Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Feasibility of Producing and Using Biomass-Based Diesel and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States A. Milbrandt, C. Kinchin, and R. McCormick National Renewable Energy Laboratory Technical...

2

Biomass-Based Diesel Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

3

REQUEST BY DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO....

4

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

5

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

6

REQUEST BY DETROIT DIESEL CORPORATION, FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NO. DE-FC05-00OR22805; DOE WAIVER DOCKET W(A)-01-012 ORO-764 Petitioner, Detroit Diesel Corporation, has made a timely request for an advance waiver to worldwide rights in...

7

REQUEST BY DETROIT DIESEL CORPORATION, FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CORPORATION, FOR AN ADVANCE WAIVER OF CORPORATION, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC05-00OR22805; DOE WAIVER DOCKET W(A)-01-012 [ORO-764] Petitioner, Detroit Diesel Corporation, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC05-00OR22805. The scope of this work is to develop a commercially viable heavy-duty diesel technology package for truck applications targeted at achieving 50% thermal efficiency and meeting 2007 EPA mandated emissions. This work is sponsored by the Office of Transportation Technologies, Office of Heavy Vehicle Technologies.

8

Biomass-Based Diesel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

9

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

10

Advanced Diesel Engine Component Development Program, final report - tasks 4-14  

DOE Green Energy (OSTI)

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

Kaushal, T.S.; Weber, K.E.

1994-11-01T23:59:59.000Z

11

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION â—† DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

12

REQUEST BY DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CORPORATION FOR AN CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE- FC05-970R22581; DOE WAIVER DOCKET W(A)-97-009 [ORO-653] Detroit Diesel Corporation (DDC) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-FC05-970R22581. The scope of the work calls for the development of advanced materials for low emissions, high efficiency diesel engine components. The work is sponsored by the Office of Transportation Technologies. The dollar amount of the contract is $6,811,639 with DDC cost sharing $3,405,819, or 50% of the contract. DDC is a world leader in the design, development, and production of diesel engines. It has a

13

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

14

REQUEST BY DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to diverse markets. In these products they incorporate advanced materials such as ceramic piston rings, valves and valve guides, piston crowns, rocker arm bushings, clevis...

15

OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)  

DOE Green Energy (OSTI)

The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

Sverdrup, George M.

2000-08-20T23:59:59.000Z

16

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

17

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

Science Conference Proceedings (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

18

U.S. Biomass-Based Diesel (Renewable) Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

19

Biomass-Based Diesel Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

20

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source  

DOE Green Energy (OSTI)

The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure increases. This is counter to visible light spray measurements, and current work is underway in an effort to understand this effect.

Powell, C

2003-08-24T23:59:59.000Z

22

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

DOE Green Energy (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

23

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

24

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

25

Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report  

DOE Green Energy (OSTI)

Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

NONE

1995-10-09T23:59:59.000Z

26

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

27

TransForum v3n4 - Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

ZEROING IN ON DIESEL PARTICULATE EMISSIONS Thick clouds of soot particles no longer billow from new bus and truck exhaust pipes, thanks to today's advanced diesel engines, which...

28

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

Science Conference Proceedings (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

29

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

30

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

31

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

32

Net Imports of Biomass-Based Diesel into the U.S. by Country  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

33

Getting the Word Out: Diesel Exhaust Fluid (DEF) Locator, Mapping Tools, and Outreach Activities (Presentation)  

DOE Green Energy (OSTI)

Presentation covers diesel exhaust fluid resources on the Alternative Fuels and Advanced Vehicles Data Center.

Brodt-Giles, Debbie

2008-12-01T23:59:59.000Z

34

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

35

Size-Resolved Density Measurements of Particulate Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology  

Science Conference Proceedings (OSTI)

We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) and compare these with conventional diesel particles. The densities of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle masses of the different size classes were evaluated with a proposed DMA-APM response function for aggregates. Our results indicate that the effective densities of PCCI and conventional diesel particles were approximately the same for 50 and 100 nm electrical mobility diameters (0.9 and 0.6 g/cc, respectively), but the PCCI particle effective density (0.4 g/cc) was less than the conventional (0.5 g/cc) for 150 nm. The lowest effective particle densities were observed for exhaust gas recirculation (EGR) levels somewhat less than that required for PCCI operation. The inherent densities of conventional particles in the 50 and 100 nm size classes were 1.22 and 1.77 g/cc, which is in good agreement with Park et al. (2004). PCCI inherent particle densities for these same size classes were higher (1.27 and 2.10 g/cc), suggesting that there may have been additional adsorbed liquid hydrocarbons. For 150 nm particles, the inherent densities were nearly the same for PCCI and conventional particles at 2.20 g/cc. We expect that the lower effective density of PCCI particles may improve particulate emissions control with diesel particulate filters (DPFs). The presence of liquid hydrocarbons may also promote oxidation in DPFs.

Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL

2011-01-01T23:59:59.000Z

36

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network (OSTI)

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality CHANG IK, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its performance in estimating total stock biomass and fishing mortality (F) for a population in equilibrium. We

37

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Bruce A. Mc Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Today society faces important prevalent greenhouse gas (carbon dioxide - CO2), it is important in the total picture. According

McCarl, Bruce A.

38

Diesel Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

39

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

40

Enlaces Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Enlaces Diesel Enlaces Diesel Los siguientes enlaces no son parte del sitio ahorremosgasolina.gov. Le ofrecemos estos enlaces externos para que a su conveniencia tenga acceso a informaciĂłn adicional que puede serle Ăştil o interesante para usted. VehĂ­culos y Fabricantes Diesel Audi A3 (modelos TDI) Q7 (modelos TDI) Mercedes-Benz Mercedes E350 BlueTEC Mercedes GL350 BlueTEC Mercedes ML350 BlueTEC Mercedes R350 BlueTEC Volkswagen Golf (modelos TDI) Jetta (modelos TDI) Jetta Sportwagen (modelos TDI) Touareg (modelos TDI) InformaciĂłn Sobre el Diesel Biodiesel Abundante informaciĂłn sobre el biodiesel proporcionada por el Centro de Datos de Combustibles Alternativos y VehĂ­culos Avanzados (AFDC) Mezclas de Biodiesel ĂŤcono de Adobe Acrobat Informe sobre el debate de las mezclas de biodiesel desarrollado por el programa de Ciudades Limpias del EERE.

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

42

The Role of Biomass Based Cogeneration: Case of an Italian Province  

NLE Websites -- All DOE Office Websites (Extended Search)

The Role of Biomass Based Cogeneration: Case of an Italian Province Speaker(s): Giuseppe Muliere Date: June 23, 2009 - 12:30pm Location: 90-3122 The aim of this work is to analyze...

43

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

44

A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid  

E-Print Network (OSTI)

A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic200X An alternative biomass-based route to aromatics isaromatic compounds from biomass resources could provide a

Arceo, Elena

2011-01-01T23:59:59.000Z

45

Alternative Fuels Data Center: Biofuels and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels and Green Biofuels and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biofuels and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels and Green Diesel Definitions Advanced biofuels are defined as fuels derived from any cellulose,

46

Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Fleet Clean Diesel Fleet Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Fleet Vehicle Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Diesel Fleet Vehicle Grants The Oklahoma Department of Environmental Quality (DEQ) Air Quality Division

47

Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Clean Diesel National Clean Diesel Campaign (NCDC) to someone by E-mail Share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Facebook Tweet about Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Twitter Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Google Bookmark Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Delicious Rank Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on Digg Find More places to share Alternative Fuels Data Center: National Clean Diesel Campaign (NCDC) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Clean Diesel Campaign (NCDC) The NCDC was established by the U.S. Environmental Protection Agency to

48

Energy Department Announces up to $15 Million to Research Biomass-Based  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Announces up to $15 Million to Research Department Announces up to $15 Million to Research Biomass-Based Supplements for Traditional Fuels Energy Department Announces up to $15 Million to Research Biomass-Based Supplements for Traditional Fuels April 6, 2012 - 10:16am Addthis WASHINGTON, D.C. - As part of President Obama's blueprint for an economy fueled by homegrown and alternative energy sources, the Energy Department announced today up to $15 million available to demonstrate biomass-based oil supplements that can be blended with petroleum, helping the U.S. to reduce foreign oil use, diversify the nation's energy portfolio, and create jobs for American workers. Known as "bio-oils," these precursors for fully renewable transportation fuels could be integrated into the oil refining processes that make conventional gasoline,

49

Energy Department Announces up to $15 Million to Research Biomass-Based  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces up to $15 Million to Research Energy Department Announces up to $15 Million to Research Biomass-Based Supplements for Traditional Fuels Energy Department Announces up to $15 Million to Research Biomass-Based Supplements for Traditional Fuels April 6, 2012 - 10:16am Addthis WASHINGTON, D.C. - As part of President Obama's blueprint for an economy fueled by homegrown and alternative energy sources, the Energy Department announced today up to $15 million available to demonstrate biomass-based oil supplements that can be blended with petroleum, helping the U.S. to reduce foreign oil use, diversify the nation's energy portfolio, and create jobs for American workers. Known as "bio-oils," these precursors for fully renewable transportation fuels could be integrated into the oil refining processes that make conventional gasoline,

50

Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Retrofit and Improvement Grants to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

51

Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Retrofit Clean Diesel Retrofit and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

52

Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Green Biodiesel and Green Diesel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Green Diesel Definitions Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of

53

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gas. To explore the economic potential of biofuels in a greenhouse gas mitigation market, we incorporate data

McCarl, Bruce A.

54

Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems  

DOE Green Energy (OSTI)

To make a significant contribution to the power mix in the United States biomass power systems must be competitive on a cost and efficiency basis. We describe the cost and performance of three biomass-based integrated gasification combined cycle (IGCC) systems. The economic viability and efficiency performance of the IGCC generation technology appear to be quite attractive.

Craig, K. R.; Mann, M. K.

1996-10-01T23:59:59.000Z

55

Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation  

Science Conference Proceedings (OSTI)

Status: Submitted Citation: Lewis, A; Long, CM; Peterson, MK; Weatherstone, S; Quick, W; Campleman, S; Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power. Submitted to INT J ENVIRON RES PUBLIC HEALTH. Biomass power plants will increasingly contribute to reaching international energy targets for renewable production of electricity and greenhouse gas emission reductions. Biomass combustors, common in small scale, industrial boiler applications, are being developed for ap...

2011-12-26T23:59:59.000Z

56

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

57

Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Green Biodiesel and Green Diesel Fuel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Green Diesel Fuel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

58

National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)  

DOE Green Energy (OSTI)

Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

Not Available

2010-06-01T23:59:59.000Z

59

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price...

60

Diesel prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price...

62

Diesel prices decrease slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago,...

63

Diesel prices rise slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to 4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based...

64

Diesel prices flat  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at 3.89 a gallon on Monday, based on the weekly...

65

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2013 Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on...

66

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

67

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price...

68

Diesel prices increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

69

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

70

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price...

71

Diesel prices flat nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

72

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

73

Comparative Analysis on the Effects of Diesel Particulate Filter and  

E-Print Network (OSTI)

with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF and secondary emissions significantly. Introduction Advances in diesel engine and aftertreatment technologies, samples were first collected from a heavy-duty diesel engine with no aftertreatment system to establish

Wu, Mingshen

74

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

75

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

76

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

77

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

78

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

79

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

80

Argonne Transportation - Diesel Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

82

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

83

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

84

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

85

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

to 3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in...

86

The diesel approach  

Science Conference Proceedings (OSTI)

Whether for standby or baseload capacity, diesel generator sets are being used in markets worldwide. Companies are taking a variety of approaches to tapping these markets. The markets for diesel generators follow two basic paths. In the US, they are used primarily for standby or peaking applications. Outside the US, the market includes standby applications but is more often for baseload or prime-power applications.

Anderson, J.L.

1993-04-01T23:59:59.000Z

87

Diesel Engine Analysis Guide  

Science Conference Proceedings (OSTI)

This guide provides a thorough background on diesel engine analysis including combustion, vibration, and ultrasonic analysis theory. Interpretation of results is also provided. This guide is intended to enable nuclear utility personnel to make informed decisions regarding the nature and use of diesel engine analysis, including how to set up an effective program, how to establish analysis guidelines, how to make use of the resulting data to plan maintenance, determine the causes of off-design operating co...

1997-10-09T23:59:59.000Z

88

100 area diesel performance data  

Science Conference Proceedings (OSTI)

Performance data for diesel engine-generator sets was collected to aid an analysis of the electric power system being conducted by an offsite consultant. Diesels in three different services were studied: emergency power (GM) diesels, 903 fan backup diesels and the Caterpillar diesels that power the dc motors for the D/sub 2/O pumps. It was convenient to collect data for the ECS booster pump diesel at the same time, even though it is not part of the electric power system. The results are published here to make them more widely available.

Smith, J.A.; Tudor, A.A.

1984-01-17T23:59:59.000Z

89

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

90

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

91

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

92

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

93

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

94

Diesel Nuevos y Por Venir  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Nuevos y Por Venir Nuevos Modelos Diesel del 2014 Vehculo Estimados de MPG de la EPA Precios (MSRP) Audi A8 L Automvil Grande Audi A8 L Chart: Ciudad, 24; Carretera, 36;...

95

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down a penny from a week ago, based on the...

96

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.83 a gallon on Monday. That's down 2 cents from a week ago, based on the...

97

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

98

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

4, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based...

99

Diesel prices slightly decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.97 a gallon on Monday. That's down 7-tenths of a penny from a week...

100

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Diesel prices see slight drop  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to 3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago,...

102

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based...

103

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 3 cents from a week ago based on the...

104

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the...

105

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.94 a gallon on Monday. That's down 3 12 cents from a week ago, based...

106

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

107

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the...

108

Diesel prices remain fairly stable  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to 3.85 a gallon on Monday. That's down 6-tenths of a penny from a week...

109

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 5 12 cents from a week ago, based on the...

110

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the...

111

Diesel prices slightly increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's up 4-tenths of a penny from a...

112

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

113

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

114

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the...

115

An Integrated Approach for Creating Model Diesel Fuels Ioannis P. Androulakis, Mark D. Weisel, Chang S. Hsu, Kuangnan Qian,  

E-Print Network (OSTI)

Laboratories, ExxonMobil Research and Engineering, 1545 Route 22 East, Annandale, New Jersey 08801 Kiyomi matter emissions in advanced diesel engines. This includes a sophisticated numerical optimization composition. Test results are discussed from an advanced high-speed direct injection diesel engine for several

Androulakis, Ioannis (Yannis)

116

STATEMENT OF CONSIDERATIONS PETITION BY DETROIT DIESEL CORPORATION (DDC)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BY DETROIT DIESEL CORPORATION (DDC) BY DETROIT DIESEL CORPORATION (DDC) FOR ADVANCE WAIVER OF U.S. AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER MODIFICATION 17 TO CONTRACT DEN-3-329 [W(A)93-043] The Petitioner is asking for U.S. and foreign patent rights to all subject inventions made under DOE Contract DEN-3-329, Modification 17, entitled "Adiabetic Diesel Engine Component Development". This entire contract is being funded by DOE, but is being administered by the NASA Lewis Research Center. The entire contract has as its object the successful design, fabrication, and demonstration of five stationary and moving structural monolithic ceramic components in an extremely hostile Low Heat Rejection (LHR) environment. DDC was formed in January 1988 to design, manufacture, and sell diesel engines. It is a joint-venture company 80% owned by

117

A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid  

E-Print Network (OSTI)

R.G.B and J.A.E. ). Keywords: biomass · carboxylic acids ·10.1002/cssc.201000111 A Direct, Biomass-Based Synthesis ofaro- matic compounds from biomass resources could provide a

2010-01-01T23:59:59.000Z

118

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

119

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

120

Diesel Engine Alternatives  

DOE Green Energy (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NYCT Diesel Hybrid-Electric Buses Program Status Update  

DOE Green Energy (OSTI)

Program status update focuses on the experiences gathered during New York City Transit's deployment of hybrid electric buses in its fleet. This report is part of an ongoing Department of Energy (DOE), Office of Heavy Vehicle Technologies program to study heavy-duty alternative fuel and advanced technology vehicles in the United States. DOE's National Renewable Energy Laboratory (NREL) is conducting the Transit Bus Evaluation Project to compare alternative fuel or advanced technology and diesel fuel buses. Information for the comparison comes from data collected on the operational, maintenance, performance, and emissions characteristics of alternative fuel or advanced technology buses currently being used in vehicle fleets and comparable diesel fuel buses serving as controls within the same fleet. This report highlights the New York City Transit (NYCT) alternative fuel and advanced technology programs including its diesel hybrid-electric buses. As part of the NREL Transit Bus Evaluation Project, data collection and evaluation of the Orion VI diesel hybrid-electric buses at NYCT are nearly complete. Final reports from the evaluation are being prepared by NREL and Battelle (NREL's support contractor for the project) and will be available in early 2002. If you want to know more about this transit bus program, its components, advanced technology vehicles, or incentive programs, contact any of the following personnel or visit the Web sites listed.

Not Available

2002-03-01T23:59:59.000Z

122

Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia  

Science Conference Proceedings (OSTI)

Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control, the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.

Baring-Gould, E.I.; Barley, C.D.; Drouilhet, S. [and others

1997-09-01T23:59:59.000Z

123

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

124

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

125

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

126

diesel | OpenEI  

Open Energy Info (EERE)

diesel diesel Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

127

Southeast BioDiesel | Open Energy Information  

Open Energy Info (EERE)

BioDiesel Jump to: navigation, search Name Southeast BioDiesel Place Charleston, South Carolina Product Biodiesel producer based in South Carolina References Southeast BioDiesel1...

128

Ultra-Low Sulfur Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection Agency requires 80% of the highway diesel fuel refined in or...

129

Diesel de Azufre Ultra Bajo  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel de Azufre Ultra Bajo Diesel de Azufre Ultra Bajo ULSD LSD Off-Road Diesel para Carretera de Azufre Ultra Bajo (máximo de 15 ppm de azufre). Se requiere su uso en todos los motores y vehículos diesel de carretera modelos 2007 y posteriores. También se recomienda su uso en todos los vehículos y motores diesel. Diesel para Carretera Bajo en Azufre (máximo de 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores modelos 2007 y posteriores, su uso podría dañarlos. Combustible Diesel que no es para Carretera (puede exceder 500 ppm de azufre). Aviso: La ley federal prohíbe su uso en vehículos y motores que no son de carretera, su uso podría dañarlos. Los consumidores con vehículos modelo 2007 ó posteriores deben utilizar solo diesel ultra bajo de azufre (ULSD). El ULSD es un diesel de

130

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2012 (EIA)

FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage)...

131

Diesel Idling Reduction | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Diesel Idling Reduction Jump to: navigation, search Tool Summary Name: Diesel Idling Reduction AgencyCompany...

132

Louisiana Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Louisiana Downstream Charge Capacity of Operable ...

133

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Get the RSS feed. Release Schedule. Details... Procedures, Methodology & CV's Gasoline Diesel fuel. ... How do I calculate/find diesel fuel surcharges? ...

134

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

Beginning July 26, 2010 publication of Ultra Low Sulfur Diesel (ULSD) price became fully represented by the Diesel Average All Types price. As of December 1, ...

135

Diesel prices continue to fall  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to 4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly...

136

Diesel prices continue to rise  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to rise The U.S. average retail price for on-highway diesel fuel rose to 4.16 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly...

137

Diesel prices up this week  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices up this week The U.S. average retail price for on-highway diesel fuel rose sharply to 4.10 a gallon on Monday. That's up 8.2 cents from a week ago and 17.7 cents...

138

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

139

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

140

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesels Diesels Diesel Vehicle Federal tax credit up to $3,400! Some diesels purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. (No eligible vehicles were manufactured for sale until 2008.) Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible hybrid and diesel vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. Audi BMW Mercedes-Benz Volkswagen All Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Audi Jan. 1, 2006 July 1 - Dec. 31, 2010 Not Applicable Jan. 1, 2011 Audi A3 TDI 2010-11 Audi A3 2.0L TDI $1,300 $650 -- $0

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

142

A Review on Diesel Soot Emission, its Effect and Control  

E-Print Network (OSTI)

The diesel engines are energy efficient, but their particulate (soot) emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; impact agriculture productivity, soiling of buildings; reductions in visibility; and global climate change. The review covers important recent developments on technologies for control of particulate matter (PM); diesel particulate filters (DPFs), summarizing new filter and catalyst materials and DPM measurement. DPF technology is in a state of optimization and cost reduction. New DPF regeneration strategies (active, passive and plasma-assisted regenerations) as well as the new learning on the fundamentals of soot/catalyst interaction are described. Recent developments in diesel oxidation catalysts (DOC) are also summarized showing potential issues with advanced combustion strategies, important interactions on NO2 formation, and new formulations for durability. Finally, systematic compilation of the concerned newer literature on catalytic oxidation of soot in a well conceivable tabular form is given. A total of 156 references are cited. © 2010 BCREC UNDIP. All rights reserved.

R. Prasad; Venkateswara Rao Bella

2010-01-01T23:59:59.000Z

143

Portec Voltage Regulators: for Emergency Diesel Generators  

Science Conference Proceedings (OSTI)

This report contains information to help utilities address emergency diesel generator voltage regulator issues.

2004-12-15T23:59:59.000Z

144

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

145

Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)  

DOE Green Energy (OSTI)

The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

Baring-Gould, E. I.; Dabo, M.

2009-05-01T23:59:59.000Z

146

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

147

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

148

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

149

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

150

VehĂ­culos Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehículos Diesel Vehículos Diesel Audi A3 Los vehículos Diesel podrían estar de regreso. Los motores de Diesel son más poderosos y ahorradores de gasolina en comparación con los motores de gasolina del mismo tamaño (un 30-35% aprox. más eficientes en su consumo). Además, los vehículos diesel son mejores que los que se fabricaban en el pasado. Mejor Desempeño Tienen mejores inyectores de combustible y tecnologías electrónicas en sus controles Más poder Aceleración Mejorada Más Eficiencia Los nuevos diseños en los motores, además de las tecnologías de reducción de ruido y vibración, los han hecho silenciosos y suaves en su manejo. El arranque en clima-frío también ha sido mejorado. Más Limpios Mercedes ML320 BlueTEC En la actualidad los diesels deben cumplir con los mismos estándares de

151

Ultra-Low Sulfur Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur Diesel Fuel Ultra-Low Sulfur Diesel Fuel August 20, 2013 - 8:53am Addthis Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

152

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

153

Safety and Performance Assessment of Ethanol/Diesel Blends (E-Diesel)  

DOE Green Energy (OSTI)

Subcontract report discussing safety concerns of ethanol-diesel blends and pathways to reducing risks.

Waterland, L. R.; Venkatesh, S.; Unnasch, S.

2003-09-01T23:59:59.000Z

154

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

155

Compare New and Used Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

City 35 30 25 20 15 10 Combined 45 40 35 30 25 20 15 10 Highway Your Selections Search Diesel Vehicles & Fuels Compare Side by Side About Diesel Vehicles New & Upcoming Ultra-Low...

156

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

157

Diesel prices top $4 per gallon  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices top 4 per gallon The U.S. average retail price for on-highway diesel fuel surpassed the four dollar mark for the first time this year. Prices rose to 4.02 a gallon...

158

Diesel prices continue to decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.95 a gallon on Monday. That's down 2 cents from a week ago...

159

On-Road Use of Fischer-Tropsch Diesel Blends  

DOE Green Energy (OSTI)

Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

1999-04-26T23:59:59.000Z

160

An experimental investigation of low octane gasoline in diesel engines.  

DOE Green Energy (OSTI)

Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

Ciatti, S. A.; Subramanian, S. (Energy Systems)

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

162

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

163

Diesel Power: Clean Vehicles for Tomorrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Power: Diesel Power: Clean Vehicles for Tomorrow July 2010 VEHICLE TECHNOLOGIES PROGRAM Prepared for the U.S. Department of Energy Vehicle Technologies Program The diesel engine has changed significantly over the last quarter-century, in terms of technology and performance. For this reason, the U.S. Department of Energy (DOE) has created this series of documents about the history of the diesel engine, its current uses in transportation vehicles,

164

Diesel Brewing | Open Energy Information  

Open Energy Info (EERE)

Diesel Brewing Diesel Brewing Jump to: navigation, search Name Diesel Brewing Place Salem, Oregon Zip 97302 Sector Biomass Product Oregon-based company that uses gasification to produce liquid fuels and electricity from non-food-based biomass sources, including wood wastes, agricultural residues, and manure. Coordinates 42.554485°, -88.110549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.554485,"lon":-88.110549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

166

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

167

Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability  

DOE Green Energy (OSTI)

Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9 cents per gallon) for the U.S. Gulf Coast alone, financing, engineering, and construction and material availability are major issues that must be addressed, for both refinery and GTL investments.

Hadder, G.R.

2001-02-15T23:59:59.000Z

168

Clean Diesel Component Improvement Program  

DOE Green Energy (OSTI)

The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

None

2005-06-30T23:59:59.000Z

169

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

170

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

171

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

172

Hydrogen supplemented diesel electric locomotive  

SciTech Connect

A system is disclosed for using internally generated electricity as the power to operate an electrolysis cell for the production of hydrogen gas. This hydrogen gas would be stored under pressure and used on demand as a fuel supplement as for hill ascension by a diesel locomotive.

Wilson, J.B.

1983-05-03T23:59:59.000Z

173

Federal Tax Credit for Diesels  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuevos Reembolsos de impuestos en Materia de Energía para Nuevos Reembolsos de impuestos en Materia de Energía para Diesels Vehículo Diesel ¡Reembolso Federal de hasta $3,400! Algúnos diesels comprados o puestos en servicio después del 31 de diciembre del 2005 pueden ser elegibles para un reembolso de impuestos sobre la renta federal de hasta 3,400 dólares. (Ningún vehículo elegible fue fabricado para la venta hasta el 2008.) Las cantidades del reembolso comienzan a disminuir progresivamente para los fabricantes que hayan vendido más de 60,000 vehículos híbridos y diesel elegibles. Los vehículos adquiridos después de Diciembre 31 no son elegibles para este crédito. Audi BMW Mercedes-Benz Volkswagen All Marca y Modelo del Vehículo Reembolso Completo Desfase Sin Reembolso 50% 25% Audi ene. 1, 2006 jul. 1 - dic. 31, 2010 No aplica ene. 1, 2011

174

NREL: News - NREL to Help Convert Methane to Liquid Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL to Help Convert Methane to Liquid Diesel Advanced research project could lead to lower greenhouse emissions, new life for spent gas and oil wells January 3, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help develop microbes that convert methane found in natural gas into liquid diesel fuel, a novel approach that if successful could reduce greenhouse gas emissions and lower dependence on foreign oil. The amount of natural gas simply flared or vented from oil wells globally is enormous - equal to one-third of the amount of petroleum used in the United States each year. And every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.

175

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

2010-11-15T23:59:59.000Z

176

High Performance Diesel Fueled Cabin Heater  

DOE Green Energy (OSTI)

Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

Butcher, Tom

2001-08-05T23:59:59.000Z

177

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network (OSTI)

Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University and compares the emissions of a 100 percent blended feed stock biodiesel to an ultra low sulfur diesel certification fuel. The steady state tests were conducted while holding engine speed constant at three different speeds and three different loads. The gaseous emissions, exhaust gas recirculation, fuel flow rate, and torque were monitored and recorded for 300 points per test. Four tests were performed and the results were averaged per each fuel. Carbon monoxide, carbon dioxide, oxygen, and oxides of nitrogen emissions were analyzed. The biodiesel averaged up to 12% lower torque, 5.4% more fuel, 7.5% less carbon dioxide, 29% more oxygen, and 29% more oxides of nitrogen. Overall the biodiesel produced less torque and carbon dioxide emissions, while emitting more oxygen and oxides of nitrogen.

Tompkins, Brandon T.

2008-12-01T23:59:59.000Z

178

ACTION: Final rule. SUMMARY: Under the Clean Air Act  

E-Print Network (OSTI)

of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass-based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline

unknown authors

2010-01-01T23:59:59.000Z

179

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

DOE Green Energy (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

180

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

DOE Green Energy (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units (CSUs) from the combination of two sample cycles of the EIA-782A and EIA-782B surveys that collected monthly petroleum products' sales at the State level. For sampling purposes, any combination of State and company where diesel was sold through retail outlets as reported on the EIA-782 surveys defined a CSU, the sampling unit. For the second phase, a sub-sample of the 2,207 CSUs from phase 1 was selected using probability proportional to size (PPS). The measure of size for each of the two sample cycles separately was normalized using the annual State sales' volumes from the monthly survey divided by the unit's

182

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops. Due to statistical and operational considerations, outlets in the States of Alaska and Hawaii are excluded from the target population. The primary publication cells of the survey include Petroleum Administration for Defense Districts (PADDs) 2-4, three sub-PADDs within

183

Diesel cars in the United States  

DOE Green Energy (OSTI)

The purpose of this study was to develop a better understanding of the causes of the recent increased interest in diesel cars, thereby providing insight into the related behavior of institutions and individuals. This knowledge may improve the formulation of federal policies for diesel, electric, and other more energy-efficient car systems. The study describes developments in the diesel car field over the past few years, and discusses the present status of diesel cars. Historical data were assembled on diesel car sales and on parameters that might have affected the sales. Information is included on the following items related to diesel cars: buyers preferences and why; fuel economy and availability; energy conservation potential; and exhaust emissions, their control and air pollution effects. (LCL)

Not Available

1978-06-01T23:59:59.000Z

184

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

185

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

186

TransForum v4n2 - Diesel Reformer  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARGONNE SCIENTISTS TEAM UP TO DEVELOP NEW DIESEL REFORMER Liu tests diesel reformer Argonne's Di-Jia Liu conducted extensive testing of the diesel reformer; his experiments are...

187

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

188

Emergency Diesel Generator Voltage Regulator Guidelines  

Science Conference Proceedings (OSTI)

This product kit, containing six separate documents, provides information to help utilities address emergency diesel generator voltage regulator issues and maintenance.

2005-12-20T23:59:59.000Z

189

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

190

Trends and Transitions in the Diesel Market  

U.S. Energy Information Administration (EIA)

A presentation at the 2007 NPRA Annual Meeting focusing on trends in the diesel market. The presentation reviews the status of the ULSD program and highlights recent ...

191

Pyrochem Catalysts for Diesel Fuel Reforming - Energy ...  

Summary. Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and ...

192

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Notes: Conventional area is any area that does not require the sale of reformulated gasoline. ... Publication of Low Sulfur On-Highway Diesel (LSD) ...

193

BPM Diesel Engineering | Open Energy Information  

Open Energy Info (EERE)

Diesel Engineering" Retrieved from "http:en.openei.orgwindex.php?titleBPMDieselEngineering&oldid342997" Categories: Clean Energy Organizations Companies Organizations...

194

Coal-fueled diesels for modular power generation  

DOE Green Energy (OSTI)

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

195

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

196

Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and Emissions...

197

Black Carbon Concentrations and Diesel Vehicle Emission Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003 Title Black Carbon Concentrations and Diesel...

198

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

199

Cellular Response to Diesel Exhaust Particles Strongly Depends...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular Response to Diesel Exhaust Particles Strongly Depends on the Exposure Method Title Cellular Response to Diesel Exhaust Particles Strongly Depends on the Exposure Method...

200

Engines - Emissions Control - cerium-oxide catalyst, diesel,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Heavy duty diesel vehicles product particulate matter emissions. The U.S. Environmental Protection Agency regulations require that heavy-duty diesel vehicles have...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Engines - 3-D Animation Shows Complex Geometry of Diesel Particulates  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows Complex Geometry of Diesel Particulates Diesel particulate matter has a very complex geometry Most studies have observed these three-dimensional structures in...

202

Vehicle Technologies Office: 2002 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Medium-Duty Diesel Engine Shawn Whitacre National Renewable Energy Lab (PDF 356 KB) Natural Oils -- The Next Generation of Diesel Engine Lubricants? Joe Perez The...

203

Performance evaluation of diesel particulate filters on heavy duty vehicles.  

E-Print Network (OSTI)

??Diesel particulate filters, or DPFs, are exhaust aftertreatment devices used to reduce exhaust emissions from diesel powered vehicles. Typical designs have a wall flow filter… (more)

Rosepiler, Stephen G.

2003-01-01T23:59:59.000Z

204

Midwest (PADD 2) Refinery Catalytic Hydrotreating, Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Midwest (PADD 2) Downstream Charge Capacity of ...

205

U.S. Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; U.S. Downstream Charge Capacity of Operable ...

206

Why has diesel fuel been more expensive than gasoline? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why has diesel fuel been more expensive than gasoline? On-highway diesel fuel prices have been higher than regular gasoline prices almost continuously ...

207

Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report  

DOE Green Energy (OSTI)

Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

2006-03-01T23:59:59.000Z

208

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

DOE Green Energy (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

209

Diesel Fuel - Energy Explained, Your Guide To Understanding ...  

U.S. Energy Information Administration (EIA)

... and electric utilities have diesel generators for backup and emergency power supply. Most remote villages in Alaska use diesel generators for ...

210

Trends and Transitions in the Diesel Market  

Reports and Publications (EIA)

A presentation at the 2007 NPRA Annual Meeting focusing on trends in the diesel market. The presentation reviews the status of the ULSD program and highlights recent changes and trends in the distillate market that point towards continued strength in diesel prices relative to gasoline for some time.

Information Center

2007-03-19T23:59:59.000Z

211

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Diesel Technologies Inc Diesel Technologies Inc Jump to: navigation, search Name Clean Diesel Technologies Inc Place Stamford, Connecticut Zip 6901 Product Clean Diesel Technologies Inc is a specialty chemical company with patented products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending  

SciTech Connect

The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

Hadder, G.R.

2003-01-23T23:59:59.000Z

213

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network (OSTI)

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre-ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied based on where and when each of these reactions mainly occurs within the diesel fuel jet evolution process. The simulation is completed for a 4.5 liter, inline four-cylinder diesel engine for a range of operating conditions. Specifically, the engine possesses a compression ratio of 16.6, and has a bore and stroke of 106 and 127 mm. The results suggest that the simulation is able to accurately reproduce the fuel jet evolution and heat release process for conventional diesel engine combustion conditions. The soot and nitric oxide models are able to qualitatively predict the effects of various engine parameters on the engine-out emissions. In particular, the detailed thermodynamics and characteristics with respect to the combustion and emission formation processes are investigated for different engine speed/loads, injection pressures and timings, and EGR levels. The local thermodynamic properties and energy, mass distributions obtained from the simulation offer some fundamental insights into heterogeneous type combustion systems. The current work provides opportunities to better study and understand the diesel engine combustion and emission formation mechanisms for conventional diesel engine combustion modes. The flexible, low computational cost features of this simulation result in a convenient tool for conducting parametric studies, and benefits for engine control and diagnostics.

Xue, Xingyu 1985-

2012-12-01T23:59:59.000Z

214

An In-Cylinder Study of Soot and NO in a DI Diesel Engine. Final report  

DOE Green Energy (OSTI)

Clearly the reduction of NOx and particulate emissions remains a major challenge to Diesel engine manufacturers due to increasingly stringent emission standards in the US and other countries. The well documented NOx/particulate trade-off observed in Diesel engines makes the simultaneous reduction of both emissions particularly difficult for manufacturers to achieve. In an effort to provide an improved understanding of the fundamental processes which result in this trade-off, a program was carried out at Penn State to develop the appropriate engine facilities and laser diagnostics to permit in-cylinder studies of Diesel combustion and emissions production with the support of the Department of Energy Advanced Industrial Technology Division . This work has also been supported by the Cummins Engine Company, Lubrizol Corporation and the National Science Foundation. An optically accessible, direct injection, Diesel engine was constructed for these studies. The major objective of the, design of the engine was to maximize optical access under conditions representative of Diesel engine combustion in small bore, commercial engines. Intake air is preheated and boosted in pressure to make the in-cylinder conditions of heat release and pressure as realistic as possible. Another important objective of the design was flexibility in combustion chamber geometry to permit a variety of head and bowl geometries to be studied. In all the results reported in this report a square bowl was used to simplify the introduction of laser light sheets into the engine.

Litzinger, T.A.

1995-10-18T23:59:59.000Z

215

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

216

AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM  

E-Print Network (OSTI)

Laboratory and are actively developing what will be the world's largest wind-diesel hybrid electric plant. The pending installation of four 950-kW wind turbines to supplement the 22.8 MW diesel electricity plant diesel fuel usage in the base, while not adversely affecting the power grid or the diesels. The reduced

Massachusetts at Amherst, University of

217

Diesel Reforming for Solid Oxide Fuel Cell Application  

DOE Green Energy (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

218

Low Emissions Aftertreatment and Diesel Emissions Reduction  

Science Conference Proceedings (OSTI)

Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

None

2005-05-27T23:59:59.000Z

219

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

220

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Google Bookmark Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Delicious Rank Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions

222

Engines - Fuel Injection and Spray Research - Diesel Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nationÂ’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

223

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Science Conference Proceedings (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies ( 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

224

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

billion in tax incentives over ten years to encourage consumers to buy energy-efficient hybrid cars and trucks. Approximately one-fourth of the vehicles that travel on American...

225

Compare vehículos diesel nuevos y usados  

NLE Websites -- All DOE Office Websites (Extended Search)

Por Galn Por lo menos... 35 30 25 20 15 10 Ciudad 35 30 25 20 15 10 Combinado 45 40 35 30 25 20 15 10 Carretera Sus Selecciones Bsque Vehculos y Combustible Diesel Compare de...

226

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

227

An improved visualization of diesel particulate filter/  

E-Print Network (OSTI)

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

228

Massachusetts Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

229

San Francisco Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

230

Cleveland Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

231

Chicago Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

232

Washington Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

233

Colorado Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

234

New York Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

235

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

236

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

237

Florida Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

238

Seattle Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

239

Los Angeles Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

240

Denver Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

JatroDiesel | Open Energy Information  

Open Energy Info (EERE)

http:www.jatrodiesel.com References JatroDiesel1 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now This article is a stub. You can help OpenEI...

242

Diesel Fuel Price Pass-through  

Reports and Publications (EIA)

Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. This article representsthe extension of this type of analysis and modeling into the diesel fuel markets.

Michael Burdette

2002-07-31T23:59:59.000Z

243

Modeling deposit formation in diesel injector nozzle  

E-Print Network (OSTI)

Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

Sudhiesh Kumar, Chintoo

2009-01-01T23:59:59.000Z

244

Diesel particulate filter with zoned resistive heater  

Science Conference Proceedings (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

245

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

246

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

247

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

248

Recent Developments in BMW's Diesel Technology  

DOE Green Energy (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

249

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions  

DOE Green Energy (OSTI)

To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

1999-04-26T23:59:59.000Z

250

Advanced Boost System Developing for High EGR Applications  

SciTech Connect

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

251

The Intelligent Study on Diesel-LNG Dual Fuel Marine Diesel Engine  

Science Conference Proceedings (OSTI)

In this article, a diesel engine named "X6170ZC" has been converted into a dual-fuel engine of diesel and liquefied natural gas (LNG). The principle, composition and characteristics of electronic control system for the engine have been introduced. An ... Keywords: engine, dual-fuel, intelligent

Zhang Liang

2012-03-01T23:59:59.000Z

252

THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM  

DOE Green Energy (OSTI)

Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

Fairbanks, John W.

2000-08-20T23:59:59.000Z

253

Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Digg

254

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

DOE Green Energy (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-12-31T23:59:59.000Z

255

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

DOE Green Energy (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-01-01T23:59:59.000Z

256

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network (OSTI)

1997), “Emission from CNG and diesel Refuse Haulers Using1997), “Emission from CNG and diesel Refuse Haulers Using

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

257

Assessment of the O2Diesel Operational Safety Program: December 23, 2002 -- June 30, 2007  

DOE Green Energy (OSTI)

This report assesses O2Diesel's operational safety program using its ethanol-diesel blended fuel product.

TIAX LLC

2006-06-01T23:59:59.000Z

258

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels. The world?s energy demand is commencing its dependency on alternative fuels. Such alternative fuels in use today consist of bio-alcohols (such as ethanol), hydrogen, biomass, and natural oil/fat derived fuels. However, in this study, the focus will be on the alternative fuel derived from natural oils and fats, namely biodiesel. The following study characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes a John Deere 4.5 liter 4 cylinder direct injection engine with exhaust gas recirculation (EGR), common rail fuel injection, and variable turbo-charging with conventional petroleum diesel to set a reference for comparison. The study then proceeds to characterize the differences in engine performance as a result of using biodiesel relative to conventional diesel. The results show that torque decreases with the use of biodiesel by about 10%. The evaluation of engine performance parameters shows that torque is decreased because of the lower heating value of biodiesel compared to conventional diesel. The insignificant difference between the other performance parameters shows that the ECM demands the same performance of the engine regardless of the fuel being combusted by the engine.

Esquivel, Jason

2008-12-01T23:59:59.000Z

259

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

260

STATEMENT OF CONSIDERATIONS REQUEST BY PHILLIPS PETROLEUM, INC. FOR AN ADVANCED WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHILLIPS PETROLEUM, INC. FOR AN ADVANCED WAIVER OF PHILLIPS PETROLEUM, INC. FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE SOLICITAION NO. DE-PS26-00NT40718 W(A)-01-001, CH-1054 The Petitioner, Phillips Petroleum (Phillips), was awarded this cooperative agreement for the performance of work entitled, "Improved Process for Desulfurizing Diesel Fuel to Produce Ultra Low Sulfur Diesel". The purpose of the cooperative agreement is to investigate and develop an improved process for desulfurizing diesel fuel to produce ultra low sulfur diesel to meet the 15 part per million (ppm) cap on sulfur in on-road diesel fuels proposed by the U.S. Environmental Protection Agency (EPA) on May 18, 2000. Phillips has been selected to receive an award under the subject solicitation; the

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

262

BioDiesel One Ltd | Open Energy Information  

Open Energy Info (EERE)

One Ltd Jump to: navigation, search Name BioDiesel One, Ltd. Place Southington, Connecticut Zip 6489 Product BioDiesel One plans to develop a biodiesel plant in Southington,...

263

Diesel prices decrease for the ninth consecutive week  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease for the ninth consecutive week The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 3.6 cents from a week...

264

Diesel prices dip below the 4 dollar mark  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices dip below the 4 dollar mark The U.S. average retail price for on-highway diesel fuel dipped below the 4-dollar mark for the first time since late January to 3.99 a...

265

Diesel prices decrease for first time in seven weeks  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease for first time in seven weeks The U.S. average retail price for on-highway diesel fuel fell for the first time in seven weeks to 4.13 a gallon on Monday....

266

Vehicle Technologies Office: Fact #496: November 19, 2007 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: November 19, 2007 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes to someone by E-mail Share Vehicle Technologies Office: Fact 496: November 19, 2007 Diesel...

267

Vehicle Technologies Office: Fact #650: November 22, 2010 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: November 22, 2010 Diesel Fuel Prices hit a Two-Year High to someone by E-mail Share Vehicle Technologies Office: Fact 650: November 22, 2010 Diesel Fuel Prices hit a Two-Year...

268

Study of deposit formation inside diesel injectors nozzles  

E-Print Network (OSTI)

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

269

Gasoline and Diesel Fuel Update Data Revision Notice  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

270

Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.  

DOE Green Energy (OSTI)

Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

1999-08-10T23:59:59.000Z

271

Earthship BioDiesel | Open Energy Information  

Open Energy Info (EERE)

Earthship BioDiesel Earthship BioDiesel Jump to: navigation, search Name Earthship BioDiesel Place Taos, New Mexico Zip 87571 Product Supplier and retailer of biodiesel made from Waste Vegetable Oil. Coordinates 36.4116°, -105.574251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4116,"lon":-105.574251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Clean Diesel Technologies | Open Energy Information  

Open Energy Info (EERE)

Clean Diesel Technologies Clean Diesel Technologies Jump to: navigation, search Name Clean Diesel Technologies Address 10 Middle Street Place Bridgeport, Connecticut Zip 06604 Sector Carbon Product Solutions for emissions and carbon reduction Website http://www.cdti.com/ Coordinates 41.178468°, -73.188243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.178468,"lon":-73.188243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

274

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

275

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

DOE Green Energy (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

276

Argonne Transportation Technology R&D Center - Alternative and Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Advanced Fuels Clean Diesel Fuels Argonne researchers (from left) Steve McConnell, Henry Ng, Forrest Jehlik, Geoff Amman and Mike Kern are shown with samples of ultra-low sulfur diesel fuel, a cleaner-burning diesel fuel used in the Opel Astra. The VW Jetta TDI runs on a clean diesel fuel derived from coal. Alternative and advanced fuels are critical to reducing our country's dependence on foreign oil and improving air quality. To promote and stimulate alternative and renewable fuel research, the U.S. Renewable Fuel Standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion gallons by 2022. Public concern over mobile sources of air pollution provides an additional incentive to produce fuels that generate fewer emissions and increase

277

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

278

A Municipal Official's Guide to Diesel Idling Reduction | Open Energy  

Open Energy Info (EERE)

A Municipal Official's Guide to Diesel Idling Reduction A Municipal Official's Guide to Diesel Idling Reduction Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Municipal Official's Guide to Diesel Idling Reduction Agency/Company /Organization: United States Environmental Protection Agency Partner: New York Planning Federation Sector: Climate, Energy Focus Area: Transportation Resource Type: Lessons learned/best practices Website: www.nyserda.org/publications/09-06GuidetoDieselIdlingReduction.pdf Language: English References: A Municipal Official's Guide to Diesel Idling Reduction[1] References ↑ "A Municipal Official's Guide to Diesel Idling Reduction" Retrieved from "http://en.openei.org/w/index.php?title=A_Municipal_Official%27s_Guide_to_Diesel_Idling_Reduction&oldid=390471"

279

Engines - Particulate Studies - Revealing the True Nature of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

280

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results  

DOE Green Energy (OSTI)

Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

2006-05-01T23:59:59.000Z

282

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

2012-06-21T23:59:59.000Z

283

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.  

DOE Green Energy (OSTI)

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.

Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

2004-12-01T23:59:59.000Z

284

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

285

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

286

Cermet Filters To Reduce Diesel Engine Emissions  

DOE Green Energy (OSTI)

Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

Kong, Peter

2001-08-05T23:59:59.000Z

287

Clean and Efficient Diesel Engine  

DOE Green Energy (OSTI)

Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

None

2010-12-31T23:59:59.000Z

288

Implications to Heavy-Duty Diesel Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL/TM-200015 ORNL/TM-200015 MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions November 2000 Prepared by H. 1. McAdams AccaMath Services Carrolton, Illinois R. W. Crawford R.W. Crawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee - UT-BATTELLE -. ORNL-27 (4.00) II ORNL/TM-200015 A VECTOR APPROACH TO REGRESSION ANALYSIS AND ITS APPLICATION TO HEAVY-DUTY DIESEL EMISSIONS H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee November 2000 Prepared for Office of Energy Effkiency and Renewable Energy

289

Nonthermal aftertreatment of diesel engine exhaust  

DOE Green Energy (OSTI)

The ultimate objective of this work has been to develop a nonthermal plasma process to reduce NO{sub x} in diesel exhaust gas. A secondary objective has been to study the possibility of particulate matter (soot) reduction by the same technique. The early work revealed a fundamental difficulty with this NO{sub x} reduction approach in the gas environment of the diesel engine exhaust. These observations necessitated a thorough study of the unfavorable chemistry in the hope that knowledge of the chemical mechanism would offer an opportunity to make the approach useful for NO{sub x} reduction. Whereas fundamental understanding of the mechanism has been obtained, the authors have not found any measure that would make the approach meet its original objective.

Wallman, P.H.; Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

1995-09-22T23:59:59.000Z

290

Review of Diesel Exhaust Aftertreatment Programs  

DOE Green Energy (OSTI)

The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U. S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R and D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives. Both catalytic and non-catalytic filter technologies have been investigated for PM control.

Ronald L. Graves

1999-04-26T23:59:59.000Z

291

Diesel Aerosol Sampling in the Atmosphere  

DOE Green Energy (OSTI)

The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

2000-06-19T23:59:59.000Z

292

Affordable, Low-Carbon Diesel Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Affordable, Low-Carbon Diesel Fuel Affordable, Low-Carbon Diesel Fuel from Domestic Coal and Biomass January 14, 2009 DOE/NETL-2009/1349 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

293

Advance Waivers - 1997 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Advance Waivers - 1997 The following Advance Waivers are available: WA 97 004 FOSTER WHEELER CORP Waiver of Domestic and Foreign.pdf WA 97 005 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 006 MOTOROLA MANUFACTURING SYSTEMS Waiver of Patent Ri.pdf WA 97 007 WESTINGHOUSE ELECTRIC CORPORATION Waiver of Domest.pdf WA 97 008 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 009 DETROIT DIESEL CORPORATION Waiver of Domestic and .pdf WA 97 010 DETROIT DIESEL CORPORATION Waiver of Domestice and.pdf WA 97 011 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 012 MOTOROLA MAUFACTURING SYSTEMS Waiver of Domestic a.pdf WA 97 013 CATERPILLAR INC Waiver of Domestic and Foreign Rig.pdf WA 97 014 CATERPILLAR INC Waiver of Domestic and Foreign Rig.pdf

294

DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded Patent for Reformulated Diesel Fuel Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered under this patent will be commercially available for use without licensing or royalty fees. This reformulated diesel fuel patent resulted from research conducted by the U.S. Department of Energy, Oak Ridge National Laboratory and its subcontractors. "DOE's personnel continue to bring to the forefront technologies and

295

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

296

Coal-fueled diesel locomotive test  

DOE Green Energy (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

297

Utiization of alternate fuels in diesel engines  

DOE Green Energy (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

298

Microwave-Regenerated Diesel Exhaust Particulate Filter  

Science Conference Proceedings (OSTI)

Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

2001-03-05T23:59:59.000Z

299

Electrical diesel particulate filter (DPF) regeneration  

SciTech Connect

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

300

Diesel exhaust filter uses steel wool  

SciTech Connect

Researchers are experimenting with a diesel exhaust filter which can use either steel wool or wire mesh as the filter medium. By using alumina coated metal wool as the filter matrix, submicron-sized particulate emissions may be recovered. The particulate trapping efficiency of this kind of filter depends on the amount of alumina applied to it, and its physical dimensions. Surface area, which is a function of all of these, correlates well with trapping efficiency.

Not Available

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

302

PCR+ In Diesel Fuels and Emissions Research  

DOE Green Energy (OSTI)

In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

McAdams, H.T.

2002-04-15T23:59:59.000Z

303

Effects of 2-Ethylhexyl Nitrate on Diesel-Spray Processes  

DOE Green Energy (OSTI)

Diesel fuel ignition-enhancing additives, such as 2-ethylhexyl nitrate, are known to reduce emissions from diesel engines; however, the mechanisms by which the emissions reduction occur are not understood. This report covers the first phase of a research project supported by Ethyl Corporation that is aimed at developing a detailed understanding of how 2-ethylhexyl nitrate alters in-cylinder injection, ignition, and combustion processes to reduce diesel engine emissions.

Higgins, B.; Mueller, C.; Siebers, D.

1998-08-01T23:59:59.000Z

304

X-Ray Absorption Characterization of Diesel Exhaust Particulates  

DOE Green Energy (OSTI)

We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

1999-11-18T23:59:59.000Z

305

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions  

Science Conference Proceedings (OSTI)

Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

2002-06-01T23:59:59.000Z

306

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

307

EIA: diesel prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

308

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

309

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

DOE Green Energy (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

310

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

311

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Diesel Fuel Release Date: November 25, 2013 | Next Release Date: December 2, 2013 Reformulated Gasoline. States in each PADD Region. Procedures & Methodology ...

312

Heavy-duty diesel engine oil aging effects on emissions.  

E-Print Network (OSTI)

??Diesel engines are highly reliable, durable and are used for wide range of applications with low fuel usage owing to its higher thermal efficiency compared… (more)

Dam, Mrinmoy.

2010-01-01T23:59:59.000Z

313

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

314

California's efforts to clean up diesel engines have helped reduce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts California's efforts to clean up diesel engines have helped reduce impact of climate change on state, study finds CARB black carbon study shows decrease in emissions...

315

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery...  

NLE Websites -- All DOE Office Websites (Extended Search)

truck Cummins Westport ISXG high- pressure, direct- injection, lique- fied natural gas (LNG) and diesel Completed in 2004 2 Project Design and Data Collection This report...

316

Diesel DeNOx Catalyst - Energy Innovation Portal  

Because diesel engines are more fuel-efficient than gasoline engines, ... Fossil fuel power plants; Chemical plants; Patents and Patent Applications. ID Number.

317

Price of No. 2 Diesel Fuel Through Retail Outlets  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Data ... total No. 2 diesel fuel has been eliminated to help ensure that sensitive data reported to EIA by ...

318

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

DOE Green Energy (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

319

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, ... 2013 | Next Release Date: November 18, 2013 Diesel Fuel Release Date: November 12, ...

320

Chinese tallow seed oil as a diesel fuel extender  

SciTech Connect

Chinese tallow and stillingia oil are products obtained from the seed of the unmerchantable, but high yielding Chinese tallow tree. Short-term diesel engine performance tests using mixtures 25%:75% and 50%:50% of Chinese tallow tree seed oil and tallow to diesel fuel gave engine power output, brake thermal efficiencies, and fuel consumption rates within 7% of those obtained using pure diesel fuel. Fuel property values of the extended fuels were found to be within limits proposed for diesel engines. 12 references.

Samson, W.D.; Vidrine, C.G.; Robbins, J.W.D.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Diesel Reforming for Fuel Cell Auxiliary Power Units  

DOE Green Energy (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

322

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2002-07-01T23:59:59.000Z

323

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

324

Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)  

DOE Green Energy (OSTI)

The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

Hane, G.J.

1983-09-01T23:59:59.000Z

325

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2004-04-01T23:59:59.000Z

326

Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines  

DOE Green Energy (OSTI)

Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

Wiczynski, T.A.; Marolewski, T.A.

1993-03-01T23:59:59.000Z

327

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

Standard Schedule Standard Schedule Jump to: navigation, search Name Renewable Fuel Standard Schedule Sector Liquid Transportation Fuels Spatial Resolution National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as required by the Energy Independence and Security Act of 2007 (EISA), periodically revises the volumetric standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel each year. The table below lists the current RFS2 schedule in billions of gallons: Year Renewable Biofuel Advanced Biofuel Cellulosic Biofuel Biomass-based Diesel Undifferentiated Total 2008 9 9

328

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

329

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

330

TransForum v3n2 - Ethanol Additive for Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

ETHANOL FUEL ADDITIVE MAY HELP SOLVE THE DIESEL EMISSIONS PUZZLE The quest to reduce atmospheric emissions associated with diesel-fueled vehicles has faced a longstanding...

331

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska SUMMARY This EA evaluates the...

332

Investigation Of The Ion Current Signal In Gen-Set Turbocharged Diesel Engine.  

E-Print Network (OSTI)

??Diesel powered generator sets have traditionally been and remain the number-one choice for standby and emergency power systems. As an established engine technology, diesel engines… (more)

Badawy, Tamer Hassan

2010-01-01T23:59:59.000Z

333

Retail prices: diesel outpaces gasoline - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Since mid-2009 the price of retail diesel has been consistently higher than the price of retail regular grade gasoline. Strong diesel demand in emerging economies and ...

334

2011 Brief: U.S. average gasoline and diesel prices over $3 per ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... record U.S. diesel exports and higher diesel fuel demand from truckers transporting more finished goods and raw materials as the ...

335

Investigation of diesel soot mediated oils and additive package on wear.  

E-Print Network (OSTI)

??Contamination of lubricating oil by diesel soot is one of the major causes of increased engine wear. The diesel soot interacts with the engine oil… (more)

Balla, Santhosh Kumar.

2001-01-01T23:59:59.000Z

336

How do I calculate diesel fuel surcharges? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How do I calculate diesel fuel surcharges? The U.S. Energy Information Administration does not calculate, assess, or regulate diesel fuel surcharges.

337

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles? ... the automobile manufacturers probably face the largest diesel-vehicle challenges in the ...

338

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies; Diesel exhaust after-treatment technologies.  

E-Print Network (OSTI)

??Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting… (more)

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

339

OH radical imaging in a DI diesel engine and the structure of the early diffusion flame  

DOE Green Energy (OSTI)

Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

Dec, J.E.; Coy, E.B.

1996-03-01T23:59:59.000Z

340

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

342

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

343

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Yong Shang; Fu-shui Liu; Xiang-rong Li

2010-12-01T23:59:59.000Z

344

Biodiesel: The clean, green fuel for diesel engines (fact sheet)  

SciTech Connect

Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

Tyson, K.S.

2000-04-11T23:59:59.000Z

345

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Shang Yong; Liu Fu-shui; Li Xiang-rong

2011-02-01T23:59:59.000Z

346

Diesel prices increase for first time in six weeks  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase for first time in six weeks The U.S. average retail price for on-highway diesel fuel rose to 3.83 a gallon on Monday. That's up 1.1 cents from a week ago,...

347

Trimode Power Converter optimizes PV, diesel and battery energy sources  

SciTech Connect

Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

O`Sullivan, G. [Abacus Controls, Inc., Somerville, NJ (United States); Bonn, R.; Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

348

Research Approach for Aging and Evaluating Diesel Exhaust catalysts  

DOE Green Energy (OSTI)

To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

Wayne, Scott

2000-08-20T23:59:59.000Z

349

Computer simulation of wind/diesel system operation  

DOE Green Energy (OSTI)

This document reports on a computer code, SOLSTOR W/D, that determines --- for a site's wind energy resources, load requirements, and economic constraints --- the components and sizes for a wind/diesel system that result in the lowest cost of energy. Wind diesel systems are defined here as electricity generation stations in the 50-kW to 1-MW range that (1) are not connected to another electricity network, (2) use wind energy as the first source of supply to meet demand, and (3) contain sufficient energy storage and/or backup diesel electric generators to compensate for lapses in wind energy. The computer code also determines, for the same input load, the requirements and economics that are the best number and size for an isolated diesel(s) system so that comparisons for wind/diesel systems and diesel-only systems can be made. SOLSTOR W/D provides a systematic method to show whether wind-diesel systems can be an attractive means of saving fossil fuel without significantly affecting electricity quality or production cost. 12 refs., 66 figs., 5 tabs.

Not Available

1989-09-01T23:59:59.000Z

350

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

DOE Green Energy (OSTI)

The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

2003-06-01T23:59:59.000Z

351

Demonstrating Ultra-Low Diesel Vehicle Emissions  

DOE Green Energy (OSTI)

Evaluate performance of near-term exhaust emissions control technologies on a modern diesel vehicle over transient drive cycles; Phase 1: Independent (separate) evaluations of engine-out, OEM catalysts, CDPF, and NOx adsorber (Completed March 2000); Phase 2: Combine NOx adsorber and CDPF to evaluate/demonstrate simultaneous reduction of NOx and PM (Underway--interim results available); Establish potential for these technologies to help CIDI engines meet emission reduction targets; and Investigate short-term effects of fuel sulfur on emissions performance

McGill, R.N.

2000-08-20T23:59:59.000Z

352

Vibrational energy transfer in a diesel engine  

Science Conference Proceedings (OSTI)

The paths of vibrational energy transfer in a diesel engine were investigated in order to obtain insight into ways of reducing this transfer to the exterior surfaces and thereby reduce the radiated noise. The engine was tested in a nonrunning condition with simulated internal forces in order to study the different transfer paths separately. Vibration response measurements were made of individual engine components and lumped?parameter models were developed to simulate this response. These models were then used to determine component design changes that would reduce the energy transfer. Two design changes were implemented in the engine and a reduction of the energy transfer was achieved as predicted.

R. G. DeJong; R. H. Lyon

1977-01-01T23:59:59.000Z

353

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

354

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

355

The Biodiesel Handbook, 2nd EditionChapter 3 The Basics of Diesel Engines and Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 3 The Basics of Diesel Engines and Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS 14987AFD8C4C7FBFCBA3FD4D98DB9DC5 Press   ...

356

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices  

Science Conference Proceedings (OSTI)

A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

2010-05-01T23:59:59.000Z

357

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

358

Infrared optical properties of diesel smoke plumes  

SciTech Connect

Far IR optical properties have been measured for smoke from diesel fires. Concentrations of both gaseous and particulate combustion products have been measured and chemical species contributing to the optical effects identified. To obtain these results, a variety of sampling instruments were lofted into large plumes on a mobile and open structure. The smoke plumes of diesel fires have been found to consist largely of carbonaceous material (in fibrous form) and heavy liquid hydrocarbons infused with the expected gaseous products of the combustion process. Strong attenuation at a wavelength of 10.6 {mu}m is found to be due largely to the carbonaceous aerosol. The absorption coefficient is typically {similar to}500 km{sup {minus}1} at 10 m from the source with a variable but often comparable total scattering coefficient. The extinction coefficient, normalized to the mass density of the aerosol in a unit volume of space, is found to be 1.2 m{sup 2}-g{sup {minus}1} with an estimated variance of 20%. Fluctuational spectra of the attenuation follow a form similar to turbulence spectra.

Bruce, C.W.; Crow, S.B.; Yee, Y.P.; Hinds, B.D. (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico 88002 (US)); Marlin, D. (New Mexico State University, Physical Science Department, University Park, New Mexico 88003); Jelinek, A. (Optimetrics, Inc., 106 E. Idaho, Las Cruces, New Mexico 88001)

1989-10-01T23:59:59.000Z

359

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia: (1) PSZ-TS and (2) PSZ-MS and silicon nitride (GTE WESGO SNW-1000 and Norton NT-154). Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}S{sup {minus}1}. Room temperature tests showed that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. 6 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1990-01-01T23:59:59.000Z

360

Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.  

DOE Green Energy (OSTI)

Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

Christiansen, Caspar (Technical University of Denmark); Hermant, Laurent (IFP); Malbec, Louis-Marie (IFP); Bruneaux, Gilles (IFP); Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper (Technical University of Denmark)

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Examinatal Study on Common Rail Diesel Engine for Multi-injection Strategies  

Science Conference Proceedings (OSTI)

Based on diesel engine equipped with common rail, the multi-injection strategies common rail diesel engine test bed is established with NI test system. In this test bed, the influences of optimized multi-injection strategies to diesel engine performances ... Keywords: common rail, diesel engine, multi-injection, emission

An Shijie; Chang Hanbao; Xu Hongjun

2010-05-01T23:59:59.000Z

362

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

DOE Green Energy (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

363

,"U.S. On-Highway Diesel Fuel Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

On-Highway Diesel Fuel Prices" On-Highway Diesel Fuel Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","W Diesel Prices - All Types",11,"Weekly","12/16/2013","3/21/1994" ,"Data 2","M Diesel Prices - All Types",11,"Monthly","11/2013","3/15/1994" ,"Data 3","W Diesel Prices-Low ",1,"Weekly","12/1/2008","2/5/2007" ,"Data 4","M Diesel Prices-Low ",1,"Monthly","12/2008","2/15/2007" ,"Data 5","W Diesel Prices-Ultra-Low",11,"Weekly","12/16/2013","2/5/2007"

364

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

365

West Virginia Diesel Study, CRADA MC96-034, Final Report  

DOE Green Energy (OSTI)

The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

M. Gautam

1998-08-05T23:59:59.000Z

366

HEALTH EFFECTS OF DIESEL EXHAUST: AN HEI PERSPECTIVE  

DOE Green Energy (OSTI)

Diesel engines have many advantages, including good fuel economy, power, durability, lower emissions of some pollutants (such as carbon monoxide) and of carbon dioxide (a greenhouse gas). However, there are a number of concerns that need to be addressed: (1) emissions of nitrogen oxides (which contribute to ozone formation) and of particulate matter (PM); (2) questions about cancer and other health effects from exposure to diesel PM; and (3) as efforts to decrease emissions progress, a need to understand whether the nature and toxicity of the PM emitted has changed. This paper focuses on (1) carcinogenicity data, (2) noncancer effects, and (3) diesel as part of the complex ambient mixture of PM.

Warren, Jane

2000-08-20T23:59:59.000Z

367

Light-duty diesel engine development status and engine needs  

DOE Green Energy (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

368

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

2012-07-26T23:59:59.000Z

369

Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines  

Science Conference Proceedings (OSTI)

The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

Kass, M.D.

2008-07-15T23:59:59.000Z

370

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

Science Conference Proceedings (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

371

Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites  

Science Conference Proceedings (OSTI)

The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

2011-12-31T23:59:59.000Z

372

PCR+ in Diesel Fuels and Emissions Research  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 PCR+ in Diesel Fuels and Emissions Research MARCH 2002 Prepared by H. T. McAdams AccaMath Services Carrollton, Illinois R. W. Crawford RWCrawford Energy Systems Tucson, Arizona G. R. Hadder Oak Ridge National Laboratory Oak Ridge, Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

373

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

374

Low heat rejection diesel ceramic coupon tests  

DOE Green Energy (OSTI)

Results are reported from studies in which several monolithic ceramic materials in the form of modulus-of-rupture bars were exposed for 100 h to the combustion conditions found in either a small single- or two-cylinder diesel engine. Fuels included a standard Phillips D-2 diesel or synthetic mixture of the Phillips D-2 and an aromatic blend. The ceramics included two commercial grades of partially stabilized zirconia (PSZ-TS and PSZ-MS), silicon nitride (GTE WESGO SNW-1000 and Norton NT-154), and (Hexoloy SA) silicon carbide. Significant reductions in postexposure four-point bend fracture strength occurred in the PSZ-TS material irrespective of whether it was exposed in the single- or two-cylinder engine. Only a small decrease in fracture strength occurred in the PSZ-MS material, and essentially no decrease in fracture strength occurred in the silicon nitride (GTE WESGO SNW-1000) when tested at room temperature. The Norton NT-154 silicon nitride was tested at both room temperature and at 700{degree}C over several strain rates ranging from 1 {times} 10{sup {minus}4} to 1 {times} 10{sup {minus}7}s{sup {minus}1}. Room temperature tests indicated that the engine exposed bars actually showed a slight increase in average strength, 830 MPa, versus 771 MPa for the unexposed material. Elevated temperature strength comparisons showed no reduction in strength due to previous engine exposure. Hexoloy SA silicon carbide showed no reduction in fracture strength when tested at 700{degree}C. 4 refs., 12 figs., 1 tab.

Brinkman, C.R.; Liu, K.C.; Graves, R.L.; West, B.H.

1991-01-01T23:59:59.000Z

375

Wisconsin No 2 Diesel Off-Highway Construction (Thousand Gallons)  

U.S. Energy Information Administration (EIA)

Wisconsin No 2 Diesel Off-Highway Construction (Thousand Gallons) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 16,323: 12,292 ...

376

US BioDiesel Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name US BioDiesel Group Place San Francisco, California Zip 94111 Product San Francisco-based developer of biodiesel production plants in Texas...

377

Retail Prices for Diesel (On-Highway) - All Types  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) 3.911: 3.907: 3.871: 3.850: 3.873: 3 ... EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types ...

378

New England (PADD 1A) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

379

Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

380

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

382

U.S. Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

383

Improving supply chain responsiveness for diesel engine remanufacturing  

E-Print Network (OSTI)

Achieving a significant reduction in order-to-shipment lead-time of remanufactured diesel engines can dramatically decrease the amount of finished goods inventory that Caterpillar needs to carry in order to meet its delivery ...

Méndez de la Luz, Diego A., 1979-

2011-01-01T23:59:59.000Z

384

CONTROL OF DIESEL ENGINE UREA SELECTIVE CATALYTIC REDUCTION SYSTEMS.  

E-Print Network (OSTI)

??A systematic nonlinear control methodology for urea-SCR systems applicable for light-to-heavy-duty Diesel engine platforms in a variety of on-road, off-road, and marine applications is developed… (more)

Hsieh, Ming-Feng

2010-01-01T23:59:59.000Z

385

An Overview of Biodiesel and Petroleum Diesel Life Cycles  

DOE Green Energy (OSTI)

This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated.

Sheehan, J. (NREL); Camobreco, V. (Ecobalance); Duffield, J. (USDA); Shapouri, H. (USDA); Graboski, M. (CIFER); Tyson, K. S. (NREL Project Manager)

2000-04-27T23:59:59.000Z

386

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network (OSTI)

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

387

Characterizing Diesel Smoke and other Aerosols using Polarized...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Diesel Smoke and other Aerosols using Polarized Light Scattering Speaker(s): Arlon Hunt Date: November 17, 1998 - 12:00pm Location: 90-3148 Considerable information...

388

Midwest (PADD 2) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

389

Feature - Air Force Fellows helping work toward smarter diesel engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Force Fellows helping work toward smarter diesel engines Air Force Fellows helping work toward smarter diesel engines Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. (Photo by Wes Agresta) One of the three core values of the Air Force is "excellence in all we do." So it should be no surprise that there are currently two Air Force officers here at Argonne studying ways to improve the efficiency of military vehicles. Lieutenant Colonel Jeff Gillen and Major Clint Abell are the fourth set of Air Force Fellows to spend time at Argonne, but the first to be stationed

390

JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.  

DOE Green Energy (OSTI)

The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

2003-06-17T23:59:59.000Z

391

Analysis of a diesel-electric hybrid urban bus system  

DOE Green Energy (OSTI)

A hybrid bus powered by a diesel engine and a battery pack has been analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, have been evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

Marr, W.W.; Sekar, R.R. [Argonne National Lab., IL (United States); Ahlheim, M.C. [Regional Transportation Authority, Chicago, IL (United States)

1993-08-01T23:59:59.000Z

392

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

393

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

394

The John Deere E diesel Test & Research Project  

DOE Green Energy (OSTI)

Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

Fields, Nathan; Mitchell, William E.

2008-09-23T23:59:59.000Z

395

High-alcohol microemulsion fuel performance in a diesel engine  

DOE Green Energy (OSTI)

Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

West, B.H.; Compere, A.L.; Griffith, W.L.

1990-01-01T23:59:59.000Z

396

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

397

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

398

CSV  

U.S. Energy Information Administration (EIA)

... ","Other Oxygen- ates","Fuel Ethanol","Biomass- Based Diesel","Other Renewable Diesel","Other Renewable Fuels","15 ppm sulfur and under","Greater than 15 ppm ...

399

Nano Catalysts for Diesel Engine Emission Remediation  

DOE Green Energy (OSTI)

The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

2012-06-01T23:59:59.000Z

400

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Capture of Heat Energy from Diesel Engine Exhaust  

DOE Green Energy (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

402

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

DOE Green Energy (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

403

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

DOE Green Energy (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

404

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

405

Advanced Manufacturing  

Science Conference Proceedings (OSTI)

... new metrologically-based methods for industry as well ... for Advanced Catalyst Development and Durability ... Electron-Beam Irradiation of Solar Cells. ...

2013-07-29T23:59:59.000Z

406

Advanced Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to...

407

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 3   Raw materials for advanced structural and magnetic (ferrite) ceramics...conductivity Wear resistance Oxygen sensors, fuel cells (potential), high-temperature

408

Effects of diesel particle filter retrofits and accelerated fleet turnover  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of diesel particle filter retrofits and accelerated fleet turnover Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Title Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Publication Type Journal Article Year of Publication 2011 Authors Dallmann, Timothy R., Robert A. Harley, and Thomas W. Kirchstetter Journal Environmental Science & Technology Volume 45 Issue 24 Pagination 10773-10779 Abstract Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NOx) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NOx emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.

409

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

410

Recent Progress in the Development of Diesel Surrogate Fuels  

DOE Green Energy (OSTI)

There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

Pitz, W J; Mueller, C J

2009-12-09T23:59:59.000Z

411

Recent Progress in the Development of Diesel Surrogate Fuels  

DOE Green Energy (OSTI)

There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

Pitz, W J

2009-09-04T23:59:59.000Z

412

Thermal Barrier Coatings for Low Emission, High Efficiency Diesel Engine Applications  

DOE Green Energy (OSTI)

Thermal efficiencies of 54% have been demonstrated by single cylinder engine testing of advanced diesel engine concepts developed under Department of Energy funding. In order for these concept engines to be commercially viable, cost effective and durable systems for insulating the piston, head, ports and exhaust manifolds will be required. The application and development of new materials such as thick thermal barrier coating systems will be key to insulating these components. Development of test methods to rapidly evaluate the durability of coating systems without expensive engine testing is a major objective of current work. In addition, a novel, low cost method for producing thermal barrier coated pistons without final machining of the coating has been developed.

M. B. Beardsley; P. G. Happoldt; K.C. Kelley; E. F. Rejda; D. F. Socie

1999-04-26T23:59:59.000Z

413

O2Diesel Corporation formerly Dynamic Ventures | Open Energy Information  

Open Energy Info (EERE)

O2Diesel Corporation formerly Dynamic Ventures O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name O2Diesel Corporation (formerly Dynamic Ventures) Place Newark, Delaware Zip 19713 Product O2Diesel Corporation has a proprietary additive made from fats and oils, which facilitates the blending of ethanol with diesel. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Coal-fueled diesel engines for locomotive applications  

DOE Green Energy (OSTI)

GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

1993-11-01T23:59:59.000Z

415

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

416

Effect of carbon coating on scuffing performance in diesel fuels  

DOE Green Energy (OSTI)

Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

2000-06-29T23:59:59.000Z

417

[98e]-Catalytic reforming of gasoline and diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

418

Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows 3-D Animation Shows Complex Geometry of Diesel Particulates to someone by E-mail Share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Facebook Tweet about Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Twitter Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Google Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Delicious Rank Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Digg Find More places to share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on AddThis.com... 3-D Animation Shows Complex Geometry of Diesel Particulates

419

Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Diesel Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Diesel Vehicle Vouchers - San Joaquin Valley on AddThis.com... More in this section... Federal

420

The U.S. average retail price for on-highway diesel fuel rose...  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flame Arrester Evaluation for E-Diesel Fuel Tanks: September 3, 2002 - May 28, 2003  

DOE Green Energy (OSTI)

An evaluation of various flame arresters for use with E-Diesel fuel was conducted on four diesel fuel tanks selected to represent typical fuel tank and fill neck designs. Multiple flame arresters were tested on each fuel tank.

Weyandt, N.; Janssens, M. L.

2003-06-01T23:59:59.000Z

422

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

423

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

424

Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans  

DOE Green Energy (OSTI)

Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

Lammert, M.

2009-12-01T23:59:59.000Z

425

Evaluating heavy-duty diesel engine aftertreatment devices with a split exhaust configuration.  

E-Print Network (OSTI)

??West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOx catalysts as part of the Diesel Emissions Control-Sulfur Effects (DECSE) program. In order to perform… (more)

Corrigan, Eric R.

2001-01-01T23:59:59.000Z

426

Experimental and computational study of soot formation under diesel engine conditions  

E-Print Network (OSTI)

Past research has shown that during diesel combustion, soot is formed in local premixed fuel-rich regions. This project focuses on the fundamentals soot formation under fuel-rich conditions similar to those in diesel engine ...

Kitsopanidis, Ioannis, 1975-

2004-01-01T23:59:59.000Z

427

Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction  

DOE Green Energy (OSTI)

Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

Kakwani, R.M.

2000-08-20T23:59:59.000Z

428

Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell  

E-Print Network (OSTI)

these systems, the wind-diesel industry in Alaska is still fairly new (Drouilhet 2001). 2. PURPOSE In order Laboratory, Report No. TP- 500-31755. 2002. Drouilhet, S. (2001). "Preparing an Existing Diesel Power Plant

Massachusetts at Amherst, University of

429

Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)  

Science Conference Proceedings (OSTI)

A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

Brennan, A.

2011-04-01T23:59:59.000Z

430

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

431

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Diesel Ultra Low Sulfur Less than 15 ppm Retail Sales by Refiners (Thousand Gallons per Day)

432

Durability Evaluation of Urea SCR Catalysts for Heavy Duty Diesel Engines  

DOE Green Energy (OSTI)

Assess the potential long-term durability of various SCR catalyst formulations for mobile heavy duty diesel application.

Koshkarian, Kent

2000-08-20T23:59:59.000Z

433

Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

Kass, M.; Veliz, M. (Caterpillar, Inc.)

2011-09-30T23:59:59.000Z

434

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

435

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

436

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

437

Wind-Diesel Hybrid Systems for Russia's Northern Territories  

DOE Green Energy (OSTI)

This paper will summarize the DOE/Russian Ministry of Fuel and Energy (MF and E) activities in Russia's Northern Territories in the field of hybrid wind-diesel power systems over the last three years (1997-1999). The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project, including resource assessment, system design, site identification, training and system monitoring. As a result, several wind-diesel systems have been installed and are operating in the Arkhangelsk/Murmansk regions and in Chukotka. NREL designed and provided sets of data acquisition equipment to monitor several of the first pilot wind-diesel systems. NREL's computer simulation models are being used for performance data analysis and optimizing of future system configurations.

Gevorgian, V.; Touryan, K. [National Renewable Energy Laboratory (US); Bezrukikh, P. [Ministry of Fuel and Energy of Russian Federation (RU); Bezrukikh, P. Jr.; Karghiev, V. [Intersolarcenter

1999-10-20T23:59:59.000Z

438

DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH  

DOE Green Energy (OSTI)

The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

2004-05-01T23:59:59.000Z

439

Planar velocity analysis of diesel spray shadow images  

E-Print Network (OSTI)

The focus of this work is to demonstrate how spatially resolved image information from diesel fuel injection events can be obtained using a forward-scatter imaging geometry, and used to calculate the velocities of liquid structures on the periphery of the spray. In order to obtain accurate velocities directly from individual diesel spray structures, those features need to be spatially resolved in the measurement. The distributed structures measured in a direct shadowgraphy arrangement cannot be reliably analyzed for this kind of velocity information. However, by utilizing an intense collimated light source and adding imaging optics which modify the signal collection, spatially resolved optical information can be retrieved from spray edge regions within a chosen object plane. This work discusses a set of measurements where a diesel spray is illuminated in rapid succession by two ultrafast laser pulses generated by a mode-locked Ti-Sapphire oscillator seeding a matched pair of regenerative amplifiers. Light fro...

Sedarsky, David

2012-01-01T23:59:59.000Z

440

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Particulate measurement issues in diesel exhausts using laser induced incandescence  

DOE Green Energy (OSTI)

A number of studies in the recent past have identified Laser Induced Incandescence (LII) as a versatile technique for in-flame measurement of soot concentrations. Recently, a number of researchers have focused their attention in adapting this technique to measure particulate in diesel exhausts. However the agreement with established physical sampling techniques, such as the EPA recommended filter paper collection method, was found to be less than ideal. This paper reports the efforts to adapt this technique for diesel exhaust characterization. Many of the factors affecting LII signal were identified through computer modeling. Parameters that could not be determined through such a model were determined experimentally following a parametric study. Subsequently, LII measurements were performed in the exhaust of a modified lab burner, with conditions close to that of diesel engine exhausts. Such measurements show excellent agreement with those performed using the standard filter paper collection technique.

Gupta, S. B.; Poola, R. B.; Sekar, R.

2000-07-03T23:59:59.000Z

442

Eine Methode zur Bestimmung der maximalen Treibsto einsparung in einfachen Wind-Diesel Systemen  

E-Print Network (OSTI)

Eine Methode zur Bestimmung der maximalen Treibsto einsparung in einfachen Wind-Diesel Systemen Wind-Diesel Systemen erreichbaren Treibsto einsparungen zu bestimmen. Der Treibsto verbrauch wird dabei Einleitung Viele der heutigen Wind-Diesel Systeme zur autono- men Versorgung von Verbrauchern in der Groenord

Heinemann, Detlev

443

DIESEL AEROSOL SAMPLING IN THE David Kittelson, Jason Johnson, and Winthrop Watts  

E-Print Network (OSTI)

chemical composition of diesel particulate matter collected in laboratory and in wind tunnel #12;In OrderDIESEL AEROSOL SAMPLING IN THE ATMOSPHERE David Kittelson, Jason Johnson, and Winthrop Watts Center for Diesel Research University of Minnesota 10th CRC ON-ROAD VEHICLE EMISSIONS WORKSHOP San Diego, California

Minnesota, University of

444

[Martin high pressure common rail diesel engine injection system]. Technical progress report, August--October 1995  

DOE Green Energy (OSTI)

We have a contract with Diesel Recerche of Trieste, Italy, and the Fincantier Group in Italy. They are naval ship builders. Our contract is to work with Diesel Recerche to design the `Martin` fuel injection system for their first test engine for a naval ship. Tiby Martin has been working in the design and detailed layout of the application drawings for Diesel Recerche.

NONE

1995-12-01T23:59:59.000Z

445

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

446

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 2   Classification of advanced ceramics...solid electrolytes, piezoelectrics, dielectrics, superconductors Optical Low absorption coefficient Lamps, windows, fiber optics, infrared optics Nuclear Irradiation resistance, high absorption coefficient,

447

Market Assessment of Retrofit Dual-Fuel Diesel Generators  

Science Conference Proceedings (OSTI)

Reciprocating engines have long played an important role in the distributed resources market and should continue to provide end-use customers and energy companies benefits in both on-site and grid-connected power generation service. This report presents results of collaborative technical and economic market analyses with a major engine manufacturer to examine the prospects for conversion of existing diesel generators in the 500-2000 kW size range to dual-fuel (natural gas and diesel fuel) operation. Thes...

2001-11-30T23:59:59.000Z

448

Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels  

DOE Green Energy (OSTI)

The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

1999-10-28T23:59:59.000Z

449

GM sees octane surplus; wants improved diesel fuel in future  

Science Conference Proceedings (OSTI)

Under the subject of fuels, both gasoline and diesel fuel are discussed. A primary gasoline issue is that of the satisfaction of vehicle octane number requirements. Secondary issues are the compatibility of gasolines and vehicular fuel systems, and the plugging of exhaust gas recirculation systems with deposits. The important diesel fuel issues are water in the fuel, low temperature fuel properties, fuel effects on particulate emissions, and fuel specifications. Other matters are those concerning fuel demand in the future, and alternate fuels. Lubricants are also discussed. 9 refs.

Route, W.D.; Amann, C.A.; Gallopoulos, N.E.

1982-01-25T23:59:59.000Z

450

Clean Air Nonroad Diesel Rule (released in AEO2005)  

Reports and Publications (EIA)

On June 29, 2004, the EPA issued a comprehensive final rule regulating emissions from nonroad diesel engines and sulfur content in nonroad diesel fuel. The nonroad fuel market makes up more than 18 percent of the total distillate pool. The rule applies to new equipment covering a broad range of engine sizes, power ratings, and equipment types. There are currently about 6 million pieces of nonroad equipment operating in the United States, and more than 650,000 new units are sold each year.

Information Center

2005-02-01T23:59:59.000Z

451

Study of Lean NOx Technology for Diesel Emission Control  

DOE Green Energy (OSTI)

Diesel engines because of their reliability and efficiency are a popular mobile source. The diesel engine operates at higher compression ratios and with leaner fuel mixtures and produces lower carbon monoxide and hydrocarbon emissions. The oxygen-rich environment leads to higher nitrogen oxides in the form of NO. Catalysts selectively promoting the reduction of NOx by HCs in a lean environment have been termed lean NOx catalyst ''LNC''. The two groups that have shown most promise are, Copper exchanged zeolite Cu/ZSM5, and Platinum on alumina Pt/Al2O3.

Mital, R.

2000-08-20T23:59:59.000Z

452

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

453

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

454

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

455

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

456

Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

2011-01-01T23:59:59.000Z

457

Advance Waivers - 2001 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2001 2001 Advance Waivers - 2001 The following Advance Waivers are available: WA 01 001 PHILLIPS PETROLEUM Waiver of Domestic and Foreign.pdf WA 01 002 CREE LIGHTING Waiver of Domestic and Foreign Inven.pdf WA 01 003 SOLAR TURBINES Waive of Domestic and Foreign Paten.pdf WA 01 004 IGC-SUPERPOWER LLC Waiver of Domestic and Foreign .pdf WA 01 005 PRAXAIR INC Waiver of Domestic and Foreign patent.pdf WA 01 006 SIEMENS WESTINGHOUSE POWER Waiver of Domestic and .pdf WA 01 007 SOLAR TURBINES Waiver of Domestic and Foreign pate.pdf WA 01 008 NOVOZYME BIOTECH Waiver of Domestic and Foreign Pa.pdf WA 01 011 HONEYWELL LABORATORIES Waiver of Domestic and Fore.pdf WA 01 012 DETROIT DIESEL Waiver of Domestic and Foreign Righ.pdf WA 01 013 DEERE AND COMPANY Waiver of Domestic and Foreign R.pdf

458

Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle  

DOE Green Energy (OSTI)

Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

2006-05-01T23:59:59.000Z

459

New Generation Biofuels Holdings Inc formerly H2Diesel | Open Energy  

Open Energy Info (EERE)

Generation Biofuels Holdings Inc formerly H2Diesel Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place Lake Mary, Florida Zip 32746 Product Florida-based developer of innovative biodiesel projects and technologies. References New Generation Biofuels Holdings Inc. (formerly H2Diesel)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Generation Biofuels Holdings Inc. (formerly H2Diesel) is a company located in Lake Mary, Florida . References ↑ "New Generation Biofuels Holdings Inc. (formerly H2Diesel)" Retrieved from "http://en.openei.org/w/index.php?title=New_Generation_Biofuels_Holdings_Inc_formerly_H2Diesel&oldid=349166"

460

Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 21, 2004 5: June 21, 2004 Diesel and Hybrid Vehicle Preferences to someone by E-mail Share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Facebook Tweet about Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Twitter Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Google Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Delicious Rank Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Digg Find More places to share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on AddThis.com...

Note: This page contains sample records for the topic "biomass-based diesel advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Maintenance Applications Center: Emergency Diesel Generator Condition- Based Maintenance  

Science Conference Proceedings (OSTI)

Condition-based maintenance practices that were developed in the United States in the 1990s for emergency diesel generators (EDGs) have not been fully adopted by international nuclear plant operators. To encourage broader use of such practices, NMAC formed a technical advisory group of international utilities interested in learning more about condition-based EDG maintenance practices.

2008-12-19T23:59:59.000Z

462

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

463

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

DOE Green Energy (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

464

Estimating Impacts of Diesel Fuel Reformulation with Vector-based...  

NLE Websites -- All DOE Office Websites (Extended Search)

On-road diesel fuel Volume, MBD 680.2 688.8 +1.3 Marginal cost, bbl 38.11 38.11 0.0 Home heating oil Volume, MBD 19.3 20.28 +5.0 Marginal cost, bbl 38.05 33.48 -12.0...

465

Novel injector techniques for coal-fueled diesel engines  

DOE Green Energy (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

466

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

467

Engine performance and exhaust emissions from a diesel  

E-Print Network (OSTI)

Non-road diesel engines are significant contributors to air pollution in the United States. Recent regulations put forth by EPA and other environmental agencies have laid out stringent guidelines for engine manufacturers and fuel producers. Recent increases in oil prices and foreign energy dependency has led to a push to produce renewable fuels, which will supplement current reserves. Biodiesel is a clean-burning renewable fuel, that can be blended with petroleum diesel. It is important to understand the effect on engine performance and exhaust emissions when using biodiesel from different feedstocks. The objective of this research was to determine the relationship between engine performance and emissions and cottonseed oil biodiesel used in a diesel engine rated for 14.2 kW. When using cottonseed oil biodiesel blends, CO, hydrocarbon, NOx, and SO2 emissions decreased as compared to petroleum diesel. Carbon dioxide emissions had no definitive trend in relation to cottonseed oil biodiesel blends. Carbon monoxide emissions increased by an average 15% using B5 and by an average of 19% using B100. Hydrocarbon emissions decreased by 14% using B5 and by 26% using B100. Nitrogen oxide emissions decreased by four percent with B5, five percent with B20, and 14% with B100. Sulfur dioxide emissions decreased by an average of 86% using B100, and by 94% using B50 blended with ultra-low sulfur diesel. The difference between peak output power when using biodiesel and diesel was insignificant in blends less that B40. Peak measured power using B100 was about five percent lower than for diesel fuel. Pure cottonseed oil biodiesel achieved and maintained a peak corrected measured power of 13.1 kW at speeds of 2990, 2875, and 2800 rpm at loads of 41.3, 42.7, and 43.8 N-m. Using B5 produced a peak power of 13.6 kW at 2990 rpm and 43.9 N-m and at 2800 rpm and 46.7 N-m, while using B20 produced a peak power of 13.4 kW at 2990 rpm and 43.7 N-m. Brake-specific fuel consumption at peak measured load and torque using B100 was 1238 g/kW-h. Brake-specific fuel consumption at peak measured power and loads using B5 and B20 were 1276 and 1155 g/kW-h.

Powell, Jacob Joseph

2007-12-01T23:59:59.000Z

468

Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer  

DOE Green Energy (OSTI)

Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

Dennis Witmer; Thomas Johnson

2008-12-31T23:59:59.000Z

469

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

470

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

471

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

472

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine  

E-Print Network (OSTI)

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the biodiesel fuel. In general, NOx formation is dominated by flame temperature. Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high temperature gases. Thus, the cooling effect of soot may change the flame temperature and therefore, NOx emissions. In this study, emphasis is placed on the relationship between soot and NO (Nitric oxide) formation. For the experimental study, a metallic fuel additive is used since barium is known to be effective to suppress soot formation during combustion. The barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John Deere. For the analysis, an analytical model is used to estimate combustion temperature, NO concentration and soot emissivity. The results show that NO concentration does not have the expected trade-off relation with soot. Rather, NO concentration is found to be more strongly affected by ambient temperature and combustion characteristics than by soot. The results of the analytical model show the reasonable NO estimation and the improvement on temperature calculation. However, the model is not able to explain the detailed changes of soot emissivity by the different fuels since the emissivity correlation is developed empirically for diesel fuel.

Song, Hoseok

2012-05-01T23:59:59.000Z

473

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC05-00OR22804; DOE WAIVER DOCKIET W(A)-00-021 [ORO-754] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC05-00OR22804. The scope of this work is to plan, develop and demonstrate advanced heavy duty diesel engine technologies to improve thermal efficiency and meet EPA proposed 2007 emissions of 0.2 NOx and 0.01 gm PM. This work is sponsored by the Office of Transportation Technologies, Office ol Heavy Vehicle

474

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel  

DOE Green Energy (OSTI)

Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

1999-05-03T23:59:59.000Z

475

Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

476

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

477

A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES  

DOE Green Energy (OSTI)

The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

Blau, Peter Julian [ORNL

2009-11-01T23:59:59.000Z

478

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

479

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

480

Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 11, 4: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe to someone by E-mail Share Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Facebook Tweet about Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Twitter Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Google Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Delicious Rank Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Digg Find More places to share Vehicle Technologies Office: Fact #644: