Sample records for biopower csp geothermal

  1. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect (OSTI)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01T23:59:59.000Z

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  2. Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

  3. Biopower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults inBiopower Basics Biopower Basics

  4. Biopower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults inBiopower Basics Biopower

  5. Property:PotentialBiopowerSolidMass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search Property

  6. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  7. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration Jump

  8. Property:PotentialBiopowerGaseousMass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration

  9. Property:PotentialBiopowerSolidGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search Property Name

  10. CSP Cream Sugar Copris CSP Cream Sugar Copris

    E-Print Network [OSTI]

    Banbara, Mutsunori

    CSP Cream Sugar Copris : 2011 6 6 2011 8 22 2012 6 24 2014 5 19 : #12;CSP Cream Sugar Copris 1 2 3 Cream Java OpenOffice.org Calc 4 Sugar SAT Scala : #12;CSP Cream Sugar Copris : #12;CSP Cream Sugar Copris (CSP) (CSP; Constraint Satisfaction Problem) (X, D, C) X: (variable) D: x X (domain) ( : D

  11. CSP'960H/CSP-960S Installation Guide

    E-Print Network [OSTI]

    Kleinfeld, David

    CSP'960H/CSP-960S Installation Guide 4-634-979-01 TM Read First! 1^00 - 3lG - 755; #12;CSP-960H/CSP CSP-960H only) J Sony CDU926S CD-R Drive Unit User's Guide Use this manual as a guide to help you. If all the items are not found, please contact your Sony dealer before proceeding. G CSP-960H/960S CD

  12. Indeen Biopower Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional GasBusinesses CIETECIndeen Biopower

  13. Biopower Tool Webinar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof AlternativeBioenergiaBionasaBiopower Tool Webinar Jump

  14. Biopower Technical Strategy Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults inBiopower Basics BiopowerBiopower

  15. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Broader source: Energy.gov (indexed) [DOE]

    the 2012 SunShot CSP Research and Development funding program, the CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) funding program seeks to further CSP...

  16. SIC (MUltiple SIgnal Classification) CSP (Cross-power Spectrum Phase)

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    2ch CSP ( ) 1 MU- SIC (MUltiple SIgnal Classification) CSP (Cross- power Spectrum Phase) [1, 2, 3, 4] [5, 6] [7, 8, 9, 10] [7] CSP CSP [8] [9] CSP [10] Estimation of talker's head orientation based (Kobe univ.) [11] 2ch CSP CSP CSP CSP 2 CSP GCC-PHAT (Generalized Cross- Correlation PHAse Transform

  17. CSP/85 1\\fanual David Middleton

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    TR 85-010 CSP/85 1\\fanual · David Middleton ·. ! June 1985 1 #12;· ... CSP/85: User a.nd implementation manual. David Middleton March 1985 Introduction. CSP/85 is a re-implementation of the CSP/80 by Jazayeri et al. in 1980 Int. Conf. on Parallel Processing (August) [IEEE]. CSP/80: A Language

  18. Sandia Energy - CSP FAQ's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim Bay CoatingsBuildingCRFApply byCSP

  19. Advanced CSP Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphus L.America |CSP

  20. Timed CSP: A Retrospective Joel Ouaknine 1

    E-Print Network [OSTI]

    Ouaknine, Joël

    powerful: by syntactically transforming a Timed CSP process into a CSP one (essentially dropping all WAITAPC 2005 Timed CSP: A Retrospective Jo¨el Ouaknine 1 Oxford University Computing Laboratory, UK Timed CSP, from its inception nearly twenty years ago to very recent semantical and algorithmic

  1. Communication and Computation in Distributed CSP Algorithms

    E-Print Network [OSTI]

    Krishnamachari, Bhaskar

    Communication and Computation in Distributed CSP Algorithms C`esar Fern`andez1 , Ram´on B´ejar1 in the context of networked distributed systems. In order to study the performance of Distributed CSP (DisCSP consider two complete DisCSP algorithms: asynchronous backtracking (ABT) and asynchronous weak commitment

  2. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000şC and achieve energy conversion efficiencies greater than 50%.

  3. Sandia National Laboratories: CSP Industry Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CleaNergy Schlaich Bergermann und Partner Infinia Corporation Brayton Energy Stirling Engines Kockums Stirling Biopower Sunpower Friatec-Rheinhuette Tagged with: CLFR *...

  4. Palladium-Catalyzed Homocoupling Reactions between Two Csp3

    E-Print Network [OSTI]

    Zhang, Xumu

    Palladium-Catalyzed Homocoupling Reactions between Two Csp3 -Csp3 Centers Aiwen Lei and Xumu Zhang A novel palladium-catalyzed coupling reaction between two Csp3-Csp3 centers has been investigated

  5. Evergreen Biopower LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP)Coolers Jump to:New York, NewBiopower

  6. Magnolia BioPower LLC MBP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLCMagnolia BioPower LLC MBP

  7. Verifying Statemate Statecharts Using CSP and FDR

    E-Print Network [OSTI]

    Roscoe, Bill

    Verifying Statemate Statecharts Using CSP and FDR A.W. Roscoe and Z. Wu Oxford University Computing of statecharts. We use the CSP/FDR framework to model complex systems designed in statecharts, and check translation from statecharts into CSP and exploited it in both theoretical and prac- tical senses. 1

  8. CNMP, CSP, EMS and Writing It Down

    E-Print Network [OSTI]

    Balser, Teri C.

    CNMP, CSP, EMS and Writing It Down Bill Bland UWEX and UW-Madison, Soil Science #12;Documentation-Pest Management Program · CSP-Conservation Security Program #12;EMS Framework · EMS - "Environmental Management · Monitor progress · Review-each priority and EMS #12;CSP - Records Required · Conservation Security Program

  9. CSP Theorems for Communicating B Machines

    E-Print Network [OSTI]

    Doran, Simon J.

    CSP Theorems for Communicating B Machines Steve Schneider and Helen Treharne Technical Report CSD #12;#12;Introduction 1 Abstract. Recent work on combining CSP and B has provided ways of describing sys- tems comprised of components described in both B (to express requirements on state) and CSP (to

  10. CSP and NU(4) Libor Barto

    E-Print Network [OSTI]

    Barto, Libor

    CSP and NU(4) Libor Barto joint work with Marcin Kozik Department of Algebra, Charles University of Algebra, Charles University in Prague, Czech Republic CSP and NU(4) #12;Everything is finite Everything is finite Libor Barto, Marcin Kozik Department of Algebra, Charles University in Prague, Czech Republic CSP

  11. Page 1 of 5 OUA CSP Procedures

    E-Print Network [OSTI]

    Page 1 of 5 OUA CSP Procedures Author(s): Kayla Polak Date Issued: March 2013 Issuing Area: Flexible Learning Support Subject: OUA Commonwealth Supported Places (CSP) Circulation: University OUA CSP award courses. As the Flexible Learning Support office at Curtin University is the conduit

  12. Labelling Heuristics for CSP Application Domains

    E-Print Network [OSTI]

    Rossi, Francesca

    Labelling Heuristics for CSP Application Domains Zeynep K#16;z#16;ltan Computer Science Division an application domain as a family of CSP models, so as to exhibit the generic constraint store for all models store and the domain propagation during search is analysed, so as to infer | before modelling any CSP

  13. Verifying authentication protocols with CSP Steve Schneider

    E-Print Network [OSTI]

    Doran, Simon J.

    Verifying authentication protocols with CSP Steve Schneider Department of Computer Science Royal of Communicating Sequential Processes (CSP). It is il- lustrated by an examination of the Needham-Schroeder public of authentication protocols, built on top of the gen- eral CSP semantic framework. This approach aims to combine

  14. Security properties and CSP Steve Schneider

    E-Print Network [OSTI]

    Doran, Simon J.

    Security properties and CSP Steve Schneider Royal Holloway, University of London Egham, Surrey, TW, the use of a process algebra such as Communicating Sequential Processes (CSP) seems appropriate to describe and analyse them. This paper explores ways in which security properties may be described as CSP

  15. An Introductory wander around CSP. Sometimes mentioning extensions.

    E-Print Network [OSTI]

    Lawrence, Adrian

    An Introductory wander around CSP. Sometimes mentioning extensions. A.E.Lawrence A ... 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 Semaphores Monitors Events: CSP CSP CCS -calculus CPA Semaphores Monitors Events: CSP CSP CCS -calculus The crucial idea of the atomic event was from Dijkstra. CPA

  16. On the expressiveness of CSP A.W. Roscoe

    E-Print Network [OSTI]

    Oxford, University of

    On the expressiveness of CSP A.W. Roscoe February 16, 2011 Abstract We define "CSP express every operator of Hoare's CSP. Furthermore we show that every op- erator with CSP-like operational semantics can be simulated in CSP with the addition of an exception-throwing operator P A Q in which any

  17. Symmetry in CSP solutions Nicoleta Neagu and Boi Faltings

    E-Print Network [OSTI]

    Flener, Pierre

    Symmetry in CSP solutions Nicoleta Neagu and Boi Faltings Artificial Intelligence Laboratory (LIA for finding symmetric solutions of in a CSP. This method is using local symmetries of the CSP structure and research upon searching CSP solutions but few of them watch the relations between CSP solutions. In certain

  18. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Sandia National Laboratories: CSP Images & Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Images & Videos CSP Images & Videos Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide Web. Both Sandia...

  20. Low-Cost MHTES Systems for CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  1. Property:PotentialBiopowerGaseousCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/Riverline

  2. Property:PotentialBiopowerSolidCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal

  3. Timed CSP: A Retrospective Jo el Ouaknine 1

    E-Print Network [OSTI]

    Ouaknine, Joël

    powerful: by syntactically transforming a Timed CSP process into a CSP one (essentially dropping all WAITAPC 2005 Timed CSP: A Retrospective JoË? el Ouaknine 1 Oxford University Computing Laboratory, UK Timed CSP, from its inception nearly twenty years ago to very recent semantical and algorithmic

  4. Structured CSP A Process Algebra as an Institution

    E-Print Network [OSTI]

    Mossakowski, Till - Deutschen Forschungszentrum für Künstliche Intelligenz & Fachbereich 3

    Structured CSP ­ A Process Algebra as an Institution Till Mossakowski1 and Markus Roggenbach2 1 Kingdom, M.Roggenbach@Swan.ac.uk Abstract. We introduce two institutions for the process algebra Csp, one for Csp. With a small example we demonstrate that structuring indeed makes sense for Csp. 1 Introduction

  5. Model checking Timed CSP Philip Armstrong Gavin Lowe Joel Ouaknine

    E-Print Network [OSTI]

    Ouaknine, Joël

    Model checking Timed CSP Philip Armstrong Gavin Lowe Jo¨el Ouaknine A.W. Roscoe Oxford University Department of Computer Science Abstract Though Timed CSP was developed 25 years ago and the CSP for Timed CSP. In this paper we report on the creation of such a version, based on the digitisation results

  6. Relaxing B Sharing Restrictions within CSP B Arnaud Lanoix1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Relaxing B Sharing Restrictions within CSP B Arnaud Lanoix1 , Olga Kouchnarenko2 , Samuel Colin3 of state sharing in CSP B specifications: B machines controlled by various CSP parts are supposed without creating inconsistencies in CSP B specifications. To achieve this, we present an approach where

  7. Structured CSP --A Process Algebra as an Institution #

    E-Print Network [OSTI]

    Mossakowski, Till - Deutschen Forschungszentrum für Künstliche Intelligenz & Fachbereich 3

    Structured CSP -- A Process Algebra as an Institution # Till Mossakowski 1 and Markus Roggenbach 2 Csp, one for the traces model, and one for the stable failures model. The construction is generic institution) also for Csp. With a small example we demonstrate that structuring indeed makes sense for Csp. 1

  8. The #CSP Dichotomy is Decidable Martin Dyer1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The #CSP Dichotomy is Decidable Martin Dyer1 and David Richerby 1 School of Computing, University dichotomy for the counting constraint satisfaction problem (#CSP): for any constraint language , the problem-complete problem, it is immediate that this general form of CSP, known as uniform CSP is, itself, NP

  9. Constraint Orientated Specification with CSP and Real Time Temporal Logic

    E-Print Network [OSTI]

    Kent, University of

    Constraint Orientated Specification with CSP and Real Time Temporal Logic Justin Pearson Department Processes (CSP) [Hoa85] and a version of Propositional Temporal Logic (PTL), derived from [Eme90]. CSP. The behaviour of a CSP process is dependent on its environment; it is therefore difficult to assert global

  10. An Incremental and Nonbinary CSP Solver: The Hyperpolyhedron Search Algorithm

    E-Print Network [OSTI]

    Rossi, Francesca

    An Incremental and Non­binary CSP Solver: The Hyperpolyhedron Search Algorithm Miguel A. Salido and scheduling can be expressed in a natural way as a Constraint Satisfaction Problem (CSP). It is well known that a non­binary CSP can be transformed into an equivalent binary CSP using some of the actual techniques

  11. A verified development of hardware using CSP B

    E-Print Network [OSTI]

    Schneider, Steve

    A verified development of hardware using CSP B Alistair McEwan Department of Computing University show how a combination of the process algebra CSP and the state-based formalism B, combined into a single notation called CSP B can be used in the formal development of hardware. The use of CSP B

  12. RAPID/Geothermal/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal Jump to:

  13. RAPID/Geothermal/Environment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal Jump

  14. Sandia National Laboratories: CSP & NSTTF FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CSP utility-scale power systems; i.e., Spain, Israel, Morocco, Algeria, Australia, Egypt, Germany and the UAE. What materials are used in the solar receivers? As you might...

  15. CSP Tower Air Brayton Combustor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Southwest Research Institute is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  16. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01T23:59:59.000Z

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

  17. Potential of distributed wood-based biopower systems serving basic electricity needs in rural Uganda

    E-Print Network [OSTI]

    Vermont, University of

    October 2009 Revised 8 January 2010 Accepted 9 January 2010 Keywords: Rural electrification Gasification supply. Although virtually non-existent, rural electrification is receiving very little attentionPotential of distributed wood-based biopower systems serving basic electricity needs in rural

  18. Modeling and Analysis of CSP Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of modeling and analysis of CSP systems: assessing the solar resource, predicting performance and cost, studying environmental impact, and developing modeling software packages.

  19. NREL Quantifies Value of CSP to the Grid (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    In California study, greater penetration of renewable energy means greater value of CSP with thermal energy storage.

  20. CONSEIL SCIENTIFIQUE ET DE PROSPECTIVE DE L'IMT (CSP)

    E-Print Network [OSTI]

    Lagnoux Renaudie, Agnès

    1 CONSEIL SCIENTIFIQUE ET DE PROSPECTIVE DE L'IMT (CSP) 1) Rôle et missions Le CSP réfléchit sur le propositions 2) Composition a. Membres Le CSP est composé de 16 membres permanents de l'IMT. Le Comité de. Recommandations : Le Comité de Direction veille également à ce que les membres du CSP de rang A proposé au Conseil

  1. Value Withdrawal Explanation in CSP G erard Ferrand Willy Lesaint

    E-Print Network [OSTI]

    Lesaint, Willy

    of a value from a domain". This notion of explanation is essential for the debugging of CSP programs. IndeedValue Withdrawal Explanation in CSP #3; G#19;erard Ferrand Willy Lesaint Alexandre Tessier LIFO, BP Constraint Satisfaction Problems (CSP) [17], that is to provide an instantiation of the variables which

  2. Actes JFPC 2006 Visualisation musicale d'un CSP

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to automatically create music from a GenTra4CP-formatted CSP execu- tion trace. These ways are essentially basedActes JFPC 2006 Visualisation musicale d'un CSP Article Jeune Chercheur JFPC'06 Jérémie Vautard partir de la trace d'éxécution d'un CSP au format xml GenTra4CP. Ces méthodes sont essentiellement basées

  3. CSP Heat Integration for Baseload Renewable Energy Deployment

    Broader source: Energy.gov [DOE]

    In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled power generation system, managed by the SunShot Initiative.

  4. Value Withdrawal Explanation in CSP Gerard Ferrand Willy Lesaint

    E-Print Network [OSTI]

    Lesaint, Willy

    of a value from a domain". This notion of explanation is essential for the debugging of CSP programs. IndeedValue Withdrawal Explanation in CSP G´erard Ferrand Willy Lesaint Alexandre Tessier LIFO, BP 6759 Satisfaction Problems (CSP) [17], that is to provide an instantiation of the variables which is correct

  5. Using a PVS Embedding of CSP to Verify Authentication Protocols

    E-Print Network [OSTI]

    Doran, Simon J.

    Using a PVS Embedding of CSP to Verify Authentication Protocols To be presented at TPHOLs'97, Bell for a veri cation method described in 14]. The PVS formalization consists of a semantic embedding of CSP]. In 14], Schneider presents such a method based on CSP 7]. The approach relies onageneral

  6. The Complexity of Weighted Boolean #CSP with Mixed Signs

    E-Print Network [OSTI]

    Bulatov, Andrei

    The Complexity of Weighted Boolean #CSP with Mixed Signs Andrei Bulatova , Martin Dyerb , Leslie constraint satisfaction problem (CSP), which corresponds to the case where all functions in have range {0, 1}. The problem we consider here is to compute the partition function of a given instance of weighted CSP; that is

  7. Processus communicants Communication synchrone CSP/CCS/-calcul

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitičme partie Processus communicants CSP/Ada Systčmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation

  8. CSP duality and trees of bounded pathwidth Catarina Carvalhoa

    E-Print Network [OSTI]

    Krokhin, Andrei

    CSP duality and trees of bounded pathwidth Catarina Carvalhoa , V´ictor Dalmaub , Andrei Krokhin satisfaction problem (CSP) provides a framework in which it is possible to express, in a natural way, many.g., [11, 18]) that the CSP can be cast as the following fundamental problem: given two finite relational

  9. Using CSP for protocol analysis: the Needham-Schroeder

    E-Print Network [OSTI]

    Doran, Simon J.

    Using CSP for protocol analysis: the Needham-Schroeder Public-Key Protocol Steve Schneider Royal approach for analysis and veri cation of authentication properties in CSP. It is illustrated to the analysis of authentication protocols, built on top of the general CSP semantic framework. This approach

  10. Polymorphic CSP Type Checking Ping Gao and Robert Esser

    E-Print Network [OSTI]

    Esser, Robert

    Polymorphic CSP Type Checking Ping Gao and Robert Esser Concurrent and Real­time Systems Laboratory@cs.adelaide.edu.au Abstract Communicating Sequential Processes (CSP) is a lan­ guage used to describe and reason about between a conventional functional lan­ guage type checker and a type checker for the CSP language

  11. Actes JFPC 2007 Hybridation de prouveurs CSP et apprentissage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Actes JFPC 2007 Hybridation de prouveurs CSP et apprentissage Julien Vion CRIL-CNRS FRE 2499'approche générique la plus efficace pour résoudre des Problčmes de Satisfaction de Contraintes (CSP) difficiles et de de contraintes ainsi que des affecta- tions gloutonnes. Sur un grand nombre d'instances de CSP

  12. Timed CSP and Object-Z John Derrick

    E-Print Network [OSTI]

    Kent, University of

    Timed CSP and Object-Z John Derrick Computing Laboratory, University of Kent, Canterbury, CT2 7NF a simple integration of timed CSP and Object-Z. Following existing work, the components in such an inte- gration are written as either Object-Z classes, or timed CSP processes, and are combined together using

  13. Department of Computing CSP||B modelling for railway verification

    E-Print Network [OSTI]

    Doran, Simon J.

    University of Surrey Department of Computing Computing Sciences Report CS-12-03 CSP||B modelling Schneider Helen Treharne March 30th 2012 #12;CSP||B modelling for railway verification: the double junction work in verifying railway systems through CSP k B modelling and analysis. In particular we consider

  14. Assumption-Commitment Support for CSP Model Checking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVoCS 2006 Assumption-Commitment Support for CSP Model Checking Nick Moffat1 Systems Assurance using CSP. In our formulation, an assumption-commitment style property of a process SYS takes the form-Guarantee, CSP, Model Checking, Compositional Reasoning 1 Introduction The principle of compositional program

  15. CSP and anonymity Steve Schneider and Abraham Sidiropoulos

    E-Print Network [OSTI]

    Doran, Simon J.

    CSP and anonymity Steve Schneider and Abraham Sidiropoulos Department of Computer Science Royal. This paper is concerned with the property of anonymity. It proposes a de nition of anonymity within the CSP notation, discusses the approach taken by CSP to anonymity with respect to di erent view- points

  16. Concurrent and Real Time Systems: the CSP approach Steve Schneider

    E-Print Network [OSTI]

    Doran, Simon J.

    Concurrent and Real Time Systems: the CSP approach by Steve Schneider First published 1999 Systems the CSP approach Steve Schneider A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Whitehead This book provides an introduction to Communicating Sequential Processes (CSP) and its use

  17. Proposal of CSP based Network Design and Construction

    E-Print Network [OSTI]

    Fukunaga, Chikara

    Proposal of CSP based Network Design and Construction Session:Network and Protocol Short PaperWire network. The design was based on a formal method using CSP ( Communicating Sequential Processes]. In this paper we discuss the reason why we use CSP as a formal design method for the router-network system

  18. CSP duality and trees of bounded pathwidth Catarina Carvalhoa

    E-Print Network [OSTI]

    Krokhin, Andrei

    CSP duality and trees of bounded pathwidth Catarina Carvalhoa , V´ictor Dalmaub , Andrei Krokhin problem (CSP) provides a framework in which it is possible to express, in a natural way, many.g., [10, 14]) that the CSP can be cast as the following fundamental problem: given two finite relational

  19. Department of Computing Stepwise Refinement in Event-B||CSP

    E-Print Network [OSTI]

    Doran, Simon J.

    in Event-B||CSP Part 1: Safety Steve Schneider, Helen Treharne and Heike Wehrheim March 12th 2011 #12;Stepwise Refinement in Event-B CSP Part 1: Safety Steve Schneider1 Helen Treharne1 Heike Wehrheim2 1, 2011 Contents 1 Introduction 3 2 CSP 3 2.1 Notation

  20. Using a PVS Embedding of CSP to Verify Authentication Protocols

    E-Print Network [OSTI]

    Dutertre, Bruno

    Using a PVS Embedding of CSP to Verify Authentication Protocols To be presented at TPHOLs'97, Bell for a veri cation method described in 14]. The PVS formalization consists of a semantic embedding of CSP, 16, 12, 9]. In 14], Schneider presents such a method based on CSP 7]. The approach relies onageneral

  1. Using a PVS Embedding of CSP to Verify Authentication Protocols

    E-Print Network [OSTI]

    Dutertre, Bruno

    Using a PVS Embedding of CSP to Verify Authentication Protocols To be presented at TPHOLs'97, Bell for a verification method described in [14]. The PVS formalization consists of a semantic embedding of CSP for this purpose [3, 16, 12, 9]. In [14], Schneider presents such a method based on CSP [7]. The approach relies

  2. The Complexity of Weighted Boolean #CSP , Sangxia Huang2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Complexity of Weighted Boolean #CSP Modulo k Heng Guo1 , Sangxia Huang2 , Pinyan Lu3@gmail.com Abstract We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any similar to the one for the complex weighted Boolean #CSP, found by [Cai, Lu and Xia, STOC 2009]. Then we

  3. CSP is expressive enough for A.W. Roscoe

    E-Print Network [OSTI]

    Oxford, University of

    CSP is expressive enough for A.W. Roscoe Oxford University Computing Laboratory {Bill.Roscoe@comlab.ox.ac.uk} Abstract. Recent results show that Hoare's CSP, augmented by one additional operator, can express every operator whose operational semantics are expressible in a new notation and are therefore "CSP

  4. Property:PotentialGeothermalHydrothermalGeneration | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,

  5. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:

  6. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:

  7. RAPID/Geothermal/Exploration/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado

  8. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <

  9. RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas

  10. Next Generation Solar Collectors for CSP

    SciTech Connect (OSTI)

    Molnar, Attila

    2014-07-31T23:59:59.000Z

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  11. RAPID/Geothermal/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal JumpAlaska

  12. RAPID/Geothermal/Environment/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal

  13. RAPID/Geothermal/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | GeothermalColorado

  14. RAPID/Geothermal/Water Use/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎RAPID/Geothermal/Water

  15. RAPID/Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎ | Geothermal

  16. RCW - 78.60 Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada < RAPID‎78.60 Geothermal

  17. Puna Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: EnergyPultePumphrey,Puna

  18. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:

  19. RAPID/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontanaMontanaUtahFAQ <source

  20. RAPID/Geothermal/Exploration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |HawaiiUtahExploration

  1. RMOTC Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC SolarRFMD Jump to:RFRLRRMOTC

  2. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaft River

  3. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaft

  4. A CSP View on UMLRT structure diagrams Clemens Fischer, ErnstRudiger Olderog and Heike Wehrheim

    E-Print Network [OSTI]

    Habel, Annegret

    A CSP View on UML­RT structure diagrams Clemens Fischer, Ernst­R¨udiger Olderog and Heike Wehrheim UML­RT structure diagrams together with the formal method CSP­OZ combining CSP and Object­Z. While CSP­OZ is used for specifying the system components themselves (by CSP­OZ classes), UML­RT diagrams provide

  5. System Description of a SAT-based CSP Solver Naoyuki Tamura1

    E-Print Network [OSTI]

    Banbara, Mutsunori

    System Description of a SAT-based CSP Solver Sugar Naoyuki Tamura1 , Tomoya Tanjo2 , and Mutsunori description of a SAT-based CSP solver Sugar submitted to the Third International CSP Solver Compe- tition. The Sugar solver solves a finite linear CSP and MAX-CSP by translating it into a SAT problem using the order

  6. Geothermal Energy Association Recognizes the National Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  7. US Geothermal, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc. US Geothermal, Inc....

  8. Next-Generation Solar Collectors for CSP

    Broader source: Energy.gov [DOE]

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  9. Biopower Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBSBiomassActthe Way

  10. Specifying authentication using signal events in CSP Siraj A. Shaikh (first and corresponding author)

    E-Print Network [OSTI]

    Doran, Simon J.

    1 Specifying authentication using signal events in CSP Siraj A. Shaikh (first and corresponding in the process algebra Communicating Sequential Processes (CSP) to specify authentication. The purpose, security protocols, CSP, formal specification, Kerberos 1. Introduction Schneider [1] uses Communicating

  11. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal Power

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant on Hawaii's Big

  12. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

  13. Integrating CSP w/ TES into a Utility System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. High Efficiency Thermal Energy Storage System for CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Prototype Development for Self-Cleaning CSP Collectors

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. WYCLRN_NIHR CSP Information_R&D Department_v4.0_081107 Page 1 of 1 NIHR CSP Information / Contact

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    WYCLRN_NIHR CSP Information_R&D Department_v4.0_081107 Page 1 of 1 NIHR CSP Information / Contact R NHS Permission (NIHR CSP) will coordinate and streamline the processes associated with gaining permission for research performed within the NHS. NIHR CSP, which is being rolled out across the NHS from 18

  17. Biomass2Biopower Private Ltd B2B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof AlternativeBioenergia BrasilBiomassBiomass2Biopower

  18. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  19. Towards CSP Model Reformulation at Multiple Levels of Abstraction

    E-Print Network [OSTI]

    Miguel, Ian

    Towards CSP Model Reformulation at Multiple Levels of Abstraction Alan M. Frisch 1 , Brahim Hnich 2Ćcult at another. Therefore we argue that it is essential for a system for the auto- matic reformulation of CSPs individual CSP instances, could be augmented to reformulate models at various levels of abstraction and to re

  20. A COMPARISON OF ATMS AND CSP TECHNIQUES Johan de Kleer

    E-Print Network [OSTI]

    de Kleer, Johan

    A COMPARISON OF ATMS AND CSP TECHNIQUES Johan de Kleer Xerox Palo Alto Research ~Jenter 3333 Coyote (CSP) techniques which evolved from vision tasks and assumption- based truth maintenance system (ATMS. This paper demonstrates that the intuitions underlying these refinements are essentially similar

  1. Modelling unbounded parallel sessions of security protocols in CSP

    E-Print Network [OSTI]

    Roscoe, Bill

    Modelling unbounded parallel sessions of security protocols in CSP E. Kleiner and A.W. Roscoe that a simplification to earlier CSP models designed to prove protocols correct on the FDR model checker is valid of injective authentication. Essentially for historical reasons, that paper created a model with both

  2. CSP DICHOTOMY FOR SPECIAL POLYADS LIBOR BARTO AND JAKUB BULIN

    E-Print Network [OSTI]

    Barto, Libor

    , the Constraint Satisfaction Problem with template H, or CSP(H), is the problem of deciding whether a given input with template H, or CSP(H) for short, is the following decision problem: INPUT: A finite digraph G. QUESTION the survey of Krokhin, Bulatov and Jeavons [12]. Using the algebraic approach (in particular, a result of Mar

  3. RAPID/Geothermal/Transmission Siting & Interconnection/Oregon | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod

  4. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  5. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01T23:59:59.000Z

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  6. Sugar++: A SAT-Based MAX-CSP/COP Solver Tomoya Tanjo1

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Sugar++: A SAT-Based MAX-CSP/COP Solver Tomoya Tanjo1 , Naoyuki Tamura2 , and Mutsunori Banbara2 1 describes some features of Sugar++, a SAT-based MAX- CSP/COP solver entering the Third International CSP Solver Competition. In our approach, a MAX-CSP is translated into a Constraint Optimization Problem (COP

  7. CSP, PVS and a Recursive Authentication Protocol Jeremy Bryans and Steve Schneider

    E-Print Network [OSTI]

    Doran, Simon J.

    CSP, PVS and a Recursive Authentication Protocol Jeremy Bryans and Steve Schneider Department In this paper we consider the nature of machine proofs used in the CSP approach to the veri cation of authentication protocols using the process algebra CSP Hoa85]. The CSP syntax provides a natural and precise way

  8. Solving planninggraph by compiling it into CSP Minh Binh Do \\Lambda & Subbarao Kambhampati

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Solving planning­graph by compiling it into CSP Minh Binh Do \\Lambda & Subbarao Kambhampati to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP­CSP, a system that does planning by automati­ cally converting Graphplan's planning graph into a CSP encoding

  9. Automatic generation of CSP || B skeletons from xUML models

    E-Print Network [OSTI]

    Doran, Simon J.

    Automatic generation of CSP || B skeletons from xUML models Edward Turner, Helen Treharne, Steve. CSP B is a formal approach to specification that combines CSP and B. In this paper we present our tool that automatically trans- lates a subset of executable UML (xUML) models into CSP B, for the purpose of verification

  10. LINEAR-PROGRAMMING DESIGN AND ANALYSIS OF FAST ALGORITHMS FOR MAX 2-CSP

    E-Print Network [OSTI]

    Scott, Alexander Alexander

    LINEAR-PROGRAMMING DESIGN AND ANALYSIS OF FAST ALGORITHMS FOR MAX 2-CSP ALEXANDER D. SCOTT AND GREGORY B. SORKIN Abstract. The class Max (r, 2)-CSP (or simply Max 2-CSP) consists of constraint(G) (13/75 + o(1))m, which gives a faster Max 2-CSP algorithm that uses exponential space: running in time

  11. Solving planning-graph by compiling it into CSP Minh Binh Do & Subbarao Kambhampati

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Solving planning-graph by compiling it into CSP Minh Binh Do & Subbarao Kambhampati Department to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP-CSP, a system that does planning by automati- cally converting Graphplan's planning graph into a CSP encoding

  12. The expressiveness of CSP extended by priority A.W. Roscoe

    E-Print Network [OSTI]

    Oxford, University of

    The expressiveness of CSP extended by priority (draft) A.W. Roscoe Oxford University Department of Computer Science October 17, 2014 Abstract In previous work [27, 26] the author defined a notion of CSP with such an operational semantics can be translated into CSP and therefore has a semantics in every model of CSP

  13. Changing System Interfaces Consistently: a New Refinement Strategy for CSP B

    E-Print Network [OSTI]

    Doran, Simon J.

    Changing System Interfaces Consistently: a New Refinement Strategy for CSP B Steve Schneider refinement in the context of CSP B. Our motivation to include this notion of refinement within the CSP B to change the events of a CSP process and the B machines when refining a system. Notions of refinement based

  14. Introducing mobility into CSP B Steve Schneider, Helen Treharne, and Beeta Vajar

    E-Print Network [OSTI]

    Schneider, Steve

    AVoCS 2007 Introducing mobility into CSP B Steve Schneider, Helen Treharne, and Beeta Vajar Department of Computing University of Surrey Guildford, Surrey, UK Abstract CSP B is a combination of CSP, the semantic foundation for pi |B is cumbersome for reasoning about systems, and a CSP based approach may

  15. Sugar Competition Results Discussion Future Sugar: A SAT-based CSP Solver

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Sugar Competition Results Discussion Future . . . .. . . Sugar: A SAT-based CSP Solver --Results summary of the 3rd intertional CSP solver competition-- Naoyuki Tamura, Tomoya Tanjo, Mutsunori Banbara-based CSP Solver --Results summary of #12;Sugar Competition Results Discussion Future Outline .. Sugar CSP

  16. Anonymity and CSP for Voting Systems Murat Moran, James Heather, Steve Schneider

    E-Print Network [OSTI]

    Doran, Simon J.

    Anonymity and CSP for Voting Systems Murat Moran, James Heather, Steve Schneider Department Processes (CSP). In addition, we formalise conventional voting system with CSP and analyse whether our and the weak anonymity is more suitable specification for the voting processes. Keywords: anonymity, CSP

  17. Analysis of large reflector antennas using CSP fringe formulation and higher-order diffraction

    E-Print Network [OSTI]

    Nehorai, Arye

    Analysis of large reflector antennas using CSP fringe formulation and higher-order diffraction- tric conductor (PEC) objects when illuminated by a Complex Source Points (CSP) beam expansion (S of a CSP-expansion illumination. In this work we discuss an application of the CSP fringe formulation

  18. Probing the Depths of CSP-M: A new fdr-compliant Validation Tool

    E-Print Network [OSTI]

    Southampton, University of

    Probing the Depths of CSP-M: A new fdr-compliant Validation Tool Michael Leuschel and Marc Fontaine,fontaine}@cs.uni-duesseldorf.de Abstract. We present a new animation and model checking tool for CSP. The tool covers the CSP-M language in the source code, has an LTL model checker and can be used for combined CSP B specifications. During

  19. Feasible Distributed CSP Models for Scheduling Problems Miguel A. Salido, Adriana Giret

    E-Print Network [OSTI]

    Salido, Miguel Angel

    Feasible Distributed CSP Models for Scheduling Problems Miguel A. Salido, Adriana Giret Universidad satisfaction problem (DisCSP) is a CSP in which variables and constraints are distributed among multiple are distributed by using our model. Key words: distributed CSP, constraint satisfaction, holonic system, multi

  20. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  1. Quantifying the Value of CSP with Thermal Energy Storage

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the SunShot Concentrating Solar Power Program Review by Paul Denholm and Mark Mehos of NREL on April 23, 2013. Entitled "Quantifying the Value of CSP with Thermal Energy Storage," the presenters seek to answer the question, "What is the addition of TES to a CSP plant actually worth?" Ultimately they conclude that CSP with TES can actually complement other variable generation sources including solar PV and act as an enabling technology to achieve higher overall penetration of renewable energy.

  2. Technical Report CSPOZ: A Combination of ObjectZ and CSP

    E-Print Network [OSTI]

    Habel, Annegret

    Technical Report CSP­OZ: A Combination of Object­Z and CSP TRCF­97­2 Clemens Fischer University@informatik.uni­oldenburg.de Date: April 30, 1997 Document Id: TRCF­97­2 #12; #12; CSP­OZ: A Combination of Object­Z and CSP Clemens­mail: Fischer@Informatik.Uni­Oldenburg.de Abstract In this paper we define a combination of Object­Z and CSP

  3. Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, searchPotentialEGSGeothermalGeneration

  4. Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: EnergyPulte

  5. RAPID/Geothermal/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontanaMontanaUtahFAQ

  6. RAPID/Geothermal/Environment/Federal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |

  7. RAPID/Geothermal/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii < RAPID‎ |

  8. RAPID/Geothermal/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii < RAPID‎

  9. RAPID/Geothermal/Environment/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii <

  10. RAPID/Geothermal/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii <Nevada <

  11. RAPID/Geothermal/Environment/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii <Nevada

  12. RAPID/Geothermal/Environment/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii <NevadaOregon

  13. RAPID/Geothermal/Environment/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii

  14. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |HawaiiUtah <

  15. RAPID/Geothermal/Environment/Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |HawaiiUtah

  16. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎

  17. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska < RAPID‎ |

  18. RAPID/Geothermal/Exploration/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska < RAPID‎

  19. RAPID/Geothermal/Exploration/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <

  20. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado <

  1. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado

  2. RAPID/Geothermal/Exploration/Federal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska

  3. RAPID/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado <

  4. RAPID/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado <

  5. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado <Exploration(Redirected from

  6. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado <Exploration(Redirected

  7. RAPID/Geothermal/Exploration/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado <Exploration(Redirected

  8. RAPID/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ | Geothermal‎ |

  9. RAPID/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ | Geothermal‎

  10. RAPID/Geothermal/Exploration/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ | Geothermal‎New

  11. RAPID/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ |

  12. RAPID/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ |Oregon <

  13. RAPID/Geothermal/Exploration/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎ |Oregon

  14. RAPID/Geothermal/Exploration/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎

  15. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada < RAPID‎

  16. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <

  17. RAPID/Geothermal/Exploration/Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington < RAPID‎ |

  18. RAPID/Geothermal/General Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington < RAPID‎

  19. RAPID/Geothermal/Land Access | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington <

  20. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington <Alaska <

  1. RAPID/Geothermal/Land Access/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington <Alaska

  2. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington

  3. RAPID/Geothermal/Land Access/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <

  4. RAPID/Geothermal/Land Access/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <Idaho

  5. RAPID/Geothermal/Land Access/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii

  6. RAPID/Geothermal/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaiiNevada <

  7. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada

  8. RAPID/Geothermal/Land Access/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |

  9. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |Utah <

  10. RAPID/Geothermal/Land Access/Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |Utah

  11. RAPID/Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |UtahUse <

  12. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |UtahUse

  13. RAPID/Geothermal/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎

  14. RAPID/Geothermal/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎Site

  15. RAPID/Geothermal/Transmission Siting & Interconnection | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <

  16. RAPID/Geothermal/Transmission Siting & Interconnection/California | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <Information

  17. RAPID/Geothermal/Transmission Siting & Interconnection/Colorado | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <InformationEnergy

  18. RAPID/Geothermal/Transmission Siting & Interconnection/Montana | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexasInformation Idaho

  19. RAPID/Geothermal/Water Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ | Geothermal‎Quality

  20. RAPID/Geothermal/Water Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |

  1. RAPID/Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |Use < RAPID‎ |

  2. RAPID/Geothermal/Water Use/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |Use < RAPID‎

  3. RAPID/Geothermal/Water Use/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |Use <

  4. RAPID/Geothermal/Water Use/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |Use

  5. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii < RAPID‎

  6. RAPID/Geothermal/Water Use/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii <

  7. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii <Montana

  8. RAPID/Geothermal/Water Use/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii

  9. RAPID/Geothermal/Water Use/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎

  10. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎ |

  11. RAPID/Geothermal/Well Field/California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎ |California

  12. RAPID/Geothermal/Well Field/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎

  13. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎Hawaii <

  14. RAPID/Geothermal/Well Field/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎Hawaii

  15. RAPID/Geothermal/Well Field/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎HawaiiMontana

  16. RAPID/Geothermal/Well Field/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <

  17. RAPID/Geothermal/Well Field/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico <

  18. RAPID/Geothermal/Well Field/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico <Texas

  19. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico <TexasUtah

  20. RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <

  1. RAPID/Overview/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <Hawaii)

  2. RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado

  3. RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/ColoradoMontana <

  4. RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/ColoradoMontana

  5. RAPID/Overview/Geothermal/Exploration/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page Jump to:

  6. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page Jump to:Utah)

  7. RCW 78.60 Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada < RAPID‎78.6048 - Water1-5.14360

  8. RRC - Geothermal Production Test Completion or Recompletion Report and Log

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC SolarRFMD JumpRPSEnergyForm

  9. Radiometrics At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactive Mineral

  10. Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometrics Jump

  11. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometrics

  12. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometricsRaftIII

  13. Geothermal Heat Flow and Existing Geothermal Plants | Department...

    Energy Savers [EERE]

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

  14. Self-Cleaning CSP Collectors, Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Boston University is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  15. TOWARDS STANDARDIZATION OF CSP YIELD ASSESSMENTS Richard Meyer

    E-Print Network [OSTI]

    Heinemann, Detlev

    TOWARDS STANDARDIZATION OF CSP YIELD ASSESSMENTS Richard Meyer 1 , Hans Georg Beyer 2 , Jörg Schmidt 1 , and Marko Schwandt 5 1 EPURON GmbH, Anckelmannsplatz 1, 20537 Hamburg, Germany, r.meyer

  16. COMMUNICATING SEQUENTIAL PROCESSES C.A.R. Hoare's Communicating Sequential Processes CSP is a model-language

    E-Print Network [OSTI]

    Filman, Robert E.

    CSP is a model-language hybrid for describing concurrent and distributed computation. A CSP program the corresponding primitive. Guarded commands are used to introduce indeterminacy. CSP is a language fragment of CSP have been with issues of program correctness and operating systems description. CSP shows its

  17. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  18. Geothermal: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links News DOE...

  19. Geothermal: Publications

    Office of Scientific and Technical Information (OSTI)

    Influences on Geochemical Temperature Indicators: Final Report Earl Mattson ; Robert Smith ; Yoshiko Fujita ; et.al. INLEXT-14-33959 2015 04 07 2015 Mar 01 Deep Geothermal:...

  20. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  1. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  2. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  3. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

  4. Using CSP||B Components: Application to a Platoon of Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Using CSP||B Components: Application to a Platoon of Vehicles Samuel Colin1, Arnaud Lanoix1, Olga meth- ods, B, an environment for the development of provably correct software [4], and CSP (for

  5. CSP 581: Applied AI Programming Peter Norvig, Paradigms of AI Programming: Case Studies in Common Lisp

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 581: Applied AI Programming Texts Peter Norvig, Paradigms of AI Programming: Case Studies LISP Programs 4 hours Total 42 hours CSP 581: Applied AI Programming - CS Dept, Illinois Insti... 1

  6. Combining Metaheuristics and CSP Algorithms to solve Sudoku Marlos C. Machado and Luiz Chaimowicz

    E-Print Network [OSTI]

    Chaimowicz, Luiz

    Combining Metaheuristics and CSP Algorithms to solve Sudoku Marlos C. Machado and Luiz Chaimowicz Problem (CSP) domain that speed up the solution's search process by decreasing its search space and its

  7. CSP 550: Internet Programming Andrew Tanenbaum and M. Steen, Distributed Systems: Principles and Paradigms, 2002.

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 550: Internet Programming Texts Andrew Tanenbaum and M. Steen, Distributed Systems: Principles and SOAP 9 hours Total 45 hours Edited March 2006 (html, css checks) CSP 550: Internet Programming - CS

  8. NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop

    SciTech Connect (OSTI)

    Renne, D.

    2008-10-29T23:59:59.000Z

    Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans

  9. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2011-08-01T23:59:59.000Z

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  10. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

  11. Combinacin de procesos de clausura y CSP para la resolucin de problemas de scheduling

    E-Print Network [OSTI]

    Barber, Federico

    focused under a wide variety of approaches, essentially by CSP techniques. We propose a methodCombinación de procesos de clausura y CSP para la resolución de problemas de scheduling María mediante técnicas CSP. En este artículo se presenta un método que combina el proceso de clausura de

  12. Internalising agents in CSP protocol models P.J. Broadfoot and A.W. Roscoe

    E-Print Network [OSTI]

    Roscoe, Bill

    . . An essential part of our CSP models is knowing what a given agent believes about the progress of its protocolInternalising agents in CSP protocol models P.J. Broadfoot and A.W. Roscoe Oxford University of cryptographic protocols using CSP [11] and FDR [5], often via extensions to Casper [6]. Since FDR can only check

  13. SCS&E Report 9309 Using CSP+T to Describe a Timing Constrained

    E-Print Network [OSTI]

    New South Wales, University of

    SCS&E Report 9309 July, 1993 Using CSP+T to Describe a Timing Constrained Stop-and-Wait Protocol This paper presents a novel description of a time-constrained stop and wait protocol using an extended CSP rate limi- tations and message timeouts. The extended CSP model used for this example is based

  14. Fraunhofer-Center fr Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV

    E-Print Network [OSTI]

    © Fraunhofer-Center für Silizium-Photovoltaik CSP INTERPRETATION OF CELL FRACTURE IN PV MODULES stability of PV modules" #12;© Fraunhofer-Center für Silizium-Photovoltaik CSP Agenda Motivation #12;© Fraunhofer-Center für Silizium-Photovoltaik CSP Motivation & Background Thermo

  15. Propagation de Contraintes et Listes Tabou pour le CSP Mohammad DIB, Alexandre CAMINADA, Hakim MABED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Propagation de Contraintes et Listes Tabou pour le CSP Mohammad DIB, Alexandre CAMINADA, Hakim pour le CSP. Nous proposons une méthode déterministe qui permet de gérer dynamiquement des coupes dans percentages. 1 INTRODUCTION Un problčme de satisfaction de contraintes (CSP) [1] est défini par un ensemble de

  16. A data structure boosting the performance of local search for CSP solving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A data structure boosting the performance of local search for CSP solving ´E. Gr´egoire1 and J CSP competitions illustrate its very positive impact. It has been implemented in wcsp: an efficient open-ended and open-source local search platform for CSP that can accommodate various meta

  17. CSPs and complexity An instance of the constraint satisfaction problem (CSP) consists of a set of

    E-Print Network [OSTI]

    Zhao, Yuxiao

    CSPs and complexity An instance of the constraint satisfaction problem (CSP) consists of a set to the variables in a way so that all constraints are (simultaneously) satisfied. The general CSP is NP-complete. However, when the CSP is restricted to a fixed constraint language (a set of allowed constraint

  18. The basic CSP reductions revisited Libor Barto, joint with Michael Pinsker

    E-Print Network [OSTI]

    Barto, Libor

    The basic CSP reductions revisited Libor Barto, joint with Michael Pinsker Charles University in Prague Banff workshop November 2014 #12;Outline and notation Outline Basic CSP reductions ­ 3 views Questions Basic CSP reductions revisited Notation A . . . finite set of relations on A A . . . the clone

  19. 02/25/2014 27th CSP Workshop 1 First Principles Modeling of Electrolye Materials

    E-Print Network [OSTI]

    Holzwarth, Natalie

    02/25/2014 27th CSP Workshop 1 First Principles Modeling of Electrolye Materials in All Abdessadek Lachgar. #12;02/25/2014 27th CSP Workshop 2 Outline What is meant by "first principles/electrode interfaces Remaining challenges #12;02/25/2014 27th CSP Workshop 3 What is meant by "first principles

  20. Inhibition of CED-3 zymogen activation and apoptosis in Caenorhabditis elegans by caspase homolog CSP-3

    E-Print Network [OSTI]

    Xue, Ding

    CSP-3 Xin Geng1, Yong Shi1, Akihisa Nakagawa1, Sawako Yoshina2, Shohei Mitani2, Yigong Shi3 & Ding Xue can be negatively regulated. Here we show that inactivation of the C. elegans csp-3 gene, which to undergo apoptosis in a CED-3­dependent manner. Biochemical analysis reveals that CSP-3 associates

  1. The Design and Performance of SpaceWire Router-network using CSP

    E-Print Network [OSTI]

    Fukunaga, Chikara

    The Design and Performance of SpaceWire Router-network using CSP Session:Components Short Paper the point of view of robustness and security using CSP (Communication Sequential Processes) method, one Correspondong author:fukunaga@tmu.ac.jp 1 Occam has been originally developed by Inmos Limited inspired by CSP[3

  2. (Smart) Look-Ahead Arc Consistency and the Pursuit of CSP Tractability

    E-Print Network [OSTI]

    Dalmau, Victor

    (Smart) Look-Ahead Arc Consistency and the Pursuit of CSP Tractability Hubie Chen 1 and V#19. The constraint satisfaction problem (CSP) can be formu- lated as the problem of deciding, given a pair (A; B) of relational struc- tures, whether or not there is a homomorphism from A to B. Although the CSP is in general

  3. A CSP Approach to Control in Event-B Steve Schneider1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A CSP Approach to Control in Event-B Steve Schneider1 , Helen Treharne1 , and Heike Wehrheim2 1 CSP to provide ex- plicit control flow for an Event-B model and alternatively to provide a way as the basis of a running example to illustrate the framework. Keywords: Event-B, CSP, control flow

  4. To appear in EPTCS. A CSP account of Event-B refinement

    E-Print Network [OSTI]

    Doran, Simon J.

    To appear in EPTCS. A CSP account of Event-B refinement Steve Schneider Department of Computing a CSP account of Event-B refinement, with a treatment for the first time of splitting events and of anticipated events. To this end, we define a CSP seman- tics for Event-B and show how the different forms

  5. Defining and Model Checking Abstractions of Complex Railway Models using CSP||B

    E-Print Network [OSTI]

    Doran, Simon J.

    Defining and Model Checking Abstractions of Complex Railway Models using CSP||B Faron Moller1. In [11, 10] we propose a new modelling approach for railway interlockings. We use CSP||B [13], which involves events such as train movements and, in the interlocking, state based reasoning. In this sense, CSP

  6. FDR3 --A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong,

    E-Print Network [OSTI]

    Oxford, University of

    FDR3 -- A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong, Alexandre.roscoe}@cs.ox.ac.uk Abstract. FDR3 is a complete rewrite of the CSP refinement checker FDR2, incorporating a significant number describe the new algorithm that FDR3 uses to construct its internal representation of CSP processes

  7. Combining CSP and ObjectZ: Finite or Infinite Trace Semantics?

    E-Print Network [OSTI]

    Olderog, Ernst-Rüdiger

    Combining CSP and Object­Z: Finite or Infinite Trace Semantics? Clemens Fischer Universit semantics as a means of com­ bining CSP with Object­Z. The purpose of this combination is to more effectively specify complex, concurrent systems: while CSP is ideal for modelling systems of concurrent

  8. CSP DICHOTOMY FOR SPECIAL TRIADS LIBOR BARTO, MARCIN KOZIK, MIKLOS MAROTI, AND TODD NIVEN

    E-Print Network [OSTI]

    MarĂłti, MiklĂłs

    CSP DICHOTOMY FOR SPECIAL TRIADS LIBOR BARTO, MARCIN KOZIK, MIKL´OS MAR´OTI, AND TODD NIVEN Abstract. For a fixed digraph G, the Constraint Satisfaction Problem with the template G, or CSP. The dichotomy conjecture of Feder and Vardi states that CSP(G), for any choice of G, is solvable in polynomial

  9. A tool for checking CSP||B specifications Huu Nghia Nguyen, Jean-Pierre Jacquot

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A tool for checking CSP||B specifications Huu Nghia Nguyen, Jean-Pierre Jacquot LORIA ­ Nancy in the verification of CSP||B specifications. Our primary research goal is methodological: we aim at understanding. One specification may require the use of B for managing some complex data structure, of CSP

  10. Caenorhabditis elegans caspase homolog CSP-2 inhibits CED-3 autoactivation and apoptosis in germ

    E-Print Network [OSTI]

    Xue, Ding

    Caenorhabditis elegans caspase homolog CSP-2 inhibits CED-3 autoactivation and apoptosis in germ that CSP-3, a caspase homolog that blocks CED-3 autoactivation and apoptosis in somatic cells, does not affect apoptosis in germ cells. Interestingly, the second C. elegans caspase homolog, CSP-2, shares

  11. THE CSP DICHOTOMY HOLDS FOR DIGRAPHS WITH NO SOURCES AND NO SINKS

    E-Print Network [OSTI]

    Barto, Libor

    THE CSP DICHOTOMY HOLDS FOR DIGRAPHS WITH NO SOURCES AND NO SINKS (A POSITIVE ANSWER conjectured in 1990 (using the language of graph homomorphisms) a CSP dichotomy for digraphs with no sources hered- itarily hard digraphs. Further, we show that the CSP dichotomy for digraphs with no sources

  12. Revivals, stuckness and the hierarchy of CSP models A.W. Roscoe

    E-Print Network [OSTI]

    Roscoe, Bill

    Revivals, stuckness and the hierarchy of CSP models A.W. Roscoe December 9, 2007 Abstract We give details of a new model for CSP introduced in response to work by Fournet et al [8]. This is the stable revivals model R alluded to in [22]. We provide the full semantics for CSP in this model, indicate why

  13. On CSP and the Algebraic Theory of Effects Rob van Glabbeek and Gordon Plotkin

    E-Print Network [OSTI]

    Plotkin, Gordon

    On CSP and the Algebraic Theory of Effects Rob van Glabbeek and Gordon Plotkin Abstract We consider CSP from the point of view of the algebraic theory of effects, which classifies operations as effect in terms of two versions of the stable failures model of CSP, one more general than the other

  14. The past, present and future of protocol checking with CSP and FDR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVoCS 2006 The past, present and future of protocol checking with CSP and FDR Bill Roscoe1 Oxford of these meetings was the development of the CSP model of cryptographic protocols, following Gavin Lowe's discovery the particular advantages of using a process algebra, and CSP in particular, for modelling cryptoprotocols

  15. Comparison of problem model change mechanisms issued from CSP and TRIZ

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Comparison of problem model change mechanisms issued from CSP and TRIZ RRoollaanndd DDee GGuuiioo satisfaction problem (CSP), on the other hand. Keywords: over-constrained problems, dialectical methods issued from CSP and TRIZ 2 · a set of evaluation parameters, which represent the objective of the problem

  16. Refinement and verification of concurrent systems specified in ObjectZ and CSP

    E-Print Network [OSTI]

    Smith, Graeme

    Refinement and verification of concurrent systems specified in Object­Z and CSP Graeme Smith­Z and CSP. A common semantic basis for the two languages enables a unified method of refinement to be used, based upon CSP refinement. To enable state­based techniques to be used for the Object­Z components

  17. FDR3 --A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong,

    E-Print Network [OSTI]

    Oxford, University of

    FDR3 -- A Modern Refinement Checker for CSP Thomas Gibson-Robinson, Philip Armstrong, Alexandre.roscoe}@cs.ox.ac.uk Abstract. FDR3 is a complete rewrite of the CSP refinement checker FDR2, incorporating a significant number describe the new algorithm that FDR3 uses to construct its in- ternal representation of CSP processes

  18. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  19. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  20. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Zone Mesozoic granite granodiorite Aurora Geothermal Area Aurora Geothermal Area Walker Lane Transition Zone Geothermal Region MW Beowawe Hot Springs Geothermal Area Beowawe Hot...

  1. Geothermal: Sponsored by OSTI -- State geothermal commercialization...

    Office of Scientific and Technical Information (OSTI)

    State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

  2. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  3. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  4. Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to

    E-Print Network [OSTI]

    Horvitz, H. Robert

    Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show

  5. Relaxing B Sharing Restrictions within CSP B Arnaud Lanoix1

    E-Print Network [OSTI]

    Boyer, Edmond

    Relaxing B Sharing Restrictions within CSP B Arnaud Lanoix1 , Olga Kouchnarenko2 , Samuel Colin3-ST CNRS and University of Franche-Comté, Besançon, France olga.kouchnarenko@univ-fcomte.fr 3 Safe-00699997,version1-22May2012 Author manuscript, published in "International Conference on Software

  6. LCA can help determine environmental burdens from"cradle to grave"and facilitate more consistent comparisons of energy

    E-Print Network [OSTI]

    power (CSP), biopower, geothermal, ocean energy, hydropower, nuclear, natural gas, and coal technologies comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy

  7. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  8. Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power & Utility,PublicEnergy

  9. Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley,Quinebaug,

  10. RAPID/Geothermal/Land Access/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaiiNevada

  11. RAPID/Geothermal/Transmission Siting & Interconnection/Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <Information Alaska

  12. RAPID/Geothermal/Transmission Siting & Interconnection/Hawaii | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas

  13. RAPID/Geothermal/Transmission Siting & Interconnection/Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexasInformation Idaho <

  14. RAPID/Geothermal/Transmission Siting & Interconnection/Nevada | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexasInformation

  15. RAPID/Geothermal/Transmission Siting & Interconnection/Texas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ | Geothermal‎ |

  16. RAPID/Geothermal/Transmission Siting & Interconnection/Utah | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ | Geothermal‎

  17. RAPID/Geothermal/Well Field/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico < RAPID‎

  18. Radar At Dixie Valley Geothermal Area (Foxall & Vasco, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <RECServices,RYPOS Inc

  19. Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevadaRadioactiveRadiometrics Jump to:Open

  20. Containment, Equivalence and Coreness from CSP to QCSP and beyond

    E-Print Network [OSTI]

    Madelaine, Florent

    2012-01-01T23:59:59.000Z

    The constraint satisfaction problem (CSP) and its quantified extensions, whether without (QCSP) or with disjunction (QCSP_or), correspond naturally to the model checking problem for three increasingly stronger fragments of positive first-order logic. Their complexity is often studied when parameterised by a fixed model, the so-called template. It is a natural question to ask when two templates are equivalent, or more generally when one "contain" another, in the sense that a satisfied instance of the first will be necessarily satisfied in the second. One can also ask for a smallest possible equivalent template: this is known as the core for CSP. We recall and extend previous results on containment, equivalence and "coreness" for QCSP_or before initiating a preliminary study of cores for QCSP which we characterise for certain structures and which turns out to be more elusive.

  1. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01T23:59:59.000Z

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  2. 2-triangulation de micro-structure pour la resolution de CSP Samba Ndojh NDIAYE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2-triangulation de micro-structure pour la r´esolution de CSP Samba Ndojh NDIAYE LSIS - UMR CNRS Cedex 20 (France) samba.ndiaye@lsis.org R´esum´e : Un CSP ou probl`eme de satisfaction de contraintes probl`eme de d´ecision associ´e `a un CSP est NP-complet. Dans [J´egou, 1993], J´egou propose une m

  3. Actes JFPC 2012 Compilation de CSP en Set-labeled Diagram

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Actes JFPC 2012 Compilation de CSP en Set-labeled Diagram Alexandre Niveau H´el`ene Fargier C parfois ^etre ex´ecut´ees en ligne et en temps limit´e. Dans ce cas, la r´esolution du CSP n'est pas assez´e- sente l'assignation d'une variable ; l'ensemble des solu- tions d'un CSP correspond `a l'ensemble des

  4. Geothermal Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

  5. Geothermal Technologies Legacy Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programmatic reports Geothermal resource maps International journal citations DOEOSTI--C126 0811 A valuable source of DOE-sponsored geothermal information at your fingertips...

  6. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  7. Geothermal Technologies Subject Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programmatic Reports Geothermal Resource Maps International journal citations DOEOSTI--C126 1008 A valuable source of DOE-sponsored geothermal information at your fingertips Hot...

  8. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  9. A Fast Algorithm for Eye Detection Using Two-Dimensional CSP Akiko SUZUKI Tetsuya TAKIGUCHI Yasuo ARIKI

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    CSP A Fast Algorithm for Eye Detection Using Two-Dimensional CSP Akiko SUZUKI Tetsuya TAKIGUCHI Yasuo ARIKI 1. , CSP Crosspower-Spectrum Phase 2 [1] [2][3] CSP 2. W × H I(x, y) w × h T(i, j) R(x, y) R(x, y) (4) 3. CSP 1 CSP I(x, y) T(i, j) I(1, 2) = x,y I(x, y)e-j1x e-j2y (5) T(1, 2) = i,j T(i, j)e-j1

  10. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  12. Development of Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. Using Encapsulated Phase Change Material for Thermal Energy Storage for Baseload CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration

  16. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  17. Geothermal: Sponsored by OSTI -- National Geothermal Data System...

    Office of Scientific and Technical Information (OSTI)

    National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing Geothermal Technologies Legacy...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

  19. Geothermal: Sponsored by OSTI -- Development of a geothermal...

    Office of Scientific and Technical Information (OSTI)

    Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

  20. Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

  1. Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...

    Office of Scientific and Technical Information (OSTI)

    Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal Literature Review Activity Date...

  3. Geothermal: Sponsored by OSTI -- A study of geothermal drilling...

    Office of Scientific and Technical Information (OSTI)

    A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  4. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal...

  5. Geothermal: Sponsored by OSTI -- The Preston Geothermal Resources...

    Office of Scientific and Technical Information (OSTI)

    The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  7. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  8. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  9. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  11. CSP 541: Internet Technologies W.R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, ISBN 0201633469

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 541: Internet Technologies Texts W.R. Stevens, TCP/IP Illustrated, Volume 1, Addison March 2006 (html, css checks) CSP 541: Internet Technologies - CS Dept, Illinois Institut... 1 of 1 #12;

  12. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

  13. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

  14. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01T23:59:59.000Z

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  15. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  16. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

    Broader source: Energy.gov [DOE]

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

  17. Breakout Session: Future of CSP: Challenges and Opportunities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: Challenges and Opportunities Breakout Session:

  18. Sandia Energy - CSP Mid-Year FY12 AOP Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of Key Species CRF:CSP

  19. SunShot CSP R&D 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy Begins Extended TestingEvaluation ResultsCSP

  20. Concentrating Solar Power Services CSP Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy InformationJersey Zip: NJ 07936CSP

  1. URL: http://www.elsevier.nl/locate/entcs/volume68.html 18 pages Timed CSP = Closed Timed Automata 1

    E-Print Network [OSTI]

    Ouaknine, Joël

    URL: http://www.elsevier.nl/locate/entcs/volume68.html 18 pages Timed CSP = Closed Timed Automata 1 70118, USA Abstract We study the expressive power of an augmented version of Timed CSP and show constraints. We also show that this new version of Timed CSP is expressive enough to capture the most widely

  2. Some problems THE Galois connection Clones and algebras The lattice of clones Completeness CSP Open problems Clones and Galois connections

    E-Print Network [OSTI]

    Pöschel, Reinhard

    Some problems THE Galois connection Clones and algebras The lattice of clones Completeness CSP Open aa #12;Some problems THE Galois connection Clones and algebras The lattice of clones Completeness CSP Completeness CSP Open problems Final remarks aa #12;Some problems THE Galois connection Clones and algebras

  3. Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...

    Office of Scientific and Technical Information (OSTI)

    Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

  4. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED through September 30, 1982. The Stanford Geothermal Program conducts interdisciplinary research

  5. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  6. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01T23:59:59.000Z

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  7. Geothermal: Sponsored by OSTI -- Geothermal Power Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  8. Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News...

  9. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  10. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  11. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

  12. Sandia National Laboratories: Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

  13. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  14. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  15. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  16. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  17. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  18. Geothermal energy in Nevada

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  19. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    in Geysers geothermal cooling towers.   Geothermal in  Geysers  Geothermal  Cooling  Towers.   Aminzadeh, processes  –  Geothermal  resources  near  cooling 

  20. CSP 543: Multimedia Networking Atel Puri, Tsuhan Chen, Multimedia Systems, Standards, and Networks, ISBN 082479303X

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 543: Multimedia Networking Texts Atel Puri, Tsuhan Chen, Multimedia Systems, Standards for multimedia networks. Topics covered include coding, compression, streaming, synchronization, QoS, and adaptation. Current tools for multimedia networking will be surveyed. Issues with multimedia application

  1. Next-Generation Solar Collectors for CSP, Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    3M Company is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  2. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    SciTech Connect (OSTI)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01T23:59:59.000Z

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandia's extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  3. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  4. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01T23:59:59.000Z

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  5. Biopower | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13, 2009OakDepartmentBillBelow are resources for

  6. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01T23:59:59.000Z

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  7. CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES

    E-Print Network [OSTI]

    Stanford University

    geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

  8. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  9. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06T23:59:59.000Z

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  10. Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  11. Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

  12. Geothermal: Sponsored by OSTI -- Deep Geothermal Drilling Using...

    Office of Scientific and Technical Information (OSTI)

    Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

  14. Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Geothermal Technologies Office: Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Printable Version Share this resource Send a link to Geothermal Technologies Office: Financial Opportunities to someone by E-mail Share Geothermal...

  16. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 11, 2013 The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees On December 10, the Geothermal Energy Association announced its 2013 GEA Honors...

  17. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    March 31, 2014 Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in...

  18. Sandia National Laboratories: Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

  19. Geothermal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal News Geothermal News RSS August 1, 2008 Energy Transport Corridor Draft Environmental Impact Statement Available for Review The Department of the Interior's Bureau of...

  20. Sandia National Laboratories: Geothermal Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

  1. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    January 21, 2011 Handbook of Best Practices for Geothermal Drilling Released The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy's...

  2. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov (indexed) [DOE]

    confidential, or otherwise restricted information. Insert photo of your choice Drilling on the OIT campus Feb. 2009 2 | US DOE Geothermal Program eere.energy.gov * Timeline:...

  3. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  4. Geothermal resources of California

    SciTech Connect (OSTI)

    Bezore, S.P.

    1984-06-01T23:59:59.000Z

    Geothermal resources may be classified into two types: high temperature, >150 C, suitable for electrical generation and low- to moderate-temperature, 20-150 C, suitable for direct use. To further the development of geothermal resources in California, a concentrated study of low-temperature and moderate-temperature geothermal resources has been conducted by the California Department of Conservation. As part of that study a map containing technical data on the geothermal resources of California is now available to help planners, local governments, etc. develop their local resources.

  5. Geothermal: Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  6. Geothermal: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Contact...

  7. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  8. Geothermal: Promotional Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  9. Geothermal: Distributed Search Help

    Office of Scientific and Technical Information (OSTI)

    Search Help Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  10. Geothermal: Basic Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Search...

  11. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospects in Colorado Geothermal Peer Review Bobi Garrett Deputy Laboratory Director Strategic Programs and Partnerships April 22, 2013 2 NREL Snapshot * Physical Assets Owned by...

  12. Geothermal: Educational Zone

    Office of Scientific and Technical Information (OSTI)

    Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  13. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  14. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Geothermal: Bibliographic Citation

    Office of Scientific and Technical Information (OSTI)

    Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  16. Geothermal: Search Results

    Office of Scientific and Technical Information (OSTI)

    Search Results Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links The...

  17. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  18. CSP 585: Object-Oriented Design Patterns Gamma, Helm, Ralph, and Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 585: Object-Oriented Design Patterns Texts Gamma, Helm, Ralph, and Vlissides, Design Patterns and Design Patterns 5 hours Total 43 hours Edited March 2006. (html, css checks) CSP 585: Object

  19. CSP 542: Internet Design and Analysis Eric Siegel, Designing Quality-of-Service Solutions for the Enterprise, John Wiley and Sons, ISBN 0471333131

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 542: Internet Design and Analysis Texts Eric Siegel, Designing Quality-of-Service Solutions March 2006 (html, css checks) CSP 542: Internet Design and Analysis - CS Dept, Illinois ... 1 of 1 #12;

  20. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

  1. geothermal2.qxp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of...

  2. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01T23:59:59.000Z

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  3. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect (OSTI)

    Neises, T.; Turchi, C.

    2013-09-01T23:59:59.000Z

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  4. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  5. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  6. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  7. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01T23:59:59.000Z

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  8. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01T23:59:59.000Z

    on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

  9. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    at the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.

  10. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  11. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01T23:59:59.000Z

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

  12. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01T23:59:59.000Z

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  13. 2012 Geothermal Webinar | Department of Energy

    Energy Savers [EERE]

    Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of Indian Energy webinar provides information on developing geothermal resources on tribal...

  14. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  15. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01T23:59:59.000Z

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  16. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01T23:59:59.000Z

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  17. Geothermal Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Technologies Office Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal...

  18. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  19. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

  20. Scaling Effects in the CSP Phase Transition \\Lambda Ian P. Gent y , Ewan MacIntyre, y Patrick Prosser y , and Toby Walsh z

    E-Print Network [OSTI]

    St Andrews, University of

    Scaling Effects in the CSP Phase Transition \\Lambda Ian P. Gent y , Ewan MacIntyre, y Patrick of Strathclyde April 18, 1995 Abstract Phase transitions in constraint satisfaction problems (CSP's) are the subject of intense study. We identify an order parameter for random binary CSP's. There is a rapid

  1. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  2. Flint Geothermal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlashFlint Geothermal Geothermal

  3. Navy Geothermal Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  4. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01T23:59:59.000Z

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  5. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  6. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

  7. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  8. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  9. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  10. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  11. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  12. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01T23:59:59.000Z

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  13. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01T23:59:59.000Z

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  14. CSP/FDR2 to Handel-C translation Susan Stepney

    E-Print Network [OSTI]

    Stepney, Susan

    , on the treatment of alphabets (essentially, the events that can occur).1 Throughout the rest of this report, "CSPCSP/FDR2 to Handel-C translation Susan Stepney University of York Technical Report YCS-2003 or sold without the permission of the Controller of Her Britannic Majesty's Stationery Office. #12;#12;CSP

  15. Safety and Line Capacity in Railways An Approach in Timed CSP

    E-Print Network [OSTI]

    Moller, Faron G.

    Safety and Line Capacity in Railways ­ An Approach in Timed CSP Yoshinao Isobe1 , Faron Moller2 or moving a train through a node takes time, and sighting and braking dis- tance are both functions of time-Verlag Berlin Heidelberg 2012 #12;Safety and Line Capacity in Railways 55 effort to explain our formal models

  16. DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND

    E-Print Network [OSTI]

    Heinemann, Detlev

    Ertragsprognose Solarthermischer Kraftwerke ­ standardization of yield prognosis for solar thermal power plants) are needed for the planning of a solar thermal power plant at a given site. Direct solar irradiance is highly). As for concentrating solar power (CSP) the frequency distribution of DNI is of special importance, special attention

  17. Nordic Journal of Computing 10(2003), 135. TIMED CSP = CLOSED TIMED -AUTOMATA

    E-Print Network [OSTI]

    Ouaknine, Joël

    2003-01-01T23:59:59.000Z

    ) which may then be verified using the model checker FDR. We characterize the expressive power to ver- ify specifications on certain dense-time systems using the model checker FDR2 [23, 24-based approach for Timed CSP is that verification can be carried out on the model checker FDR, as dis- cussed

  18. Nordic Journal of Computing 10(2003), 1--35. TIMED CSP = CLOSED TIMED #AUTOMATA

    E-Print Network [OSTI]

    Ouaknine, Joël

    2003-01-01T23:59:59.000Z

    ) which may then be verified using the model checker FDR. We characterize the expressive power to ver­ ify specifications on certain dense­time systems using the model checker FDR 2 [23, 24­based approach for Timed CSP is that verification can be carried out on the model checker FDR, as dis­ cussed

  19. Fraunhofer-Center fr Silizium-Photovoltaik CSP CRACK INVESTIGATION OF ENCAPSULATED

    E-Print Network [OSTI]

    © Fraunhofer-Center für Silizium-Photovoltaik CSP CRACK INVESTIGATION OF ENCAPSULATED SOLAR CELLS Encapsulant Solar cell Back sheet Interconnector Schematic layout of a standard PV module #12;© Fraunhofer, etc.) z x Glass Encapsulant Back sheet foil Encapsulant Solar cell - - + ++ MM Strain Stress Schematic

  20. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01T23:59:59.000Z

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  1. Geothermal: Site Map

    Office of Scientific and Technical Information (OSTI)

    Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Site Map...

  2. RMOTC - Testing - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Testing Notice: As of July 1st, 2014, Testing at RMOTC has officially completed. We would like to thank all of our testing partners and everyone who helped make the...

  3. Geothermal Resources Act (Texas)

    Broader source: Energy.gov [DOE]

    The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide...

  4. Geothermal Orientation Handbook

    SciTech Connect (OSTI)

    None

    1984-07-01T23:59:59.000Z

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  5. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30T23:59:59.000Z

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  6. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

  7. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01T23:59:59.000Z

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  8. Application of the Australian Geothermal Reporting Code to "Convention...

    Open Energy Info (EERE)

    of the Australian Geothermal Reporting Code to "Conventional" Geothermal Projects. In: Proceedings. Australian Geothermal Energy Conference; 20101117; Adelaide, Australia....

  9. Geothermal: Sponsored by OSTI -- Small Geothermal Systems: A...

    Office of Scientific and Technical Information (OSTI)

    Small Geothermal Systems: A Guide for the Do-It-Yourselfer Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

  10. Geothermal: Sponsored by OSTI -- User manual for geothermal energy...

    Office of Scientific and Technical Information (OSTI)

    User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

  11. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect (OSTI)

    Jody Erikson

    2006-05-26T23:59:59.000Z

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  12. Geothermal: Sponsored by OSTI -- Low-Temperature Enhanced Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  13. Geothermal Site Assessment Using the National Geothermal Data...

    Open Energy Info (EERE)

    Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studiesexamples, Publications Website: www.unr.edugeothermalpdffiles...

  14. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  15. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Energy Savers [EERE]

    DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy...

  16. Energy Department Announces National Geothermal Data System to...

    Office of Environmental Management (EM)

    National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development...

  17. How an Enhanced Geothermal System Works | Department of Energy

    Energy Savers [EERE]

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems,...

  18. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01T23:59:59.000Z

    induced seismicity and geothermal  energy.  Geothermal into  sustainable  geothermal  energy:  The  S.E.   Geysers into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  19. Nevada Geothermal Power Company, Inc. (Blue Mountain) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal...

  20. Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...

    Office of Scientific and Technical Information (OSTI)

    Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

  1. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  2. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  3. Geothermal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    October 25, 2011 First Google.Org-Funded Geothermal Mapping Report Confirms Vast Coast-to-Coast Clean Energy Source New research from SMU's Geothermal Laboratory, funded by a grant...

  4. DOE-Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal energy hidden in the subsurface can be more effectively targeted through precise heatflow and temperature data. The Energy Department makes all data from DOE-funded projects available free online through the National Geothermal Data System.

  5. Geothermal energy: 1992 program overview

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

  6. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  7. South Dakota Geothermal Energy Handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

  8. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  9. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  10. GEOTHERMAL Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEOTHERMAL Events GEOTHERMAL Events February 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Geothermal...

  11. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  12. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-42 PROCEEDINGS SPECIAL PANEL ON GEOTHERMAL MODEL INTERCOMPARISON STUDY held in conjunction with The Code Comparison Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office

  13. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  14. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  15. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  16. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  17. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  18. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University for development of geothermal fields is large and many countries are seeking to move away from fossil fuel power generation for both economic and environmental reasons. Global revenues for geothermal power were estimated

  19. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  20. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    6: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  1. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  2. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  3. Geothermal materials development activities

    SciTech Connect (OSTI)

    Kukacka, L.E.

    1993-06-01T23:59:59.000Z

    This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

  4. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  5. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16T23:59:59.000Z

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  6. Geothermal well stimulation

    SciTech Connect (OSTI)

    Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

    1980-01-01T23:59:59.000Z

    All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

  7. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics Geothermal

  8. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01T23:59:59.000Z

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  9. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington:Informationgeothermal

  10. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  11. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  12. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01T23:59:59.000Z

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  13. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01T23:59:59.000Z

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  14. Simulation of geothermal subsidence

    SciTech Connect (OSTI)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01T23:59:59.000Z

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  15. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  16. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  17. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  18. Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

  20. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.