Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5 kW, 9.2-10.3%, and 49.5-101.1 hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

2

Citrus Waste Biomass Program  

SciTech Connect

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

3

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

4

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

5

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

6

Overview of Thermochemical Conversion Technology of Biomass and Wastes in Japan  

Science Journals Connector (OSTI)

Compared with the research activity of biochemical conversion, that of thermochemical conversion of biomass and organic wastes in Japan is still ... Trade and Industry(MITI). Thermochemical processing of biomass ...

Shin-ya Yokoyama

1993-01-01T23:59:59.000Z

7

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

8

Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation  

E-Print Network (OSTI)

Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation Huub H. J. Cox, Marc A as a means of biomass control. Wet biomass for- mation in 23.6-L reactors over a 77-day period was reduced in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addi- tion

9

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Combustion of Low-Calorific Waste Biomass Syngas  

Science Journals Connector (OSTI)

The industrial combustion chamber designed for burning low-calorific syngas from gasification of waste biomass is presented. ... chips and turkey feathers the non-premixed turbulent combustion in the chamber is s...

Kamil Kwiatkowski; Marek Dudy?ski; Konrad Bajer

2013-12-01T23:59:59.000Z

11

Fuel Gas Production from Organic Wastes by Low Capital Cost Batch Digestion  

Science Journals Connector (OSTI)

The technical background is reviewed on energy recovery from biomass--i.e., all organic wastes, especially municipal solid wastes, but also including agricultural residues and crops grown specifically for ener...

Donald L. Wise; Alfred P. Leuschner…

1986-01-01T23:59:59.000Z

12

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

SciTech Connect

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

13

Regional Waste Systems Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid Waste Location Cumberland County, Maine Coordinates 43.8132979°, -70.3870587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8132979,"lon":-70.3870587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Co-processing of agricultural and biomass waste with coal  

SciTech Connect

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

15

The Biomass and Distribution of Organisms in Lake George, Uganda  

Science Journals Connector (OSTI)

...8 December 1973 research-article The Biomass and Distribution of Organisms in Lake...McGowan Ninety-five per cent of the total biomass in the open water of Lake George, a shallow...equatorial lake, is phytoplankton. The biomass of this and the other major groups of...

1973-01-01T23:59:59.000Z

16

Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste  

Science Journals Connector (OSTI)

Biomass and municipal solid waste offer sustainable sources ... form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil ... an integrated, sustainable waste managemen...

René Laryea-Goldsmith; John Oakey; Nigel J Simms

2011-02-01T23:59:59.000Z

17

Waste Biomass-Extracted Surfactants for Heavy Oil Removal  

Science Journals Connector (OSTI)

The potential synergism between biobased surfactants, produced from the alkaline extraction of waste biomass, and a synthetic surfactant was assessed. ... Since the principles of soil washing (critical Ca) were first developed for reservoir engineering, one expects that the ultralow (surfactant-enhanced oil recovery operations. ...

Matthew D. Baxter; Edgar Acosta; Enzo Montoneri; Silvia Tabasso

2014-02-03T23:59:59.000Z

18

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

19

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

20

Co-processing of agriculture and biomass waste with coal  

SciTech Connect

Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P. [West Virginia Univ., Morgantown, WV (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MIPAS observations of organic tracers for biomass burning and intercontinental transport  

E-Print Network (OSTI)

MIPAS observations of organic tracers for biomass burning and intercontinental transport observations of organic tracers for biomass burning and intercontinental transport Introduction Suite - Oxford - September 2009 #12;MIPAS observations of organic tracers for biomass burning

22

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

23

Biomass Basics  

Energy.gov (U.S. Department of Energy (DOE))

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

24

Emission of nanoparticles during combustion of waste biomass in fireplace  

Science Journals Connector (OSTI)

Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs As Cd Zn Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

2014-01-01T23:59:59.000Z

25

Rural electrification: Waste biomass Russian northern territories. Final report  

SciTech Connect

The primary objective of this pre-feasibility evaluation is to examine the economic and technical feasibility of replacing distillate fuel with local waste biomass in the village of Verkhni-Ozerski, Arkhangelsk Region, Russia. This village is evaluated as a pilot location representing the off-grid villages in the Russian Northern Territories. The U.S. Department of Energy (DOE) has agreed to provide technical assistance to the Ministry of Fuel and Energy (MFE). MFE has identified the Northern Territories as a priority area requiring NREL`s assistance. The program initially affects about 900 off-grid villages. Biomass and wind energy, and to a lesser extent small hydro (depending on resource availability) are expected to play the dominant role in the program, Geothermal energy may also have a role in the Russian Far East. The Arkhangelsk, Kariela, and Krasnoyarsk Regions, all in the Russian Northern Territories, have abundant forest resources and forest products industries, making them strong candidates for implementation of small-scale waste biomass-to-energy projects. The 900 or so villages included in the renewable energy program span nine administrative regions and autonomous republics. The regional authorities in the Northern Territories proposed these villages to MFE for consideration in the renewable energy program according to the following selection criteria: (a) Remote off-grid location, (b) high cost of transporting fuel, old age of existing power generation equipment, and (d) preliminary determination as to availability of alternative energy resources. Inclusion of indigenous minorities in the program was also heavily emphasized. The prefeasibility study demonstrates that the project merits continuation and a full feasibility analysis. The demonstrated rate of return and net positive cash flow, the willingness of Onegales and local/regional authorities to cooperate, and the immense social benefits are all good reasons to continue the project.

Adamian, S. [ECOTRADE, Inc., Glendale, CA (United States)

1998-02-01T23:59:59.000Z

26

CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS  

E-Print Network (OSTI)

CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS for the removal of excess biomass from biotrickling ®lters for waste air treatment. Although the experiment/v) NaOH, 0.26 and 1.31% (w/v) NaClO and 11.3% (w/v) H2O2 resulted in a biomass removal signi

27

Understanding pulverised coal, biomass and waste combustion – A brief overview  

Science Journals Connector (OSTI)

Abstract Pulverised coal (PC) firing has been the dominant technology for generating power in utility boilers for almost a century. During this period, boiler designs have evolved through an accumulating collection of knowledge that has led to many empirical relationships that still guide current and future design directions to some degree. In the late 1940s the developed nations began to undertake coal research based on scientific principles to ensure the most efficient use of the primary energy resource represented by coal. As the body of scientific knowledge on the physics and chemistry of coal combustion grew, it was used to direct the improvements to efficiency required and, later, the control of pollutants produced during the combustion of coal. This involves not only the control of emissions of particulates, \\{SOx\\} and oxides of nitrogen but also of trace elements, polycyclic aromatic hydrocarbons and, importantly, CO2. There have been a number of significant developments in the coal-fired power generation sector including cofiring with secondary fuels, particularly biomass and waste, and the development of radically different combustion systems (for example, oxyfuel) to meet carbon capture and storage requirements. Each of these developments has impacted upon the way in which PC-fired boilers are configured and operated and further complicated an already complex combustion environment. This paper outlines the developments in PC combustion and the new techniques that have been developed to enhance our understanding of the processes involved. The paper is based on a comprehensive IEA Clean Coal Centre study “Understanding pulverised coal, biomass and waste combustion”. Ian Barnes, CCC/205 ISBN 978-92-9029-525-9, September 2012.

D. Ian Barnes

2014-01-01T23:59:59.000Z

28

Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions  

Science Journals Connector (OSTI)

Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal–coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.

Magín Lapuerta; Juan J. Hernández; Amparo Pazo; Julio López

2008-01-01T23:59:59.000Z

29

MacArthur Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

MacArthur Waste to Energy Facility Biomass Facility MacArthur Waste to Energy Facility Biomass Facility Jump to: navigation, search Name MacArthur Waste to Energy Facility Biomass Facility Facility MacArthur Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Thermo-chemical conversion of dairy waste based biomass through direct firing  

E-Print Network (OSTI)

i THERMO-CHEMICAL CONVERSION OF DAIRY WASTE BASED BIOMASS THROUGH DIRECT FIRING A Thesis by NICHOLAS THOMAS CARLIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2005 Major Subject: Mechanical Engineering ii THERMO-CHEMICAL CONVERSION OF DAIRY WASTE BASED BIOMASS THROUGH DIRECT FIRING A Thesis by NICHOLAS THOMAS CARLIN...

Carlin, Nicholas Thomas

2007-04-25T23:59:59.000Z

31

Vitrification of organics-containing wastes  

DOE Patents (OSTI)

A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

Bickford, D.F.

1995-01-01T23:59:59.000Z

32

Issues Impacting Refractory Service Life in Biomass/Waste Gasification  

SciTech Connect

Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

2007-03-01T23:59:59.000Z

33

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

34

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

35

Waste-to-Energy Biomass Digester with Decreased Water Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications and Industries Disposal of solid animal waste and generation of biogas Suitable for large-scale animal feeding operations that dry-scrape manure Especially...

36

Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions  

E-Print Network (OSTI)

and combustion conditions in determining OA loadings from biomass burning. 1. INTRODUCTION Biomass burningCharacterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta: Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass

Jimenez, Jose-Luis

37

Cow2Joules: Distributed Conversion of Organic Waste to Energy Resources Background to the project THEY are undertaking at ESF DLJohnson, Feb. 2009  

E-Print Network (OSTI)

Cow2Joules: Distributed Conversion of Organic Waste to Energy Resources Background to the project of anaerobic digestion (AD) techniques for the conversion of biomass-related organic waste materials to useful energy products. This approach to industrial ecology, or sustainability, is well advanced in Europe where

Chatterjee, Avik P.

38

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

39

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

40

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

42

Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment  

Science Journals Connector (OSTI)

Abstract Our society currently faces three challenges, including resource depletion, waste accumulation and environmental degradation, leading to rapidly escalating raw material costs and increasingly expensive and restrictive waste disposal legislation. This work aims to produce clean solid biofuel from high moisture content waste biomass (bio-waste) with high nitrogen (N)/chlorine (Cl) content by mild hydrothermal (HT) conversion processes. The newest results are summarized and discussed in terms of the mechanical dewatering and upgrading, dechlorination, denitrification and coalification resulting from the HT pretreatment. Moreover, both the mono-combustion and co-combustion characteristics of the solid fuel are reviewed by concentrating on the pollutants emission control, especially the NO emission properties. In addition, the feasibility of this HT solid biofuel production process is also discussed in terms of “Energy Balance and economic viability”. As an alternative to dry combustion/dry pyrolysis/co-combustion, the HT process, combining the dehydration and decarboxylation of a biomass to raise its carbon content aiming to achieve a higher calorific value, opens up the field of potential feedstock for lignite-like solid biofuel production from a wide range of nontraditional renewable and plentiful wet agricultural residues, sludge and municipal wastes. It would contribute to a wider application of HT pretreatment bio-wastes for safe disposal and energy recycling.

Peitao Zhao; Yafei Shen; Shifu Ge; Zhenqian Chen; Kunio Yoshikawa

2014-01-01T23:59:59.000Z

43

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

44

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

45

Organic waste management for EBI in Quebec, feedstock analysis  

E-Print Network (OSTI)

EBI is a company located in the province of Quebec in Canada with the mission to integrate waste management. Great challenges in regards to organic waste management are faced and anaerobic digestion is considered by EBI ...

Sylvestre, Olivier, M. Eng. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

46

Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions  

Science Journals Connector (OSTI)

Abstract In a field experiment, peas (Pisum sativum L.) and oats (Avena sativa L.) were grown as sole crops and intercrops, fertilized with horse manure and yard-waste compost derived from shrub and garden cuttings at 10 t C ha?1 each. The objectives were to compare the effects of these organic fertilizer and cropping system in organic farming on (a) yield of peas and oats, grown as the sole crop or intercropped, as well as N2 fixation and photosynthetic rates, (b) the yield of wheat as a succeeding crop, (c) microbial biomass indices in soil and roots, and (d) microbial activity estimated by the CO2 evolution rate in the field and the amount of organic fertilizers, recovered as particulate organic matter (POM). In general, organic fertilizer application improved nodule dry weight (DW), photosynthetic rates, N2 fixation, and N accumulation of peas as well as N concentration in oat grain. Averaged across fertilizer treatments, pea/oat intercropping significantly decreased nodule DW, N2 fixation and photosynthetic rate of peas by 14, 17, and 12%, respectively, and significantly increased the photosynthetic rate of oats by 20%. However, the land equivalent ratio (LER) of intercropped peas and oats exceeded 1.0, indicating a yield advantage over sole cropping. Soil microbial biomass was positively correlated with pea dry matter yields both in sole and intercropped systems. Organic fertilizers increased the contents of microbial biomass C, N, P, and fungal ergosterol in soil and CO2 production, whereas the cropping system had no effects on these microbial indices. According to the organic fertilizer recovered as POM, 70% (manure) and 64% (compost) of added C were decomposed, but only 39% (manure) and 13% (compost) could be attributed to CO2–C during a 101-day period. This indicated that horse manure was more readily available to soil microorganisms than compost, leading to increased grain yields of the succeeding winter wheat.

Ramia Jannoura; Rainer Georg Joergensen; Christian Bruns

2014-01-01T23:59:59.000Z

47

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect

Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

48

Industrial waste heat recovery and cogeneration involving organic Rankine cycles  

Science Journals Connector (OSTI)

This paper proposes a systematic approach for energy integration involving waste heat recovery through an organic Rankine cycle (ORC). The proposed approach is based...

César Giovani Gutiérrez-Arriaga…

2014-08-01T23:59:59.000Z

49

Anaerobic digestion of organic solid waste for energy production.  

E-Print Network (OSTI)

??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms… (more)

Nayono, Satoto Endar

2009-01-01T23:59:59.000Z

50

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

51

Modelling and experimental studies of biomass and organic pyrolysis.  

E-Print Network (OSTI)

??Pyrolysis is a thermal conversion process that decomposes organic materials into liquid hydrocarbons, carbonaceous residues and combustible gases in the absence of oxygen. Depending on… (more)

Lam, Ka Leung

2012-01-01T23:59:59.000Z

52

Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect

In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

2006-07-01T23:59:59.000Z

53

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

54

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

55

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

56

Environment, Environmental Restoration, and Waste Management Field Organization Directory  

SciTech Connect

This directory was developed by the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) from an outgrowth of the Departments efforts to identify and establish the regulatory response lead persons in the Field Organizations. The directory was developed for intemal EH-231 use to identify both the DOE and DOE contractor Field Organizations in the Environment, Environmental Restoration and Waste Management areas. The Field Organization directory is divided into three substantive sections: (1) Environment; (2) Environmental Restoration; and (3) Waste Management which are organized to correspond to the management hierarchy at each Field Organization. The information provided includes the facility name and address, individual managers name, and telephone/fax numbers.

Not Available

1993-07-01T23:59:59.000Z

57

Bisolute Sorption and Thermodynamic Behavior of Organic Pollutants to Biomass-derived Biochars at Two Pyrolytic Temperatures  

Science Journals Connector (OSTI)

The structural characteristics and isotherms shape of the biochar were more dependent on the pyrolytic temperature than on the biomass feedstocks, which included orange peel, pine needle, and sugar cane bagasse. ... , a garden waste and ubiquitous forest biomass), orange peel (OP, Citrus reticulate, an industrial source of oils, not pre-extracted) and sugar cane bagasse (SB, Saccharum sinense, a byproduct of the sugar cane industry), were selected as biomass feedstocks because they are easily available. ... Low temperature biochars (LTB) at 300 °C and high temperature biochars (HTB) at 700 °C were produced by pyrolyzing different biomass feedstocks under oxygen-limited conditions as described in previous reports. ...

Zaiming Chen; Baoliang Chen; Dandan Zhou; Wenyuan Chen

2012-11-02T23:59:59.000Z

58

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network (OSTI)

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

59

Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds  

Science Journals Connector (OSTI)

Abstract Experiments were conducted in a thermogravimetric analyzer to investigate thermal behavior of different organic calcium compounds (OCCs) and its blended fuels with three kinds of biomass. The effectiveness of synthesized method for OCC was assessed by the pyrolysis test. Effect of the mole ratio of calcium to sulfur on co-combustion characteristics was studied. Results indicated that preparation method of modified calcium acetate (MCA) had high precision and accuracy. Co-combustion characteristic of \\{OCCs\\} blended with biomass was controlled by OCCs’ additive amount and the content of volatile matter which is mainly composed of small hydrocarbon molecules. Combustion performance indexes for peanut shell and wheat straw impregnated by \\{OCCs\\} were improved, however, an inverse trend was found for rice husk because of lower additive amount of OCCs. The blended fuel show higher combustion performance indexes compared with combustion of individual biomass, and these indexes decrease with increases of Ca/S ratio.

Lihui Zhang; Feng Duan; Yaji Huang

2015-01-01T23:59:59.000Z

60

IS DENSIFIED BIOMASS FUEL FROM AGRO-FORESTRY WASTE A SUSTAINABLE ENERGY OPTION?.  

E-Print Network (OSTI)

??Raw biomass material is bulky, high in void fraction, and very low in transportation efficiency. Furthermore, biomass dissipates quickly in harsh environments of high heat… (more)

Linnig, William A., III

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

62

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

63

Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste  

Science Journals Connector (OSTI)

Abstract The aim of this work is to study the feasibility and operational performance of plasmatron (plasma torch) gasification of municipal solid waste mixed with raw wood (MSW/RW) derived from the pretreatment of Steam Mechanical Heat Treatment (SMHT), as the target material (MRM). A 10 kW plasmatron reactor is used for gasification of the MRM. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2 min of reaction time, with relatively high reaction rates. The syngas yield is between 88.59 and 91.84 vol%, and the recovery mass ratio of syngas from MRM is 45.19 down to 27.18 wt% with and without steam with the energy yields of 59.07–111.89%. The concentrations of gaseous products from the continuous feeding of 200 g/h are stable and higher than the average concentrations of the batch feeding of 10 g. The residue from the plasmatron gasification with steam is between 0 and 4.52 wt%, with the inorganic components converted into non-leachable vitrified lava, which is non-hazardous. The steam methane reforming reaction, hydrogasification reaction and Boudouard reaction all contribute to the increase in the syngas yield. It is proved that MSW can be completely converted into bioenergy using SMHT, followed by plasmatron gasification.

Je-Lueng Shie; Li-Xun Chen; Kae-Long Lin; Ching-Yuan Chang

2014-01-01T23:59:59.000Z

64

Ambient measurements of light-absorption by agricultural waste burning organic aerosols  

Science Journals Connector (OSTI)

Absorption properties (absorption Ångstrom exponent and mass absorption efficiency) of agricultural waste burning organic aerosols (AWB-OA) and their impact on total absorption were investigated in Cairo (Egypt) during the post-harvest rice straw burning autumn season. At 370 nm, AWB-OA were found to account for more than 25% of total absorption on average for the period of study (and for ?50% during intense biomass burning events), pointing out the major role potentially played by such particles on light absorption at short wavelengths. The absorption exponent obtained for AWB-OA (?3.5) is consistent with values previously reported for biomass burning brown carbon. In addition, AWB-OA were found to exhibit high mass absorption efficiencies at the near ultraviolet/mid-visible regions (e.g. 3.2±1.6 m2 g?1 at 370 nm and 0.8±0.4 m2 g?1 at 520 nm). Such findings clearly illustrate the need to take light absorption by organic aerosols into account for a better estimate of the radiative impact of biomass burning aerosols.

Olivier Favez; Stéphane C. Alfaro; Jean Sciare; Hélène Cachier; Magdy M. Abdelwahab

2009-01-01T23:59:59.000Z

65

Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements  

E-Print Network (OSTI)

from smoldering combustion of biomass measured by open-pathorganic species from biomass combustion, J. Geophys. Res. ,Biomass Burning Plume Origin Plume Age, Days a Modified Combustion

2011-01-01T23:59:59.000Z

66

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

67

Conversion of biomass to organic acid using the rumen bacteria Bacteroides succinogenes  

E-Print Network (OSTI)

of MASTER OF SCIENCE August 1992 Major Subject: Agricultural Engineering CONVERSION OF BIOMASS TO ORGANIC ACID USING THE RUMEN BACTERIA Bacreroi des succi nogenes A thesis by TSUEY-ER LO Approved as to style and content by: lbert G ta I (Chair... concentration (A) glucose analyzer phenol-sulfuric acid method glucose concentration (B) total sugar concentration cellobiose concentration (B-A) xylose concentration (T-B) Fig. 8: Sugar analysis scheme for sorghum samples. 33 0, 6, 24, and 48...

Lo, Tsuey-er

2012-06-07T23:59:59.000Z

68

Organic tanks safety program FY96 waste aging studies  

SciTech Connect

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

69

Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:? Amino Acids and Biomass Burning Derived Organic Species  

Science Journals Connector (OSTI)

In the hygroscopic measurement, the chemicals were first dissolved in ultrapure water to make stock solutions that were used to generate particles by a piezoelectric droplet generator (Uni-Photon Inc., NY., USA, Model 201). ... Together with the measurements of the hygroscopicity of glucose, glycerol, humic-like substances, and arginine, which have been detected in biomass burning aerosols and found noncrystallizing in single particle measurements (8,9,16,20,28,41), these results suggest that organic species derived from biomass burning may retain water at low RH in the atmosphere. ... (6)?Zhang, Q.; Anastasio, C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. ...

Man Nin Chan; Man Yee Choi; Nga Lee Ng; Chak K. Chan

2005-02-04T23:59:59.000Z

70

Bio-hydrogen production from renewable organic wastes  

SciTech Connect

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

71

Selective Hydrogenation of Biomass Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks  

Science Journals Connector (OSTI)

Selective Hydrogenation of Biomass Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks ... A catalyst of palladium [Pd/MIL-101(Al)-NH2] supported on amine-functionalized Metal–Organic Frameworks (MOFs) allows selective hydrogenation of biomass-based 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethyl-tetrahydrofuran (DHMTHF) with 2,5-dihydroxymethylfuran (DHMF) as an observed “intermediate”. ...

Jinzhu Chen; Ruliang Liu; Yuanyuan Guo; Limin Chen; Hui Gao

2014-12-16T23:59:59.000Z

72

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

73

High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage  

Science Journals Connector (OSTI)

Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. ...

Wu-Jun Liu; Ke Tian; Yan-Rong He; Hong Jiang; Han-Qing Yu

2014-11-05T23:59:59.000Z

74

Single-reactor process for producing liquid-phase organic compounds from biomass  

DOE Patents (OSTI)

Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

Dumesic, James A. (Verona, WI); Simonetti, Dante A. (Middleton, WI); Kunkes, Edward L. (Madison, WI)

2011-12-13T23:59:59.000Z

75

Heterogeneous catalyst-assisted thermochemical conversion of food waste biomass into 5-hydroxymethylfurfural  

Science Journals Connector (OSTI)

Abstract A novel thermochemical conversion route has been developed that yields 5-hydroxymethylfurfural (HMF) from food waste biomass (FWB) in the presence of a heterogeneous catalysts (zirconium phosphate (ZrP)). The ZrP catalyst was prepared by precipitation followed by calcination at 400 (ZrP-400) and 600 °C (ZrP-600) and was characterized by SEM, XRD, XPS, N2 sorption and NH3-TPD. The optimized reaction conditions were identified to maximize HMF yield by varying the type of catalyst, the catalyst loading and the reaction time. The highest HMF yield achieved was 4.3%. On average 33% higher yield for ZrP-600 was obtained compared to that for ZrP-400, which might be due to higher number of acid sites on ZrP-600. The ZrP catalyst was easily regenerated by thermal treatment and showed stable activity upon its reuse. Preliminary calculations of the “minimum selling price” of HMF suggest that it is economically attractive to make this industrially-relevant chemical from FWB.

Ganesh K. Parshetti; Maria Stefanie Suryadharma; Thi Phuong Thuy Pham; Russell Mahmood; Rajasekhar Balasubramanian

2014-01-01T23:59:59.000Z

76

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

77

Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends  

Science Journals Connector (OSTI)

Abstract The need to produce energy from poor quality carbonaceous materials has increased, in order to reduce European dependency on imported fuels, diversify the use of new and alternative fuels and to guarantee secure energy production routes. The valorisation of a poor quality solid residual fuel (SRF), with high content of ash and volatile matter, through its conversion into fuel gas was studied. The rise of gasification temperature and equivalent ratio (ER) led to higher gas yields and to lower undesirable gaseous components, though higher ER values led to a gas with lower energetic content. To reduce the negative effect of SRF unfavourable characteristics and to diversify the feedstocks used, SRF blended with three different types of biomass wastes: forestry pine, almond shells and olive bagasse was co-gasified. The use of biomass wastes tested was valuable for SRF gasification, as there was an increase in the overall reactivity and in H2 production and a reduction of about 55% in tar released, without great changes in gas yield and in its HHV. The use of natural minerals mixed with silica sand was also studied with the aim of improving SRF gasification performance and fuel gas quality. The best results were obtained in presence of dolomite, as the lowest tar and H2S contents were obtained, while an increase in gas yield was observed. Co-gasification of this poor quality SRF blended with biomass wastes in presence of dolomite increased gas yield by 25% while tar contents decreased by 55%.

Filomena Pinto; Rui Neto André; Carlos Carolino; Miguel Miranda; Pedro Abelha; Daniel Direito; Nikos Perdikaris; Ioannis Boukis

2014-01-01T23:59:59.000Z

78

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water† ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

79

DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

SciTech Connect

General Atomics (GA) has recently completed a Phase I program for the development of a two-step alternative to incineration for the destruction of organics in transuranic wastes at the Savannah River Site. This process is known as thermal desorption-supercritical water oxidation, or TD-SCWO. The GA TD process uses heat to volatilize and transport organics from the waste material for subsequent treatment by SCWO. SCWO oxidizes organics in a steam medium at elevated temperatures and pressures in a manner that achieves excellent destruction efficiencies and compliance with all environmental requirements without the need for complex pollution-abatement equipment. This application of TD-SCWO is focused on a full-scale batch process for 55-gallon drums of mixed transuranic waste at the Savannah River Site. The Phase I reduced-scale test results show that the process operates as intended on surrogate waste matrices chosen to be representative of Savannah River Site transuranic mixed wastes. It provides a high degree of hydrogen removal and full containment of the radionuclide surrogate, with minimal requirements for pre-treatment and post-treatment. Other test objectives were to verify that the process produces no dioxins or furans, and meets all applicable regulatory criteria for retention of toxic metals, particulate, and criteria pollutants, while meeting WIPP/WAC and TRUPACT-II requirements. Thermal desorption of surrogate SRS mixed wastes at 500 psi and 1000 F met all tested requirements for WIPP/WAC and TRUPACT-II. SCWO of the desorbed surrogate organic materials at 500 psi and 1500 F also appears to meet all requirements for a nonincineration alternative, although >99.99% DRE for chlorinated solvents has not yet been demonstrated.

Mike Spritzer

2003-02-01T23:59:59.000Z

80

Advanced organic analysis and analytical methods development: FY 1995 progress report. Waste Tank Organic Safety Program  

SciTech Connect

This report describes the work performed during FY 1995 by Pacific Northwest Laboratory in developing and optimizing analysis techniques for identifying organics present in Hanford waste tanks. The main focus was to provide a means for rapidly obtaining the most useful information concerning the organics present in tank waste, with minimal sample handling and with minimal waste generation. One major focus has been to optimize analytical methods for organic speciation. Select methods, such as atmospheric pressure chemical ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry, were developed to increase the speciation capabilities, while minimizing sample handling. A capillary electrophoresis method was developed to improve separation capabilities while minimizing additional waste generation. In addition, considerable emphasis has been placed on developing a rapid screening tool, based on Raman and infrared spectroscopy, for determining organic functional group content when complete organic speciation is not required. This capability would allow for a cost-effective means to screen the waste tanks to identify tanks that require more specialized and complete organic speciation to determine tank safety.

Wahl, K.L.; Campbell, J.A.; Clauss, S.A. [and others

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies  

Science Journals Connector (OSTI)

Abstract 14C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). 14C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

G.K.P. Muir; S. Hayward; B.G. Tripney; G.T. Cook; P. Naysmith; B.M.J. Herbert; M.H Garnett; M. Wilkinson

2014-01-01T23:59:59.000Z

82

Utilization of aqueous product generated by hydrothermal carbonization of waste biomass.  

E-Print Network (OSTI)

??Hydrothermal carbonization (HTC) is a thermochemical treatment process that allows for the conversion of relatively dilute biomass slurries into value added products which are hydrochar… (more)

Vozhdayev, Georgiy Vladimirovich

2014-01-01T23:59:59.000Z

83

Organic solvent-free water-developable sugar resist material derived from biomass in green lithography  

Science Journals Connector (OSTI)

Abstract We have demonstrated an organic solvent-free water-developable branched sugar resist material derived from biomass for its use in green electron beam lithography. This emphasizes the use of plant products instead of conventionally used tetramethylammonium hydroxide and organic solvents. The rationally designed water-developable branched sugar resist material developed in this study can be patterned with an excellent sensitivity of 7 ?C/cm2 and a resolution of 50–200 nm lines. In addition, it indicated sufficient thermal stability at ?180 °C, acceptable CF4 etch selectivity with a hardmask material, 42–53% rate of chemical reaction of acryloyl groups affected by the tacticity of branched sugar chain polymers, and developable in pure water at 23 °C for 60 s.

Satoshi Takei; Akihiro Oshima; Takumi Ichikawa; Atsushi Sekiguchi; Miki Kashiwakura; Takahiro Kozawa; Seiichi Tagawa; Tomoko G. Oyama; Syoji Ito; Hiroshi Miyasaka

2014-01-01T23:59:59.000Z

84

Public meetings on nuclear waste management: their function and organization  

SciTech Connect

This report focuses on public meetings as a vehicle for public participation in nuclear waste management. The nature of public meetings is reviewed and the functions served by meetings highlighted. The range of participants and their concerns are addressed, including a review of the participants from past nuclear waste management meetings. A sound understanding of the expected participants allows DOE to tailor elements of the meeting, such as notification, format, and agenda to accommodate the attendees. Finally, the report discusses the organization of public meetings on nuclear waste management in order to enhance the DOE's functions for such meetings. Possible structures are suggested for a variety of elements that are relevant prior to, during and after the public meeting. These suggestions are intended to supplement the DOE Public Participation Manual.

Duvernoy, E.G.; Marcus, A.A.; Overcast, T.; Schilling, A.H.

1981-05-01T23:59:59.000Z

85

Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103  

SciTech Connect

A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

Pool, K.H.; Bean, R.M.

1994-03-01T23:59:59.000Z

86

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

87

Biomethane production by anaerobic digestion of organic waste  

Science Journals Connector (OSTI)

Abstract Anaerobic Digestion (AD) is a biological process that takes place naturally when bacteria break down organic matter in environments with or without oxygen. Controlled anaerobic digestion of organic waste in enclosed landfill will generate methane. Almost any organic material can be processed with AD, including waste paper and cardboard (of a grade that is too low to recycle because of food contamination), grass clippings, leftover food, industrial effluents, sewage and animal waste. AD produces biogas which is comprised of around 60% methane (CH4) and 40% carbon dioxide (CO2). This biogas can be used to generate heat or electricity and/or can be used as a vehicular fuel. If the intended use is for power generation the biogas must be scrubbed to remove a number of impurities. After conditioning the biogas can be used for onsite power generation, to heat homes or can be added to the national natural gas grid. In recent years several research groups have shown the possibility of upgrading the biogas for biomethane production [1]. This study will show the feasibility of integrating anaerobic digestion plant with onsite polymeric membrane purification system for conditioned biomethane production.

A. Molino; F. Nanna; Y. Ding; B. Bikson; G. Braccio

2013-01-01T23:59:59.000Z

88

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. Photo of two men standing in front of large sugar cane plants. Sugar cane is used in Hawaii and other locations to produce energy and ethanol for alternative fuels. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops.

89

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

90

Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment  

Science Journals Connector (OSTI)

Several scenarios are constructed for different Swiss biomass feedstocks and different scales depending on logistical choices: large-scale (155 MWSNG) and small-scale (5.2 MWSNG) scenarios for a manure feedstock and one scenario (35.6 MWSNG) for a wood feedstock. ... In conclusion, the simulation of the catalytic hydrothermal gasification of different biomass feedstocks allowed the design of industrial-scale process configurations. ...

Jeremy S. Luterbacher; Morgan Fröling; Frédéric Vogel; François Maréchal; Jefferson W. Tester

2009-01-29T23:59:59.000Z

91

Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials  

DOE Patents (OSTI)

A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

Chum, Helena L. (8448 Allison Ct., Arvada, CO 80005); Black, Stuart K. (4976 Raleigh St., Denver, CO 80212); Diebold, James P. (57 N. Yank Way, Lakewood, CO 80228); Kreibich, Roland E. (4201 S. 344th, Auburn, WA 98001)

1993-01-01T23:59:59.000Z

92

Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials  

DOE Patents (OSTI)

A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

1993-08-10T23:59:59.000Z

93

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

SciTech Connect

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

94

Chapter 13 - Energy Conversion of Biomass and Recycling of Waste Plastics Using Supercritical Fluid, Subcritical Fluid and High-Pressure Superheated Steam  

Science Journals Connector (OSTI)

Abstract Utilization of unused or waste biomass as fuels is receiving much attention owing to the reduction of CO2 emission and the development of alternative energy to expensive fossil fuels. On the other hand, the recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this chapter, typical several examples of the energy conversion of biomass and the recycling of waste plastics using supercritical fluid, subcritical fluid, and high-pressure superheated steam were introduced: (1) bioethanol production from paper sludge with subcritical water, (2) hydrogen production from various biomass with high-pressure superheated steam, (3) production of composite solid fuel from waste biomass and plastics with subcritical water, (4) waste treatment and recovery of thermal energy with high-pressure superheated steam oxidation, (5) recycling of carbon fiber-reinforced plastic with high-pressure superheated steam and supercritical alcohol, (6) recycling of laminate film with subcritical water, and (7) recycling of cross-linked polyethylene with supercritical methanol.

Idzumi Okajima; Takeshi Sako

2014-01-01T23:59:59.000Z

95

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

96

Organic tanks safety program FY95 waste aging studies  

SciTech Connect

This report gives the second year`s findings of a study of how thermal and radiological processes may change the composition of organic compounds in the underground tanks at Hanford. Efforts were focused on the global reaction kinetics in a simulated waste exposed to {gamma} rays and the reactions of organic radicals with nitrite ion. The gas production is predominantly radiolytic. Decarboxylation of carboxylates is probably an aging pathway. TBP was totaly consumed in almost every run. Radiation clearly accelerated consumption of the other compounds. EDTA is more reactive than citrate. Oximes and possibly organic nitro compounds are key intermediates in the radiolytic redox reactions of organic compounds with nitrate/nitrite. Observations are consistent with organic compounds being progressively degraded to compounds with greater numbers of C-O bonds and fewer C-H and C-C bonds, resulting in an overall lower energy content. If the radwaste tanks are adequately ventilated and continually dosed by radioactivity, their total energy content should have declined. Level of risk depends on how rapidly carboxylate salts of moderate energy content (including EDTA fragments) degrade to low energy oxalate and formate.

Camaioni, D.M.; Samuels, W.D.; Clauss, S.A.; Lenihan, B.D.; Wahl, K.L.; Campbell, J.A.; Shaw, W.J.

1995-09-01T23:59:59.000Z

97

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network (OSTI)

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

98

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

99

Nitric-phosphoric acid oxidation of organic waste materials  

SciTech Connect

A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO{sub x} vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180{degrees}C; more stable compounds were decomposed at 200{degrees}C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time.

Pierce, R.A.; Smith, J.R.

1995-11-01T23:59:59.000Z

100

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report  

SciTech Connect

To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)

1994-01-01T23:59:59.000Z

102

NREL: Climate Neutral Research Campuses - Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

103

Industrial Waste Heat Recovery by Use of Organic Rankine Cycles (ORC)  

Science Journals Connector (OSTI)

The project is a combined analytical and experimental programme to investigate the feasibility of the Organic Rankine Cycle principle for waste heat recovery in industry....

Dipl.-Phys. G. Huppmann

1983-01-01T23:59:59.000Z

104

Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors  

SciTech Connect

Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

2014-02-15T23:59:59.000Z

105

Photosynthetic Solar Energy: Rediscovering Biomass Fuels  

Science Journals Connector (OSTI)

...readily converted to methane by anaero-bic...feed-stock for methane production. An...ocean as sources of methane, animal feeds...proposals, the economics of most biomass...organic wastes with steam generated by solar...part because steam reforming makes use of the...

ALLEN L. HAMMOND

1977-08-19T23:59:59.000Z

106

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste  

SciTech Connect

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

1995-08-01T23:59:59.000Z

107

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents (OSTI)

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

Balazs, G. Bryan (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

1999-01-01T23:59:59.000Z

108

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

109

NREL: Biomass Research - Video Text  

NLE Websites -- All DOE Office Websites (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

110

Production of Microbial Biomass Protein from Potato Processing Wastes by Cephalosporium eichhorniae  

Science Journals Connector (OSTI)

...utilizing the potato protein. A more efficient utilization of nitrogen would presumably...synthesis appears to be the cheapest and most efficient method to supply supplemental nitrogen...potato wastes. Cooling costs would be higher in these processes using mesophilic fungi...

Coleen A. Stevens; Kenneth F. Gregory

1987-02-01T23:59:59.000Z

111

Relative contributions of natural and waste-derived organics to the subsurface transport of radionuclides  

SciTech Connect

Our laboratory is studying the role of organic compounds in the subsurface transport of radionuclides at shallow-land burial sites of low-level nuclear waste, including a commercial site at Maxey Flats, Kentucky, and an aqueous waste disposal site. At the Maxey Flats site, several radionuclides, notably Pu and /sup 60/Co, appear to exist as anionic, organic complexes. Waste-derived organics, particularly chelating agents such as EDTA, HEDTA and associated degradation products (e.g., ED3A), are abundant in aqueous waste leachates and appear to account for the complexation. EDTA, and probably other waste-derived chelating agents as well, are chelated to the Pu and /sup 60/Co in the leachates, potentially mobilizing these radionuclides. In contrast, at the low-level aqueous waste disposal site, naturally-occurring organics, ranging from low molecular weight (MW) acids to high MW humic acids, account for the bulk of the groundwater's organic content. Certain radionuclides, notably /sup 60/Co, /sup 103/Ru and /sup 125/Sb, are mobile as anionic complexes. These radionuclides are clearly associated with higher MW organics, presumably humic and fulvic acids with nominal MW's > 1000. It is clear, therefore, that naturally-occurring organics may play an important role in radionuclide transport, particularly at nuclear waste burial sites containing little in the way of waste-derived organics.

Toste, A.P.; Myers, R.B.

1985-06-01T23:59:59.000Z

112

Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER = 0.71) led to substantial reduction of gas heating value (LHV = 3.15 MJ/Nm{sup 3}), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950 Degree-Sign C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the second stage presented only few mass% of the inlet biomass stream.

Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Svoboda, Karel, E-mail: svoboda@icpf.cas.cz [Faculty of the Environment, Jan Evangelista Purkyne University in Usti nad Labem, Kralova Vysina 7, 400 96 Usti nad Labem (Czech Republic); Institute of Chemical Process Fundamentals of the ASCR, v.v.i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Smetana, Jiri; Vacek, Jiri [D.S.K. Ltd., Ujezdecek - Dukla 264, 415 01 Teplice I (Czech Republic); Skoblja, Siarhei; Buryan, Petr [Dept. of Gas, Coke and Air protection, Institute of Chemical Technol., Technicka 5, 166 28 Prague 6 (Czech Republic)

2012-04-15T23:59:59.000Z

113

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

1989-01-01T23:59:59.000Z

114

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

115

Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes  

SciTech Connect

In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

Roesener, W.S.; Mason, J.B.; Ryan, K. [THOR Treatment Technologies, LLC, 7800 E Union Ave, Denver, CO 80237 (United States); Bryson, S. [MSE Technologies Applications, Inc., 200 Technology Way, Butte, MT 59702 (United States); Eldredge, H.B. [Eldredge Engineering, P.A., 1090 Blue Ridge Dr., Idaho Falls, ID 83402 (United States)

2006-07-01T23:59:59.000Z

116

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

117

Co-firing coal and biomass waste in an FB boiler  

SciTech Connect

The CSIR has been involved in the field of FBC since 1976, when a small 0.25m{sup 2} test facility was erected. Work really began in earnest in 1984, when the National Fluidised Bed Combustion (NFBC) boiler was commissioned. This facility, situated at the CSIR`s pilot plant terrain in Pretoria West, was designed to produce 12 tph steam while utilising {open_quotes}waste{close_quotes} coal reserves are large, accounting for some 11% of the worlds reserves. Unfortunately the quality of the coal is comparatively poor, and beneficiation is required in order to produce an acceptable fuel for the local and international markets. This leads to a large production of {open_quotes}waste{close_quotes} coal. More detail is given. It was concern about this waste that prompted the Department of Mineral and Energy Affairs (DMEA) to fund the construction of the NFBC boiler, the purpose of which was to prove the ability of FBC technology to utilize the low quality discard coal. The running costs of the unit were at first provided by the DMEA, and later by the National Energy Council (NEC). The NEC also played an active role in the formulation of test campaigns on the boiler. Management of the NFBC was undertaken by the division of Energy Technology (Enertek) at the CSIR in Pretoria, and it was sited at the CSIR`s pilot plant facility in Pretoria West. The boiler has been running since 1984 and many thousands of tonnes of low-grade coal have been burnt in it. During the course of the test campaign on the NFBC the CSIR developed a great deal of experience in the field of FBC, and in particular use of low grade fuels in FBC equipment. The following paper describes the highlights of this test work and details the commercial plant which have since been built using CSIR technology.

North, B.C.

1995-12-31T23:59:59.000Z

118

Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol  

SciTech Connect

Natural and prescribed biomass fires are a major source of atmospheric aerosols that can persist in the atmosphere for long periods of time. Biomass burning aerosols (BBA) can be associated with long range transport of water soluble N?, S?, P?, and metal?containing species. In this study, BBA samples were collected using a particle?into?liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR?MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of probable elemental formulae. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba?containing organometallic species were identified. The results suggest that the biomass may have accumulated metal?containing species that were reemitted during biomass burning. Further research into the sources, persistence, and dispersion of metal?containing aerosols as well as their environmental effects is needed.

Chang-Graham, Alexandra L.; Profeta, Luisa Tm; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

2011-01-10T23:59:59.000Z

119

Greenhouse gas emissions from home composting of organic household waste  

SciTech Connect

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

120

Biomethane production from food waste and organic residues.  

E-Print Network (OSTI)

??Irish Research Council for Science Engineering and Technology (Enterprise Partnership Scheme (EPS)) Accepted Version Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically… (more)

Browne, James D.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cascaded organic rankine cycles for waste heat utilization  

DOE Patents (OSTI)

A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

2011-05-17T23:59:59.000Z

122

The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat  

E-Print Network (OSTI)

The conservation of energy by its recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting low temperature (200-400o F) waste...

Sawyer, R. H.; Ichikawa, S.

1980-01-01T23:59:59.000Z

123

A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles  

Science Journals Connector (OSTI)

This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The con...

Mortaza Yari; S. M. S. Mahmoudi

2011-02-01T23:59:59.000Z

124

Thermal characteristics of the combustion process of biomass and sewage sludge  

Science Journals Connector (OSTI)

The combustion of two kinds of biomass and sewage sludge was studied. The biomass fuels were wood biomass (pellets) and agriculture biomass (oat). The sewage sludge came from waste water treatment plant. The biomass

Aneta Magdziarz; Ma?gorzata Wilk

2013-11-01T23:59:59.000Z

125

Biomass: Biogas Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

126

Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994  

SciTech Connect

The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work.

Campbell, J.A.; Clauss, S.A.; Grant, K.E. [and others

1994-09-01T23:59:59.000Z

127

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

128

Ecotoxicological assessment of organic wastes spread on land: Towards a proposal of a suitable test battery  

Science Journals Connector (OSTI)

Abstract The land spreading of organic wastes in agriculture is a common practice in Europe, under the regulation of the Directive 86/278/EEC. One of the objectives of this Directive is to prevent harmful effects of organic wastes on soil, plants and animals. Despite this regulatory framework, there is still a lack of harmonized ecotoxicological test strategy to assess the environmental hazard of such wastes. The aim of this study was to provide a first step towards the a priori ecotoxicological assessment of organic wastes before their land use. For that purpose, nine different organic wastes were assessed using direct (i.e. terrestrial tests) and indirect (i.e. tests on water eluates) approaches, for a total of thirteen endpoints. Then, multivariate analyzes were used to discriminate the most relevant test strategy, among the application rates and bioassays used. From our results, a draft of test strategy was proposed, using terrestrial bioassays (i.e. earthworms and plants) and a concentration range between one and ten times the recommended application rates of organic wastes.

Pierre Huguier; Nicolas Manier; Laure Chabot; Pascale Bauda; Pascal Pandard

2015-01-01T23:59:59.000Z

129

Comparative Life Cycle Assessment (LCA) of Construction and Demolition (C&D) Derived Biomass and U.S. Northeast Forest Residuals Gasification for Electricity Production  

Science Journals Connector (OSTI)

Comparative Life Cycle Assessment (LCA) of Construction and Demolition (C&D) Derived Biomass and U.S. Northeast Forest Residuals Gasification for Electricity Production ... Various types of organic waste including (a) agriculture and forestry residues and (b) municipal and industrial wastes (i.e., biodegradable municipal solid waste, plastic waste, construction and demolition (C&D) waste, and sewage sludge) are considered as potential feedstock for bioenergy and chemicals production. ...

Philip Nuss; Kevin H. Gardner; Jenna R. Jambeck

2013-03-15T23:59:59.000Z

130

Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds  

Science Journals Connector (OSTI)

Combustion of biomass and municipal solid wastes is one of the key areas in the global cleaner energy strategy. But there is still a lack of detailed and systematically theoretical study on the packed bed burning of biomass and municipal solid wastes. The advantage of theoretical study lies in its ability to reveal features of the detailed structure of the burning process inside a solid bed, such as reaction zone thickness, combustion staging, rates of individual sub-processes, gas emission and char burning characteristics. These characteristics are hard to measure by conventional experimental techniques. In this paper, mathematical simulations as well as experiments have been carried out for the combustion of wood chips and the incineration of simulated municipal solid wastes in a bench-top stationary bed and the effects of primary air flow rate and moisture level in the fuel have been assessed over wide ranges. It is found that volatile release as well as char burning intensifies with an increase in the primary air flow until a critical point is reached where a further increase in the primary air results in slowing down of the combustion process; a higher primary airflow also reduces the char fraction burned in the final char-burning-only stage, shifts combustion in the bed to a more fuel-lean environment and reduces CO emission at the bed top; an increase in the moisture level in the fuel produces a higher flame front temperature in the bed at low primary air flow rates.

Y.B Yang; V.N Sharifi; J Swithenbank

2004-01-01T23:59:59.000Z

131

Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review  

SciTech Connect

Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

Clauss, S.A.; Bean, R.M.

1993-02-01T23:59:59.000Z

132

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

133

Application of Gasification to the Conversion of Wood, Urban and Industrial Wastes  

Science Journals Connector (OSTI)

Gasification is widely accepted as a technological option for the production of synthesis gas (SG) via partial oxidation of heterogeneous organic matter such as, residual biomass, classified urban wastes (RDF)...

N. Abatzoglou; J.-C. Fernandez; L. Laramée…

1997-01-01T23:59:59.000Z

134

Organic tanks safety program waste aging studies. Final report, Revision 1  

SciTech Connect

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

1998-09-01T23:59:59.000Z

135

Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries  

Science Journals Connector (OSTI)

Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants. This is particularly true for developing countries. Emission factors for \\{POPs\\} such as PCDD/PCDF, dioxin-like polychlorinated biphenyls (dl-PCB) and penta- and hexachlorobenzenes (PeCBz/HCB) from open burning of municipal solid waste in China and Mexico are reported herein. Six different waste sources were studied varying from urban-industrial to semi-urban to rural. For PCDD/PCDF, the emission factors to air ranged from 3.0 to 650 ng TEQ kg?1 waste and for dl-PCB from 0.092 to 54 ng TEQ kg?1 waste. Emission factors for PeCBz (17–1200 ng kg?1 waste) and HCB (24–1300 ng kg?1 waste) spanned a wide but similar range. Within the datasets there is no indication of significant waste composition effect on emission factor with the exception of significantly higher Mexico rural samples.

Tingting Zhang; Heidelore Fiedler; Gang Yu; Gustavo Solorzano Ochoa; William F. Carroll Jr.; Brian K. Gullett; Stellan Marklund; Abderrahmane Touati

2011-01-01T23:59:59.000Z

136

Biothermal gasification of biomass  

SciTech Connect

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

137

Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG): Test operation of animal-waste-derived biomass and parametric investigation at low temperature  

Science Journals Connector (OSTI)

In this study, the design, construction and operation of an Internally Circulating Fluidized-bed Gasifier (ICFG) are introduced in detail. ICFG design provides a multi-stage gasification process, with bed material acting as the medium for char combustion and heat exchange by its internal circulation. And it is used for the steam gasification of animal waste at low temperature in view of producing fuel gas. The effects of pressure balance, pyrolysis temperature, catalytic temperature and steam/feedstock ratio on the gasifier performance (e.g. product gas yield, gas composition, tar content) are also discussed. Hydrogen-rich and low-tar product gas can be produced from the low-calorific feedstock, in the properly designed process together with high-performance catalyst.

Xianbin Xiao; Duc Dung Le; Kayoko Morishita; Shouyu Zhang; Liuyun Li; Takayuki Takarada

2010-01-01T23:59:59.000Z

138

Waste Heat Recovery by Organic Fluid Rankine Cycle  

E-Print Network (OSTI)

In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO... In organic vapor cycles, the compression work is often comparatively more important than in steam cycles. The efficiency of the pump should not be neglected. T, , Tr2 " Tr " 3 "" " 12 '--_L----L__-i tc Qv,>Qv2~Qv3 flowrole 'lturb ' 0.85 12~ 3JO...

Verneau, A.

1979-01-01T23:59:59.000Z

139

Methods for Determination of Biomass Energy Pellet Quality  

Science Journals Connector (OSTI)

Methods for Determination of Biomass Energy Pellet Quality ... Europe set a target of reaching 20% of renewable energies by 2020, and biomass can play an important role. ... Karagöz, S.Energy production from the pyrolysis of waste biomasses Int. ...

Slavica Prvulovic; Zorica Gluvakov; Jasna Tolmac; Dragiša Tolmac; Marija Matic; Miladin Brkic

2014-02-05T23:59:59.000Z

140

Mediated electrochemical oxidation of organic wastes without electrode separators  

DOE Patents (OSTI)

An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

1996-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Air Gasification of Biomass in a Downdraft Fixed Bed:? A Comparative Study of the Inorganic and Organic Products Distribution  

Science Journals Connector (OSTI)

The gasification of lignocellulosic residues by means of such simple and versatile plants is dictated by the necessity of developing technologies capable of processing different biomass feedstocks for small-scale power production (e.g. ... Elemental Composition (wt %) and Fixed Carbon on Dry Matter of the Three Biomass Feedstocks ... Table 2.? Meana Trace Metal Contents (mg/Kg in ash) of Three Different Biomass Feedstocks ...

I. De Bari; D. Barisano; M. Cardinale; D. Matera; F. Nanna; D. Viggiano

2000-06-08T23:59:59.000Z

142

Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle  

SciTech Connect

The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

Fuller, Robert L.

2005-04-20T23:59:59.000Z

143

Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery  

Science Journals Connector (OSTI)

This article aims to present a mathematical model for the synthesis of a heat-exchanger network (HEN) which can be integrated with an organic Rankine cycle (ORC) for the recovery of low-grade waste heat from the heat surplus zone of the background ...

Cheng-Liang Chen; Feng-Yi Chang; Tzu-Hsiang Chao; Hui-Chu Chen; Jui-Yuan Lee

2014-04-23T23:59:59.000Z

144

QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI-URBAN COMMUNITY  

E-Print Network (OSTI)

in dose-response assessment in QMRA. The risks were significantly higher than the acceptable risk level defined by USEPA and WHO for drinking water, which was used as a guideline acceptable risk in this studyi QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI

Richner, Heinz

145

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network (OSTI)

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

146

Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy  

Open Energy Info (EERE)

Energy Recovery Council (ERC) Wast to Energy (WTE) Energy Recovery Council (ERC) Wast to Energy (WTE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Recovery Council (ERC) Wast to Energy (WTE) Agency/Company /Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guide/manual User Interface: Website Website: www.wte.org/ Cost: Free The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. Overview The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. The website includes information on waste-to-energy basics

147

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network (OSTI)

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

148

Co-Gasification of Biomass Wastes and Coal?Coke Blends in an Entrained Flow Gasifier: An Experimental Study  

Science Journals Connector (OSTI)

An experimental study of entrained flow, air-blown cogasification of biomass and a coal?coke mixture has been performed in order to evaluate the effect of the relative fuel/air ratio (ranging between 2.5 and 7.5), the reaction temperature (ranging between ...

Juan J. Hernández; Guadalupe Aranda-Almansa; Clara Serrano

2010-03-29T23:59:59.000Z

149

Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio  

Science Journals Connector (OSTI)

Abstract This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67 ± 0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (?30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1 ? 1.2) and polar organic aerosols (OM2/OC2 ? 2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9 ± 0.2 and 1.8 ± 0.2, from paddy- and wheat-residue burning emissions.

Prashant Rajput; M.M. Sarin

2014-01-01T23:59:59.000Z

150

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

means of fluidised bed gasification, Waste Management, 2008,metals in gasification of sewage sludge, Waste Management,mainstream gasification technologies for biomass and waste

FAN, XIN

2012-01-01T23:59:59.000Z

151

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

Cattolica, Robert

2009-01-01T23:59:59.000Z

152

FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP  

SciTech Connect

Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

Jantzen, C; Michael Williams, M

2008-01-11T23:59:59.000Z

153

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

154

Analysis of Organic Rankine Cycle for Low and Medium Grade Heat Source  

Science Journals Connector (OSTI)

Organic Rankine cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment ... Keywords: organic Rankine cycle, new energy, waste heat recovery

Zhonghe Han; Yida Yu

2012-07-01T23:59:59.000Z

155

Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A, GRAETZ, AND K. R. REDDY2  

E-Print Network (OSTI)

information deals with land ap- plication of anaerobically digested sewage sludge, and on- ly limited data such as plant biomass, sewage sludge, or animal wastes is used to generate CH4 and stabilized organic waste, or preferably utilized, in an environmentally safe manner. Disposal of the anaerobically digested sludge by land

Florida, University of

156

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

157

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

158

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty  

E-Print Network (OSTI)

Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from and efficiency of those systems. The system considered here is an Organic Rankine Cycle (ORC) for recovering internal combustion engines presented in [1]. The system considered here is an Organic Rankine Cycle (ORC

Paris-Sud XI, Université de

159

Biomass burning and urban air pollution over the Central Mexican Plateau  

E-Print Network (OSTI)

J. D. Crounse et al. : Biomass burning pollution overChemistry and Physics Biomass burning and urban airprimary anthropogenic and biomass burning organic aerosols

2009-01-01T23:59:59.000Z

160

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle  

Energy.gov (U.S. Department of Energy (DOE))

The project objective is to develop the scroll expander for Organic Rankine cycle (ORC) systems to be used in medium-grade waste heat recovery applications, and to validate and quantify the benefits of the prototype system.

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The mobility of water soluble organic compounds in soils from the land application of petroleum waste sludge  

E-Print Network (OSTI)

THE MOBILITY OF WATER SOLUBLE ORGANIC COMPOUNDS IN SOILS FROM THE LAND APPLICATION OF PETROLEUM WASTE SLUDGE A Thesis by GORDON BARCUS EVANS, JR. Submitted to the Graduate College of Texas A&l1 University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1979 Major Subject: Soil Science THE MOBILITY OF WATER SOLUBLE ORGANIC COMPOUNDS IN SOILS FROM THE LAND APPLICATION OF PETROLEUM WASTE SLUDGE A Thesis by GORDON BARCUS EVANS, JR. Approved...

Evans, Gordon Barcus

1979-01-01T23:59:59.000Z

162

A network design model for biomass to energy supply chains with anaerobic digestion systems  

Science Journals Connector (OSTI)

Abstract Development and implementation of renewable energy systems, as a part of the solution to the worldwide increasing energy consumption, have been considered as emerging areas to offer an alternative to the traditional energy systems with limited fossil fuel resources and to challenge environmental problems caused by them. Biomass is one of the alternative energy resources and agricultural, animal and industrial organic wastes can be treated as biomass feedstock in biomass to energy conversion systems. This study aims to develop an effective supply chain network design model for the production of biogas through anaerobic digestion of biomass. In this regard, a mixed integer linear programming model is developed to determine the most appropriate locations for the biogas plants and biomass storages. Besides the strategic decisions such as determining the numbers, capacities and locations of biogas plants and biomass storages, the biomass supply and product distribution decisions can also be made by this model. Mainly, waste biomass is considered as feedstock to be digested in anaerobic digestion facilities. To explore the viability of the proposed model, computational experiments are performed on a real-world problem. Additionally, a sensitivity analysis is performed to account for the uncertainties in the input data to the decision problem.

?ebnem Y?lmaz Balaman; Hasan Selim

2014-01-01T23:59:59.000Z

163

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

SciTech Connect

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Chanakya, H.N. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India)], E-mail: chanakya@astra.iisc.ernet.in; Sharma, Isha [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Ramachandra, T.V. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

2009-04-15T23:59:59.000Z

164

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network (OSTI)

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

165

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60°C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

166

Organic geochemical studies at a commercial shallow-land disposal site of low-level nuclear waste  

SciTech Connect

The subsurface migration of radionuclides has been studied at a commercial, shallow-land burial site of low-level nuclear waste at Maxey Flats, Kentucky. A variety of radionuclides including /sup 3/H, /sup 238/ /sup 239/ /sup 240/Pu, /sup 60/Co, /sup 137/Cs and /sup 90/Sr have migrated short distances on-site (meters to tens of meters). A number of the mobile radionuclides, notably plutonium and /sup 60/Co, appear to exist as anionic species with organic properties. As a result, we have studied the organic geochemistry of radioactive leachates pumped from a number of waste burial trenches throughout the site. The major aim of the organic research is to elucidate the role of organic compounds in mediating the subsurface migration of the mobile radionuclides in groundwater. A survey study of the hydrophilic and hydrophobic organic content of the waste leachates has revealed that organic compounds are readily leached from the buried waste. Organic chelating agents like EDTA, HEDTA and ED3A are the major hydrophilic organic compounds in the leachates, their concentrations ranging from 78 ppB to 19,511 ppB. A number of carboxylic acids are also present in the leachates, ranging from 675 ppB to 8757 ppB, collectively. A variety of hydrophobic organic compounds including barbiturates and other aromatic compounds, presumably waste-derived, are also present in the leachates, generally at lower ppB concentrations. A detailed chemical speciation study, aimed at determining whether any of the organic compounds identified in the survey study are associated with the mobile radionuclides, was undertaken using leachate from one of the waste trenches. It is clear that EDTA is chelated to plutonium and /sup 60/Co in the leachate, potentially mobilizing these radionuclides. Other radionuclides, /sup 137/Cs and /sup 90/Sr, may be associated with polar organic compounds such as carboxylic acids. 14 references, 2 figures, 2 tables.

Toste, A.P.; Kirby, L.J.; Pahl, T.R.

1984-01-01T23:59:59.000Z

167

Biomass Domestic Cooking Gasifier Stove for Use in Rural Areas of Developing Countries  

Science Journals Connector (OSTI)

An experimental “Biomass Domestic Gasifier Cooking Stove” (BDGCS) system is described here. A gasifier produces gas from biomass wastes such as...

Gao Xiansheng

1993-01-01T23:59:59.000Z

168

A reclamation approach for mined prime farmland by adding organic wastes and lime to the subsoil  

SciTech Connect

Surface mined prime farmland may be reclaimed by adding organic wastes and lime to subsoil thus improving conditions in root zone. In this study, sewage sludge, poultry manure, horse bedding, and lime were applied to subsoil (15-30 cm) during reclamation. Soil properties and plant growth were measured over two years. All organic amendments tended to lower the subsoil bulk density and increase organic matter and total nitrogen. Liming raised exchangeable calcium, slightly increased pH, but decreased exchangeable magnesium and potassium. Corn ear-leaf and forage tissue nitrogen, yields, and nitrogen removal increased in treatments amended with sewage sludge and poultry manure, but not horse bedding. Subsoil application of sewage sludge or poultry manure seems like a promising method in the reclamation of surface mined prime farmland based on the improvements observed in the root zone environment.

Zhai, Qiang; Barnhisel, R.I. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

169

Minimum variance control of organic Rankine cycle based waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a 100 KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formulated by the controlled autoregressive moving average (CARMA) model whose parameters are identified using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this work are twofold: (1) the proposed control strategy is formulated under the data-driven framework, which does not need the precise mathematic model; (2) this proposed method is applied to handle tracking set-point variations and process disturbances by improved minimum objective GMV function. The performance of GMV controller is compared with the PID controller. The simulation results show that the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

Guolian Hou; Shanshan Bi; Mingming Lin; Jianhua Zhang; Jinliang Xu

2014-01-01T23:59:59.000Z

170

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan…

2007-01-01T23:59:59.000Z

171

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

172

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

173

Biomass 2014 Poster Session  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

174

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

175

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and  

E-Print Network (OSTI)

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

Toohey, Darin W.

176

Biomass Sales and Use Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

177

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

Weaver, P.F.; Pinching Maness.

1993-10-05T23:59:59.000Z

178

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

1993-01-01T23:59:59.000Z

179

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

180

Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses  

Science Journals Connector (OSTI)

Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses ... The life cycle greenhouse gas (GHG) emissions and economics of electricity generation through anaerobic digestion (AD) of household source-separated organic waste (HSSOW) are investigated within the FiT program. ... AD can potentially provide considerable GHG emission reductions (up to 1 t CO2eq/t HSSOW) at relatively low to moderate cost (-$35 to 160/t CO2eq) by displacing fossil electricity and preventing the emission of landfill gas. ...

David Sanscartier; Heather L. MacLean; Bradley Saville

2011-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AGCO Biomass Solutions: Biomass 2014 Presentation  

Energy.gov (U.S. Department of Energy (DOE))

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

182

Growth and elemental composition of sorghum sudangrass grown on flyash/organic waste-amended soils  

SciTech Connect

A greenhouse study was conducted to evaluate the potential benefitsof using fly ash/organic waste mixtures amended to soils for growth andcomposition of mineral elements by `sorgrass` (Sorghum vulgaris var.sudanense Hitchc.) a shorghum-sudangrass hybrid plant. This experimentwas conducted using a 1:1 ratio of fly ash to either sewage sludge,poultry manure, or dairy manure at six application rates. Our threeorganic wastes when mixed with fly ash at varied rates of applicationresulted in elevated concentrations of NO{sub 3}, P, K, Ca, Mg, Mn, Fe, B,Cu and Zn in both soil and plants. The data of this study indicated thatthe availability of elements to plants varied according to the organicsource mixed with fly ash and the rate of application. The elements Band Zn were observed to be significantly greater in plant tissuesexposed to fly ash/poultry manure or fly ash/dairy manure mixtures.Soils amended with fly ash/sewage sludge or poultry manure generallyimproved plant growth and enhanced yield when applied at rates of 25tons/acre, and decreased thereafter. However, soils amended with flyash/dairy manure improved plant growth and enhanced yield when appliedat rates upto 50 tons/acre and decreased thereafter. The decreases inyield beyond these application rates were probably due to theaccumulation of high levels of B and Zn which are phytotoxic and/orelevated levels of inorganic dissolved salts. 22 refs., 4 tabs.

Sajwan, K.S. [Savannah State College, GA (United States); Ornes, W.H.; Youngblood, T.V. [Univ. of South Carolina, Aiken, SC (United States)

1996-08-01T23:59:59.000Z

183

Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles  

Science Journals Connector (OSTI)

Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for simulating an appropriate cycle control strategy during part-load operation and start and stop procedures. A dynamic model of the ORC is therefore proposed focusing specifically on the time-varying performance of the heat exchangers, the dynamics of the other components being of minor importance. Three different control strategies are proposed and compared. The simulation results show that a model predictive control strategy based on the steady-state optimization of the cycle under various conditions is the one showing the best results.

Sylvain Quoilin; Richard Aumann; Andreas Grill; Andreas Schuster; Vincent Lemort; Hartmut Spliethoff

2011-01-01T23:59:59.000Z

184

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

SciTech Connect

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

Elliott, Douglas C; Oyler, James

2013-12-17T23:59:59.000Z

185

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

SciTech Connect

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

Elliott, Douglas C; Oyler, James R

2014-11-04T23:59:59.000Z

186

Extraction equilibria between organic CMPO-n-dodecane and aqueous nitric acid phases for selected tank waste components  

SciTech Connect

Removal of the transuranium elements from tank-stored wastes is an important step in the cost effective treatment and preparation of these wastes for permanent disposal. One promising method of treatment involves dissolving the tank sludges in acid, followed by extraction of the transuranium species. The TRUEX process, which uses an extracting medium composed of octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO) and tri-n-butyl phosphate (TBP) dissolved in an organic solvent such as n-dodecane, is being tested for this purpose. Although CMPO is a powerful extractant for all the actinides, concern arises that certain process chemicals present in the waste will compete for the CMPO. Data will be presented on the pure component equilibrium characteristics of nitric acid, uranyl nitrate and bismuth nitrate partitioned between a nitric acid aqueous phase and a CMPO-n-dodecane organic phase.

Spencer, B.B.; Egan, B.Z. [Oak Ridge National Lab., TN (United States); Counce, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

1996-10-01T23:59:59.000Z

187

Geopolymeric Agent for Immobilization of Radioactive Ashes after Biomass Burning  

Science Journals Connector (OSTI)

Solidification of low-level radioactive wastes obtained after biomass burning was studied. Two solidification modes using Portland...- 6 g cm- 2 day- 1.... Thus, su...

A. D. Chervonnyi; N. A. Chervonnaya

2003-03-01T23:59:59.000Z

188

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

189

NREL: Biomass Research - Courtney E. Payne  

NLE Websites -- All DOE Office Websites (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

190

NREL: Biomass Research - Working With Us  

NLE Websites -- All DOE Office Websites (Extended Search)

research expertise. Working with outside organizations is the key to moving advanced biomass conversion technology and processes for the production of bio-based products-i.e.,...

191

Biomass Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

extraction of both the fruit and the waste product of the plant itself. References: Biomass Resources Corporation1 This article is a stub. You can help OpenEI by expanding it....

192

A systemic approach for dimensioning and designing anaerobic bio-digestion/energy generation biomass supply networks  

Science Journals Connector (OSTI)

Abstract Anaerobic bio-digestion/energy generation complexes using animal waste raw materials represent an important component of renewable energy initiatives and policies worldwide, and are significant contributors to broaden sustainability efforts. In such projects bio-power feasibility depends heavily on generation complex access to biomass which is of costly transportation. As a result, an important component of renewable energy planning is the optimization of a logistics system to guarantee low-cost access to animal waste. This access is a function of local characteristics including number and geographic location of organic waste sources, operating and maintenance costs of the generation facility, energy prices, and marginal contribution of biomass collected and delivered to the anaerobic bio-digestion unit. Because biomass exhibits high transportation costs per unit of energy ultimately generated, and because different types of biomass have different biogas-generating properties, design of the supply logistics system can be the determinant factor towards economic viability of energy generation from an anaerobic bio-digestion plant. Indeed, to address this problem it is helpful to consider the farms, the logistics system, the anaerobic bio-digestion plant, and the generation plant as subsystems in an integrated system. Additionally, the existence of an outlet for manure may allow farmers to significantly raise boundaries of one constraint they face, namely disposing of animal waste, therefore permitting increases in farm production capacity. This paper suggests and outlines a systematic methodology to address the design of such systems.

João Neiva de Figueiredo; Sérgio Fernando Mayerle

2014-01-01T23:59:59.000Z

193

Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.

Fernandez, Jose M., E-mail: joseman@sas.upenn.edu [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States); Plaza, Cesar; Polo, Alfredo [Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain); Plante, Alain F. [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States)

2012-01-15T23:59:59.000Z

194

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network (OSTI)

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

195

1990 Washington State directory of biomass energy facilities  

SciTech Connect

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

196

Inorganic, radioisotopic and organic analysis of 241-AP-101 tank waste  

SciTech Connect

Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids. The characterization of the 241-AP-101 composite samples included: (1) Inductively-coupled plasma spectrometry for Ag, Al, Ba, Bi, Ca, Cd, Cr, Cu, Fe, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Pd, Ru, Rh, Si, Sr, Ti, U, Zn, and Zr (Note: Although not specified in the test plan, As, B, Be, Co, Li, Mo, Sb, Se, Sn, Tl, V, W, and Y were also measured and reported for information only) (2) Radioisotopic analyses for total alpha and total beta activities, {sup 3}H, {sup 14}C, {sup 60}Co, {sup 79}Se, {sup 90}Sr, {sup 99}Tc as pertechnetate, {sup 106}Ru/Rh, {sup 125}Sb, {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 154}Eu, {sup 155}Eu, {sup 238}Pu, {sup 239+240}Pu, {sup 241}Am, {sup 242}Cm, and {sup 243+244}Cm; (3) Inductively-coupled plasma mass spectrometry for {sup 237}Np, {sup 239}Pu, {sup 240}Pu, {sup 99}Tc, {sup 126}Sn, {sup 129}I, {sup 231}Pa, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 241}AMU, {sup 242}AMU, {sup 243}AMU, As, B, Be, Ce, Co, Cs, Eu, I, Li, Mo, Pr, Rb, Sb, Se, Ta, Te, Th, Tl, V, and W; (4) total U by kinetic phosphorescence analysis; (5) Ion chromatography for Cl, F, NO{sub 2}, NO{sub 3}, PO{sub 4}, SO{sub 4}, acetate, formate, oxalate, and citrate; (6) Density, inorganic carbon and organic carbon by two different methods, mercury, free hydroxide, ammonia, and cyanide. The 241-AP-101 composite met all contract limits (molar ratio of analyte to sodium or ratio of becquerels of analyte to moles of sodium) defined in Specification 7 for Envelope A. Except for a few cases, the characterization results met or surpassed the quality control requirements established by the governing quality assurance plan and met or surpassed the minimum reportable quantity requirements specified by BNFL.

SK Fiskum; PR Bredt; JA Campbell; LR Greenwood; OT Farmer; GJ Lumetta; GM Mong; RT Ratner; CZ Soderquist; RG Swoboda; MW Urie; JJ Wagner

2000-06-28T23:59:59.000Z

197

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery  

Science Journals Connector (OSTI)

Abstract The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance.

You-Rong Li; Mei-Tang Du; Chun-Mei Wu; Shuang-Ying Wu; Chao Liu

2014-01-01T23:59:59.000Z

199

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

200

Biomass Crop Assistance Program (BCAP) | Open Energy Information  

Open Energy Info (EERE)

Biomass Crop Assistance Program (BCAP) Biomass Crop Assistance Program (BCAP) Jump to: navigation, search Tool Summary Name: Biomass Crop Assistance Program (BCAP) Agency/Company /Organization: United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Develop Finance and Implement Projects Resource Type: Guide/manual User Interface: Website Website: www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap Cost: Free The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. Overview The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. The Biomass Crop

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

green waste for use in a biomass gasification process togasification method to process some of the 1.4 million tons of wastegasification / power generation model, accessed April 2008 from http://biomass.ucdavis.edu/calculator.html 10. California Integrated Waste

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

202

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

203

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

204

Biomass torrefaction and CO2 capture using mining wastes A new approach for reducing greenhouse gas emissions of co-firing plants  

E-Print Network (OSTI)

for an efficient biomass/coal co-firing could thus be further enhanced by curbing the overall process CO2 emissions as well as using ionic-liquid-impregnated torrefac- tion to increase birch wood constituents' torrefaction saturation, and carbon monoxide and methane concen- trations on mining residues CO2 uptake was studied

Devernal, Anne

205

APPLICATION OF PYROLYSIS-GC/MS TO THE STUDY OF BIOMASS AND BIOMASS CONSTITUENTS.  

E-Print Network (OSTI)

??Fast pyrolysis, the rapid thermal decomposition of organic material in the absence of oxygen, is a process that can be used to convert biomass into… (more)

Ware, Anne E

2013-01-01T23:59:59.000Z

206

Changes in Soil Physical Properties Due to Organic Waste Applications: A Review1 R. KHALEEL, K. R. REDDY, AND M. R. OVERCASH2  

E-Print Network (OSTI)

. REDDY, AND M. R. OVERCASH2 ABSTRACT Land application of organic wastes such as animal manure, munici- pal wastes, and sewage sludge could alter the soil physical properties. Repeated substantial). Several investiga- tors, in monitoring runoff water quality from small plot-sized land application areas

Florida, University of

207

Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater  

Science Journals Connector (OSTI)

This paper reports the effects of changing pH (5–7) and temperature (T..., 40–60 °C) on the efficiencies of bacterial hydrolysis of suspended organic matter (SOM) in wastewater from food waste recycling (FWR) and...

Man Deok Kim; Minkyung Song; Minho Jo…

2010-02-01T23:59:59.000Z

208

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

209

Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2008-07-01T23:59:59.000Z

210

Biomass shock pretreatment  

SciTech Connect

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

211

Taylor Biomass Energy LLC TBE | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy LLC TBE Biomass Energy LLC TBE Jump to: navigation, search Name Taylor Biomass Energy, LLC (TBE) Place Montgomery, New York Zip 12549-9900 Sector Biomass Product Montgomery-based municipal-solid-waste (MSW) recovery and recycling firm providing biomass gasification units in addition to operating its own gasifier plants. References Taylor Biomass Energy, LLC (TBE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taylor Biomass Energy, LLC (TBE) is a company located in Montgomery, New York . References ↑ "Taylor Biomass Energy, LLC (TBE)" Retrieved from "http://en.openei.org/w/index.php?title=Taylor_Biomass_Energy_LLC_TBE&oldid=352048" Categories:

212

US Biomass Energy Research Association BERA | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Research Association BERA Biomass Energy Research Association BERA Jump to: navigation, search Name US Biomass Energy Research Association (BERA) Place Washington, Washington, DC Zip DC 20003 Sector Biomass Product Aims to faciliate understanding and promotion of biomass energy or waste-to-energy systems. References US Biomass Energy Research Association (BERA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Biomass Energy Research Association (BERA) is a company located in Washington, Washington, DC . References ↑ "US Biomass Energy Research Association (BERA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Biomass_Energy_Research_Association_BERA&oldid=352594

213

Generating power with waste wood  

SciTech Connect

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

214

Liberia-NREL Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Liberia-NREL Biomass Resource Assessment Liberia-NREL Biomass Resource Assessment Jump to: navigation, search Logo: Liberia Biomass Resource Assessment Name Liberia Biomass Resource Assessment Agency/Company /Organization National Renewable Energy Laboratory Partner U.S. Agency for International Development Sector Energy Focus Area Biomass Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/docs/fy09o Country Liberia Western Africa References Assessment of Biomass Resources in Liberia [1] Abstract This study was conducted to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels

215

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

216

Potentials of Biomass Co-Combustion in Coal-Fired Boilers  

Science Journals Connector (OSTI)

The present work provides a survey on the potentials of co-combustion of biomass and biogenic wastes in large-scale coal- ... which is not obtainable in small-scale dedicated biomass combustors. Co-firing at low ...

J. Werther

2010-01-01T23:59:59.000Z

217

Performance optimization of biological waste treatment by flotation clarification at a chemical manufacturing facility  

SciTech Connect

Air Products and Chemicals, Inc., utilizes a deep-tank activated sludge wastewater treatment system with a dissolved air flotation clarifier (DAF) to effectively treat amine wastes containing residual organics, ammonia-nitrogen and organic nitrogen. The bio-system, a deep tank aeration system, produces a high quality final effluent low in biochemical oxygen demand (BOD), ammonia and organic nitrogen, turbidity and total suspended solids. Prior to installing the DAF, treatment performance was at risk with a gravity clarifier. Waste treatment performance was jeopardized by poor settling bio-flocs and uncontrollable solids-liquid separation problems within the gravity clarifier. The solids settleability problems resulted primarily from mixed liquor nitrogen supersaturation degassing in the clarifier. As a result of the degassing, biomass floated on the gravity clarifier or overflowed the effluent weir. As a result of biomass loss periodically organic carbon and total Kjeldahl nitrogen loadings had to be reduced in order to maintain optimal food-to-mass ratios. As biomass levels dropped within the aeration basin, waste treatment performance was at risk and waste loads had to be decreased causing waste inventories to increase in storage tanks.

Kerecz, B.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Miller, D.R. [Komline-Sanderson, Peapack, NJ (United States)

1995-12-31T23:59:59.000Z

218

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant  

E-Print Network (OSTI)

Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

219

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network (OSTI)

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan C

2007-01-01T23:59:59.000Z

220

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network (OSTI)

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

222

Shanxi Milestone Biomass Energy Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Shanxi Milestone Biomass Energy Development Co Ltd Shanxi Milestone Biomass Energy Development Co Ltd Jump to: navigation, search Name Shanxi Milestone Biomass Energy Development Co Ltd Place China Sector Biomass Product China-based biomass project developer. References Shanxi Milestone Biomass Energy Development Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shanxi Milestone Biomass Energy Development Co Ltd is a company located in China . References ↑ "Shanxi Milestone Biomass Energy Development Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Shanxi_Milestone_Biomass_Energy_Development_Co_Ltd&oldid=350885" Categories: Clean Energy Organizations Companies Organizations

223

Sinewave Biomass Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Sinewave Biomass Power Pvt Ltd Sinewave Biomass Power Pvt Ltd Jump to: navigation, search Name Sinewave Biomass Power Pvt. Ltd. Place Kolhapur, Maharashtra, India Zip 416 012 Sector Biomass Product Kolhapur-based biomass project developer References Sinewave Biomass Power Pvt. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sinewave Biomass Power Pvt. Ltd. is a company located in Kolhapur, Maharashtra, India . References ↑ "Sinewave Biomass Power Pvt. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Sinewave_Biomass_Power_Pvt_Ltd&oldid=351109" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

224

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

225

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING AND CHARACTERIZATION FACILITY  

SciTech Connect

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-S46 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (SGRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a ''blind'' sample to the laboratory. Feedback from the SGRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 200Sa). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated-carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 giL potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent adsorption tube breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. Linear response was checked using both non-volatile TOX species (trichlorophenol) an

JG DOUGLAS; HK MEZNARICH, PHD; JR OLSEN; GA ROSS PHD; M STAUFFER

2009-02-13T23:59:59.000Z

226

INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)  

SciTech Connect

Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S&GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S&GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively remove inorganic chloride from the activated carbon adsorption tubes. With the TOX sample preparation equipment and TOX analyzers at WSCF, the nitrate wash recommended by EPA SW-846 method 9020B was found to be inadequate to remove inorganic chloride interference. Increasing the nitrate wash concentration from 10 grams per liter (g/L) to 100 g/L potassium nitrate and increasing the nitrate wash volume from 3 milliliters (mL) to 10 mL effectively removed the inorganic chloride up to at least 100 ppm chloride in the sample matrix. Excessive purging of the adsorption tubes during sample preparation was eliminated. These changes in sample preparation have been incorporated in the analytical procedure. The results using the revised sample preparation procedure show better agreement of TOX values both for replicate analyses of single samples and for the analysis of replicate samples acquired from the same groundwater well. Furthermore, less apparent column breakthrough now occurs with the revised procedure. One additional modification made to sample preparation was to discontinue the treatment of groundwater samples with sodium bisulfite. Sodium bisulfite is used to remove inorganic chlorine from the sample; inorganic chlorine is not expected to be a constituent in these groundwater samples. Several other factors were also investigated as possible sources of anomalous TOX results: (1) Instrument instability: examination of the history of results for TOX laboratory control samples and initial calibration verification standards indicate good long-term precision for the method and instrument. Determination of a method detection limit of 2.3 ppb in a deionized water matrix indicates the method and instrumentation have good stability and repeatability. (2) Non-linear instrument response: the instrument is shown to have good linear response from zero to 200 parts per billion (ppb) TOX. This concentration range encompasses the majority of samples received at WSCF for TOX analysis. (3) Improper sample preservation: ion-chromatographic analysis of several samples wit

DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

2008-09-30T23:59:59.000Z

227

Optimal Use of Organic Waste in Future Energy Systems the Danish case  

E-Print Network (OSTI)

, gasification, fermentation (biogas production) and improved incineration. It is argued that it is important for CHP production. On the other hand least greenhouse gases are emitted if biogas is produced from waste. The approximate 70 Danish biogas plants contribute with a mere 1% of the electricity production

228

Cornell Waste Management Institute Program Work Team 1 Managing Organic Residuals  

E-Print Network (OSTI)

on all landfill and incinerator waste. Five dollars would be charged to the facility for every ton://www.nypsc.org) describes Framework Principles for Product Stewardship. · Other "types" of operations include pyrolysis and gasification plants. DEC is looking at these facilities to help insure they

Wang, Z. Jane

229

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

230

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

231

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

232

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant .  

E-Print Network (OSTI)

??Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to… (more)

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

233

A literature review of methods of analysis of organic analytes in radioactive wastes with an emphasis on sources from the United Kingdom  

SciTech Connect

This report, compiled by Pacific Northwest Laboratory (PNL), examines literature originating through the United Kingdom (UK) nuclear industry relating to the analyses of organic constituents of radioactive waste. Additionally, secondary references from the UK and other counties, including the United States, have been reviewed. The purpose of this literature review was to find analytical methods that would apply to the mixed-waste matrices found at Hanford.

Clauss, S.A.; Bean, R.M.

1993-09-01T23:59:59.000Z

234

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Maps Biomass Maps These maps illustrate the biomass resources available in the United States by county. Biomass feedstock data are analyzed both statistically and graphically using a geographic information system (GIS). The following feedstock categories are evaluated: crop residues, forest residues, primary and secondary mill residues, urban wood waste, and methane emissions from manure management, landfills, and domestic wastewater treatment. Biomass Resources in the United States Map of Total Biomass Resources in the United States Total Resources by County Total Biomass per Square Kilometer These maps estimate the biomass resources currently available in the United States by county. They include the following feedstock categories: crop residues (5 year average: 2003-2007) forest and primary mill residues

235

Energy Integration and Analysis of Solid Oxide Fuel Cell Based Microcombined Heat and Power Systems and Other Renewable Systems Using Biomass Waste Derived Syngas  

Science Journals Connector (OSTI)

(2, 3) The microgeneration or self-generation concept for dwellings is associated with several advantages, such as (1) cutting emissions of greenhouse gases, (2) reducing the number of people living in fuel poverty, (3) reducing the demands on transmission systems and distribution systems, (4) reducing the need for those systems to be modified, (5) enhancing the availability of electricity and heat for consumers, and (6) encouraging consumer engagement with energy efficient technologies. ... The SOFC can utilize heat of oxidization of gaseous fuels, such as hydrogen, syngas, and natural gas, in the anode in the presence of an oxidant in the cathode, to produce electricity. ... The biomass gasification plant under consideration comprises gasifiers, gas cooling and clean up technologies, gas turbines, heat recovery steam generators (HRSG), etc. ...

Jhuma Sadhukhan; Yingru Zhao; Matthew Leach; Nigel P. Brandon; Nilay Shah

2010-10-08T23:59:59.000Z

236

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Product: London-based project developer and manufacturer of biomass feedstock for energy production. References: Howard Waste Recycling Ltd1 This article is a stub. You can help...

237

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

239

Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock  

Science Journals Connector (OSTI)

This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by burning char in a separate combustion section of the gasifier and subsequently the heat is transferred to the gasification section. The advantages of indirect gasification are no syngas dilution with nitrogen and no external heat source required. The production process involves several process units, including biomass gasification, syngas cooler, cleaning and compression, methanation reactors and SNG conditioning. The process is simulated with a computer model using the flow-sheeting program Aspen Plus. The exergy analysis is performed for various operating conditions such as gasifier pressure, methanation pressure and temperature. The largest internal exergy losses occur in the gasifier followed by methanation and SNG conditioning. It is shown that exergetic efficiency of biomass-to-SNG process for woody biomass is higher than that for waste biomass. The exergetic efficiency for all biomass feedstock increases with gasification pressure, whereas the effects of methanation pressure and temperature are opposite for treated wood and waste biomass.

Caecilia R. Vitasari; Martin Jurascik; Krzysztof J. Ptasinski

2011-01-01T23:59:59.000Z

240

Biomass Analytical Library  

NLE Websites -- All DOE Office Websites (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

242

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

243

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

244

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

245

Assessment of TEES reg sign applications for Wet Industrial Wastes: Energy benefit and economic analysis report  

SciTech Connect

Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

Elliott, D.C.; Scheer, T.H.

1992-02-01T23:59:59.000Z

246

Biomass Gasification for Rural Electrification , Small Scale  

Science Journals Connector (OSTI)

Currently, scrubbers with organic solvents (e.g., FAME) as washing solvent are the most common tar removal technologies for small and medium sized biomass gasifiers and are successfully tested at a number...105,

Dr. Marco Klemm

2012-01-01T23:59:59.000Z

247

Biomass Gasification for Rural Electrification , Small Scale  

Science Journals Connector (OSTI)

Currently, scrubbers with organic solvents (e.g., FAME) as washing solvent are the most common tar removal technologies for small and medium sized biomass gasifiers and are successfully tested at a number...105,

Dr. Marco Klemm

2013-01-01T23:59:59.000Z

248

Article original Biomasse, productivit et transferts de matire  

E-Print Network (OSTI)

Article original Biomasse, productivité et transferts de matière organique dans une séquence le 19 septembre 1995) Summary - Biomass, productivity and organic matter fluxes in Castanea sativa elevations were studied on the flanks of the Etna volcano (Sicily). Aboveground biomass was to 22 and 24 Mg

Paris-Sud XI, Université de

249

Biomass and productivity of trematode parasites in pond ecosystems  

E-Print Network (OSTI)

Biomass and productivity of trematode parasites in pond ecosystems Daniel L. Preston*, Sarah A often measure the biomass and productivity of organisms to understand the importance of populations and dissections of over 1600 aquatic invertebrate and amphib- ian hosts, we calculated the ecosystem-level biomass

Johnson, Pieter

250

Biomass of the cryptoendolithic microbiota from the Antarctic desert.  

Science Journals Connector (OSTI)

...the results of the combustion or total- organic-matter...DISCUSSION The biomass of the cryptoendolithic...the Kjeldahl or combustion method (Tables...regardless of where the biomass was located in the...Kjeldahl carbon. When combustion carbon was compared...range of viable biomass to total carbon...

J R Vestal

1988-04-01T23:59:59.000Z

251

Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs  

E-Print Network (OSTI)

Conceptually, the Organic Rankine Cycle (ORC) power cycle has been well known to the engineering community for many years. Despite the rapid escalation of energy costs during the past decade, and a concerted, though somewhat belated, effort towards...

Rohrer, J. W.; Bronicki, L. Y.

1980-01-01T23:59:59.000Z

252

Coal/biomass gasifier lab tests are a success  

Science Journals Connector (OSTI)

Coal/biomass gasifier lab tests are a success ... The process produces a medium-Btu gas from a mixture of coal, municipal solid waste, and dewatered sewage sludge. ...

1980-02-25T23:59:59.000Z

253

High-temperature photochemical destruction of toxic organic wastes using concentrated solar radiation  

SciTech Connect

Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studies of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).

Dellinger, B.; Graham, J.L.; Berman, J.M.; Taylor, P.H. [Dayton Univ., OH (United States)

1994-05-01T23:59:59.000Z

254

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

255

Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Lianyungang Baoxin Biomass Cogeneration Co Ltd Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name Lianyungang Baoxin Biomass Cogeneration Co Ltd Place Jiangsu Province, China Sector Biomass Product A biomass project developer in China. References Lianyungang Baoxin Biomass Cogeneration Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lianyungang Baoxin Biomass Cogeneration Co Ltd is a company located in Jiangsu Province, China . References ↑ "[ Lianyungang Baoxin Biomass Cogeneration Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Lianyungang_Baoxin_Biomass_Cogeneration_Co_Ltd&oldid=348336" Categories: Clean Energy Organizations Companies

256

Kaisheng Biomass Residue Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Kaisheng Biomass Residue Power Co Ltd Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name Kaisheng Biomass Residue Power Co., Ltd. Place Nanping City, Fujian Province, China Zip 365001 Sector Biomass Product Chinese developer of a CDM registered biomass plant. References Kaisheng Biomass Residue Power Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Kaisheng Biomass Residue Power Co., Ltd. is a company located in Nanping City, Fujian Province, China . References ↑ "[ Kaisheng Biomass Residue Power Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Kaisheng_Biomass_Residue_Power_Co_Ltd&oldid=347879" Categories: Clean Energy Organizations

257

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

258

Waste-to-Energy Research and Technology Council (WTERT) | Open Energy  

Open Energy Info (EERE)

Waste-to-Energy Research and Technology Council (WTERT) Waste-to-Energy Research and Technology Council (WTERT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wast-to-Energy Research and Technology Council (WTERT) Agency/Company /Organization: Wast-to-Energy Research and Technology Council (WTERT) Sector: Energy, Land, Climate Focus Area: Biomass, - Waste to Energy, Greenhouse Gas Phase: Create a Vision Resource Type: Dataset, Maps, Presentation, Publications, Guide/manual, Training materials, Case studies/examples User Interface: Website Website: www.seas.columbia.edu/earth/wtert Cost: Free The Waste-to-Energy Research and Technology Council (WTERT) brings together engineers, scientists and managers from universities and industry. The mission of WTERT is to identify and advance the best available

259

High dose radiolysis of aqueous solutions of chloromethanes: Importance in the storage of radioactive organic wastes  

Science Journals Connector (OSTI)

The radiolysis of aqueous solutions of chloromethanes (dichloromethane, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) was performed with ?-rays to doses sufficient to completely decompose the solute in order to estimate the effects of radiation on the long-term storage of mixed waste in enclosed containers. One of the main relevant products was the inorganic chloride anion, which increased in concentration with increasing radiation dose due to the reactions of radiolytic decomposition products of water with the chloromethane. The pH of the solutions was observed to decrease with irradiation due to the formation of H3O+ as the counter ion to Cl?, i.e. the main radiolytic decomposition product is hydrochloric acid. Polymer formation was observed in aerated solutions as a precipitate while deaerated solutions exhibited a slight turbidity.

P. Rajesh; J.A. LaVerne; S.M. Pimblott

2007-01-01T23:59:59.000Z

260

Mapping Biomass Distribution Potential  

E-Print Network (OSTI)

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network (OSTI)

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

262

Increased Levels of Markers of Microbial Exposure in Homes with Indoor Storage of Organic Household Waste  

Science Journals Connector (OSTI)

...Levels of Markers of Microbial Exposure in Homes with Indoor Storage of Organic Household...might increase microbial exposure in the home environment. In this study we evaluated...House dust samples were collected in 99 homes in The Netherlands selected on the basis...

Inge M. Wouters; Jeroen Douwes; Gert Doekes; Peter S. Thorne; Bert Brunekreef; Dick J. J. Heederik

2000-02-01T23:59:59.000Z

263

Fermentable sugars by chemical hydrolysis of biomass  

Science Journals Connector (OSTI)

...to that of a control glucose/xylose mixture...an efficient system for polysaccharide...comprise an integrated process for...hydrolyzed by treatment with HCl and...Fig. 5. Integrated process...demonstration plants. Lessons...Engineering plants and enzymes...Biomass and Wastes , Comparative...

Joseph B. Binder; Ronald T. Raines

2010-01-01T23:59:59.000Z

264

Hydrothermal Liquefaction of Biomass in Hot-Compressed Water, Alcohols, and Alcohol-Water Co-solvents for Biocrude Production  

Science Journals Connector (OSTI)

HTL technology is particularly promising for converting wet biomass resources such as microalgae, agro waste streams (e.g., manures), municipal/industrial wastewater sludge and fresh/green forest biomass/residues...

Chunbao Charles Xu; Yuanyuan Shao…

2014-01-01T23:59:59.000Z

265

WWTP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

WWTP Biomass Facility WWTP Biomass Facility Jump to: navigation, search Name WWTP Biomass Facility Facility WWTP Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Biodyne Pontiac Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pontiac Biomass Facility Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location Livingston County, Illinois Coordinates 40.8688604°, -88.556531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8688604,"lon":-88.556531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

NREL: Biomass Research - Richard L. Bain  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard L. Bain Richard L. Bain Photo of Richard Bain Richard Bain is a Principal Engineer in the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He has worked at NREL since 1990 and has extensive experience in the thermal conversion of biomass, municipal wastes, coal, and petroleum. He is a lead researcher in the area of production of transportation fuels and hydrogen via thermochemical conversion of biomass; technical advisor to the U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA) on biofuels demonstrations; and Task Leader for the International Energy Agency Bioenergy Annex Biomass Gasification Task. Dr. Bain manages biomass gasification research activities for the Fuel Cell Technologies Program at NREL and coordinates support to the USDA for

268

Wheelabrator Westchester Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Westchester Biomass Facility Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal Solid Waste Location Westchester County, New York Coordinates 41.1220194°, -73.7948516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1220194,"lon":-73.7948516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Cargill Fertilizer Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Cargill Fertilizer Biomass Facility Cargill Fertilizer Biomass Facility Jump to: navigation, search Name Cargill Fertilizer Biomass Facility Facility Cargill Fertilizer Sector Biomass Facility Type Non-Fossil Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Covanta Haverhill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Haverhill Biomass Facility Covanta Haverhill Biomass Facility Jump to: navigation, search Name Covanta Haverhill Biomass Facility Facility Covanta Haverhill Sector Biomass Facility Type Municipal Solid Waste Location Essex County, Massachusetts Coordinates 42.7051144°, -70.9071236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7051144,"lon":-70.9071236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Biodyne Congress Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Congress Biomass Facility Congress Biomass Facility Jump to: navigation, search Name Biodyne Congress Biomass Facility Facility Biodyne Congress Sector Biomass Facility Type Non-Fossil Waste Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Assessment of TEES{reg_sign} applications for Wet Industrial Wastes: Energy benefit and economic analysis report  

SciTech Connect

Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg_sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

Elliott, D.C.; Scheer, T.H.

1992-02-01T23:59:59.000Z

273

Biomass Energy R&D in the San Francisco Bay Area  

SciTech Connect

Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms, for the production of electric power, heat, chemicals, or fuels. There are a number of ways of getting energy from biomass, and a number of factors influence the efficiency of the conversion process. All biomass can be easily combusted. The heat of combustion can be used as heat, or can be used to run gas/steam turbines to produce electricity. However, most biomass combustion processes are inefficient and environmentally non-benign. The main pollutants from direct biomass combustion are tars, particulates, and VOCs. Biodiesels can be made from oils obtained from plants/crops such as soybean, peanuts and cotton. The oils from these sources are mainly triglycerides of fatty acids and not directly suitable as diesel substitutes. Transesterification processes convert the triglycerides into simple esters of the corresponding fatty acids (for example, Fatty Acid Methyl Ester or FAME), which can be directly substitutes for diesel fuels. Starches, sugars and cellulose can be fermented to produce ethanol, which can be added to gasoline, or used directly as an engine fuel. Fermentation of starches and sugars is established technology, practiced for thousands of years. Fermentation of cellulose to make ethanol is relatively harder, requiring additional intermediate steps to hydrolyze the cellulose first by adding acids or by raising temperature. Forestry wastes predominantly comprise cellulose and lignin. Lignin cannot be fermented using the current bio-organisms, and, as mentioned above, even cellulose is difficult to ferment directly. In such cases, a suite of alternative technologies can be employed to convert the biomass into liquid fuels. For example, the biomass can be gasified with the use of air/oxygen and steam, the resultant syngas (mixture of hydrogen and carbon monoxide) can be cleaned to remove tars and particulates, the gas can be shifted to obtain the proper balance between hydrogen and carbon monoxide, and the balanced gas can be converted into either methanol or other hydrocarbons with the use of Fischer-Tropsch catalysts. The liquid fuels thus produced can be transported to the point of use. In addition, they can be reformed to produce hydrogen to drive fuel cells. In addition to agriculture and forestry, a third, and significant, source for biomass is municipal waste. The biomass component of municipal wastes consists mainly of cellulose (paper products and yard wastes) and lignin (yard wastes). This waste can be combusted or gasified, as described above. All the technologies mentioned above are relatively mature, and are being practiced in some form or another. However, there are other technologies that may be promising, yet present significant challenges and may require more work. An example of this is the use of bacteria to use light to decompose water to yield hydrogen.

Upadhye, R

2005-12-07T23:59:59.000Z

274

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

275

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

276

Sandia National Laboratories: Lignocellulosic Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

277

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

278

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

279

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

280

McNeil Biomass Power | Open Energy Information  

Open Energy Info (EERE)

McNeil Biomass Power McNeil Biomass Power Jump to: navigation, search Name McNeil Biomass Power Place Burlington, VT Website http://www.mcneilbiomasspower. References McNeil Biomass Power[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! McNeil Biomass Power is a company located in Burlington, VT. References ↑ "McNeil Biomass Power" Retrieved from "http://en.openei.org/w/index.php?title=McNeil_Biomass_Power&oldid=379514" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

USA Biomass Power Producers Alliance | Open Energy Information  

Open Energy Info (EERE)

Producers Alliance Producers Alliance Jump to: navigation, search Name USA Biomass Power Producers Alliance Place Sacramento, California Sector Biomass Product National trade association of biomass power producers in US. References USA Biomass Power Producers Alliance[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. USA Biomass Power Producers Alliance is a company located in Sacramento, California . References ↑ "USA Biomass Power Producers Alliance" Retrieved from "http://en.openei.org/w/index.php?title=USA_Biomass_Power_Producers_Alliance&oldid=352626" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

282

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

283

Waste Tank Safety Program. Annual status report for FY 1993, Task 3: Organic chemistry  

SciTech Connect

This task supports the tank-vapor project, mainly by providing organic analytical support and by analyzing Tank 241-C-103 (Tank C-103) vapor-space samples, collected via SUMMA{trademark} canisters, by gas chromatography (GC) and GC/mass spectrometry (MS). In the absence of receiving tank-vapor samples, we have focused our efforts toward validating the normal paraffin hydrocarbon (NPH) sampling and analysis methods and preparing the SUMMA{trademark} laboratory. All required milestones were met, including a report on the update of phase I sampling and analysis on August 15, 1993. This update described the work involved in preparing to analyze phase I samples (Appendix A). This report describes the analytical support provided by Pacific Northwest Laboratory (PNL){sup (a)} to the Hanford Tank Safety Vapor Program.

Lucke, R.B.; Clauss, T.T.W.; Hoheimer, R.; Goheen, S.C.

1994-02-01T23:59:59.000Z

284

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

285

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen über den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

286

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Pretreated densified biomass products  

SciTech Connect

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

288

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

289

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

290

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

291

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

292

CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION  

SciTech Connect

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Hammond, C; William Pepper, W

2008-09-19T23:59:59.000Z

293

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

294

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

295

argentine organizations: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing...

296

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

297

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

298

Waste-to-Energy Research and Technology Council (WTERT) | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Waste-to-Energy Research and Technology Council (WTERT) (Redirected from Wast-to-Energy Research and Technology Council (WTERT)) Jump to: navigation, search Tool Summary Name: Wast-to-Energy Research and Technology Council (WTERT) Agency/Company /Organization: Wast-to-Energy Research and Technology Council (WTERT) Sector: Energy, Land, Climate Focus Area: Biomass, - Waste to Energy, Greenhouse Gas Phase: Create a Vision Resource Type: Dataset, Maps, Presentation, Publications, Guide/manual, Training materials, Case studies/examples User Interface: Website

299

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

300

Energy from waste via coal/waste co-firing  

SciTech Connect

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

302

Scalable, Efficient Solid Waste Burner System - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion experts at CSU, the device is superior to other systems and achieves improved gasification and combustion of biomass and waste through novel chassis design and process....

303

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles  

Science Journals Connector (OSTI)

Measurement of Thermophysical Pure Component Properties for a Few Siloxanes Used as Working Fluids for Organic Rankine Cycles ... K and for two cyclic siloxanes (octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5)) in the temperature range of 288.15–443.15 ... Organic Rankine cycle (ORC) processes are gaining increasing interest(1-5) for the utilization of renewable energy such as geothermal heat, solar energy, biomass, and waste heat for the generation of electricity. ...

Rima Abbas; Andre Schedemann; Christian Ihmels; Sabine Enders; Ju?rgen Gmehling

2011-06-30T23:59:59.000Z

304

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

SciTech Connect

This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

Donna Post Guillen; Jalal Zia

2013-09-01T23:59:59.000Z

305

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

306

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Conversion of Waste Biomass into Useful Products  

E-Print Network (OSTI)

are produced. To control the pH, these acids are neutralized with calcium carbonate. The resulting calcium salts can be used to reduce sulfur emissions from industrial furnaces by directly spraying salt solutions into the combustor. Alternatively, the calcium...

Holtzapple, M.

308

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

309

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

310

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

Luong, David

2013-01-01T23:59:59.000Z

311

Analysis of syngas formation and ecological efficiency for the system of treating biomass waste and other solid fuels with CO2 recuperation based on integrated gasification combined cycle with diesel engine  

Science Journals Connector (OSTI)

Biomass combustion is a more complex process and its model solving is difficult than combustion of traditional liquid fuels. At the same...2...] to obtain the data for operating regimes of ICE with syngas-based d...

A. Y. Pilatau; H. A. Viarshyna…

2014-10-01T23:59:59.000Z

312

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

313

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

renewable energy resources include biomass, solar thermal resources”:  wind,  closed?loop  biomass,  open? loop  biomass,  geothermal  energy,  solar 

Cattolica, Robert

2009-01-01T23:59:59.000Z

314

Downdraft gasification of biomass.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with… (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

315

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

316

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

317

Biomass Resource Library  

NLE Websites -- All DOE Office Websites (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

318

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

319

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

320

Biomass Indirect Liquefaction Workshop  

Energy.gov (U.S. Department of Energy (DOE))

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

322

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

323

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

324

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

325

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

326

Influence of Coal Ash/Organic Waste Application on Distribution of Trace Metals in Soil, Plant, and Water  

Science Journals Connector (OSTI)

This study was conducted to evaluate effects of coal ash mixture (coal ash, biosolids and yard waste compost ratio of ... fruits, and its leaching potential into groundwater. Coal ash mixture was applied at rates...

Yuncong Li; Min Zhang; Peter Stoffella; Zhenli He…

2003-01-01T23:59:59.000Z

327

Grid-Connected Renewable Energy Generation Toolkit-Biomass | Open Energy  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Biomass Grid-Connected Renewable Energy Generation Toolkit-Biomass Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass Agency/Company /Organization: United States Agency for International Development Sector: Energy Focus Area: Biomass Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_2/index.shtml#update Grid-Connected Renewable Energy Generation Toolkit-Biomass Screenshot References: Grid-Connected Renewable Energy-Biomass[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Biomass Biomass Toolkit References ↑ "Grid-Connected Renewable Energy-Biomass" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Biomass&oldid=375080

328

Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

329

Characteristics of biomass in flameless combustion: A review  

Science Journals Connector (OSTI)

Abstract The demands of energy and pollutant emissions reduction have motivated the combustion researchers to work on combustion improvement. Flameless combustion or high temperature air combustion has many features such as flame stability, low pollutant emission and uniform profiles of temperature compared to the other modes of combustion. Combustion of solid fuels likes biomass and wastes in flameless combustion conditions has not been investigated as comprehensive as combustion of gaseous fuels. The aim of using biomass in combustion is to reduce the pollutant emissions and to decrease the rate of fossil fuel consumption. In this review, combustion characteristics of biomass in flameless combustion are explained. The paper summarizes the research on the mass loss, ignition time, and \\{NOx\\} emissions during biomass flameless combustion. These summaries show that biomass under flameless combustion gives low pollutant emissions, low mass loss and it decreases the ignition time.

A.A.A. Abuelnuor; M.A. Wahid; Seyed Ehsan Hosseini; A. Saat; Khalid M. Saqr; Hani H. Sait; M. Osman

2014-01-01T23:59:59.000Z

330

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

331

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

332

Module Handbook Specialisation Biomass Energy  

E-Print Network (OSTI)

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

333

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

334

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

335

Biomass losses during harvest and storage of switchgrass  

SciTech Connect

We determined the effects of environmental factors on switchgrass biomass stored in large round bales as affected by protected and unprotected conditions in four experiments during 1991 to 1995. Additionally, we measured the losses of dry matter during the biomass harvesting process (cutting, drying, and baling) and determined the quantity and quality of runoff waste from stored bales. In Experiments 1 and 2, `Alamo` switchgrass was harvested in October 1991 and August 1992, respectively, and stored in 275-kg bales unprotected outside for six months. In Experiments 3 and 4, switchgrass was harvested in November of 1993 and 1994, respectively, and stored in 380-kg bales for one year. In each experiment, the biomass was field dried to less than 11 to 19% moisture and baled. Losses during baling in 1993 and 1994 were measured by collecting biomass at the baler and gleaned from the stubble. In 1993 and 1994, bales were stored inside on concrete, outside on a grass sod unprotected from the elements, or outside on a gravel pad. In each experiment, bales from each treatment were destructively sampled periodically to determine the depth of weathered biomass and composition of weathered and unweathered biomass. Most of the visible weathering in the bales occurred in the surface 7 to 15 cm in each experiment. In Experiment 2, losses during storage were 13% of the biomass initially present. In Experiment 3, there were no differences (P > 0.05) among outside storage treatments in losses of biomass during the 12 months (average of 4.7%). There were no biomass losses for bales stored inside. Losses of biomass during baling ranged from 1 to 5% depending on moisture concentration in the biomass at baling. Larger losses were associated with drier biomass, presumably because of more shattering. Quality and quantity of runoff water from bales were not different (P > 0.05) from runoff water of control plots.

Sanderson, M.A.; Egg, R.P.; Coble, C.G. [Texas A& M Univ., College Station, TX (United States)

1995-11-01T23:59:59.000Z

336

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. Corporate HQ: Irvine, Orange County, California Proposed Facility Location: Southern California Description: This company has experience building biomass power plants in California and their technology has been demonstrated at the pilot scale. One of its partners is Waste Management Inc., a leading waste-to-energy company. This project will give DOE understanding of a new biological fermentation process not using enzymes. CEO or Equivalent: Arnold Klann Participants: Waste Management, Inc., JGC Corporation; MECS Inc.; NAES; PetroDiamond Production: * 19 million gallons/year in the unit in which DOE will be participating. Technology & Feedstocks: * Concentrated acid processing of 700 tons/day of sorted green waste and wood

337

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. Corporate HQ: Irvine, Orange County, California Proposed Facility Location: Southern California Description: This company has experience building biomass power plants in California and their technology has been demonstrated at the pilot scale. One of its partners is Waste Management Inc., a leading waste-to-energy company. This project will give DOE understanding of a new biological fermentation process not using enzymes. CEO or Equivalent: Arnold Klann Participants: Waste Management, Inc., JGC Corporation; MECS Inc.; NAES; PetroDiamond Production: * 19 million gallons/year in the unit in which DOE will be participating. Technology & Feedstocks: * Concentrated acid processing of 700 tons/day of sorted green waste and wood

338

Biomass Scenario Model | Open Energy Information  

Open Energy Info (EERE)

Biomass Scenario Model Biomass Scenario Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Scenario Model (BSM) Agency/Company /Organization: National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options Topics: Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: bsm.nrel.gov/ Country: United States Cost: Free OpenEI Keyword(s): EERE tool, Biomass Scenario Model UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

340

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

342

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

343

Developing better biomass feedstock | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

344

Bioconversion of biomass to methane  

SciTech Connect

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

345

Biomass Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

346

Combined Grinding and Drying of Biomass in One Operation Phase I  

SciTech Connect

First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can be transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small production rates, because the labor costs are a much larger fraction of the production cost. The goal for further research and development work is to scale up the KDS technology incorporating findings from Phase I into a machine that has superior performance characteristics.

Sokhansanj, S.

2008-06-26T23:59:59.000Z

347

The mathematical modelling of biomethane production and the growth of methanogenic bacteria in batch reactor systems fed with organic municipal solid waste  

Science Journals Connector (OSTI)

A mathematical model was developed and validated for an anaerobic digestion system of the Organic Fraction of Municipal Solid Wastes (OFMSWs) by using a laboratory-scale system of two Packed Bed Reactors (PBRs). The equations were obtained by the mass balances of methanogenic bacteria of affluent and effluent lixiviated, as well as the interior in each reactor. The methane rate was obtained by multiplying the methanogenic activity. A differential equation was fitted with experimental results to obtain the parameters that best describe methanogenic behaviour. These kinetic parameters were used with the modified logistic equation with the special case n = 1.

Liliana Alzate-Gaviria; Antonino Perez-Hernandez; Hector M. Poggi-Varaldo; P.J. Sebastian

2009-01-01T23:59:59.000Z

348

Organic Power | Open Energy Information  

Open Energy Info (EERE)

Hydro, Wind energy Product: Irish project developer active in wind energy, combined heat and power from biomass and pumped hydro electrical storage. References: Organic...

349

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

350

Submarine canyons: hotspots of benthic biomass and productivity in the deep sea  

Science Journals Connector (OSTI)

...benthic invertebrate biomass and the estimated productivity...deposited onto flat, low-energy areas of the Kaikoura...the highest megabenthic biomass previously recorded at...export. The overall biomass and organic loading patterns...Kaikoura Canyon is a low-energy depocentre for POM derived...

2010-01-01T23:59:59.000Z

351

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

352

Waste2Energy Holdings | Open Energy Information  

Open Energy Info (EERE)

Holdings Holdings Jump to: navigation, search Name Waste2Energy Holdings Place Greenville, South Carolina Zip 29609 Sector Biomass, Renewable Energy Product The Waste2Energy Holdings is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into clean renewable energy. References Waste2Energy Holdings[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Waste2Energy Holdings is a company located in Greenville, South Carolina . References ↑ "Waste2Energy Holdings" Retrieved from "http://en.openei.org/w/index.php?title=Waste2Energy_Holdings&oldid=352938

353

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

354

Radioactive Waste Radioactive Waste  

E-Print Network (OSTI)

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

355

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass.  

E-Print Network (OSTI)

??Lignocellulosic biomass is the most abundant source of organic carbon on Earth with the highest potential to economically and sustainably replace fossil resources for large-scale… (more)

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

356

Biomass quantification of live trees in a mixed evergreen forest using diameter-based allometric equations.  

E-Print Network (OSTI)

??Biomass quantification methods have become of increased interest recently due to the threat of climate change. Organizations such as the California Climate Action Registry (CCAR)… (more)

Coltrin, William

2010-01-01T23:59:59.000Z

357

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network (OSTI)

al. 2006. Ethanol can contribute to energy and environmentalan unfavorable energy balance preclude biomass ethanol fromethanol and other organic liquid fuels can improve energy

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

358

The impact of infield biomass burning on PM levels and its chemical composition  

Science Journals Connector (OSTI)

In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics ... ope...

P. Dambruoso; G. de Gennaro; A. Di Gilio…

2014-12-01T23:59:59.000Z

359

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel  

Science Journals Connector (OSTI)

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel ... The first step was to develop process flow diagrams and to use these along with literature information and research results as well as the practical industry experience to build process simulation models. ... In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no C debt and can offer immediate, sustained GHG advantages. ...

Edgar G. Hertwich; Xiangping Zhang

2009-04-30T23:59:59.000Z

360

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network (OSTI)

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method...

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

362

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

363

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

364

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

365

DOE 2014 Biomass Conference  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

366

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

367

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

368

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

369

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

370

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

371

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

372

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

ect of working ?uids on organic Rankine cycle for waste heatof such devices. Organic Rankine cycles and Stirling engines

Lee, Felix

2012-01-01T23:59:59.000Z

373

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

374

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Miami Dade County Resource Recovery Fac Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miami Dade County Resource Recovery Fac Biomass Facility Miami Dade County Resource Recovery Fac Biomass Facility Jump to: navigation, search Name Miami Dade County Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida Coordinates 25.7889689°, -80.2264393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7889689,"lon":-80.2264393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Southeast Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Southeast Resource Recovery Biomass Facility Southeast Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Covanta Bristol Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Bristol Energy Biomass Facility Covanta Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal Solid Waste Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

North County Regional Resource Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Regional Resource Biomass Facility Regional Resource Biomass Facility Jump to: navigation, search Name North County Regional Resource Biomass Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503°, -80.2767327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6514503,"lon":-80.2767327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Wheelabrator South Broward Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

South Broward Biomass Facility South Broward Biomass Facility Jump to: navigation, search Name Wheelabrator South Broward Biomass Facility Facility Wheelabrator South Broward Sector Biomass Facility Type Municipal Solid Waste Location Broward County, Florida Coordinates 26.190096°, -80.365865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.190096,"lon":-80.365865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Covanta Hennepin Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hennepin Energy Biomass Facility Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal Solid Waste Location Hennepin County, Minnesota Coordinates 45.0208911°, -93.5094574° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0208911,"lon":-93.5094574,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open Energy  

Open Energy Info (EERE)

Martinez Sulfuric Acid Regeneration Plt Biomass Facility Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid Regeneration Plt Sector Biomass Facility Type Non-Fossil Waste Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Stockton Regional Water Control Facility Biomass Facility Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional Water Control Facility Sector Biomass Facility Type Non-Fossil Waste Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Middlesex Generating Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Middlesex Generating Facility Biomass Facility Middlesex Generating Facility Biomass Facility Jump to: navigation, search Name Middlesex Generating Facility Biomass Facility Facility Middlesex Generating Facility Sector Biomass Facility Type Non-Fossil Waste Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Southside Water Reclamation Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Reclamation Plant Biomass Facility Reclamation Plant Biomass Facility Jump to: navigation, search Name Southside Water Reclamation Plant Biomass Facility Facility Southside Water Reclamation Plant Sector Biomass Facility Type Non-Fossil Waste Location Bernalillo County, New Mexico Coordinates 35.0177854°, -106.6291304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0177854,"lon":-106.6291304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Covanta Mid-Connecticut Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mid-Connecticut Energy Biomass Facility Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass Facility Type Municipal Solid Waste Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Wheelabrator Millbury Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Millbury Facility Biomass Facility Wheelabrator Millbury Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Millbury Facility Biomass Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528°, -71.8571331° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4096528,"lon":-71.8571331,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Plant No 2 Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

No 2 Biomass Facility No 2 Biomass Facility Jump to: navigation, search Name Plant No 2 Biomass Facility Facility Plant No 2 Sector Biomass Facility Type Non-Fossil Waste Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Rhodia Houston Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Rhodia Houston Plant Biomass Facility Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil Waste Location Harris County, Texas Coordinates 29.7751825°, -95.3102505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7751825,"lon":-95.3102505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Covanta Stanislaus Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Stanislaus Energy Biomass Facility Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type Municipal Solid Waste Location Stanislaus County, California Coordinates 37.5090711°, -120.9876321° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5090711,"lon":-120.9876321,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Commerce Refuse To Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Refuse To Energy Biomass Facility Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type Municipal Solid Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Wheelabrator North Broward Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator North Broward Biomass Facility Wheelabrator North Broward Biomass Facility Jump to: navigation, search Name Wheelabrator North Broward Biomass Facility Facility Wheelabrator North Broward Sector Biomass Facility Type Municipal Solid Waste Location Broward County, Florida Coordinates 26.190096°, -80.365865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.190096,"lon":-80.365865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pioneer Valley Resource Recovery Biomass Facility Pioneer Valley Resource Recovery Biomass Facility Jump to: navigation, search Name Pioneer Valley Resource Recovery Biomass Facility Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314°, -72.6624209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1172314,"lon":-72.6624209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Bay Resource Management Center Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Center Biomass Facility Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass Facility Type Municipal Solid Waste Location Bay County, Florida Coordinates 30.1805306°, -85.684578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1805306,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Hillsborough County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hillsborough County Resource Recovery Biomass Facility Hillsborough County Resource Recovery Biomass Facility Jump to: navigation, search Name Hillsborough County Resource Recovery Biomass Facility Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Penobscot Energy Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type Municipal Solid Waste Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Montenay Montgomery LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Montenay Montgomery LP Biomass Facility Montenay Montgomery LP Biomass Facility Jump to: navigation, search Name Montenay Montgomery LP Biomass Facility Facility Montenay Montgomery LP Sector Biomass Facility Type Municipal Solid Waste Location Montgomery County, Pennsylvania Coordinates 40.2290075°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2290075,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Covanta Babylon Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Babylon Energy Biomass Facility Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Metro Wastewater Reclamation District Biomass Facility | Open Energy  

Open Energy Info (EERE)

Wastewater Reclamation District Biomass Facility Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation District Sector Biomass Facility Type Non-Fossil Waste Location Adams County, Colorado Coordinates 39.8398269°, -104.1930918° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8398269,"lon":-104.1930918,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Fourche Creek Wastewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fourche Creek Wastewater Biomass Facility Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type Non-Fossil Waste Location Pulaski County, Arkansas Coordinates 34.7538615°, -92.2236667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7538615,"lon":-92.2236667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Montgomery County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Montgomery County Resource Recovery Biomass Facility Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Montgomery County, Maryland Coordinates 39.1547426°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1547426,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Mini-biomass electric generation  

SciTech Connect

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

407

The distribution and biomagnification of higher brominated \\{BDEs\\} in terrestrial organisms affected by a typical e-waste burning site in South China  

Science Journals Connector (OSTI)

Abstract Soil, vegetation, and several terrestrial species including turtledove, chicken, goose, grasshopper, dragonfly, butterfly and ant, were collected from an area surrounding a typical e-waste burning site in South China. The samples were examined to investigate the levels, congener profiles, and biomagnification extent of polybrominated diphenyl ethers (PBDEs) that may be present in the environment as a result of the e-waste, which was processed in a crude recycling style. Elevated levels of ?21PBDEs were found in the biota (101–4725 ng g?1 lipid weight (lw)), vegetation leaf (82.9–319 ng g?1 dry weight (dw)) and soil samples (5.2–22 110 ng g?1 dw), indicating that PBDE contamination in the samples collected from the e-waste burning site may pose risks to the local terrestrial ecosystem and local populations. Higher BDE congeners, especially deca-BDE (BDE-209) were the dominant homologs in organisms and nonbiological matrices, followed by nona-BDE and octa-BDE. Biomagnification factors (BMFs) were calculated as the ratio of the lipid-normalized concentration in the predator to that in the prey. The highest BMF (3.4) was determined for BDE-153 in the grasshopper/turtledove food chain. Other higher brominated congeners, such as BDE-202, -203, -154, -183 and -209, were also biomagnified in the terrestrial food chain with \\{BMFs\\} of 1.7–3.3. BDE-47, -100, and -99 were not biomagnified in the examined food chains (BMFs < 1), which suggests that bioaccumulation and biotransformation of \\{PBDEs\\} in terrestrial ecosystems could be distinguished from those in aquatic ecosystems.

Zhiqiang Nie; Shulei Tian; Yajun Tian; Zhenwu Tang; Yi Tao; Qingqi Die; Yanyan Fang; Jie He; Qi Wang; Qifei Huang

2015-01-01T23:59:59.000Z

408

Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling  

SciTech Connect

An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

Andersen, J.K.; Boldrin, A.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Scheutz, C., E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

2012-01-15T23:59:59.000Z

409

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

410

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

411

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

412

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

413

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

414

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

415

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

416

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

417

NREL: International Activities - Biomass Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

418

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

419

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

420

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Biomass Research - David W. Templeton  

NLE Websites -- All DOE Office Websites (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

422

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

423

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

424

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

425

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

426

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

427

Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography-inductively coupled plasma mass spectrometry  

SciTech Connect

Mixing coal fly ash with an organic waste increases macronutrient content and may make land application of fly ash a viable disposal alternative. However, trace element chemistry of these mixed waste products warrants investigation. Speciation of As and Se in soil solutions of fly ash-, poultry litter- and sewage sludge-amended soils was determined over a 10-day period by ion chromatography coupled to inductively coupled plasma mass spectrometry (IC-ICP-MS). Detection limits were 0.031, 0.028, 0.051, 0.161, 0.497, and 0.660 {micro}g L{sup {minus}1} for dimethylarsinate (DMA), As(III), monomethylarsonate (MMA), As(V), Se(IV), and Se(VI), respectively. Arsenic was highly water-soluble from poultry litter and appeared to be predominantly As(V). Arsenic(V) was the predominant species in soil amended with two fly ashes. Application of fly ash/poultry litter mixtures increased As solubility and led to the prevalence of DMA as the major As species. DMA concentrations of these soil solutions decreased rapidly over the sampling period relative to As(V), suggesting that DMA readily underwent mineralization in the soil solution. Se(VI) was the predominant soluble Se species in all treatments indicating rapid oxidation of Se(IV) initially solubilized from the fly ashes.

Jackson, B.P.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences] [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences

1999-01-15T23:59:59.000Z

428

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

430

Fixed Bed Biomass Gasifier  

SciTech Connect

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

431

Quantitative appraisal of biomass resources and their energy potential in Egypt  

Science Journals Connector (OSTI)

Abstract The utilization of biomass as a renewable source of energy is important from the energetic as well as the environmental viewpoint. It can reduce the rate of fossil fuel depletion caused by the rapid increase in energy consumption. This paper presents an estimation of the biomass and its potential energy in Egypt. Four main types of biomass energy sources are included: agricultural residues (dedicated bioenergy crop residues), municipal solid wastes, animal wastes, and sewage sludge. The potential biomass quantity and its theoretical energy content were computed according to statistical reports, literature reviews, and personal investigations. The results show that Egypt produces a considerable amount of biomass with a total theoretical energy content of 416.9×1015 J. The dry biomass produced from bioenergy crop residue sources has been estimated at about 12.33 million tons/year, of which 63.75% is produced from rice straw. This source represents the highest percentage (44.6%) of the total theoretical potential energy in Egypt, followed by municipal solid wastes, which could produce 41.7% from an annual amount of 34.6 million tons. Meanwhile, the rest of the total theoretical potential energy could be produced from animal and sewage wastes. The estimated biomass with its considerable potential energy content represents an important renewable energy source in Egypt.

N. Said; S.A. El-Shatoury; L.F. Díaz; M. Zamorano

2013-01-01T23:59:59.000Z

432

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

433

DOE-Biomass Cookstoves Technical Meeting:Summary Report | Open Energy  

Open Energy Info (EERE)

DOE-Biomass Cookstoves Technical Meeting:Summary Report DOE-Biomass Cookstoves Technical Meeting:Summary Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE-Biomass Cookstoves Technical Meeting: Summary Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Biomass, - Biomass Combustion Topics: Co-benefits assessment, - Energy Access Resource Type: Publications Website: www1.eere.energy.gov/biomass/pdfs/cookstove_meeting_summary.pdf Cost: Free Language: English References: DOE-Biomass Cookstoves Technical Meeting: Summary Report[1] Logo: DOE-Biomass Cookstoves Technical Meeting: Summary Report "The U.S. Department of Energy's (DOE's) offices of Policy and International Affairs (PI) and Energy Efficiency and Renewable Energy (EERE) held a meeting on January 11-12, 2011, to gather input on a

434

11, 26552696, 2011 Organic functional  

E-Print Network (OSTI)

) name biomass burning (BB) as the largest (42%) combustion source of pri- mary organic carbon fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM

Russell, Lynn

435

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

436

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge National Laboratory to be Fueled by Biomass Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

437

Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82  

SciTech Connect

This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

Moynihan, P.I.

1983-01-15T23:59:59.000Z

438

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

439

Biomass Feedstock National User Facility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

440

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1  

E-Print Network (OSTI)

is incorporated that recovers the waste heat proceeding biomass gasification. Under the ideal assumptions applied exercise to design a solar supercritical water gasification (SCWG) reactor. A formative reactor concept the waste heat (steam) of a downstream Fischer- Tropsch process. An intermediate heat exchange unit

442

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

443

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

444

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

445

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

446

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

447

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

448

13, 3226932289, 2013 Biomass burning  

E-Print Network (OSTI)

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

449

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

450

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

451

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

452

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

453

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

454

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

455

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

456

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network (OSTI)

, Ketone, Biomass burning, Fossil fuel combustion 1. Introduction Globally the two largest sources of primary organic aerosol are fossil fuel combustion (2-28 Tg C yr-1 ) and biomass burning (31-45 Tg C yr-1Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California

Russell, Lynn

457

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network (OSTI)

., 2000), making SOA from fossil fuel combustion, biogenic, and biomass burning emissions a potentiallyOxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California in revised form 20 July 2010 Accepted 21 July 2010 Keywords: Organic carbon particles Ketone Biomass burning

Russell, Lynn

458

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

459

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network (OSTI)

for Open Organic Rankine Cycle (ORC)138 Evaporatorand Simulation of an Organic Rankine Cycle (ORC) System forControl of Organic Rankine Cycles in Waste Heat Uti- lizing

Luong, David

2013-01-01T23:59:59.000Z

460

Supercritical Water Biomass Gasification Process As a Successful Solution to Valorize Wine Distillery Wastewaters  

Science Journals Connector (OSTI)

There are many gasification technologies that could potentially be part of the future energy industry. ... scale continuous-flow system with 2 different industrial wastewaters that contain a high concn. of orgs., with both wastes having a high energy potential: cutting oil wastes, oleaginous wastewater from metalworking industries, and vinasses, alc. ... Biomass feedstocks, including lignocellulosic materials (cotton stalk and corncob) and the tannery waste, were gasified in supercrit. ...

Anne Loppinet-Serani; Cédric Reverte; François Cansell; Cyril Aymonier

2012-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.  

SciTech Connect

A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that Type IV Glycogen Storage disease is occurring. GSD IV is caused by either a deficiency or inactivation of the glycogen branching enzyme that results in the synthesis of an abnormal glycogen molecule that is insoluble and has decreased branch points and increased chain length. These results show that the effects of mine waste contaminants can be expressed at all levels of organization from molecular to ecosystem-level responses.

Peplow, Dan; Edmonds, Robert.

2002-06-01T23:59:59.000Z

462

CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A  

E-Print Network (OSTI)

Recovered Fuel) as a fuel in both cement kilns and power plants, dedicated Biomass Energy Plants (BEP; BEP ­ Biomass Energy Plants; LFG ­ Landfill Gas; WtE ­ Waste-to-Energy 1 Excluding agricultural is considered biomass, thus a renewable energy source. Summary of the overall development of Renewable Energy

463

Assessing plantation biomass for co-firing with coal in northern Indiana: A linear programming approach  

Science Journals Connector (OSTI)

Tightening environmental regulations and the signing of the Kyoto Protocol have prompted electric utilities to consider co-firing biomass with coal to reduce the levels of CO2, SO2, and \\{NOx\\} in stack emissions. This analysis examines the cost competitiveness of plantation produced woody biomass and waste wood with coal in electricity production. A case study of woody biomass production and co-firing in northern Indiana is presented. A Salix (willow) production budget was created to assess the feasibility of plantation tree production to supply biomass to the utility for fuel blending. Co-firing with waste wood from primary and secondary wood processing activities and local municipalities also is considered. A linear programming model was developed to examine the optimal co-firing blend of coal and biomass while minimizing variable cost, including the cost of ash disposal and material procurement costs. This model was used to examine situations where coal is the primary fuel and waste wood, willow trees, or both are available for fuel blending. The results indicate that co-firing woody biomass is cost-effective for the power plant. Sensitivity analysis explored the effect of waste wood prices on co-firing cost.

Sara Nienow; Kevin T McNamara; Andrew R Gillespie

2000-01-01T23:59:59.000Z

464

Waste generator services implementation plan  

SciTech Connect

Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

Mousseau, J.; Magleby, M.; Litus, M.

1998-04-01T23:59:59.000Z

465

Pump targets hydrogen risk in nuclear waste tank  

Science Journals Connector (OSTI)

Pump targets hydrogen risk in nuclear waste tank ... Researchers believe that thermal and radiolytic breakdown of organic compounds in the tank's wastes produces the hydrogen. ...

DEBORAH ILLMAN

1993-07-12T23:59:59.000Z

466

Hawaii Permit Application for Solid Waste Management Facility...  

Open Energy Info (EERE)

to receive a permit for a solid waste management facility. Form Type CertificateForm of Completion Form Topic Permit Application for Solid Waste Management Facility Organization...

467

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Vitrification of waste  

DOE Patents (OSTI)

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

470

Vitrification of waste  

DOE Patents (OSTI)

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

471

High-biomass sorghums for biomass biofuel production  

E-Print Network (OSTI)

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

472

Nuclear waste management. Quarterly progress report, January-March 1980  

SciTech Connect

Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-06-01T23:59:59.000Z

473

Event:Sustainable Biomass for Electricity Conference (SB4E) | Open Energy  

Open Energy Info (EERE)

Biomass for Electricity Conference (SB4E) Biomass for Electricity Conference (SB4E) Jump to: navigation, search Calendar.png Sustainable Biomass for Electricity Conference (SB4E): on 2012/05/02 The Conference on Sustainable Biomass for Electricity (SB4E), organized by UN-Energy in cooperation with the Global Bioenergy Partnership (GBEP) and other partners, will consider the role of biomass technologies in decarbonizing the global energy system. Acknowledging the readily available and cost effective potential for emission reductions that could be achieved through the large-scale deployment of sustainable biomass for electricity production, the SB4E Conference will provide an opportunity for governments, international organizations and the private sector to share knowledge, lessons, best practices and experiences and to join efforts

474

Local Option - Solar, Wind and Biomass Energy Systems Exemption |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info Start Date 01/01/1991 State New York Program Type Property Tax Incentive Rebate Amount 100% exemption for 15 years (unless local jurisdiction has opted out) Provider Office of Real Property Tax Services Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy

475

EA-1957: Cabin Creek Biomass Facility, Placer County, California  

Energy.gov (U.S. Department of Energy (DOE))

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

476

andradionuclide mixed wastes: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Biomass Energy Plants...

477

The renewable energy contribution from waste across Europe.  

E-Print Network (OSTI)

Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Digestion Source separated biomass fraction or Sorted bio-fraction of MSW AD Biogas -> Electr. & Heat 100

478

Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine  

Science Journals Connector (OSTI)

Abstract A single-screw expander with 155 mm diameter screw has been developed. A spiral-tube type evaporator and an aluminum multi-channel parallel type condenser have also been developed with weight of 147 kg and 78 kg, respectively. Based on the development of above components, an ORC (organic Rankine cycle) system prototype was assembled and tested for waste heat recovery from diesel engine exhaust. An experimental system was built for this ORC system, and experiments were conducted for different expander torque and diesel engine loads. Influences of expander torque and diesel engine loads on the performances of ORC system were studied. The results indicated that the maximum of the power output is 10.38 kW and the biggest ORC efficiency and overall system efficiency are respectively 6.48% and 43.8%, which are achieved at 250 kW of diesel engine output. Meanwhile the biggest improvement of overall system efficiency is 1.53%. The maximums of volume efficiency, adiabatic efficiency and total efficiency of single-screw expander are 90.73%, 73.25% and 57.88%, respectively.

Ye-Qiang Zhang; Yu-Ting Wu; Guo-Dong Xia; Chong-Fang Ma; Wei-Ning Ji; Shan-Wei Liu; Kai Yang; Fu-Bin Yang

2014-01-01T23:59:59.000Z

479

Conceptual structure and computational organization of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

Abstract Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. This presentation describes the overall conceptual structure and computational organization of the 2008 performance assessment (PA) for the proposed YM repository carried out by the DOE in support of a licensing application to the U.S. Nuclear Regulatory Commission (NRC). The following topics are addressed: (i) regulatory background, (ii) the three basic entities underlying a PA, (iii) determination of expected, mean and median dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository, (iv) the relationship between probability, sets and scenario classes, (v) scenario classes and the characterization of aleatory uncertainty, (vi) scenario classes and the determination of expected dose to the RMEI, (vii) analysis decomposition, (viii) disjoint and nondisjoint scenario classes, (ix) scenario classes and the NRC’s YM review plan, (x) characterization of epistemic uncertainty, and (xi) adequacy of Latin hypercube sample size used in the propagation of epistemic uncertainty. This article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA and is intended as an introduction to following articles in the issue that provide additional analysis details and specific analysis results.

J.C. Helton; C.W. Hansen; C.J. Sallaberry

2014-01-01T23:59:59.000Z

480

DOE Hydrogen Analysis Repository: Biomass Gasification, Microturbines and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification, Microturbines and Fuel Cells for Farming Operations Biomass Gasification, Microturbines and Fuel Cells for Farming Operations Project Summary Full Title: Opportunities for Hydrogen: An Analysis of the Application of Biomass Gasification to Farming Operations Using Microturbines and Fuel Cells Project ID: 133 Principal Investigator: Darren Schmidt Purpose To determine the feasibility of a hydrogen based biomass fueled power installation for farming operations. Performer Principal Investigator: Darren Schmidt Organization: University of North Dakota Energy & Environmental Research Center Address: 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018 Telephone: 701-777-5120 Email: dschmidt@undeerc.org Additional Performers: J.R Gunderson, University of North Dakota Period of Performance Start: June 1999

Note: This page contains sample records for the topic "biomass waste organic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481