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Donahue Ferry Road P.O. Box 5000 Pineville, LA 71361-5000 www.cleco.com Tel. 318-484-7400 July 12, 2010 U. S. Department of Energy Office of the General Counsel 1000 Independence Ave, SW, Room 6A245 Washington, DC 20585 Subject: NBP RFI: Communications Requirements Introduction Cleco Corporation greatly appreciates the opportunity to provide information to the Department of Energy (DOE) on the communications needs of utilities. Cleco is an energy services company based in central Louisiana, serving approximately 276,000 residential, commercial and industrial customers since 1934. Cleco manages over 3,000 megawatts of electric capacity through its regulated Cleco Power LLC and unregulated Cleco Midstream Resources LLC businesses, utilizing a diverse fuel mix of lignite, coal, petcoke and natural gas. With 1,300 employees, Cleco manages and operates 70 transmission

317

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

318

 

U.S. Energy Information Administration (EIA) Indexed Site

AEP Climate Change Strategy AEP Climate Change Strategy Bruce Braine Vice President - Strategic Policy Analysis April 7, 2008 Mountaineer Plant - New Haven, WV Northeastern Plant - Oologah, OK 2 Coal/Lignite 67% Nat. Gas/Oil 24% Nuclear 6% Pumped Storage/ Hydro/Wind 3% AEP's Generation Fleet 38,388 MW Capacity Company Overview 5.1 million customers in 11 states Industry-leading size and scale of assets: Asset Size Industry Rank Domestic Generation ~38,300 MW # 2 Transmission ~39,000 miles # 1 Distribution ~208,000 miles # 1 3 AEP's Climate Strategy § Being proactive and engaged in the development of climate policy § Investing in science/technology R&D § Taking Voluntary action now, making real reductions thru CCX (2003-07: 40 MM Tons reductions); 2011 Voluntary Commitment (additional 5 MM Tons/year reductions).

319

Categorical Exclusion Determinations: North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-002500: Categorical Exclusion Determination The Northern Great Plains Water Consortium: Subtask 5.2, Budget Period 3 CX(s) Applied: A9, A11 Date: 06/02/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory June 2, 2010 CX-002497: Categorical Exclusion Determination Capitalizing on Carbon Dioxide Storage in Lignite Coal: Biological In Situ Methane Production CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory May 26, 2010 CX-002444: Categorical Exclusion Determination Water Minimization Technology CX(s) Applied: B3.6 Date: 05/26/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory

320

ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 206 7 206 REV. 0 ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS LIGNITE ASHING SITES AT BELFIELD AND BOWMAN. NORTH DAKOTA United States Department of Energy Uranium Mill Tailings Remedial Action Project June 1997 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Available in paper copy and microfiche Number of pages in this report: 5 8 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royai Road Springfield, VA 22161 (703) 487-4650 DOE/EA-1206 REV. 0 ENVIRONMENTAL ASSESSMENT

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

322

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian .............................................. 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama ................................................... .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .................................... .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .......................................................... .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1

323

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: Commercial Gasifiers: Fixed (Moving) Bed Gasifiers Gasifier: Commercial Gasifiers: Fixed (Moving) Bed Gasifiers Lurgi Dry-Ash Gasifier Lurgi GmbH first developed Lurgi dry-ash gasification technology in the early 1930s to produce what was still known as town gas, in one of the first practical applications of gasification. The first commercial plant based on this technology was built in 1936. In the 1950s, Lurgi and Ruhrgas further developed the technology to handle bituminous coals in addition to the traditional lignite feedstock. Lurgi dry-ash gasification technology has since been used worldwide to produce synthesis gas (syngas), and is the basis of such major projects as the Sasol synfuel plants in South Africa, and the Great Plains Synfuels Plant in North Dakota. An estimated 150 Lurgi gasifiers are in operation today, mainly in South Africa, China and the United States (North Dakota).

324

doi:10.1016/j.fuproc.2005.07.001  

NLE Websites -- All DOE Office Websites (Extended Search)

The The PCO process for photochemical removal of mercury from flue gas B Christopher R. McLarnon a , Evan J. Granite b, * , Henry W. Pennline b a Powerspan Corp., P.O. Box 219, 54 Old Bay Road, New Durham, NH 03855, United States b National Energy Technology Laboratory, United States Department of Energy, P.O. Box 10940, MS 58-106, Pittsburgh, PA 15236-0940, United States Abstract A promising technology has been developed to capture and remove elemental mercury species from coal-fired power plants. Powerspan Corp. has licensed the technology and initiated a bench and pilot test program to develop the Photochemical Oxidation, or PCOi, process for commercial application with subbituminous and lignite fuels. The process has the potential to serve as a low cost mercury oxidation technology that will facilitate elemental mercury removal in a downstream SO 2 scrubber, wet electrostatic precipitator

325

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

7/22/2011 7/22/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: May 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were slightly below normal in May 2011.

326

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately

327

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

328

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

DOE's STI Program and Products DOE's STI Program and Products Slide01 Slide01 DOE's STI Program and Products Sharon Jordan Assistant Director for Program Integration CENDI Meeting May 5, 2010 Slide02 Slide02 Focus of DOE's STI Program Priority #1: * Create a centrally managed, authoritative collection of DOE STI for long-term use and access Priority #2: * Ensure worldwide scientific knowledge and discoveries are accessible to DOE researchers, thus accelerating the advancement of science Slide03 Slide03 Slide 3: DOE's Scientific Disciplines From A to Z (well, W) ADVANCED PROPULSION SYSTEMS APPLIED LIFE SCIENCES ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS BASIC BIOLOGICAL SCIENCES BIOMASS FUELS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COAL, LIGNITE, AND PEAT CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIRECT

329

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 14990 of 29,416 results. 81 - 14990 of 29,416 results. Download EA-1400: Finding of No Significant Impact Wind Turbine Project at Fairmont Reservoir, Lancaster, California http://energy.gov/nepa/downloads/ea-1400-finding-no-significant-impact Download EA-1477: Finding of No Significant Impact Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota http://energy.gov/nepa/downloads/ea-1477-finding-no-significant-impact Download EA-0170: Finding of No Significant Impact Naval Reactor Fuel Materials Facility http://energy.gov/nepa/downloads/ea-0170-finding-no-significant-impact Download EA-1613: Finding of No Significant Impact Proposed High Explosive Pressing Facility Pantex Plant, Amarillo, Texas http://energy.gov/nepa/downloads/ea-1613-finding-no-significant-impact

330

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

331

Monthly Flash Estimates of Electric Power Data  

Gasoline and Diesel Fuel Update (EIA)

6/24/2011 6/24/2011 Table of Contents 1. Commentary Page 1 2. Key Indicators of Generation, Consumption & Stocks Page 2 3. Month-to-Month Comparisons: Generation, Consumption and Stocks (Total) Page 3 4. Net Generation Trends Page 4 5. Fossil Fuel Consumption Trends Page 5 6. Fossil Fuel Stock Trends Page 6 7. Average Number of Days of Burn Non-Lignite Coal Page 7 8. Month-to-Month Comparisons: Electric Power Retail Sales and Average Prices Page 8 9. Retail Sales Trends Page 9 10. Average Retail Price Trends Page 10 11. Heating and Cooling Degree Days Page 11 12. Documentation Page 12 Monthly Flash Estimates of Data for: April 2011 Section 1. Commentary Electric Power Data The contiguous United States experienced temperatures that were above normal in April 2011.

332

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

333

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Control Technologies NOx Control Technologies Demonstration of Coal Reburning for Cyclone Boiler NOx Control - Project Brief [PDF-320KB] The Babcock & Wilcox Company, Cassville, WI Program Publications Final Reports Demonstration of Coal Reburning for Cyclone Boiler NOx Control, Final Project Report [PDF-14.4MB] (Feb 1994) Appendices 1 - 5 [PDF-2.6MB] (Feb 1994) Appendix 1: Small Boiler Simulator Description Appendix 2: Statement of Work by Task and Subtask Appendix 3: Evaluation of Reburning for NOx Control from Lignite-Fired Cyclone Boilers Appendix 4: Nelson Dewey In-Furnace gas Species and Temperature Measurements Appendix 5: Balance of Plant Details Appendix 6: Test Report - Nelson Dewey Cyclone Reburn Optimization and Performance Environmental Tests [PDF-6.2MB] (Feb 1994)

334

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 353 2.20 7.7 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 353 2.20 7.7 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

335

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

336

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal to SNG Process Coal to SNG Process The Dakota Gasification Company's (DGC) Great Plains Synfuels Plant (GPSP) located near Beulah, North Dakota, is the only coal-to-SNG gasification plant in operation worldwide, producing approximately 153 MM scf/day of SNG [56 billion scf/year] from 6 million tons/year of lignite. In addition to SNG, a variety of byproduct process trains have been incorporated to add flexibility to plant economics: GPSP also produces ammonia for use as fertilizer and pipes captured pre-combustion CO2 to two Canadian oil fields for Enhanced Oil Recovery (EOR). The plant uses 14 Lurgi dry-ash gasifiers for syngas generation, adding an equilibrium-limited fixed bed bulk-methanation process for SNG synthesis. The technology is commercially proven, evidenced by the GPSP having been in operation since 1984.

337

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 10190 of 26,764 results. 81 - 10190 of 26,764 results. Download CX-005045: Categorical Exclusion Determination Subtask 2.14 ? Beneficial Use of Carbon Dioxide for North Dakota Lignite-Fired Plants CX(s) Applied: A9, B3.6 Date: 01/19/2011 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-005045-categorical-exclusion-determination Download CX-005046: Categorical Exclusion Determination Evaluating and Commercializing a Solvent Based EOR Technology CX(s) Applied: B3.6 Date: 01/19/2011 Location(s): Santa Barbara County, California Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-005046-categorical-exclusion-determination Download CX-005047: Categorical Exclusion Determination

338

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Coal Stocks: August 2011 Coal Stocks: August 2011 Stocks Coal stocks continued the usual summer decline as utilities burned into their summer stockpile in August. Sigificant declines from August 2010 were seen in total coal stockpiles, driven by a 14 percent drop in bituminous coal stockpiles as well as a 10 percent drop in subbituminous coal stockpiles. Lignite stockpiles declined by 6 percent over the same time period. Days of burn The average number of days of burn held at electric power plants is a forward looking estimate of coal supply given a power plant's current stockpile and past consumption patterns. The average number of days of burn held on hand at electric power plants increased slightly in August 2011 compared to previous months. This was largely driven by increases in

339

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 A First Step towards Large-Scale Plants to Plastics Engineering Scientists may be able to produce plastic through a sustainable process based on the energy found in sunlight and carbon dioxide by optimizing the accumulation of fatty acids. November 5, 2010 A simulated collision of lead-ions, courtesy the ALICE experiment at CERN Geek-Up[11.05.10]: Quark Gluon Plasma, Solar-Power Generating Windows and CCS Field Studies Large Hadron Collider's (LHC) first record-setting run of high-energy proton collisions, new transparent film capable of absorbing light and generating electrical charge developed, and field test finds that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented -- all in this week's

340

EPA recognizes industry leaders for beneficial use  

Science Conference Proceedings (OSTI)

The EPA's Coal Combustion Products Partnership C{sup 2}P{sup 2})recognized industry leaders in beneficial use during the second annual C{sup 2}P{sup 2} awards ceremony held 23 October 2006 in Atlanta, Georgia. The C{sup 2}P{sup 2} program is led by the EPA with the ACAA, DOE, FHWA, USDA - Agricultural Research Services (ARS), and Utilities Solid Waste Activities Group (USWAG). The award for overall achievement went to Great River Energy of Underwood, ND who partnered with more than 10 public and private organizations to develop an extensive market for fly ash from Coal Creek Station, the world's largest lignite-fired plant. Other awards were given for environmental achievement, innovation, partnership, research and communications and outreach. 9 photos.

Goss, D. [American Coal Ash Association (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cost-effective energy efficiency in the Czech Republic  

SciTech Connect

Energy efficiency is a particularly important issue in the emerging economies of Eastern Europe. Much of the energy used in the Czech Republic is supplied by lignite, a soft brown form of coal. Its combustion is largely responsible for an extreme acid rain problem and other forms of air pollution and land use complications. Additionally, inefficient energy use is prevalent, placing additional stresses on an already fragile economy. This paper reports on a project in the mid-sized (250,000 residents) and industrial city of Plzen, in the Czech Republic. The Facility Energy Decision Screening (FEDS) process, developed by PNL for the U.S. Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP), was applied to the city to determine the level of cost-effective energy efficiency potential in the city. Significant potential was found to exist, primarily in large, cooperatively owned apartment buildings heated by district systems.

Shankle, S.A.; Secrest, T.J. [Pacific Northwest Lab., Richland, WA (United States); Zemen, Z.; Popelka, A.

1994-08-01T23:59:59.000Z

342

Prediction of the performance of on-line ash analyzers used in the quality control process of a coal mining system  

Science Conference Proceedings (OSTI)

In this article, an analytical method for the prediction of dual energy transmission performance, based on uncertainty analysis, is proposed. Comparison of theoretically computed errors to those estimated during the trial operation of dual energy transmission analyzers installed in the lignite mines of Megalopolis and Ptolemais (Greece), shows that the developed analytical method for the prediction of dual energy transmission performance is not only accurate but also explanatory, aiding engineers and quality control personnel to realize the capabilities of the analyzer. Also, by taking into consideration the reduced quality variation of mined coal, as a result of the homogenization, which takes place during mining from several benches as well as during transportation, stacking, and reclaiming, the optimal installation position of the analyzer can be selected.

Galetakis, M.; Alevizos, G.; Pavloudakis, F.; Roumpos, C.; Kavouridis, C. [Technical University of Crete, Khania (Greece)

2009-07-01T23:59:59.000Z

343

Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation  

SciTech Connect

Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

1980-11-01T23:59:59.000Z

344

Mechanical engineers' handbook, energy and power. 3rd ed.  

Science Conference Proceedings (OSTI)

In addition to chapters on thermophysical properties of fluids, fundamentals of fluid mechanics, thermodynamics, heat transfer, combustion, and furnaces, Book 4 of the Handbook features coverage of both conventional (gaseous and liquid fuels, coal, and nuclear) and alternative (solar, geothermal, and fuel cells) energy sources, plus chapters on power machinery, refrigeration and cryogenics, environmental issues, and thermal systems optimization. Much of the material in this book is new or extensively revised, including coverage of such topics as: Heat pipes; Wind turbines; Fuel cells; Thermal systems optimization; Combustion; Fans, blowers, compressors, and pumps; Indoor environmental control; and Fluid power. Chapters of particular interest are: Combustion by Eric Eddings; Furnaces by Carroll Cone; Gaseous fuels by Richard J. Reed; Coals, lignite, peat by James Keppeler; and Air pollution-control technologies by C.A. Miller.

Myer Kutz (ed.)

2005-12-15T23:59:59.000Z

345

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

2005-04-01T23:59:59.000Z

346

Cost-effective sulfur control strategies for the Great Plains gasification project  

SciTech Connect

The Great Plains gasification plant in Beulah, North Dakota, uses 14 Lurgi gasifiers to produce 152x10/sup 6/ scf/d (4.1x10/sup 6/ Nm/sup 3//d) of pipeline-quality gas from lignite. Since start-up in mid-1984, the plant has provided a serious challenge to the reliable operation of the Stretford sulfur recovery system. To address this challenge, over forty options for mitigating sulfur emissions were evaluated on an economic and technical basis, beginning at the emissions source (the stack) and working back through the plant. Although this study was directed toward providing a timely solution to the sulfur dioxide emissions problem, the status and opportunities for a number of emerging technologies were brought into focus. This evaluation is detailed here by the authors.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy and Environmental Systems Div.)

1989-09-01T23:59:59.000Z

347

HETEROGENEOUS REBURNING BY MIXED FUELS  

SciTech Connect

Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

Wei-Yin Chen; Benson B. Gathitu

2005-01-14T23:59:59.000Z

348

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

349

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01T23:59:59.000Z

350

Production of jet fuels from coal-derived liquids  

Science Conference Proceedings (OSTI)

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01T23:59:59.000Z

351

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

352

Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980  

DOE Green Energy (OSTI)

Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability products of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence

Rao, P.D.; Wolff, E.N.

1981-05-01T23:59:59.000Z

353

Shell-based gasification-combined-cycle power plant evaluations. Final report  

SciTech Connect

This report presents the results of a detailed engineering and economic evaluation of shell-based integrated gasification - combined-cycle (IGCC) power plants. Two complete nominal 1000 MW capacity Shell-based grass roots IGCC plant designs and cost estimates were prepared. The following conclusions were made: Shell-based IGCC plants firing Illinois coal and employing current technology gas turbines (2000/sup 0/F firing temperature) have the potential to be cost competitive with conventional coal-fired steam plants with FGD. Shell-based IGCC plants firing Texas lignite have the potential to generate power at costs that are competitive with those based on firing high rank coal. Shell-based IGCC plants firing Illinois No. 6 coal have equivalent performance and costs similar to Texaco-based IGCC systems.

Hartman, J.J.

1983-06-01T23:59:59.000Z

354

Effects of coal interaction with supercritical CO{sub 2}: physical structure  

Science Conference Proceedings (OSTI)

It is known that polar solvents swell coal, break hydrogen-bonds in the macromolecular structure, and enhance coal liquefaction efficiencies. The effects of drying, interaction with supercritical CO{sub 2} and degassing on the physical structure of coal have been studied using gas sorption technique and a scanning electron microscope (SEM). Both drying and interaction with supercritical CO{sub 2} drastically change the micropore and mesopore surface area, absolute volume, and volume distribution in both bituminous coal and lignite. Degassing removes debris in the pore space which allows for better analysis of the changes in the morphology that were induced by drying and exposure to supercritical CO{sub 2}. SEM reveals that interaction of bituminous coal with supercritical CO{sub 2} results in an abundance of carbon structures similar to the maceral collinite.

Gathitu, B.B.; Chen, W.Y.; McClure, M. [University of Mississippi, University, MS (United States). Dept. of Chemical Engineering

2009-05-15T23:59:59.000Z

355

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

356

SNG or syn-gas from wet solid waste and low grade fuels  

SciTech Connect

The substitute natural gas (SNG) or a synthesis gas (syngas) is prepared by partly oxidizing wastes and low-grade fuels (peat, lignite, many forms of biomass) containing 0.5-30 times as much water as the dry solids with O or air at 240-300/sup 0/C and 70-100 atmospheres. Sulfur in high S coal is oxidized selectively to SO/sub 4//sup -2/, and the heat to bring the combustible to the necessary temperature is supplied by burning part of the combustible itself. The residual solids (now 70-95% of the original fuel) are mechanically separated from all but 0.5-2 lb water. These solids come from the dewatering unit at a high pressure and may be passed, without loss of pressure or temperature to be gasified in conventional processes and gasifiers by partial oxidation.

Othmer, D.F.

1981-02-17T23:59:59.000Z

357

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

358

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

359

Supplement a to compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Fifth edition  

Science Conference Proceedings (OSTI)

This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sand and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.

NONE

1996-02-01T23:59:59.000Z

360

Combustion characterization of coals for industrial applications  

Science Conference Proceedings (OSTI)

The five parent coals ear-marked for this study have been characterized. These coals include (1) a Texas (Wilcox) lignite; (2) a Montana (Rosebud) subbituminous; (4) an Alabama (Black Creek) high volatile bituminous; and (5) a Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The FI is indicative of the ignition temperature of a given fuel on a relative basis. The combustion kinetic parameters (apparent activation energies and frequency factors) of Montana subbituminous and Pennsylvania anthracite chars have also been derived from data obtained in the Drop Tube Furnace System (DTFS). This information depicts the combustion characteristics of these two coal chars. 1 ref., 5 figs., 4 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power-generation alternatives. The Hellenic power system. Volume 2. Phase 1. Feasibility study. Export trade information  

Science Conference Proceedings (OSTI)

The report constitutes the first phase (Phase I) of a feasibility study prepared for the Public Power Corporation (PPC) for a coal-based electric power generation facility. The study considers the following: Need for a future coal-fired electric power generation facility located at or near the existing Aliveri or St. George Stations; Potential to repower the existing units at both the Aliveri and St. George Stations with coal; and Various candidate combustion technologies for new generation and for repowering. The report presents findings and conclusions with respect to power demand/supply forecast, coal procurement strategy, new generation or repowering facility configuration alternatives, and the costs of each alternative. In addition, for both new generation and repowering, the use of indigenous lignite to supplement coal use is qualitatively evaluated, and the resulting possible technical and economic impacts are discussed.

Not Available

1987-06-01T23:59:59.000Z

362

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

363

Converting syncrudes to transportation fuels: Appendix 1  

DOE Green Energy (OSTI)

Syncrudes derived from oil shale and those produced in direct coal liquefaction processes can be converted to transportation fuels using modern commercial hydroprocessing technology. Upgrading routes typically consist of hydrogen addition and removal of heteroatom and inorganic impurities. This paper reviews refining routes and discusses the properties of finished transportation fuel products (gasoline, jet fuel, diesel) produced from syncrudes. Fuels produced from bituminous coal, subbituminous coal, and lignite are contrasted with those produced from oil shale and petroleum. Transportation fuels from shale oil resemble those from waxy petroleum crudes. Upgraded products from liquids made in H-Coal, EDS, and SRC-II direct coal liquefaction processes are low in paraffin content and consist mainly of cyclic hydrocarbons. As a result, the latter have some unusual and desirable properties for transportation fuels. 14 refs., 8 figs., 8 tabs.

Sullivan, R.F.; O'Rear, D.J.; Frumkin, H.A.

1981-01-01T23:59:59.000Z

364

Microsoft Word - cvr-sht.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental impact statement (EIS) to eva- luate the potential impacts of a power generation project proposed by Mississippi Power Company in Kemper County, east-central Mississippi. The proposed power plant would demonstrate an advanced integrated gasifica- tion combined-cycle (IGCC) power generation system at a commercial scale. The facility would convert Mississippi lignite mined by North American Coal Corporation (NACC) into a synthesis gas (syngas), which would fuel the plant's combustion turbine (CT) gene- rating units. The new power plant would be capable of generating 582 megawatts (MW) (nominal capacity) of electricity while reduc- ing emissions of carbon dioxide (CO 2 ), sulfur

365

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 732 0.87 10.5 41 0.09 2.0 0 -- -- Connecticut 0 -- -- 41 0.09 2.0 0 -- -- Maine 32 0.80 7.0 0 -- -- 0 -- -- Massachusetts 700 0.88 10.7 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

366

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

SNG from Coal: Process & Commercialization SNG from Coal: Process & Commercialization The Great Plains Synfuels Plant in Beulah, North Dakota source: Dakota Gasification Great Plains Synfuels Plant The Great Plains Synfuels Plant (GPSP) in Beulah, North Dakota has been in operation producing synthetic natural gas (SNG) from lignite coal for 25 years and remains the only coal-to-SNG facility in the United States. In addition to the production of SNG, the plant also produces high purity carbon dioxide (CO2), which is distributed through a pipeline to end users in Canada for enhanced oil recovery (EOR) operations. The plant also produces and sells anhydrous ammonia, as well as the following byproducts: ammonium sulfate, krypton, xenon, dephenolized cresylic acid, liquid nitrogen, phenol, and naphtha, most of the last of which is burned as fuel

367

What's InsIde?  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Partner Launches Drilling Test in Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program." The Plains CO 2 Reduction Partnership (PCOR), one of the seven Department of Energy (DOE) Regional Carbon Sequestration Partnerships, has begun a small-scale geologic field test as part of their validation phase efforts which will focus on carbon dioxide (CO 2 ) storage in a lignite seam in Burke County, North Dakota. The PCOR Partnership, managed by the University of North Dakota's Energy and Environmental Research Center, will partner with Eagle Operating Inc. of Kenmare, North Dakota to conduct the two-year, two-phased test. During phase one, data about the coal seam will be collected in order to evaluate the

368

 

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Consumer, Origin and Method of Transportation, 2007 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A

369

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

Cost and Economic Impacts of Cost and Economic Impacts of Pending EPA Regulations Bruce Braine Vice President, Strategic Policy Analysis EIA Energy Conference April 2011 2 AEP's Generation Fleet ~39,000 MW Capacity ~80% of coal is in AEP-East Coal/Lignite 66% Gas/Oil 22% Nuclear 6% Pumped Storage/ Hydro/Wind 6% 5.2 million customers in 11 states Industry-leading size and scale of assets: Asset Size Industry Rank Domestic Generation ~39,000 MW # 2 Transmission ~39,000 miles # 1 Distribution ~214,000 miles # 1 AEP - Background 3 AEP Already Has Substantially Reduced SO 2 & NOx Emissions * Since 1980 AEP"s TOTAL generating fleet has reduced: *SO 2 emissions by over 77% *NOx emissions by ~80% 0.0 0.4 0.8 1.2 1.6 2.0 1980 1985 1990 1995 2000 2005 2010 SO2

370

 

U.S. Energy Information Administration (EIA) Indexed Site

6 6 April 2008 2006 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution table formats and data sources made in 2005 are carried over to the 2006 table except in several significant areas (See Note for 2005 changes). In 2005, EIA reported coal synfuel distributed to electric generating plants as a single national total. For its 2006 table, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data by making follow-up contacts with the synfuel plants to determine the mode of transportation from the synfuel plant to the electric generating

371

Reactivity of heat treated chars  

DOE Green Energy (OSTI)

Reactivities of a number of chars produced from American coals varying in rank from lignite to anthracite have been measured in air, CO/sub 2/, steam and H/sub 2/. The variables chosen for the study were: rank of the parent coal, inorganic matter content, particle size, reaction temperature and pressure as well as heat treatment conditions used during char preparation. In all gasification atmospheres studied, reactivity plots for different chars are essentially of the same general shape and have three distinct regions. The reaction rate first increases slowly with time. The plot then goes through a maximum in slope, followed by a lengthy region of decreasing slope as burn-off approaches 100 percent. The shape of the burn-off curves can be explained on the basis of what is known about the development of porosity and surface area in microporous chars as they undergo gasification. Using an adjustable time parameter, equations have been developed which successfully correlate the reactivity data. Char reactivity decreases, in general, with increase in rank of the parent coal. Reactivities of chars in air, CO/sub 2/ and steam increase over 150-fold in going from a low volatile bituminous to a lignite parent coal; the spread in char reactivities in H/sub 2/ is only 30-fold. Removal of inorganic matter from coal precursors prior to their charring or from chars produced from the raw coals has a marked effect on char reactivity and surface area. Removal of inorganic matter (by acid washing) decreases, in general, reactivity of chars produced from lower rank coals, whereas reactivities of chars derived from higher rank coals increase.

Mahajan, O. P.; Walker, Jr., P. L.

1977-01-01T23:59:59.000Z

372

Houston Lighting and Power Company's evaluation of coal gasification coproduction energy facilities  

SciTech Connect

In an effort to reduce the cost of electricity from Integral ed Gasification Combined Cycle (IGCC) Power Plants, the Electric Power Research Institute has embarked on a program to evaluate and potentially demonstrate a coal gasification-based coproduction energy facility. Houston Lighting Power Company (HL P) responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel. Coparticipant utilities with HL P were Central and South West Services and TU Electric. Two sites were selected for study, a Houston Ship Channel site, utilizing barge-delivered Illinois No. 6 coal blended with petroleum coke, and to satisfy C SWS and TU needs, a central Texas site utilizing Texas lignite. Stone Webster Engineering and InterFact, Inc. were engineers and consulting partners in the study.Eight cases were developed to cover the various possibilities for coproduction. Four cases involved utilizing Texas lignite and four cases involved utilizing Illinois No. 6 as fuel blended with petroleum coke. The eight cases are described. Each of the cases utilized the Shell coal gasification process and were evaluated for either base load operation using two G.E. 7F gas turbines and a spare gasifier for chemicals production or for cyclic operationusing four G.E. 7EA gas turbines and no spare gasifier. The sum of the coproducts produced over all eight cases were electricity, methanol, ammonia, and urea, depending on location and economics.

Kern, E.E.; Havemann, S.D.; Chmielewski, R.G. (Houston Lighting and Power Co., TX (United States)); Baumann, P. (InterFact, Inc., Dallas, TX (United States)); Goelzer, A.R.; Karayel, R.; Keady, G.S.; Chernoff, B. (Stone and Webster Engineering Corp., Houston, TX (United States))

1992-12-01T23:59:59.000Z

373

Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes  

SciTech Connect

Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt [Eberhard-Karls-University of Tuebingen, Tuebingen (Germany). Center for Applied Geoscience (ZAG)

2009-01-15T23:59:59.000Z

374

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the sixth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with a Powder River Basin coal to measure the effects of fluidization velocity and drying temperature on rate of drying in a batch drying process. Comparisons to computational results using the batch bed drying model show good agreement. Comparisons to drying results with North Dakota lignite at the same process conditions confirm the lignite dries slightly more rapidly than the PRB. Experiments were also carried out to determine the effects of inlet air humidity on drying rate. The specific humidity ranged from a value typical for air at temperatures near freezing to a value for 30 C air at 90 percent relative humidity. The experimental results show drying rate is strongly affected by inlet air humidity, with the rate decreasing with more humid inlet air. The temperature of the drying process also plays a strong role, with the negative impacts of high inlet moisture being less of a factor in a higher temperature drying process. Concepts for coal drying systems integrated into a power plant were developed. These make use of hot circulating cooling water from the condenser, steam extraction from the turbine cycle and thermal energy extracted from hot flue gas, in various combinations. Analyses are under way to calculate the effects of drying system design and process conditions on unit performance, emissions, and cooling tower makeup water.

Edward K. Levy; Nenad Sarunac; Wei Zhang

2004-07-01T23:59:59.000Z

375

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advanced coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less than 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. Uncatalyzed lignites and a subbituminous coal were found to be eight to ten times more reactive with steam at 700/sup 0/ to 800/sup 0/C than an Illinois bituminous coal. This relationship, within this narrow temperature range, is important as this is the range that thermodynamically favors the production of hydrogen from steam gasification at atmospheric pressure. The reactivity of the uncatalyzed coals increased 3 to 4 times with an increase in steam gasification temperature from 700/sup 0/ to 800/sup 0/C. For the catalyzed coals during steam gasification: Reactivity increased approximately 2 times over the 700/sup 0/ to 800/sup 0/C temperature range for low-rank coals catalyzed with potassium carbonate. Sodium carbonate was found to be as effective a catalyst as potassium carbonate for the steam gasification of low-rank coal chars on a mass loading basis; and naturally occurring mineral sources of sodium carbonates/bicarbonates, trona and nahcolite, are as effective in catalyzing low-rank coal steam gasification as the pure carbonates. 18 refs., 6 figs., 2 tabs.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-04-01T23:59:59.000Z

376

Power Systems Development Facility Gasification Test Campaign TC25  

DOE Green Energy (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01T23:59:59.000Z

377

The role of natural purified humic acids in modifying mercury accessibility in water and soil  

SciTech Connect

We investigated the influence of different humic acids (HAs, extracted from lignite, compost, and forest soil) on mercury mobility and availability both in a model solution and in soil samples from a mercury-polluted region. The technique of diffusive gradients in thin-films (DGT), which is capable of measuring: (i) free metal in solution: (ii) dissociated metal complexes previously mobilized by HA; (iii) mobilized metal-HA complexes that liberate metals by dissociation or by exchange reaction between the metal-HA complexes and the chelating groups on the resin-gel, was used in solutions and soils. The DGT measurements in solution, together with ultrafiltration, allowed estimation of the lability of Hg-HA complexes. Ultrafiltration results were also compared with predictions made by the windermere humic-aqueous model (WHAM). According to both these different approaches, Hg{sup 2+} resulted nearly 100% complexed by HAs, whereas results from ultrafiltration showed that 32 to 72% of the CH{sub 4}Hg{sup +} was bound to the HAs, with higher values for compost and lower values for forest and Aldrich HA. The DGT-measured mercury in soils was below 0.20 {mu}g L{sup -1}, irrespective of the extent of the contamination. Addition of HA increased the concentration of DGT-measured mercury in soil solution up to 100-fold in the contaminated soil and up to 30-fold in the control soil. The level of the increase also depended on the HA. The smallest increase (about 10 times) was found for lignite HA in both control and contaminated soils. The addition of forest HA gave the largest increases in DGT-measured mercury, in particular for the contaminated soil. Overall, the results demonstrated that DGT can be used for estimating the lability of mercury complexes in solution and for verifying enhanced mercury mobility when HA is added to contaminated soils.

Cattani, I.; Zhang, H.; Beone, G.M.; Del Re, A.A.M.; Boccelli, R.; Trevisan, M. [University of Cattolica Sacro Cuore, Piacenza (Italy)

2009-03-15T23:59:59.000Z

378

Catalysts and process developments for two-stage liquefaction. Final technical report, October 1, 1989--September 30, 1992  

SciTech Connect

Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with in sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.

Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

1992-12-31T23:59:59.000Z

379

Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation  

SciTech Connect

Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2}Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

Padture, Nitin

2011-12-31T23:59:59.000Z

380

Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation  

Science Conference Proceedings (OSTI)

Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

Nitin Padture

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microbial properties of mine spoil materials in the initial stages of soil development  

Science Conference Proceedings (OSTI)

The early years of soil genesis during mine spoil reclamation are critical for vegetative establishment and may help predict reclamation success. Mine spoils in the Halle-Leipzig region of Germany were analyzed for microbial changes following a hay mulch-seeding treatment without topsoil or fertilizer application. Microbial biomass carbon (C{sub mic}) and dehydrogenase activity (DHA) of spoils were measured each year in the first 3 yr after treatment. In the third year, bacterial community DNA fingerprints were compared with those from a reference soil. Microbial indicators were measured at three depths in the upper 10 cm of spoils at three sites with contrasting parent materials: glacial till (sandy loam), limnic tertiary sediments (high-lignite sandy clay loam), and quaternary sand and gravel (loamy sand). Before reclamation, C{sub mic} means and standard deviations of surface spoils (0-1 cm) were 9{+-}6, 39{+-}11, and 38{+-}16 mg kg{sup -1} for the loamy sand, high-lignite sandy clay loam, and sandy loam spoils, respectively. Within one year, mean C{sub mic} at the surface increased to 148{+-}70, 229{+-}64, and 497{+-}167 mg kg{sup -1}, respectively, and was significantly higher at 0 to 1 cm than at lower depths. Highest DHA and DNA yields were obtained in the 0- to 1-cm depth of the sandy loam spoils. Microbial biomass C values exhibited significant correlations with DHA, DNA yield, and extractable C for all three mine spoils. Soil microbial indices were more responsive than plant measurements to differences in parent materials.

Machulla, G.; Bruns, M.A.; Scow, K.M. [University of Halle Wittenberg, Halle Saale (Germany). Inst. for Soil Science

2005-08-01T23:59:59.000Z

382

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

383

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results  

SciTech Connect

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

Gary Blythe; MariJon Owens

2007-12-01T23:59:59.000Z

384

Gasification Plant Cost and Performance Optimization  

DOE Green Energy (OSTI)

As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

2005-05-01T23:59:59.000Z

385

Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture  

SciTech Connect

Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

Edward Levy

2012-06-29T23:59:59.000Z

386

Fossil energy program progress report for March 1978  

DOE Green Energy (OSTI)

During March we treated Illinois No. 6 coal with aqueous Na/sub 2/CO/sub 3/ and CaO at 80/sup 0/C and atmospheric pressure for use in hydrocarbonization run HC-26. The run was carried out at a coal feed rate of 8.7 lbs/hr and at 1055/sup 0/F and 300 psig with no difficulties. In support of in situ gasification, the current series of bituminous coal tests was concluded and a series of block pyrolysis tests using lignite was started. In contrast to the behavior observed with bituminous coal, drying of the lignite block occurred by a shrinking-core mechanism. The fracture toughness of 2/sup 1///sub 4/ Cr-1 Mo in. thick sections suitable for large coal conversion systems is being explored for material in the as-fabricated condition in our pressure vessel and piping materials work. Preparation of a facility for environmental exposure of materials is nearing completion. Two topical reports on ceramics and cermets are now in reproduction. In our welding and cladding program, the effort to develop the submerged arc and gas metal-arc welding methods for overlaying 2/sup 1///sub 4/ Cr-1 Mo steel is continuing. The nickel content of the deposits appears to be a major factor that affects cracking of the weld overlay deposits. In our experimental work on fireside corrosion, data for a 1000 hr exposure of type 304, 310, and 316 stainless steels, Alloy 600, and Alloy 800 heat exchanger tubes exposed in the FluiDyne Atmospheric Fluidized Bed Combustor are presented for times to 1500 hrs. Work continued on preparation of the second and third issues of the Synthetic Fuels Process Research Digest. In our work on surveys of industrial coal conversion equipment capabilities, information is being assembled concerning use of critical let-down valves, expansion joints, and mechanical connectors in demonstration plants. In our work on magnetic beneficiation of dry pulverized coal, testing of the handling characteristics and magnetic susceptability of coal from a power plant pulverizer continued.

McNeese, L.E.

1978-05-01T23:59:59.000Z

387

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical to development of new cleanup correlation techniques (the continuing goal of the CEA-73 industry consortium). Project results are intended to advance the technology progression of cleanup in horizontal welts by using a "Best Completion Practices'' well to establish a baseline analysis for development of rigsite DIF cleanup correlations. Presented in this thesis are: * Completion specifics of subject well * Audit of horizontal well design/well construction process * Documentation (on-location) of lignite practices * Laboratory analyses of DO cleanup * Well performance analysis Well audit results show that prudent DIF selection requires a thorough understanding of formation and reservoir specifics, along with completion and cleanup operations. Adequate pre-planning by lignite personnel for handling, weather problems, storage/mixing requirements and fluid property maintenance are very important for successful operations using DIF. Proper maintenance of solids control systems is essential for quality control of DIF properties. Detailed well planning by the operator (Vastar Resources), coupled with a conscientious mud service company (TBC-Brinadd, Houston), led to smooth execution of well completion/cleanup operations.aboratory analyses of field DIF samples taken during drilling show that entrained drill solids in DIF can greatly impact mudcaps removal during cleanup. However, well performance was roughly three times original expectations, achieving a stabilized gas flow rate of approximately 34 MMCF/D. Horizontal well decline type curve techniques and a proprietary analysis method developed by Conoco were used to estimate formation properties, using only wellhead production rates and pressures. Using these results, we estimated DIF cupcake removal for various reservoir permeability scenarios. Results suggest that a high percentage of DIF filtercake removal was achieved only if reservoir permeability was less than the permeability range (100-500 md) initially estimated by the operator.

Lacewell, Jason Lawrence

1999-01-01T23:59:59.000Z

388

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

389

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

2. World recoverable coal reserves as of January 1, 2009 2. World recoverable coal reserves as of January 1, 2009 billion short tons Recoverable reserves by coal rank Region/country Bituminous and anthracite Subbituminous Lignite Total 2010 production Reserves-to- production ratio (years) World total 445.0 285.9 215.2 946.1 7.954 119 United Statesa 118.4 107.2 33.1 258.6 1.084 238 Russia 54.1 107.4 11.5 173.1 0.359 482 China 68.6 37.1 20.5 126.2 3.506 36 Other non-OECD Europe and Eurasia 42.2 18.9 39.9 100.9 0.325 311 Australia and New Zealand 40.9 2.5 41.4 84.8 0.473 179 India 61.8 0.0 5.0 66.8 0.612 109 OECD Europe 6.2 0.9 54.5 61.6 0.620 99 Africa 34.7 0.2 0.0 34.9 0.286 122 Other non-OECD Asia 3.9 3.9 6.8 14.7 0.508 29 Other Central and South America 7.6 1.0 0.0 8.6 0.085 101

390

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2002 423,128 1.47 10.1 391,785 0.36 6.2 65,555 0.93 13.3 2003 467,286 1.50 10.0 432,513 0.38 6.4 79,869 1.03 14.4 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677 1.02 14.0 2006 489,550 1.59 10.5 504,947 0.35 6.1 75,742 0.95 14.4 2007 467,817 1.62 10.3 505,155 0.34 6.0 71,930 0.90 14.0

391

NETL: Mercury Emissions Control Technologies - Evaluation of MerCAP for  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MerCAP(tm) for Power Plant Mercury Control Evaluation of MerCAP(tm) for Power Plant Mercury Control URS Group and its test team will perform research to further develop the novel Mercury Control via Adsorption Process (MerCAP™). The general MerCAP™ concept is to place fixed structures into a flue gas stream to adsorb mercury and then periodically regenerate them and recover the captured mercury. EPRI has shown that gold-based sorbents can achieve high levels of mercury removal in scrubbed flue gases. URS is proposing tests at two power plants using gold MerCAP™, installed downstream of either a baghouse or wet scrubber, to evaluate mercury removal from flue gas over a period of 6 months. At Great River Energy’s Stanton Station, which burns North Dakota lignite, sorbent structures will be retrofitted into a single compartment in the Unit 10 baghouse enabling reaction with a 6 MWe equivalence of flue gas. At Southern Company Services’ Plant Yates, which burns Eastern bituminous coal, gold-coated plates will be configured as a mist eliminator (ME) located downstream of a 1 MWe pilot wet absorber , which receives flue gas from Unit 1.

392

Catalyst dispersion and activity under conditions of temperature- staged liquefaction  

DOE Green Energy (OSTI)

The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1991-09-01T23:59:59.000Z

393

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Coal Rank, 2012 Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Table 31. Average Sales Price of Coal by State and Coal Rank, 2012 (dollars per short ton) U.S. Energy Information Administration | Annual Coal Report 2012 Coal-Producing State Bituminous Subbituminous Lignite Anthracite Total Alabama 106.57 - - - 106.57 Alaska - w - - w Arizona w - - - w Arkansas w - - - w Colorado w w - - 37.54 Illinois 53.08 - - - 53.08 Indiana 52.01 - - - 52.01 Kentucky Total 63.12 - - - 63.12 Kentucky (East) 75.62 - - - 75.62 Kentucky (West) 48.67 - - - 48.67 Louisiana - - w - w Maryland 55.67 - - - 55.67 Mississippi - - w - w Missouri w - - - w Montana w 17.60 w - 18.11 New Mexico w w - - 36.74 North Dakota - - 17.40 - 17.40 Ohio 47.80 - - - 47.80 Oklahoma 59.63 - - - 59.63 Pennsylvania Total 72.57

394

NETL: Gasifipedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: DOE Supported R&D for Gasifier Optimization/Plant Supporting Systems Gasifier: DOE Supported R&D for Gasifier Optimization/Plant Supporting Systems Low-rank Coal Optimization/Transport Gasification Transport Reactor Integrated Gasification (TRIG(tm)), originally developed by Kellogg, Brown, and Root (KBR) based on the company's fluidized catalytic cracking technology, has been enhanced through extensive testing by Southern Company at the Power Systems Development Facility in cooperation with NETL. Testing corroborated that the gasifier effectively handles low-rank coals (e.g., Powder River Basin lignite), which account for half of the worldwide coal reserves but are often considered uneconomic as energy sources due to high moisture and ash contents. Research in this area will focus on the development of gasification performance prediction models to reduce uncertainties associated with the use of low-rank coals and co-feeds, including biomass. The development of a hierarchy of co-feed TRIG models with uncertainty quantification will provide a practical framework for quantifying various types of uncertainties and assessing the impact of their propagation through computer models of the physical system. Reducing the uncertainty of using these feeds will enable gasification designers and operators, leading to greater use of these resources.

395

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

in IGCC Projects in IGCC Projects The Great Plains Synfuels Plant has long been gasifying coal to produce synthetic natural gas and ammonia, and capturing CO2 which is pipelined to Canada for EOR in the Weyburn oil field. Several new IGCC-based projects in the United States will be greatly expanding the scope of CO2 capture and use/storage. Kemper County Energy Facility Mississippi Power's Kemper County facility is in late stages of construction. It will be a lignite-fuel IGCC plant, generating a net 524 MW of power from syngas, while capturing over 65% of CO2 generated. The CO2 will be sent by pipeline to depleted oil fields in Mississippi for enhanced oil recovery operations. Hydrogen Energy California (HECA) Project HECA will be a 300MW net, coal and petroleum coke-fueled IGCC polygeneration plant (producing hydrogen for both power generation and fertilizer manufacture). Ninety percent of the CO2 produced will be captured and transported to Elk Hills Oil Field for EOR, enabling recovery of 5 million additional barrels of domestic oil per year.

396

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

DOE Green Energy (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

397

Investigation of the rank dependence of tar evolution  

SciTech Connect

The objectives of this study are to develop an improved understanding of the process of coal tar evolution, its relationship to the structural characteristics of the parent coal, and the dependence of the chemical and physical properties of the tar products on the conditions of devolatilization. Data from this study are expected to allow hypothesis testing and refinements of coal devolatilization models relevant to the pulverized coal combustion process. The program is divided into seven major technical areas: tar evolution rates in rapid heating conditions; molecular weight and vapor pressure characteristics of tars; chemical structure and calorific values of tars; influence of interphase mass transport phenomena; gas phase secondary reactions of primary'' tars; parent coal nitrogen evolution during devolatilization; and model hypothesis testing. A range of coal ranks, from a Texas lignite to a Pennsylvania anthracite, are employed in the investigation. In addition, a high temperature polymer, a polyimide, is utilized as an additional reference case. The polyimide serves as a truly polymeric reference material for examining the nitrogen evolution behavior of coal. The samples are subjected to elemental composition determination, infrared absorbance characteristics, calorific value, high temperature ash analysis, and maceral composition. Consideration is being given to NMR analysis as well as tetrahydrofuran (THF) solubility. Results are discussed. 4 refs., 27 figs., 4 tabs.

Freihaut, J.D.; Proscia, W.M.

1990-01-01T23:59:59.000Z

398

Investigation of the rank dependence of tar evolution  

SciTech Connect

The objective of this study are to develop an improved understanding of the process of coal tar evolution, its relationship to the structural characteristics of the parent coal, and the dependence of the chemical and physical properties of the tar products on the conditions of devolatilization. Data from this study are expected to allow hypothesis testing and refinements of coal devolatilization models relevant to the pulverized coal combustion process. A range of coal ranks, from a Texas lignite to a Pennsylvania anthracite, are employed in the investigation. In addition, a high temperature polymer, a polyimide, is utilized as an additional reference case. The polyimide serves as a truly polymeric reference material for examining the nitrogen evolution behavior of coal. The samples are subjected to elemental composition determination, infrared absorbance characterization, calorific value measurement, high temperature ash analysis, and maceral composition. Potential tar yields are determined by long hold time heated grid investigations of each coal at a final temperature and heating rate observed to maximize tar yields for the reference coal. Relative tar evolution kinetic behavior is determined by zero hold time heated grid investigations of each coal. 4 refs., 13 figs., 2 tabs.

Freihaut, J.D.; Proscia, W.M.

1990-01-01T23:59:59.000Z

399

Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

The objectives of this project are to develop a new catalyst; the kinetics for this catalyst; reactor models for trickle bed, slurry and fixed bed reactors; and to simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. A hydrogen-lean synthesis gas with a ratio of H{sub 2}/CO of 0.5 to 1.0 is produced from the gasification of coal, lignite, or biomass. Isobutylene is a key reactant in the synthesis of methyl tertiary butyl ether (MTBE) and of isooctanes. MTBE and isooctanes are high octane fuels used to blend with low octane gasolines to raise the octane number required for modern automobiles. The production of these two key octane boosters is limited by the supply of isobutylene. MTBE, when used as an octane enhancer, also decreases the amount of pollutants emitted from the exhaust of an automobile engine.

Anthony, R.G.; Akgerman, A.

1994-05-01T23:59:59.000Z

400

Interrelationships in energy planning: the case of the tobacco-curing industry in Thailand  

SciTech Connect

The rapid rise in energy costs, especially oil prices, has created major dislocations in the economies of most oil-importing countries. Developing countries have suffered even more than the industrialized nations through balance-of-payments difficulties and reduced economic growth rates. One of the potential options to mitigate these effects is to develop systematically the exploitation of domestic energy resources in order to reduce dependence on imported oil. However, such a switch over requires considerations of many factors other than energy costs. Using the energy-consumption patterns of the tobacco-curing industry in Thailand as an example, it is shown that factors such as the reliability of supply, quality control, convenience in use, associated labor and capital costs, and the quality of output may well be more important in the choice of alternative energy sources than costs per kcal of delivered energy. In the Thai case, for example, low-speed diesel fuel, costing in excess of $14 per million kcal, is clearly preferred as a heating fuel to lignite costing only about $3 per million kcal. However, appropriate governmental development policies directed at upgrading the quality and usability of domestic fuel could reverse this trend. 6 tables.

Schramm, G. (Univ. of Michigan, Ann Arbor); Munasinghe, M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characteristics of carbonized sludge for co-combustion in pulverized coal power plants  

Science Conference Proceedings (OSTI)

Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

Park, Sang-Woo [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

2011-03-15T23:59:59.000Z

402

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993  

Science Conference Proceedings (OSTI)

The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

1994-09-01T23:59:59.000Z

403

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalyst for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char activities. The effects of potassium impregnation conditions (pH and coal surface charge) on the reactivities, in carbon dioxide, of chars derived from demineralized lignite, subbituminous and bituminous coals have been determined. Impregnation of the acid-leached coal with potassium from strongly acidic solutions resulted in initial slow char reactivity which progressively increased with reaction time. Higher reactivities were obtained for catalyst (potassium) loaded at pH 6 or 10. The dependence of char gasification rates on catalyst addition pH increased in the order: pH 6 {approximately} pH 10 {much gt} pH 1.

Abotsi, G.M.K.; Bota, K.B.

1991-01-01T23:59:59.000Z

404

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

405

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

406

Coal distribution, January-June 1985. [USA; January-June; 1981 to 1985; producing district; destination; transport means  

SciTech Connect

This Energy Information Administration (EIA) report continues the quarterly series on coal distribution started in 1957 by the Bureau of Mines, Department of the Interior, as a Mineral Industry Survey, Distribution of Bituminous Coal and Lignite Shipments. The publication provides volume data on coal distribution by coal-producing district of origin, consumer use, method of transportation, and State of destination necessary for EIA to fulfill its data colletion functions as authorized by the Federal Energy Administration Act of 1974. All data for 1985 in this report are preliminary. Data for 1981-1984 are final. Coal shipments from mines in Appalachia were 10.2% lower, while shipments from western mines were up by 13.7%, reaching a record 6-month high. Export shipments moved ahead of their 1984 pace by 9.2% despite a 27.0% decline in shipments to Canada. Texas expanded its lead as the Nation's top State to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases totaled 438.4 million short tons, 2.2% below last year's level. 6 figs., 33 tabs.

McNair, M.B.

1985-09-26T23:59:59.000Z

407

Great Plains ASPEN model development: executive summary. Final topical report for Phase 1  

Science Conference Proceedings (OSTI)

The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

1986-07-25T23:59:59.000Z

408

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

409

The Great Plains gasification project: Here today, for tomorrow  

SciTech Connect

Just a few years ago, there was a proliferation of synfuels projects. Pilot plants first proved their viability with long and successful test runs, then closed as market conditions shifted the focus away from synfuels. Plentiful oil, foreign and domestic, has put a serious damper on synfuels development. Due to the recent oil glut, Exxon cancelled its Colony Shale Oil Project, pulled up its stakes and left several ghost boom-towns in its wake. President Reagan-who originally wanted to eliminate the entire synfuels program-now wants to see the $13.5 billion budget of the Synthetic Fuels Corp. (SFC), a government agency, slashed by $10 billion. During the past several months, there has been some major news regarding synfuels projects. Two of the most familiar to those who follow the coal industry have just begun operating: The Cool Water Coal Gasification Project in Daggett, CA, (See Coal Mining, April, 1982, p. 126), and The Great Plains Coal Gasification Project near Beulah, ND which began operations in December toward producing 125,000,000 cu ft/day of high-Btu substitute natural gas (SNG) (the equivalent of 20,000 barrels of oil per day) from 14,000 tpd of lignite mined nearby. At a time when the government and private sector both seem to be putting the whammy on synfuels development, these plants are starting full operations.

Adam, B.O.

1985-01-01T23:59:59.000Z

410

US fossil fuel technologies for Thailand  

SciTech Connect

The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

1990-10-01T23:59:59.000Z

411

Kemper County IGCC (tm) Project Preliminary Public Design Report  

SciTech Connect

The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

2012-07-01T23:59:59.000Z

412

A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report  

Science Conference Proceedings (OSTI)

This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

Not Available

1994-07-01T23:59:59.000Z

413

Humic substances and nitrogen-containing compounds from low rank brown coals  

SciTech Connect

Coal is one of the sources of nitrogen-containing compounds (NCCs). Recovery of NCCs from brown coals in high yield was carried out from tars of stepwise semicoking of brown coals. Humic acids have been shown to contain many types of nitrogen compounds. Humic acids are thought to be complex aromatic macromolecules with amino acids, amino sugars, peptides, and aliphatic compounds that are involved in the linkages between the aromatic groups. Humic acids extracted from peats, brown coals, and lignites, are characterized using different techniques. Humic substances (HSs) have several known benefits to agriculture. The properties of humic substances vary from source to source, because they are heterogeneous mixtures of biochemical degradation products from plant and animal residues, and synthesis activities of microorganisms. HSs have been considered to be a significant floculant in surface water filtration plants for the production of drinking water as well as the processing of water. HSs are produced from chemical and biological degradation of plant and animal residues and from synthetic activities of microorganisms.

Demirbas, A.; Kar, Y.; Deveci, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

2006-03-15T23:59:59.000Z

414

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

415

Advanced coal-gasification technical analyses. Appendix 3: technical/economic evaluations. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This document contains the final report on four tasks performed by KRSI as part of the Advanced Coal Gasification Technical Analysis contract with GRI. It provides extensive, consistent technical and economic information regarding application of (1) Lurgi gasification, (2) Westinghouse (now KRW) gasification, and (3) Direct Methanation (with Lurgi gasifiers) processes to produce SNG from North Dakota lignite. The results of Lurgi and Westinghouse studies were used to develop a plant size vs. cost-of-SNG relationship. The report on each task consists of a block flow diagram, component material balance, process flow sheets showing operating conditions and principal equipment in each major process area, a narrative process description, utility balances, plant efficiency calculations, documentation of design and cost-estimation basis and an economic analysis performed in accordance with the GRI Guidelines. Economic analysis consisted of capital-cost breakdown according to plant areas, variable operating and maintenance costs, and calculation of levelized, constant-dollar cost-of-gas with and without process development allowances (PDA). The sensitivities of the gas cost to major variables are presented in graphical form. For the plant size vs. cost-of-SNG task, similar information is provided at eight different plant capacities based on both Lurgi or Westinghouse gasifiers.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

416

Advanced coal-gasification technical analyses. Project summary. Final report, December 1982-September 1985  

SciTech Connect

This report summarizes the work performed by KRSI to support the GRI Fossil Fuels Gasification Program in identification and development of the most economical and technically feasible process(es) for production of SNG from coal. The work was performed under several tasks that fall under three topical categories: (1) Technology Review and Evaluations, (2) Coal Fines Disposal and (3) Technical/Economic Evaluations. The final task reports appear in the three appendices of the report. The Technology Review studies provide an overview of the coal gasification, shift/methanation, acid-gas removal, and sulfur-recovery technologies for use in coal-to-SNG plant design; Side-by-side comparisons of selected processes in each category provide background for process selection. The studies relating to Coal Fines Disposal allow comparison and guidance with regard to feedstock-management options when fixed-bed gasifiers are to be used. The first-pass designs and cost estimates prepared under Technical/Economic Evaluations compare and assess North Dakota lignite-to-SNG plants based on Lurgi, Westinghouse (now KRW) and Direct Methanation processes. A plant size vs. cost study provides an insight to selection of an economical plant size.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

417

Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

418

Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117  

DOE Green Energy (OSTI)

Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

1982-01-01T23:59:59.000Z

419

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the third Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. A description is given of the equipment, instrumentation and procedures being used for the fluidized bed drying experiments. Laboratory data are presented on the effects of bed depth on drying rate. These show that drying rate decreased strongly with an increase in bed depth as the settled bed depth varied from 0.25 to 0.65 m. These tests were performed with North Dakota lignite having a 6.35 mm (1/4 inch) top size, constant inlet air and heater surface temperatures, constant rate of heat addition per unit initial mass of wet coal and constant superficial air velocity. A theoretical model of the batch dryer is described. This model uses the equations for conservation of mass and energy and empirical data on the relationship between relative humidity of the air and coal moisture content at equilibrium. Outputs of the model are coal moisture content, bed temperature, and specific humidity of the outlet air as functions of time. Preliminary comparisons of the model to laboratory drying data show very good agreement.

Edward K. Levy; Hugo Caram; Zheng Yao; Gu Feng

2003-10-01T23:59:59.000Z

420

Stable aqueous suspension of partial oxidation ash, slag and char containing polyethoxylated quaternary ammonium salt surfactant  

SciTech Connect

This patent describes a pumpable aqueous suspension of particulate matter with reduced viscosity and increased resistance to sedimentation. It has a particle size in the range of about 37-2000 microns as produced by quench cooling of scrubbing the hot raw effluent gas stream comprising H/sub 2/+CO at a temperature in the range of about 1700{sup 0}F - 3000{sup 0}F from the partial oxidation of solid carbonaceous fuel selected from the group consisting of anthracite, bituminous, sub-bituminous and lignite coal, coke from coal, petroleum coke, coal liquefaction solid residue, oil shale, tar sands, asphaltic bitumen, and mixtures thereof. Wherein the aqueous suspension comprises water, about 1.0-50.0 weight percent of the particulate matter consisting of a mixture of slag and char, and about 0.1-10.0 weight percent of a polyethoxylated quaternary ammonium salt surfactant of the formula: where R is an alkyl radical selected from the group consisting of coco, tallow, lauryl, oleyl, and octadecyl, and x+y has a value in the range of 2-15.

Najjar, M.S.; Yaghmaie, F.; Sorell, L.S.

1989-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Model documentation of the Short-Term Coal Analysis System. Volume 2. Model description. [SCOAL  

Science Conference Proceedings (OSTI)

This is the second of three volumes of documentation for the Short-Term Coal Analysis System (SCOAL) developed by the Coal Data Analysis and Forecasting Branch, Office of Coal, Nuclear, Electric, and Alternate Fuels. The principal aim of SCOAL is to project on a quarterly basis the likely contribution of each of the 26 major bituminous coal, lignite, and anthracite producing states to total US production. A secondary objective is to estimate a companion demand-side aggregated by region but disaggregated by end-use sector. In its current use, the two sides are operated in tandem, and serve to cross-validate each other by means of tracking market balances. The purposes of this report are to describe the estimation method, results, and performance evaluation criteria that were deemed relevant in assessing the potential predictive performance of SCOAL's statistically fitted relationships and to discuss the pre- and post-estimation considerations that prevailed over the course of mode development. The single equation parameter estimates, associated significance levels, statistical equation performance measures, and general comments regarding SCOAL's supply and demand side equations are presented.

Not Available

1983-04-01T23:59:59.000Z

422

Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds  

Science Conference Proceedings (OSTI)

Performance estimates for the UCC2, IGTP1, and IGTP2 chars were made for a typical utility PFBC boiler having nominal characteristics similar to those of the American Electric Power 75 MW(e) Tidd PFBC demonstration facility. Table 2 summarizes the assumed boiler operating conditions input to the PFBC simulation code. Input fuel parameters for the chars and reference fuels were determined from their standard ASTM analyses (Table 1) and the results of the bench-scale characterization tests at B&W`s Alliance Research Center. The required characterization information for the reference fuels was available from the B&W data base, and the combustion reactivity information for the mild-gasification chars was generated in the pressurized bench-scale reactor as described earlier. Note that the combustion reactivity parameters for Beulah lignite are those previously measured at low-pressure conditions. It was necessary to use the previous values as the new parameters could not be accurately measured in the pressurized bench-scale facility. Based on very limited measurements of particle size attrition in paste-type feed systems, it was assumed that all of the fuels (including the chars) would have a very small (essentially negligible) degree of attrition in the feed system. Char devolatilization parameters were assumed to be equal to those of anthracite because of the very low levels of volatiles present in UCC2, IGTP1, and IGTP2. Major fuel input parameters and higher heating values are summarized in Table 3.

Daw, C.S.

1993-03-01T23:59:59.000Z

423

Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report  

Science Conference Proceedings (OSTI)

The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

1982-09-01T23:59:59.000Z

424

Entrained-flow gasification at elevated pressure: Volume 1: Final technical report, March 1, 1985-April 30,1987  

Science Conference Proceedings (OSTI)

The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of using laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.

Hedman, P.O.; Smoot, L.D.; Smith, P.J.; Blackham, A.U.

1987-10-15T23:59:59.000Z

425

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

Science Conference Proceedings (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

426

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

427

Power-generation alternatives. The Hellenic power system. Volume 1. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Phase I study was performed to assist the Public Power Corporation (PPC) of Greece in making decisions regarding the need for new power generation or for repowering existing facilities. An analysis of both new power generation requirements and the feasibility of repowering the existing Aliveri and St. George Stations with coal is provided. The study concludes: Repowering of Aliveri Units 3 and 4 with coal should commence now. Present and committed capacity of the PPC system is adequate until 1997 to 1999, at which time a new 600 MW pulverized coal boiler unit at the Aliveri Station would be commissioned. St. George Station has very little possibility for siting of coal-based new generation or repowering. New facilities should be designed for imported coal to conserve lignite resources for existing and committed units. An alternative to PPC ownership is private sector ownership. A Phase II study for repowering should be initiated and funded by PPC following acceptance of the Phase I study.

Not Available

1987-06-01T23:59:59.000Z

428

Electric Power Costs in Texas in 1985 and 1990  

E-Print Network (OSTI)

A major problem associated with energy conservation projects is how to estimate the financial savings associated with a reduction in energy consumption. Although many conservation projects can be implemented in a matter of months, the energy savings may extend over a period of years or decades. The decision to initiate a conservation project often hinges upon the favorable outcome of an "engineering economics" or "present worth" analysis which compares present costs and future incomes. For a conservation project, four sets of data are required for the economic analysis: project cost, rate of return or discount rate, the amount of energy saved, and the future price of energy. Estimating the future price of electricity requires considerable effort since utilities in Texas will be using a mix of fuels. This paper analyzes the cost of generating electricity from nuclear power, out-of-state coal, in-state lignite, fuel oil, natural gas, geothermal, and solar power. These costs are then used to estimate system costs for an electric utility with various mixes of power plants. The electricity costs can then be used to determine the economic value of various conservation projects.

Gordon, J. B.; White, D. M.

1979-01-01T23:59:59.000Z

429

Coal combustion products: trash or treasure?  

Science Conference Proceedings (OSTI)

Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

Hansen, T.

2006-07-15T23:59:59.000Z

430

The release of iron during coal combustion. Milestone report  

Science Conference Proceedings (OSTI)

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01T23:59:59.000Z

431

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

432

Fifteenth symposium on biotechnology for fuels and chemicals: Program and abstracts  

DOE Green Energy (OSTI)

This collection contains 173 abstracts from presented papers and poster sessions. The five sessions of the conference were on the subjects of: (1) Thermal, Chemical, and Biological Processing, (2) Applied Biological Research, (3) Bioprocessing Research (4), Process Economics and Commercialization, and (5) Environmental Biotechnology. Examples of specific topics in the first session include the kinetics of ripening cheese, microbial liquefaction of lignite, and wheat as a feedstock for fuel ethanol. Typical topics in the second session were synergism studies of bacterial and fungal celluloses, conversion of inulin from jerusalem artichokes to sorbitol and ethanol by saccharomyces cerevisiae, and microbial conversion of high rank coals to methane. The third session entertained topics such as hydrodynamic modeling of a liquid fluidized bed bioreactor for coal biosolubilization, aqueous biphasic systems for biological particle partitioning, and arabinose utilization by xylose-fermenting yeast and fungi. The fourth session included such topics as silage processing of forage biomass to alcohol fuels, economics of molasses to ethanol in India, and production of lactic acid from renewable resources. the final session contained papers on such subjects as bioluminescent detection of contaminants in soils, characterization of petroleum contaminated soils in coral atolls in the south Pacific, and landfill management for methane generation and emission control.

Not Available

1993-07-01T23:59:59.000Z

433

Opportunities in the synfuels industry  

DOE Green Energy (OSTI)

Reports from a meeting on opportunities in the synfuels industry are presented. Topics included: prospects and constraints in the use of coal in Italy; Australian coals in the domestic and international energy scenes, the present and future; update on the synfuels industry in the republic of South Africa; a comparative techno-economic analysis of coprocessing, direct coal liquefaction and resid upgrading; review and update of the coal fired diesel engine; German coals; utilisation now and in future; Canadian coal export future; coal gasification combined cycle power generation enhancement with methanol; the outlook for coal in Korea; US coal export opportunities; coal opportunities in Eastern Europe; world oil price and how it relates to future coal mine development; the technologies of the clean coal technology demonstration program; use of oil shale waste in a circulating fluid bed; synfuels in Japan; beneficiation by oil agglomeration of center North Dakota lignite; healy clean coal project; the future coal in southeast Asia; global perspectives; and fluid bed operations to date. Individual projects are processed separately on the data bases.

Not Available

1990-01-01T23:59:59.000Z

434

Bureau of Economic Geology. 1978 annual report  

DOE Green Energy (OSTI)

Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

Not Available

1978-01-01T23:59:59.000Z

435

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

1997-05-01T23:59:59.000Z

436

Energy Recovery from Solid Waste for Small Cities - Has the Time Really Come?  

E-Print Network (OSTI)

The City of Longview, Texas is evaluating modular, two stage incineration with waste heat recovery to produce steam for sale to industrial consumers. An envisioned 150 tpd waste disposal facility would serve the area population of approximately 100,000. Estimates for operating cost and steam conversion efficiency were based on historical data obtained from a similar facility located in Salem, Virginia. The total projected break-even cost in 1982 for production of 150 psig saturated steam for a completely consumptive use was $7.95 per 1000 lb. The projected break-even cost in 1982 for 600 psi steam superheated to 700 deg. F for a consumptive use was $8.72 per 1000 lb. excluding the cost of water deionization facilities. These costs compare favorably with projected costs of steam production using natural gas as a boiler fuel but are not competitive when compared to use of locally available lignite. The results indicate that the time has come for smaller cities with a potential for industrial steam sales to consider energy recovery from solid waste using modular, two stage incinerations with waste heat recovery.

Winn, W. T., Jr.; Paxton, W.

1980-01-01T23:59:59.000Z

437

URANIUM RECOVERY, URANIUM GEOCHEMISTRY, THERMOLUMINESCENCE AND RELATED STUDIES. Final Report  

SciTech Connect

The recovery of urantum at the mine with portable equipment was shown to be feasible, using a process which involves grinding the ore, leaching with nitric acid, extracting with tributyl phosphate and kerosene, and precipitation with ammonia gas. The system is more expensive than a stationary plant but couid be used in an emergency or in difficulty accessible locations. The distribution of uranium was studied in various geographical locations and in several different materials including limestones, granites, clays, rivers and underground water, lignites, and volcanic ash and lavas. Geochemical studies, based on thermoluminescence, including stratigraphy, age determinations of limestones, and aragonite-calcite relations in calcium csrbonate are presented along with thermoluminescence studies of lithium fluoride, alkali halides, aluminum oxides, sulfates, and other inorganic salts and minerals. Radiation damage to lithium fluoride and metamixed minerals was studied, and apparatus was developed for measuring thermoluminescence of crystals exposed to gamma radiation, scintillameters for measuring alpha particle activity in materials containing a trace of uranium, and an analytical method for determining less than 1 part per million uranium. (J.R.D.)

Daniels, F.

1957-11-01T23:59:59.000Z

438

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

439

Fundamental Study of Low NOx Combustion Fly Ash Utilization  

SciTech Connect

This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

1997-05-01T23:59:59.000Z

440

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect

Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bitu subbitu lignite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogeochemical Modelling for Groundwater in Neyveli Aquifer, Tamil Nadu, India, Using PHREEQC: A Case Study  

SciTech Connect

Sophisticated geochemical models have been used to describe and predict the chemical behaviour of complex natural waters and also to protect the groundwater resources from future contaminatio