Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

2

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

3

Low Solids Enzymatic Saccharification of Lignocellulosic Biomass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP) Issue Date: February 4, 2015 M. G. Resch, J. O. Baker, and S. R. Decker...

4

Ionic Liquid Pretreatment Process for Biomass Is Successfully...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale...

5

Low-Emissions Burner Technology using Biomass-Derived Liquid...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed...

6

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

7

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents [OSTI]

A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

Kuester, J.L.

1987-07-07T23:59:59.000Z

8

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents [OSTI]

A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

Kuester, James L. (Scottsdale, AZ)

1987-07-07T23:59:59.000Z

9

Liquid fuels production from biomass. Final report  

SciTech Connect (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

1980-06-30T23:59:59.000Z

10

Stiffening solids with liquid inclusions  

E-Print Network [OSTI]

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

2014-07-24T23:59:59.000Z

11

Determination of Insoluble Solids in Pretreated Biomass Material...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of Insoluble NRELTP-510-42627 Solids in Pretreated Biomass March 2008 Material Laboratory Analytical Procedure (LAP) Issue Date: 03212008 A. Sluiter, D. Hyman, C....

12

Compositions and methods useful for ionic liquid treatment of biomass  

SciTech Connect (OSTI)

The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

Dibble, Dean C.; Cheng, Aurelia; George, Anthe

2014-07-29T23:59:59.000Z

13

Biomass and Natural Gas to Liquid Transportation Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

14

Gasification reactivities of solid biomass fuels  

SciTech Connect (OSTI)

The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

Moilanen, A.; Kurkela, E.

1995-12-31T23:59:59.000Z

15

Biomass gasification for liquid fuel production  

SciTech Connect (OSTI)

In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Vclav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

2014-08-06T23:59:59.000Z

16

Determination of Total Solids and Ash in Algal Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

17

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

18

Understanding the product distribution from biomass fast pyrolysis.  

E-Print Network [OSTI]

??Fast pyrolysis of biomass is an attractive route to transform solid biomass into a liquid bio-oil, which has been envisioned as a renewable substitute for (more)

Patwardhan, Pushkaraj Ramchandra

2010-01-01T23:59:59.000Z

19

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

20

Systems and methods for monitoring a solid-liquid interface  

DOE Patents [OSTI]

Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

22

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

23

Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen Biomass System  

SciTech Connect (OSTI)

The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

24

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

25

NREL Research on Converting Biomass to Liquid Fuels  

ScienceCinema (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2013-05-29T23:59:59.000Z

26

NREL Research on Converting Biomass to Liquid Fuels  

SciTech Connect (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2010-01-01T23:59:59.000Z

27

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

28

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network [OSTI]

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

29

Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J, J Liu, D Wang, D Choi, LS Fifield, CM Wang, G Xia, Z Nie, Z Yang, LR Pederson, and GL Graff.2010."Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire...

30

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

31

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

32

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

33

NREL: Biomass Research - David A. Sievers, P.E.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fermentation. In addition, he holds valuable research experience in lignocellulosic biomass solid-liquid separation and sugar concentration techniques. Research Interests...

34

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: Energy.gov [DOE]

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

35

E-Print Network 3.0 - aux interfaces solide-liquide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the solid- liquid interface.2,3 The reason is the historical... diffusing, at the solid-liquid ... Source: Granick, Steve - Departments of Physics & Materials Science and...

36

Process for minimizing solids contamination of liquids from coal pyrolysis  

DOE Patents [OSTI]

In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

1981-04-21T23:59:59.000Z

37

X-rays at Solid-Liquid Surfaces  

SciTech Connect (OSTI)

Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

2007-05-02T23:59:59.000Z

38

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric Solids Pump Technology  

SciTech Connect (OSTI)

This document is the Final Technical Report for a project supported by U.S. DOE NETL (Contract No. DE-FE0000507), GE Global Research, GE Energy, and Idaho National Laboratory (INL). This report discusses key project accomplishments for the period beginning August 7, 2009 and ending December 31, 2012. In this project, pressurized delivery of coal/biomass mixtures using GE Posimetric* solids pump technology was achieved in pilot scale experiments. Coal/biomass mixtures containing 10-50 wt% biomass were fed against pressures of 65-450 psi. Pressure capability increased with decreasing biomass content for a given pump design, and was linked to the interaction of highly compressible coal/biomass mixtures with the pump outlet design. Biomass pretreatment specifications for particle size and moisture content were defined based on bench-scale flowability, compressibility, friction, and permeability experiments that mimic the behavior of the Posimetric pump. A preliminary economic assessment of biomass pretreatment and pump operation for coal/biomass mixtures (CBMs) was conducted.

Westendorf, Tiffany; Acharya, Harish; Cui, Zhe; Furman, Anthony; Giammattei, Mark; Rader, Jeff; Vazquez, Arturo

2012-12-31T23:59:59.000Z

39

Novel Fluctuations at a Constrained Liquid-Solid Interface  

E-Print Network [OSTI]

We study the interface between a solid trapped within a bath of liquid by a suitably shaped non-uniform external potential. Such a potential may be constructed using lasers, external electric or magnetic fields or a surface template. We study a two dimensional case where a thin strip of solid, created in this way, is surrounded on either side by a bath of liquid with which it can easily exchange particles. Since height fluctuations of the interface cost energy, this interface is constrained to remain flat at all length scales. However, when such a solid is stressed by altering the depth of the potential; beyond a certain limit, it responds by relieving stress by novel interfacial fluctuations which involve addition or deletion of entire lattice layers of the crystal. This ``layering'' transition is a generic feature of the system regardless of the details of the interaction potential. We show how such interfacial fluctuations influence mass, momentum and energy transport across the interface. Tiny momentum impulses produce weak shock waves which travel through the interface and cause the spallation of crystal layers into the liquid. Kinetic and energetic constraints prevent spallation of partial layers from the crystal, a fact which may be of some practical use. We also study heat transport through the liquid-solid interface and obtain the resistances in liquid, solid and interfacial regions (Kapitza resistance) as the solid undergoes such layering transitions. Heat conduction, which shows strong signatures of the structural transformations, can be understood using a free volume calculation.

Abhishek Chaudhuri; Debasish Chaudhuri; Surajit Sengupta

2007-03-19T23:59:59.000Z

40

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

SciTech Connect (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermochemical study of liquid and solid organosilicon compounds  

SciTech Connect (OSTI)

Simple and reliable methods of combustion of liquid and solid organosilicon compounds which ensure a high degree of completeness of combustion were proposed. The standard enthalpies of combustion and formation of 11 tetraalkyl(vinyl)silanes and 15 silatranes were determined.

Voronkov, M.G.; Klyuchnikov, V.A.; Danilova, T.F.; Korchagina, A.N.; Baryshok, V.P.; Landa, L.M.

1987-03-10T23:59:59.000Z

42

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

43

Liquid Transportation Fuels from Coal and Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid

44

Liquid fuels production from biomass. Final report, for period ending June 30, 1980  

SciTech Connect (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

1980-01-01T23:59:59.000Z

45

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

SciTech Connect (OSTI)

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

Elliott, Douglas C; Oyler, James

2013-12-17T23:59:59.000Z

46

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

SciTech Connect (OSTI)

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

Elliott, Douglas C; Oyler, James R

2014-11-04T23:59:59.000Z

47

Calculations of free energies in liquid and solid phases: Fundamental measure density-functional approach  

E-Print Network [OSTI]

Calculations of free energies in liquid and solid phases: Fundamental measure density, a theoretical description of the free energies and correlation functions of hard-sphere (HS) liquid and solid-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many interaction potentials can be obtained

Song, Xueyu

48

Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum  

E-Print Network [OSTI]

Ultrafast dynamics of the laser-induced solid-to-liquid phase transition in aluminum A thesis dynamics of the laser-induced solid-to-liquid phase transition in aluminum Eric Mazur Maria Kandyla Abstract This dissertation reports the ultrafast dynamics of aluminum during the solid-to- liquid phase

Mazur, Eric

49

Dependence of solid-liquid interface free energy on liquid structure  

SciTech Connect (OSTI)

The Turnbull relation is widely believed to enable prediction of solidliquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewings theory. A modification to Ewings relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

Wilson, S R [Ames Laboratory; Mendelev, M I [Ames Laboratory

2014-09-01T23:59:59.000Z

50

Micropyrolyzer for chemical analysis of liquid and solid samples  

DOE Patents [OSTI]

A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

Mowry, Curtis D. (Albuquerque, NM); Morgan, Catherine H. (Ann Arbor, MI); Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2006-07-18T23:59:59.000Z

51

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs  

SciTech Connect (OSTI)

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, L.C.

2001-01-31T23:59:59.000Z

52

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design  

SciTech Connect (OSTI)

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, Lee Charles

2001-01-01T23:59:59.000Z

53

Methods and systems for monitoring a solid-liquid interface  

DOE Patents [OSTI]

Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD)

2011-10-04T23:59:59.000Z

54

Single-reactor process for producing liquid-phase organic compounds from biomass  

DOE Patents [OSTI]

Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

Dumesic, James A. (Verona, WI); Simonetti, Dante A. (Middleton, WI); Kunkes, Edward L. (Madison, WI)

2011-12-13T23:59:59.000Z

55

Toward new solid and liquid phase systems for the containment, transport and delivery of  

E-Print Network [OSTI]

Storage Tube Trailer Liquid H2 Truck H2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends

56

Spectroscopy of barium atoms in liquid and solid helium matrices  

SciTech Connect (OSTI)

We present an exhaustive overview of optical absorption and laser-induced fluorescence lines of Ba atoms in liquid and solid helium matrices in visible and near-infrared spectral ranges. Due to the increased density of isolated atoms, we have found a large number of spectral lines that were not observed in condensed helium matrices before. We have also measured the lifetimes of metastable states. The lowest {sup 3}D{sub 1} metastable state has lifetime of 2.6 s and can be used as an intermediate state in two-step excitations of high-lying states. Various matrix-induced radiationless population transfer channels have been identified.

Lebedev, V.; Moroshkin, P.; Weis, A. [Departement de Physique, Universite de Fribourg, Chemin du Musee 3, CH-1700 Fribourg (Switzerland)

2011-08-15T23:59:59.000Z

57

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

58

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

59

Charge transport and breakdown physics in liquid/solid insulation systems  

E-Print Network [OSTI]

Liquid dielectrics provide superior electrical breakdown strength and heat transfer capability, especially when used in combination with liquid-immersed solid dielectrics. Over the past half-century, there has been extensive ...

Jadidian, Jouya

2013-01-01T23:59:59.000Z

60

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE  

E-Print Network [OSTI]

such as the quantum dot generation. We have simulated the equilibrium liquid droplet on the solid surface simulation on the bubble nucleation process on the solid surface [2]. In the meantime, direct molecular

Maruyama, Shigeo

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - anaerobic solid-liquid system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of British Columbia Collection: Engineering 3 www.manuremanagement.cornell.edu Biogas Casebook Summary: Transfer Institutions Btu British thermal unit SLS Solid-liquid...

62

Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids  

SciTech Connect (OSTI)

This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

2012-04-13T23:59:59.000Z

63

THERMODYNAMICS OF SOLID AND LIQUID GROUP III-V ALLOYS  

E-Print Network [OSTI]

a high temperature heat capacity for liquid gallium which isthe molar heat capacity of the stoichiometric liquid and theheat capacity of the supercooled stoichiometric binary liquid

Anderson, T.J.

2011-01-01T23:59:59.000Z

64

Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary  

SciTech Connect (OSTI)

This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

2009-04-01T23:59:59.000Z

65

A review of the toxicity of biomass pyrolysis liquids formed at low temperatures  

SciTech Connect (OSTI)

The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

Diebold, J.P. [Thermalchemie, Inc., Lakewood, CO (United States)

1997-04-01T23:59:59.000Z

66

A mean field approach for computing solid-liquid surface tension for nanoscale interfaces  

E-Print Network [OSTI]

A mean field approach for computing solid-liquid surface tension for nanoscale interfaces Chi are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension

Nielsen, Steven O.

67

Liquid-solid phase transitions in a deformable Pavel Krejci, Elisabetta Rocca, and Jurgen Sprekels  

E-Print Network [OSTI]

differences in the specific volume, specific heat and speed of sound in the solid and liquid phases and of the liquid phase, assuming first that the speed of sound and the specific heat are the same in solid the speed of sound in water is less than one half of the one in ice. The main goal of this contribution

Rocca, Elisabetta

68

System for exchange of hydrogen between liquid and solid phases  

DOE Patents [OSTI]

The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

1985-02-22T23:59:59.000Z

69

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents [OSTI]

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

70

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents [OSTI]

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

71

Solid-liquid composite structures: elastic beams with embedded liquid-filled parallel-channel networks  

E-Print Network [OSTI]

Deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotics. Expanding on this concept, beams can be designed so that the pressure in the channel-network is created directly from external forces acting on the beam, and thus can be viewed as passive solid-liquid composite structure. We obtain a continuous function relating the network geometry to the deformation. This enables design of networks creating arbitrary steady and time varying deformation-fields as well as to eliminate deformation created by external forces.

Yoav Matia; Amir Gat

2014-09-07T23:59:59.000Z

72

Fermi-liquid droplets in liquid-solid solutions of the helium isotopes  

SciTech Connect (OSTI)

For temperatures below phase separation of 1000-ppm /sup 3/He in solid /sup 4/He we measure a heat capacity ..gamma..T for a pressure between melting of pure /sup 3/He and /sup 4/He. Together with the confined sample geometry this results in liquid /sup 3/He droplets (phiapprox.10/sup 3/A) either dilute or pure depending on the phase diagram topology which is discussed theoretically. In the case of a pure /sup 3/He droplet we find an anomalously high effective mass m*/m=10, which could be explained by paramagnon effects enhanced by the confined geometry.

Hebral, B.; Greenberg, A.S.; Beal-Monod, M.T.; Papoular, M.; Frossati, G.; Godfrin, H.; Thoulouze, D.

1981-01-05T23:59:59.000Z

73

Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels  

SciTech Connect (OSTI)

). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

2011-06-01T23:59:59.000Z

74

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments  

E-Print Network [OSTI]

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments Mikhail. Simulations of solid-state magic angle spinning (MAS) experiments can be particularly demanding both with complex pulse sequences and multi-spin systems in solids, SPINEVO- LUTION is a versatile and easy to use

Griffin, Robert G.

75

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments  

E-Print Network [OSTI]

SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments Mikhail and dynamic information from the spectra. Simulations of solid-state magic angle spinning (MAS) experiments for the simulation of experiments with complex pulse sequences and multi-spin systems in solids, SPINEVO- LUTION

Griffin, Robert G.

76

Phase and density dependence of the delayed annihilation of metastable antiprotonic helium atoms in gas, liquid and solid helium  

E-Print Network [OSTI]

Phase and density dependence of the delayed annihilation of metastable antiprotonic helium atoms in gas, liquid and solid helium

Widmann, E; Yamazaki, T; Hayano, R S; Iwasaki, M; Nakamura, S N; Tamura, H; Ito, T M; Kawachi, A; Nishida, N; Higemoto, W; Ito, Y; Morita, N; Hartmann, F J; Daniel, H; Von Egidy, T; Schmid, W; Hoffmann, J; Eades, John

1995-01-01T23:59:59.000Z

77

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

78

Structure/processing relationships in vapor-liquid-solid nanowire epitaxy  

E-Print Network [OSTI]

The synthesis of Si and III-V nanowires using the vapor-liquid-solid (VLS) growth mechanism and low-cost Si substrates was investigated. The VLS mechanism allows fabrication of heterostructures which are not readily ...

Boles, Steven Tyler

2010-01-01T23:59:59.000Z

79

Atomistic simulation of CdTe solid-liquid coexistence equilibria...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coexistence equilibria. Abstract: Atomistic simulations of CdTe using a Stillinger-Weber (S-W) interatomic potential were undertaken to model the solid-liquid phase equilibria...

80

Solids precipitation and polymerization of asphaltenes in coal-derived liquids  

DOE Patents [OSTI]

The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

Kydd, Paul H. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Excited level anisotropy produced by ion-solid and ion-liquid surface interactions  

E-Print Network [OSTI]

EXCITED LEPEL ANISOTPOPY PRODUCED BY ION-SOLID AND ION-LIQUID SURFACE INTERACTIONS A Thesis CHIN SHUANG LEE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1977 Major Subject: Physics EXCITED LEVEL ANISOTROPY PRODUCED BY ION-SOLID AND ION-LIQUID SURFACE 'INTERACTIONS A Thesis by CHIN SHUANG LEE Approved as to style and content by: Chairman of Committee Head of Departmert Member...

Lee, Chin Shuang

2012-06-07T23:59:59.000Z

82

Heat capacity of liquids: an approach from the solid phase  

E-Print Network [OSTI]

We calculate the energy and heat capacity of a liquid on the basis of its elastic properties and vibrational states. The experimental decrease of liquid heat capacity with temperature is attributed to the increasing loss of two transverse modes with frequency $\\omegaliquid relaxation time. In a simple model, liquid heat capacity is related to viscosity and is compared with the experimental data of mercury. We also calculate the vibrational energy of a quantum liquid, and show that transverse phonons can not be excited in the low-temperature limit. Finally, we discuss the implications of the proposed approach to liquids for the problem of glass transition.

Kostya Trachenko

2008-08-20T23:59:59.000Z

83

Atomistic simulation of CdTe solid-liquid coexistence equilibria  

SciTech Connect (OSTI)

Atomistic simulations of CdTe using a Stillinger-Weber (S-W) interatomic potential were undertaken to model the solid-liquid phase equilibria of this important compound semiconductor. Although this potential has been used by others to study liquid CdTe and vapor-liquid interface, it is based on fitting parameters optimized only for the zincblende solid. It has not been fully explored as a potential for solid-liquid phase equilibria until this work. This research reports an accurate determination of the melting temperature, TM=1305K near P=0, the heat of fusion at melting and as a function of temperature up to 1700K, and on the relative phase densities with a particular emphasis on the melting line. The S-W potential for CdTe predicts a liquid with a density slightly less than that of the solid and, hence, the pressure-temperature melting line has a positive slope. The pair correlation structure of the liquid is determined and favorably compared to neutron scattering data. The liquid-solid interface is discussed using density profiles and a short-range order parameter for models having principal orientations along <100>, <110>, and <111> crystallographic directions.

Henager, Charles H.; Morris, James R.

2009-12-07T23:59:59.000Z

84

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

85

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

86

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Tsien, Roger Y.

87

MODEL OF AGGREGATION OF SOLID PARTICLES IN NON-WETTING LIQUID MEDIUM  

E-Print Network [OSTI]

MODEL OF AGGREGATION OF SOLID PARTICLES IN NON- WETTING LIQUID MEDIUM M. Cournil, F.Gruy, P 30320, 57283 Maizières lès Metz, France Problem of modelling solid particles aggregation in non physical situations were little studied and deserve further works. This is the case of aggregation in non

Paris-Sud XI, Université de

88

Surface tension and the mechanics of liquid inclusions in compliant solids  

E-Print Network [OSTI]

Eshelby's theory of inclusions has wide-reaching implications across the mechanics of materials and structures including the theories of composites, fracture, and plasticity. However, it does not include the effects of surface stress, which has recently been shown to control many processes in soft materials such as gels, elastomers and biological tissue. To extend Eshelby's theory of inclusions to soft materials, we consider liquid inclusions within an isotropic, compressible, linear-elastic solid. We solve for the displacement and stress fields around individual stretched inclusions, accounting for the bulk elasticity of the solid and the surface tension (\\textit{i.e.} isotropic strain-independent surface stress) of the solid-liquid interface. Surface tension significantly alters the inclusion's shape and stiffness as well as its near- and far-field stress fields. These phenomenon depend strongly on the ratio of inclusion radius, $R$, to an elastocapillary length, $L$. Surface tension is significant whenever inclusions are smaller than $100L$. While Eshelby theory predicts that liquid inclusions generically reduce the stiffness of an elastic solid, our results show that liquid inclusions can actually stiffen a solid when $Rsurface tension cloaks the far-field signature of liquid inclusions when $R=3L/2$. These results are have far-reaching applications from measuring local stresses in biological tissue, to determining the failure strength of soft composites.

Robert W. Style; John S. Wettlaufer; Eric R. Dufresne

2014-09-06T23:59:59.000Z

89

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin  

Broader source: Energy.gov [DOE]

NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

90

Crystal growth from a supersaturated melt: relaxation of the solid-liquid dynamic stiffness  

E-Print Network [OSTI]

We discuss the growth process of a crystalline phase out of a metastable over-compressed liquid that is brought into contact with a crystalline substrate. The process is modeled by means of molecular dynamics. The particles interact via the Lennard-Jones potential and their motion is locally thermalized by Langevin dynamics. We characterize the relaxation process of the solid-liquid interface, showing that the growth speed is maximal for liquid densities above the solid coexistence density, and that the structural properties of the interface rapidly converge to equilibrium-like properties. In particular, we show that the off-equilibrium dynamic stiffness can be extracted using capillary wave theory arguments, even if the growth front moves fast compared to the typical diffusion time of the compressed liquid, and that the dynamic stiffness converges to the equilibrium stiffness in times much shorter than the diffusion time.

Francesco Turci; Tanja Schilling

2014-05-20T23:59:59.000Z

91

Qualitative Reliability Issues for In-Vessel Solid and Liquid Wall Fusion Designs  

SciTech Connect (OSTI)

This paper presents the results of a study of the qualitative aspects of plasma facing component (PFC) reliability for actively cooled solid wall and liquid wall concepts for magnetic fusion reactor vessels. These two designs have been analyzed for component failure modes. The most important results of that study are given here. A brief discussion of reliability growth in design is included to illustrate how solid wall designs have begun as workable designs and have evolved over time to become more optimized designs with better longevity. The increase in tolerable heat fluxes shows the improvement. Liquid walls could also have reliability growth if the designs had similar development efforts.

Cadwallader, Lee Charles; Nygren, R. E.

2001-10-01T23:59:59.000Z

92

A COMPARISON OF LIQUID AND SOLID SURFACE OPTIONS FOR  

E-Print Network [OSTI]

Fast Breeder Fission Reactor Fusion First Wall Fusion Disruption Fusion ELM Rocket Nozzle #12;MAU 4 3 Disruption mitigation using massive gas puff is demonstrated on some machines Reduced current decay rate PFM and heat sink Coolant compatibility Most likely He gas cooled Liquid metal PFCs are high

93

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

SciTech Connect (OSTI)

This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-01T23:59:59.000Z

94

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect (OSTI)

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

95

Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading  

SciTech Connect (OSTI)

A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

2014-09-15T23:59:59.000Z

96

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

97

Compressible air cushioning in liquid-solid impacts Peter D. Hicks  

E-Print Network [OSTI]

Compressible air cushioning in liquid-solid impacts Peter D. Hicks Department of Mechanical of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK. r.purvis@uea.ac.uk Abstract--Air cushioning the influence of air compressibility. Building on earlier incompress- ible analyses, a local asymptotic model

Purvis, Richard

98

Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation  

SciTech Connect (OSTI)

The temperature dependent optical properties of tin film from solid to liquid were studied by spectroscopic ellipsometry and ab initio molecular dynamics simulations. The dielectric function of liquid Sn was different from solid, and an interband transition near 1.5?eV was easily observed in solid while it apparently disappeared upon melting. From the evolution of optical properties with temperature, an optical measurement to acquire the melting point by ellipsometry was presented. From first principles calculation, we show that the local structure difference in solid and liquid is responsible for this difference in the optical properties observed in experiment.

Zhang, D. X.; Shen, B.; Zheng, Y. X.; Wang, S. Y.; Zhang, J. B.; Yang, S. D.; Zhang, R. J.; Chen, L. Y.; Wang, C. Z.; Ho, K. M.

2014-03-24T23:59:59.000Z

99

Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets  

SciTech Connect (OSTI)

Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.

Paumel, K.; Baque, F. [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France); Moysan, J.; Corneloup, G. [Laboratoire de Caracterisation Non Destructive, Universite de la Mediterranee, IUT Aix-en-Provence, Avenue Gaston Berger, 13625 Aix-en-Provence (France); Chatain, D. [CNRS, Aix-Marseille Universite, CINAM-UPR3118, Campus de Luminy, Case 913, 13288 Marseille cedex 09 (France)

2011-08-15T23:59:59.000Z

100

Comparison study of solid-liquid separation techniques for oilfield pit closures  

SciTech Connect (OSTI)

Extensive bench-scale and full-scale experiments were conducted at the LSU Solids Control Environmental Laboratory in order to evaluate application of the solids-liquid separation technology to oilfield waste pit volume reduction. The experiments addressed chemical conditioning of various pit slurries such as water-base and oil-base mud reserve pit slurries, mixed sludge from offshore operations, and oil production pit slurry. Effective treatment was found for the majority of the waste samples with pH adjustment and with nonionic and low-charge anionic, high molecular weight polymers. Ultimate dewaterability of various samples was determined by use of the belt press bench simulator. Bench simulators of belt press filtration, vacuum filtration and centrifuge sedimentation were used for design and optimization of the full-scale tests. Alternative solid-liquid separation techniques such as vacuum filtration, belt press filtration, screw press filtration and centrifuging were pilot-tested using field-size equipment and 200 bbls samples of water-base mud, reserve pit slurry and production pit sludge. The test data were analyzed at various operating conditions using a new graphical technique. Also, four typical oilfield solid-bowl centrifuges and a modern solid-bowl dewatering decanter were compared in a series of full-scale tests. Finally a preliminary process study on the mechanism of centrifuge separation of flocculated sludges was performed.

Wojtanowicz, A.C.; Field, S.D.; Osterman, M.C.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flow-through biological conversion of lignocellulosic biomass  

DOE Patents [OSTI]

The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

Herring, Christopher D.; Liu, Chaogang; Bardsley, John

2014-07-01T23:59:59.000Z

102

Analysis of Biomass Sugars Using a Novel HPLC Method  

SciTech Connect (OSTI)

The precise quantitative analysis of biomass sugars is a very important step in the conversion of biomass feedstocks to fuels and chemicals. However, the most accurate method of biomass sugar analysis is based on the gas chromatography analysis of derivatized sugars either as alditol acetates or trimethylsilanes. The derivatization method is time consuming but the alternative high-performance liquid chromatography (HPLC) method cannot resolve most sugars found in biomass hydrolysates. We have demonstrated for the first time that by careful manipulation of the HPLC mobile phase, biomass monomeric sugars (arabinose, xylose, fructose, glucose, mannose, and galactose) can be analyzed quantitatively and there is excellent baseline resolution of all the sugars. This method was demonstrated for standard sugars, pretreated corn stover liquid and solid fractions. Our method can also be used to analyze dimeric sugars (cellobiose and sucrose).

Agblevor, F. A.; Hames, B. R.; Schell, D.; Chum, H. L.

2007-01-01T23:59:59.000Z

103

Solid-liquid equilibria for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane  

SciTech Connect (OSTI)

The liquidus lines were determined with a solid-disappearance method for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane. While the first four substances are model compounds of wash oil, which has widely been used as a solvent to remove aromatics from coal oven gas, diphenylmethane is a high-boiling and low-melting compound that is a potential additive to modify the performance of wash oil. Each of the seven binaries appears to be a simple eutectic system, as evidenced by the experimental results. The Wilson and the NRTL models were employed to correlate the solid-liquid equilibrium data. Both activity coefficient models were found to represent accurately the nonideality of the liquid-phase for the investigated systems.

Lee, M.J.; Chen, C.H.; Lin, H. [National Taiwan Univ. of Science and Technology, Taipei (Taiwan, Province of China). Dept. of Chemical Engineering] [National Taiwan Univ. of Science and Technology, Taipei (Taiwan, Province of China). Dept. of Chemical Engineering

1999-09-01T23:59:59.000Z

104

Liquidsolid phase transition of hydrogen and deuterium in silica aerogel  

SciTech Connect (OSTI)

Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H{sub 2} and D{sub 2} in an ?85%-porous base-catalyzed silica aerogel. We find that liquidsolid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ?4?K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H{sub 2} and D{sub 2} confined inside the aerogel monolith. Results for H{sub 2} and D{sub 2} are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.

Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O., E-mail: kucheyev@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-10-28T23:59:59.000Z

105

SESAME 96170, a solid-liquid equation of state for CeO2  

SciTech Connect (OSTI)

I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO{sub 2}. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

Chisolm, Eric D. [Los Alamos National Laboratory] [Los Alamos National Laboratory

2014-05-02T23:59:59.000Z

106

Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces  

SciTech Connect (OSTI)

Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

R. Kaita, et. al.

2012-07-20T23:59:59.000Z

107

Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes  

E-Print Network [OSTI]

This article discusses the way the standard description of capillary filling dynamics has to be modified to account for liquid/solid slip in nanometric pores. It focuses in particular on the case of a large slip length compared to the pore size. It is shown that the liquid viscosity does not play a role, and that the flow is only controlled by the friction coefficient of the liquid at the wall. Moreover in the Washburn regime, the filling velocity does not depend on the tube radius. Finally, molecular dynamics simulations suggest that this standard description fails to describe the early stage of capillary filling of carbon nanotubes by water, since viscous dissipation at the tube entrance must be taken into account.

Laurent Joly

2011-12-06T23:59:59.000Z

108

A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface  

E-Print Network [OSTI]

low-noise measurements in ambient, in situ, and electrochemical environments. II. DESIGNA flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface, specifically in electrolyte environments. Quantification of system noise limits

Gimzewski, James

109

NREL: Biomass Research - Robert M. Baldwin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

110

Liquid fuels production from biomass. Progress report No. 10, October 1-December 31, 1979  

SciTech Connect (OSTI)

It was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe Electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. A coenzyme M analogue, 2-bromoethanesulfonic acid has been shown to be an effective suppressor of methane in nonsterile anaerobic fermentation of cellulosic substrates. Preliminary experiments have also been completed utilizing corn meal in which 2-bromoethanesulfonic acid and carbon monoxide were both found to be effective methane suppressors. An analysis of the energy outputs and requirements for the production of liquid hydrocarbon fuel from corn has been performed. As a means of expanding the number of potential substrates, pretreatment schemes are being investigated. A tapered auger device has been designed and built which has been demonstrated on the bench to be effective for adding substrate and removing residue in a continuous manner from a fixed packed bed fermenter. A solvent extractor system using kerosene as the nonaqueous phase has been constructed and is currently in operation in series with the 300 liter fixed packed bed fermenter. Although additional work is required to optimize the electrolysis process, the electrolytic oxidation of organic acids produced in the 300 liter fixed packed bed fermenter is operating with a favorable energy balance of 6/1 based on the applied potential.

Sanderson, J.E.; Levy, P.F.; Wise, D.L.; Nabor, M.R.; Molyneaux, M.S.; Hughes, C.A.

1980-02-01T23:59:59.000Z

111

Hydrolysis and fractionation of lignocellulosic biomass  

DOE Patents [OSTI]

A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.

Torget, Robert W. (Littleton, CO); Padukone, Nandan (Denver, CO); Hatzis, Christos (Denver, CO); Wyman, Charles E. (Lakewood, CO)

2000-01-01T23:59:59.000Z

112

Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method  

SciTech Connect (OSTI)

The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

Lu, Qing [Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446 (United States); Kim, Jaegil; Straub, John E., E-mail: straub@bu.edu [Department of Chemistry, Boston University, Boston, Massachusetts 02215 (United States); Farrell, James D.; Wales, David J. [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

2014-11-14T23:59:59.000Z

113

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

114

Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil  

SciTech Connect (OSTI)

Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220C and a sulfided CoMo on alumina catalyst bed operated at 400C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

2014-08-14T23:59:59.000Z

115

Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

2010-01-30T23:59:59.000Z

116

Liquid-solid phase diagrams of binary carbonates for lithium batteries  

SciTech Connect (OSTI)

The authors present the liquid-solid phase diagrams that they mapped with a differential scanning calorimeter (DSC) for the following seven binary carbonates: dimethyl carbonate (DMC)-ethylene carbonate (EC), ethyl methyl carbonate (EMC)-EC, EMC-propylene carbonate (PC), EMC-dimethyl ethylene carbonate (DMEC), EMC-isobutylene carbonate (iBC), PC-EC, and EMC-DMC. Many of these are among the most frequently used solvent systems for making the nonaqueous electrolytes for lithium batteries. The phase diagrams of these carbonate systems are all of the simple eutectic type but with vastly different particular features. Comparison of these phase diagrams shows that to expand the liquid region of a carbonate system toward low temperature, the two components of the system need to have comparable melting temperatures and compatible molecular structures. These results are consistent with thermodynamic considerations and have significant practical implications.

Ding, M.S.; Xu, K.; Jow, T.R.

2000-05-01T23:59:59.000Z

117

Inelastic x-ray scattering study of supercooled liquid and solid silicon.  

SciTech Connect (OSTI)

Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

2006-01-01T23:59:59.000Z

118

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

119

Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces  

SciTech Connect (OSTI)

Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

Hoffer, Saskia

2002-08-19T23:59:59.000Z

120

Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator  

SciTech Connect (OSTI)

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

Deckers, Jan; Mols, Ludo [Belgoprocess NV, Operations Department, Gravenstraat 73, B-2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ultrasonic methods for measuring liquid viscosity and volume percent of solids  

SciTech Connect (OSTI)

This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-02-01T23:59:59.000Z

122

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network [OSTI]

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2007-10-27T23:59:59.000Z

123

METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY  

SciTech Connect (OSTI)

Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

2010-02-02T23:59:59.000Z

124

Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting  

E-Print Network [OSTI]

The nuclide 241Am decays by alpha emission to 237Np. Most of the decays (84.6 %) populate the excited level of 237Np with energy of 59.54 keV. Digital Coincidence Counting was applied to standardize a solution of 241Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid Scintillation Counting using the logical sum of double coincidences in a TDCR array and Defined Solid Angle Counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

C. Balpardo; M. E. Capoulat; D. Rodrigues; P. Arenillas

2010-05-10T23:59:59.000Z

125

Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism  

SciTech Connect (OSTI)

Indium tin oxide nanowires were grown by the reaction of In and Sn with O{sub 2} at 800?C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped In{sub 2}O{sub 3} nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO{sub 2} and suppression of In{sub 2}O{sub 3} permitting compositional and structural tuning from SnO{sub 2} to In{sub 2}O{sub 3} which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

Zervos, M., E-mail: zervos@ucy.ac.cy; Giapintzakis, J. [Nanotechnology Research Centre (NRC), University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Mihailescu, C. N. [Nanotechnology Research Centre (NRC), University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); National Institute for Laser, Plasma and Radiation Physics, Str. Atomistilor, P.O. Box MG-36, 077125 Magurele (Romania); Luculescu, C. R. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); National Institute for Laser, Plasma and Radiation Physics, Str. Atomistilor, P.O. Box MG-36, 077125 Magurele (Romania); Florini, N.; Komninou, Ph.; Kioseoglou, J. [Nanostructured Materials Microscopy Group (NMMG), Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Othonos, A. [Nanotechnology Research Centre (NRC), University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Research Center of Ultrafast Science, Department of Physics, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus)

2014-05-01T23:59:59.000Z

126

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network [OSTI]

liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

127

On the Liquid/Solid Phase Equilibria in the Al-Rich Corner of the Al-Si-Ti Ternary System  

E-Print Network [OSTI]

On the Liquid/Solid Phase Equilibria in the Al-Rich Corner of the Al-Si-Ti Ternary System O; published online February 5, 2014) The nature of liquid-solid phase equilibria in the Al-rich corner of the Al-Si-Ti system are determined by drawing three isothermal sections at 620, 680 and 727 °C

Paris-Sud XI, Université de

128

Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy  

SciTech Connect (OSTI)

Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

Meemken, Fabian; Mller, Philipp; Hungerbhler, Konrad; Baiker, Alfons, E-mail: baiker@chem.ethz.ch [Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zrich, Hnggerberg, HCI, CH-8093 Zrich (Switzerland)

2014-08-15T23:59:59.000Z

129

System and process for biomass treatment  

SciTech Connect (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

130

ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H  

SciTech Connect (OSTI)

Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to achieve a cleaning radius larger than 43.5 feet, which will prevent large amounts of solid particles from settling under the telescoping transfer pump (TTP). The report recommends a pump operating approach to maximize the achieved cleaning radius.

Poirier, M.

2011-11-11T23:59:59.000Z

131

Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis  

SciTech Connect (OSTI)

Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth rates as a function of catalyst size/SC-NW diameter and shown for the first time that SLS is governed by Gibbs-Thomson effects. Lastly, from an applications standpoint, we report growth of SC-NWs from a range of substrates, including ITO-coated glass for fabrication of hybrid photovoltaic devices, comparing these to their quasi zero-dimensional quantum-dot counterparts.

Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

2012-06-07T23:59:59.000Z

132

Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

Freeze, R.

1997-10-08T23:59:59.000Z

133

Numerical Simulation of Liquid-Solid, Solid-Liquid Phase Change Using Finite Element Method in h,p,k Framework with Space-Time Variationally Consistent Integral Forms  

E-Print Network [OSTI]

: cp@T@t r (krTs) = 0 8(x;t) 2 sxt = sx t = sx (0; ) (2.1) Liquid Phase: cp@T@t r (krTl) = 0 8(x;t) 2 lxt = lx t = lx (0; ) (2.2) At the interface: Lfvn = [( krTs) ( krTl)] n 8(x;t) 2 x;t = x t (2.3) 10 in which sx and lx are solid... and liquid spatial domains, x(t) = sxT lx is the interface between the two phases, Lf is the latent heat of fusion,n is the unit exterior normal from the solid phase at the interface, and vn is the normal velocity of the interface. Subscripts s and l...

Truex, Michael

2010-07-21T23:59:59.000Z

134

LIQUID CRYSTAL THERMOGRAPHY ON THE FLUID SOLID INTERFACE OF ROTATING SYSTEMS  

E-Print Network [OSTI]

= Aluminum c = centrifugal lc = liquid crystal o = aerodynamic wall friction related p = at constant pressu

Camci, Cengiz

135

The ENCOAL project: Initial commercialization shipment and utilization of both solid and liquid products. Topical report  

SciTech Connect (OSTI)

ENCOAL is co-funding a mild gasification project and shipping the products to customers. The ENCOAL Corporation has shipped, to two utility customers, over 500 rail cars (six partial trains and two full trains) of solid product (PDF) from its plant located at Triton Coal Company`s Buckskin Mine near Gillette Wyoming. Shipments span a range of blends from 15% to essentially unblended PDF. Utility handling of these shipments is comparable to that of run-of-mine Buckskin coal. Results related to spontaneous combustion and generation of fugitive dust are particularly favorable. Combustion tests were performed both in a pulverized-fired boiler and in a cyclone-fired boiler. Commercialization utilization of the liquid product (CDL) depends on customer facility capabilities and the source of any blending fuel, as expected. A total of 56 tank cars have been sent to three customers. The 1994 test program met or exceeded ENCOAL`s major objectives of transporting and burning both PDF and CDL in existing customer facilities.

McCord, T.G.

1995-03-01T23:59:59.000Z

136

HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION  

E-Print Network [OSTI]

biomass, such as peanut shells, for urban transportation. The process involves pyrolysis of the biomassHYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION Collaborating Project Team Y. Yeboah (PI) and K and liquid fuels) · Potential sources of hydrogen include biomass, natural gas and other fossil fuels. #12

137

CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents  

SciTech Connect (OSTI)

IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

None

2010-10-01T23:59:59.000Z

138

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

139

Microcarbon residue yield and heteroatom partitioning between volatiles and solids for whole vacuum resids and their liquid chromatographic fractions  

SciTech Connect (OSTI)

Five petroleum >1000{degrees}F resids were separated into compound type fractions using liquid chromatography. The coking tendency of each compound type was assessed using the microcarbon residue (MCR) test (ASTM D 4530). Heteroatom (N, S, Ni, V) partitioning between MCR solids versus volatiles was determined through analysis of the starting fractions and the corresponding MCR solids. The weighted sum of MCR solid yields over all compound types in a given resid was typically in good agreement with the MCR yield of the whole resid. This finding agrees with prior studies indicating coke yield to be an additive property. Sulfur partitioning was also an additive property, was predictable from MCR yield, and was nearly independent of the initial form (sulfide, thiophenic, sulfoxide) present. Nitrogen and nickel partitioning were nonadditive and therefore composition dependent. Partitioning of vanadium into solids was essentially quantitative for all resids and their fractions. MCR solid yield was generally dependent only on H/C ratio. However, there is some evidence indicating secondary dependence on hydrocarbon structure; i.e., that naphthenic rings reduce MCR in proportion to H/C by virtue of their effective hydrogen transfer properties. Deposition of N and Ni into MCR solids over the fractions was often appreciably less than that of the whole resids, thereby indicating that interaction among various compound types was required for maximum incorporation of those elements into coke.

Green, J.B.; Shay, J.Y.; Reynolds, J.W.; Green, J.A.; Young, L.L.; White, M.E.

1993-10-01T23:59:59.000Z

140

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

2.3. Effects of low pH on biomass solids. of effects of low pH on biomass. .25 2.4. Low pHof low pH biomass reactions. ..46

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system  

SciTech Connect (OSTI)

The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2008-07-01T23:59:59.000Z

142

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

143

Conversion of Waste Biomass into Useful Products  

E-Print Network [OSTI]

Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

Holtzapple, M.

144

BIOMASS PRETREATMENT FOR INCREASED ANHYDROSUGARS YIELD DURING FAST PYROLYSIS.  

E-Print Network [OSTI]

??Production of liquid fuels is a high national priority to provide transporation fuels. Production of liquid bio-fuels from biomass has been idenfied as a viable (more)

Li, Qi

2009-01-01T23:59:59.000Z

145

Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase  

SciTech Connect (OSTI)

Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (?), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles based on EIS measurement using a sensor of 8 electrodes are reported. Results have demonstrated the potential as well as revealed the challenge in the use of EIS and EITS for characterisation of particle in suspension.

Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

2014-04-11T23:59:59.000Z

146

Federal Biomass Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

147

Engineering scale development of the Vapor-Liquid-Solid (VLS) process for the production of silicon carbide fibrils  

SciTech Connect (OSTI)

Vapor-liquid-solid (VLS)SiC fibrils are used as reinforcement in ceramic matrix composites (CMC). A program has been completed for determining process scaleup parameters and to produce material for evaluation in a CMC. The scaleup is necessary to lower production cost and increase material availability. Scaleup parameters were evaluated in a reactor with a vertical dimension twice that of the LANL reactor. Results indicate that the scaleup will be possible. Feasibility of recycling process gas was demonstrated and the impact of postprocessing on yields determined.

Hollar, W.E. Jr. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Mills, W.H. [BP America, Inc., Cleveland, OH (United States)

1993-09-01T23:59:59.000Z

148

Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics  

DOE Patents [OSTI]

A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

Torget, Robert W. (Littleton, CO)

2001-01-01T23:59:59.000Z

149

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

150

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

151

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

152

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Broader source: Energy.gov [DOE]

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOEs proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

153

Biomass pretreatment  

DOE Patents [OSTI]

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

154

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

155

Selective Solid-Liquid Extraction of Lithium Halide Salts Using a Ditopic Macrobicyclic Receptor  

E-Print Network [OSTI]

pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane and membrane transport, almost all reported efforts have focused on the transfer of lithium salts from this by binding the salts as contact ion pairs. Receptor 1 can also transport alkali metal halide salts out

Smith, Bradley D.

156

Determination of liquid and solid phase composition in partially frozen middle distillate fuels  

SciTech Connect (OSTI)

One of the tasks of the United States Navy Mobility Fuels program at the Naval Research Laboratory is to determine the effect of composition on the freezing properties of liquid fuels. The combination of requirements for ship and jet aircraft fuels of a low freezing point (to permit cold temperature operations around the world) and a flash point minimum (to reduce the hazard of storage and transport of liquid fuels on board ship) leads to opposing compositional needs. This is because many components of a fuel that tend to lower the freezing point (small hydrocarbons with higher vapor pressures) will also reduce the flash point. Because of these constraints, it is not always practical to produce fuels meeting these requirements from available crudes. This limits the amount of crudes and hence the amount of JP-5, the Navy fuel for carrier based aircraft, which can be produced from ''a barrel of crude.'' With increased knowledge and understanding of the components that first crystallize out of a cold fuel, it may be possible to modify refining techniques to increase the yield of Navy liquid fuels per barrel of crude without compromising either the freezing point or the flash point restrictions. This paper deals with the method used to separate the liquid filtrate from the precipitate in fuels cooled to predetermined temperatures below their freezing points, the method of analyzing the fuel and fuel fractions, and the results obtained from a study of one particular jet fuel.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Mushrush, G.W.; Hazlett, R.N.; DeGuzman, J.

1986-04-01T23:59:59.000Z

157

Thermal conductance of solid-liquid interfaces Scott Huxtable, Zhenbin Ge, David G. Cahill  

E-Print Network [OSTI]

thermal conductivity in nanostructured materials ­ improved thermoelectric energy conversion improved/surfactant/water PMMA/Al2O3 nanotube/alkane #12;Modulated pump-probe apparatus f=10 MHz rf lock-in #12;Solid · Cooling rate (RC time constant) gives interface conductance G = 12 MW m-2 K-1G = 12 MW m K #12;Application

Braun, Paul

158

The development and operational testing of an experimental reactor for gas-liquid-solid reaction systems at high temperatures and pressures  

E-Print Network [OSTI]

shaft. With the impeller in place and rotating, gas was drawn into the top port and ejected at the impeller mount. The reactor pressure was monitored via the transducer port. The transducer was a Viatran Pressure Transducer, model 103. The liquid...THE DEVELOPMENT AND OPERATIONAL TESTING OF AN EXPERIMENTAL REACTOR FOR GAS-LIQUID-SOLID REACTION SYSTEMS AT HIGH TEMPERATURES AND PRESSURES A Thesis by RICHARD KENNETH HESS Submitted to the Graduate College of Texas A&M University in partial...

Hess, Richard Kenneth

2012-06-07T23:59:59.000Z

159

Numerical analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging.  

SciTech Connect (OSTI)

Analyses of some of the steady-state, fully developed, and isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques are presented. NMR imaging offers powerful techniques to nonintrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. These experiments were carefully performed and probably represent the best available open literature data of their kind. COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been used to analyze the NMR data. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. COMMIX-M contains constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and virtual mass and shear lift forces extended to a continuum from the single particle literature. Also included is a solids partial-slip boundary condition to allow nonzero tangential velocity at the tube walls. This computer program is being developed at Argonne National Laboratory for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. Comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for model improvement are given. To the authors knowledge, these are the first such comparisons of theory and experiment

Ding, J.; Lyczkowski, R. W.; Sha, W. T.; Altobelli, S. A.; Fukushima, E.; Lovelace Medical Foundation

1993-01-01T23:59:59.000Z

160

Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging  

SciTech Connect (OSTI)

COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors` knowledge, these are the first such comparisons of theory and experiment.

Ding, J.; Lyczkowski, R.W.; Sha, W.T. [Argonne National Lab., IL (United States); Altobelli, S.A.; Fukushima, E. [Lovelace Medical Foundation, Albuquerque, NM (United States)

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging  

SciTech Connect (OSTI)

COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors' knowledge, these are the first such comparisons of theory and experiment.

Ding, J.; Lyczkowski, R.W.; Sha, W.T. (Argonne National Lab., IL (United States)); Altobelli, S.A.; Fukushima, E. (Lovelace Medical Foundation, Albuquerque, NM (United States))

1992-09-01T23:59:59.000Z

162

Analysis of tritium extraction from liquid lithium by permeation window and solid gettering processes  

SciTech Connect (OSTI)

Tritium recovery from liquid lithium at low concentration is an important problem for liquid metal breeder-blanket in a fusion reactor. Previous studies have identified tritium recovery methods including molten salt extraction, gettering recovery, permeation window, and vacuum distillation. In this paper, the authors focus on the numerical studies on tritium extraction by permeation window and gettering processes. These studies include for example: dynamic tritium concentration variation along the flow direction, tritium inventory distributions in the permeator and getter bed, along with the effect of dispersion on extraction efficiency. Using a model description makes it possible to determine functional dependence and provide insight into the interrelationships of the various operating conditions and material properties which may affect the behavior of tritium in the material. Clearly, reliable material properties (such as diffusivity, solubility, etc.) are essential for realistic evaluations.

Takeda, T. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan); Ying, A.Y.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

163

Northeast Regional Biomass Program  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

Lusk, P.D.

1992-12-01T23:59:59.000Z

164

Correlation and prediction of liquid-phase adsorption on zeolites using group contributions based on adsorbate-solid solution theory  

SciTech Connect (OSTI)

Both correlation as well as prediction of experimental data for the adsorption of various binary liquid mixtures of alkanes and alkenes on NaX at different temperatures are presented. The theoretical background is based on the adsorbate-solid solution theory which conceives the adsorbed phase to be a mixture of the adsorbed species (adsorbate) and the adsorbent as an additional component. With the introduction of the Gibbs excess energy G{sup E*} for this hypothetical mixture, activity coefficients and composition of the adsorbed phase may be calculated. The Biggs excess energy and thus the activity coefficient of the adsorbed species depend strongly on the energetic heterogeneity of the solid surface which may be described by use of so-called group contribution models. These approaches, until now widely applied to predict fluid-phase equilibrium, are derived from statistical thermodynamics and take into account the energetic interactions between the respective components. For the application of this approach on thermodynamics of adsorption zeolites have to be divided into different functional groups such as SiO{sub 2}, AlO{sub 2}{sup {minus}}, and the respective cations. The interaction energies between these active sites and the functional groups of the adsorbed liquid molecules represent fundamental parameters of activity coefficient models based on group contributions such as UNIFAC. These parameters were determined by fitting four different adsorption systems. With the fitted values, six other systems were predicted. Both correlation and prediction include adsorption data at different temperatures. All calculations show excellent results with a mean relative deviation of 4.2% for the correlation and a mean deviation in the range of 8--17% for the predictions.

Berti, C.; Ulbig, P.; Burdorf, A.; Seippel, J.; Schulz, S.

1999-08-31T23:59:59.000Z

165

JOURNAL DE PHYSIQUE CoZZoque C8, suppZ6ment au n08, Tome 41, aoct 1980, page C8-803 KGLECULAR DYNAMICS STUDIES OF SOLID-LIQUID INTERFACE OF SOFT-CORE MODEL  

E-Print Network [OSTI]

DYNAMICS STUDIES OF SOLID-LIQUID INTERFACE OF SOFT-CORE MODEL A. Ueda, J. Takada and Y. ~ ~ w a t a r i. Abstract.- The (100) solid-liquid interface of the soft-core system is studied with a molecular dynamics fluctuations. Our values of the coexistence densities and pressure are in agreement with the other works within

Paris-Sud XI, Université de

166

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

167

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

168

Numerical analysis of binary solid-liquid phase change with buoyancy and surface tension driven convection  

SciTech Connect (OSTI)

The effects of thermo/diffusocapillary convection on the solidification of aqueous NH{sub 4}Cl in a rectangular cavity have been simulated numerically using a newly developed continuum model. Diffusocapillary convection is negligible relative to thermocapillary convection, and for a 20 {times} 20 mm cavity in a one-gravity environment, thermocapillary effects are most pronounced during the early stages of solidification, when flow conditions are characterized by three major cells. One cell, driven by solutal buoyancy forces, extends from the mush region to the melt and separates top and bottom melt region cells driven primarily by surface tension and buoyancy forces, respectively. With increasing time, however, the top cell strengthens and eventually envelops the entire melt. In terms of the strength of the flow, the liquidus front morphology, and the amount of solid formed, final conditions differ only slightly from those predicted for pure thermal/solutal convection.

Incropera, F.P.; Engel, A.H.H. (Purdue Univ., Lafayette, IN (USA). Heat Transfer Lab.); Bennon, W.D. (Alcoa Technical Center, Alcoa Center, PA (US))

1989-01-01T23:59:59.000Z

169

Lined sampling vessel including a filter to separate solids from liquids on exit  

DOE Patents [OSTI]

A filtering apparatus has an open canister with an inlet port. A canister lid is provided which includes an outlet port for the passage of fluids from the canister. Liners are also provided which are shaped to fit the interiors of the canister and the lid, with at least the canister liner preferably being flexible. The sample to be filtered is positioned inside the canister liner, with the lid and lid liner being put in place thereafter. A filter element is located between the sample and the outlet port. Seals are formed between the canister liner and lid liner, and around the outlet port to prevent fluid leakage. A pressure differential is created between the canister and the canister liner so that the fluid in the sample is ejected from the outlet port and the canister liner collapses around the retained solids.

Shurtliff, Rodney M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID)

2001-01-01T23:59:59.000Z

170

Treatment of biomass to obtain a target chemical  

DOE Patents [OSTI]

Target chemicals were produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hennessey, Susan Marie (Avondale, PA)

2010-08-24T23:59:59.000Z

171

Renewable Liquid Fuels Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Liquid Fuels Reforming The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used...

172

Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report  

SciTech Connect (OSTI)

Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

C. R. Shaddix; D. R. Hardesty

1999-04-01T23:59:59.000Z

173

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

174

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

175

Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

176

Role of energy exchange in vibrational dephasing processes in liquids and solids  

SciTech Connect (OSTI)

Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d/sub 14/-durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h/sub 14/-durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening.

Marks, S.

1981-08-01T23:59:59.000Z

177

Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces  

SciTech Connect (OSTI)

Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

Perahia, Dvora

2011-11-01T23:59:59.000Z

178

Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations  

DOE Patents [OSTI]

A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

Rynne, Timothy M. (Long Beach, CA); Spadaro, John F. (Huntington Beach, CA); Iovenitti, Joe L. (Pleasant Hill, CA); Dering, John P. (Lakewood, CA); Hill, Donald G. (Walnut Creek, CA)

1998-10-27T23:59:59.000Z

179

INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION  

SciTech Connect (OSTI)

Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

2003-03-01T23:59:59.000Z

180

Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis  

SciTech Connect (OSTI)

Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys  

SciTech Connect (OSTI)

We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solidliquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three ?-Al{sub 5}Fe{sub 2}, ?-Al{sub 13}Fe{sub 4}, and ?-Al{sub 8}Fe{sub 2}Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe{sub 3} phase is not formed.

Bernier, N., E-mail: n.bernier@yahoo.fr; De Bruyn, D.; De Craene, M.; Scheers, J.; Claessens, S. [OCAS N.V., ArcelorMittal Global R and D Gent, Pres. J.F. Kennedylaan 3, 9060 Zelzate (Belgium); Vaughan, G. B. M.; Vitoux, H.; Gleyzolle, H.; Gorges, B. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

2014-04-28T23:59:59.000Z

182

Energy Densification of Lignocellulosic Biomass via Hydrothermal Carbonization and Torrefaction .  

E-Print Network [OSTI]

??The work presented in this study demonstrated the potential of hydrothermal carbonization (HTC) of biomass for the production of carbon-rich solid fuel, known as hydrochar (more)

Kambo, Harpreet Singh

2014-01-01T23:59:59.000Z

183

Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions  

SciTech Connect (OSTI)

The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

Yu, Tang-Qing, E-mail: tangqing.yu@nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Chen, Pei-Yang; Chen, Ming [Department of Chemistry, New York University, New York, New York 10003 (United States); Samanta, Amit [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tuckerman, Mark, E-mail: mark.tuckerman@nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

2014-06-07T23:59:59.000Z

184

Biomass Surface Characterization Laboratory  

E-Print Network [OSTI]

the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

185

Biomass Feedstocks  

Broader source: Energy.gov [DOE]

A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

186

Washington State biomass data book  

SciTech Connect (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

187

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

188

EERC Center for Biomass Utilization 2006  

SciTech Connect (OSTI)

The Center for Biomass Utilization (CBU?®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

2009-05-27T23:59:59.000Z

189

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

190

Integration of alternative feedstreams for biomass treatment and utilization  

DOE Patents [OSTI]

The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

Hennessey, Susan Marie (Avondale, PA); Friend, Julie (Claymont, DE); Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hames, Bonnie (Westminster, CO)

2011-03-22T23:59:59.000Z

191

The Transformation of Solid Atmospheric Particles into Liquid Droplets Through Heterogeneous Chemistry: Laboratory Insights into the Processing of Calcium Containing Mineral Dust Aerosol in the Troposphere  

SciTech Connect (OSTI)

[1] Individual calcium carbonate particles reacted with gas- phase nitric acid at 293 K have been followed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) analysis as a function of time and relative humidity (RH). The rate of calcium carbonate to calcium nitrate conversion is significantly enhanced in the presence of water vapor. The SEM images clearly show that solid CaCO3 particles are converted to spherical droplets as the reaction proceeds. The process occurs through a two-step mechanism involving the conversion of calcium carbonate into calcium nitrate followed by the deliquescence of the calcium nitrate product. The change in phase of the particles and the significant reactivity of nitric acid and CaCO3 at low RH are a direct result of the deliquescence of the product at low RH. This is the first laboratory study to show the phase transformation of solid particles into liquid droplets through heterogeneous chemistry.

Krueger, Brenda J.; Grassian, Vicki H.; Laskin, Alexander; Cowin, James P.

2003-02-15T23:59:59.000Z

192

Electric field Induced Patterns in Soft Visco-elastic films: From Long Waves of Viscous Liquids to Short Waves of Elastic Solids  

E-Print Network [OSTI]

We show that the electric field driven surface instability of visco-elastic films has two distinct regimes: (1) The visco-elastic films behaving like a liquid display long wavelengths governed by applied voltage and surface tension, independent of its elastic storage and viscous loss moduli, and (2) the films behaving like a solid require a threshold voltage for the instability whose wavelength always scales as ~ 4 x film thickness, independent of its surface tension, applied voltage, loss and storage moduli. Wavelength in a narrow transition zone between these regimes depends on the storage modulus.

N. Arun; Ashutosh Sharma; Partho S. G. Pattader; Indrani Banerjee; Hemant M. Dixit; K. S. Narayan

2009-06-02T23:59:59.000Z

193

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

SciTech Connect (OSTI)

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

194

Formation of Supercooled Liquid Solutions from Nanoscale Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of Methanol and Ethanol. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of...

195

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

196

Hydrothermal Liquefaction of Biomass  

SciTech Connect (OSTI)

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

197

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

198

Biomass Densification Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

199

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

200

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

202

Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

2012-06-15T23:59:59.000Z

203

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

204

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network [OSTI]

2008. Sustainable liquid biofuels from biomass: The writingscandidates for refining into biofuels also possess qualitiesin the production of biofuels from agricultural feed- stocks

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

205

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect (OSTI)

The U.S. Department of Energy??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30T23:59:59.000Z

206

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect (OSTI)

The U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEs bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30T23:59:59.000Z

207

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

208

Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor  

SciTech Connect (OSTI)

This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

2014-09-23T23:59:59.000Z

209

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect (OSTI)

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

210

Direct production of fractionated and upgraded hydrocarbon fuels from biomass  

SciTech Connect (OSTI)

Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

2014-08-26T23:59:59.000Z

211

Biomass Gasification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Biomass Gasification Biomass Gasification Photo of switchgrass being swathed. The Program anticipates that biomass gasification could be deployed in the...

212

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

213

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

214

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

Greenbaum, Elias (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

215

Conversion of organic solids to hydrocarbons  

DOE Patents [OSTI]

A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

Greenbaum, E.

1995-05-23T23:59:59.000Z

216

The effects of biomass pretreatments on the products of fast pyrolysis.  

E-Print Network [OSTI]

??Fast pyrolysis thermochemically degrades lignocellulosic material into solid char, organic liquids, and gaseous products. Using fast pyrolysis to produce renewable liquid bio-oil to replace crude (more)

Kasparbauer, Randall Dennis

2009-01-01T23:59:59.000Z

217

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3093  

E-Print Network [OSTI]

. Biomass feedstocks might be wood, agricultural products, or municipal solid waste. A "co-gen" plant the biomass feedstocks that are most available in their area. Wood has proven to be quite advantageous where that use biomass feedstocks can sell carbon credits or "green" credits in financial markets where

218

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

219

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

220

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EERC Center for Biomass Utilization 2005  

SciTech Connect (OSTI)

Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

222

E-Print Network 3.0 - alpha liquid scintillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

may be organic and inorganic solids, liquids... .025 eV): all in ground state works as gas, liquid, solid 12;5 Organic scintillators: scintillation... scintillators...

223

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

224

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

225

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

2013-01-01T23:59:59.000Z

226

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white...

227

Biomass thermochemical conversion program: 1987 annual report  

SciTech Connect (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

228

Environmental analysis of biomass-ethanol facilities  

SciTech Connect (OSTI)

This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

Corbus, D.; Putsche, V.

1995-12-01T23:59:59.000Z

229

Shearing Flows in Liquid Crystal Models  

E-Print Network [OSTI]

The liquid crystal phase is a phase of matter between the solid and liquid phase whose flow is characterized by a velocity field and a director field which describes locally the orientation of the liquid crystal. In this ...

Dorn, Timothy

2012-05-31T23:59:59.000Z

230

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublication Revision Policy

231

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty

232

Co-firing coal and municipal solid waste  

SciTech Connect (OSTI)

The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

233

Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids  

SciTech Connect (OSTI)

We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 {mu}J and 50 {mu}J. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu{sub 2}O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu{sub 2}O or Cu{sub 2}O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu{sub 2}O configuration fits the experimental spectra of the colloidal suspension, while for decreasing energy and below a certain threshold, a Cu{sub 2}O-Cu configuration needs to be included for the optimum fit. Both species coexist for energies below 170 {mu}J for water. On the other hand, for acetone at high energy, optimum fit of the full spectrum suggests the presence a bimodal Cu-Cu{sub 2}O core-shell Nps distribution while for decreasing energy and below a 70 {mu}J threshold energy value, Cu{sub 2}O-Cu core-shell Nps must be included, together with the former configuration, for the fit of the full spectrum. We discuss possible reasons for the changes in the structural configuration of the core-shell Nps.

Santillan, J. M. J. [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata - CIC) (Argentina); Videla, F. A.; Schinca, D. C.; Scaffardi, L. B. [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata - CIC) (Argentina); Departamento de Ciencias Basicas, Facultad de Ingenieria, UNLP (Argentina); Fernandez van Raap, M. B. [Departamento de Fisica-IFLP, Universidad Nacional de La Plata-CONICET, L. B. Scaffardi: CIOp CC3 (1897) Gonnet, La Plata (Argentina)

2013-04-07T23:59:59.000Z

234

Algae: The Source of Reliable, Scalable, and Sustainable Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, and Sustainable Liquid Transportation Fuels At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy)...

235

Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the  

E-Print Network [OSTI]

, bio-oil obtained from pyrolysis of biomass is a complex liquid that is only partially soluble emulsions would be highly advantageous in streamlining processes such as biomass refining, in which of interest in biomass refining. Microscopic characterization of the emulsions supports localization

Resasco, Daniel

236

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

237

Subdue solids in towers  

SciTech Connect (OSTI)

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

238

Biomass Processing Photolibrary  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

239

Co-firing biomass  

SciTech Connect (OSTI)

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

240

Biomass Energy R&D in the San Francisco Bay Area  

SciTech Connect (OSTI)

Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms, for the production of electric power, heat, chemicals, or fuels. There are a number of ways of getting energy from biomass, and a number of factors influence the efficiency of the conversion process. All biomass can be easily combusted. The heat of combustion can be used as heat, or can be used to run gas/steam turbines to produce electricity. However, most biomass combustion processes are inefficient and environmentally non-benign. The main pollutants from direct biomass combustion are tars, particulates, and VOCs. Biodiesels can be made from oils obtained from plants/crops such as soybean, peanuts and cotton. The oils from these sources are mainly triglycerides of fatty acids and not directly suitable as diesel substitutes. Transesterification processes convert the triglycerides into simple esters of the corresponding fatty acids (for example, Fatty Acid Methyl Ester or FAME), which can be directly substitutes for diesel fuels. Starches, sugars and cellulose can be fermented to produce ethanol, which can be added to gasoline, or used directly as an engine fuel. Fermentation of starches and sugars is established technology, practiced for thousands of years. Fermentation of cellulose to make ethanol is relatively harder, requiring additional intermediate steps to hydrolyze the cellulose first by adding acids or by raising temperature. Forestry wastes predominantly comprise cellulose and lignin. Lignin cannot be fermented using the current bio-organisms, and, as mentioned above, even cellulose is difficult to ferment directly. In such cases, a suite of alternative technologies can be employed to convert the biomass into liquid fuels. For example, the biomass can be gasified with the use of air/oxygen and steam, the resultant syngas (mixture of hydrogen and carbon monoxide) can be cleaned to remove tars and particulates, the gas can be shifted to obtain the proper balance between hydrogen and carbon monoxide, and the balanced gas can be converted into either methanol or other hydrocarbons with the use of Fischer-Tropsch catalysts. The liquid fuels thus produced can be transported to the point of use. In addition, they can be reformed to produce hydrogen to drive fuel cells. In addition to agriculture and forestry, a third, and significant, source for biomass is municipal waste. The biomass component of municipal wastes consists mainly of cellulose (paper products and yard wastes) and lignin (yard wastes). This waste can be combusted or gasified, as described above. All the technologies mentioned above are relatively mature, and are being practiced in some form or another. However, there are other technologies that may be promising, yet present significant challenges and may require more work. An example of this is the use of bacteria to use light to decompose water to yield hydrogen.

Upadhye, R

2005-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass 2013 Attendee List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

242

Specialists' workshop on fast pyrolysis of biomass  

SciTech Connect (OSTI)

This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

Not Available

1980-01-01T23:59:59.000Z

243

Liguid and Solid Carriers Group- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for solid and liquid hydrogen storage and delivery materials.

244

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne Biomass

245

NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

246

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

247

Biomass Research Program  

SciTech Connect (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2011-01-01T23:59:59.000Z

248

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

249

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

250

Biomass and Other Unconventional Energy Resources  

E-Print Network [OSTI]

. The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr...: The Eastman Kodak Company in Rochester, New York investigated resource recovery when faced with a deteriorating incinerator that could no longer comply with regulations concerning air pollution emissions. The plant producing photographic equipment...

Gershman, H. G.

1982-01-01T23:59:59.000Z

251

Biomass Thermochemical Conversion Program. 1984 annual report  

SciTech Connect (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

252

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

253

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

254

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

255

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels...

256

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

257

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

258

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to...

259

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

260

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lignin-blocking treatment of biomass and uses thereof  

DOE Patents [OSTI]

Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion. Cellulase efficiencies are improved by the protein or polypeptide treatment. The treatment may be used in combination with steam explosion and acid prehydrolysis techniques. Hydrolysis yields from lignin containing biomass are enhanced 5-20%, and enzyme utilization is increased from 10% to 50%. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

Yang, Bin (Hanover, NH); Wyman, Charles E. (Norwich, VT)

2009-10-20T23:59:59.000Z

262

IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING  

SciTech Connect (OSTI)

The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

Washington University- St. Louis:; ,; Muthanna Al-Dahhan (Principal Investigator); E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli, (Co-principal investigator); Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

2007-03-26T23:59:59.000Z

263

Rheological study of comingled biomass and coal slurries with hydrothermal pretreatment  

SciTech Connect (OSTI)

Gasification of comingled biomass and coal feedstock is an effective means of reducing the net life cycle greenhouse gas emissions in the coal gasification process while maintaining its inherent benefits of abundance and high-energy density. However, feeding a comingled biomass and coal feedstock into a pressurized gasification reactor poses a technical problem. Conventional dry feeding systems, such as lock hoppers and pressurized pneumatic transport, are complex and operationally expensive. A slurry formation of comingled biomass and coal feedstock can be easily fed into the gasification reactor but, in normal conditions, only allows for a small portion of biomass in the mixture. This is a consequence of the hydroscopic and hydrophilic nature of the biomass. The College of Engineering Center for Environmental Research and Technology (CE-CERT) at the University of California, Riverside, has developed a process producing high solid content biomass-water slurry using a hydrothermal pretreatment process. In this paper, the systematic investigation of the rheological properties (e.g., shear rate, shear stress, and viscosity) of coal-water slurries, biomass-water slurries, and comingled biomass and coal-water slurries is reported. The solid particle size distribution in the slurry and the initial solid/water ratio were investigated to determine the impact on shear rate and viscosity. This was determined using a rotational rheometer. The experimental results show that larger particle size offers better pumpability. The presence of a high percentage of biomass in solid form significantly decreases slurry pumpability. It is also shown that the solid loading of the biomass-water slurry can be increased to approximately 35 wt % with viscosity of less than 0.7 Pa.s after the pretreatment process. The solid loading increased to approximately 45 wt % when the biomass is comingled with coal. 18 refs., 7 figs., 3 tabs.

Wei He; Chan S. Park; Joseph M. Norbeck [University of California, Riverside, CA (United States). Bourns College of Engineering Center for Environmental Research and Technology

2009-09-15T23:59:59.000Z

264

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

265

Catalytic fast pyrolysis of lignocellulosic biomass  

SciTech Connect (OSTI)

Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuelbio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

2014-11-21T23:59:59.000Z

266

Strategic Biomass Solutions (Mississippi)  

Broader source: Energy.gov [DOE]

The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

267

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

268

Biomass Energy Production Incentive  

Broader source: Energy.gov [DOE]

In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

269

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

270

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

271

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

272

Liquid Fuels from Lignins: Annual Report  

SciTech Connect (OSTI)

This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

Chum, H. L.; Johnson, D. K.

1986-01-01T23:59:59.000Z

273

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

274

Biomass | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass: Organic

275

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017  

SciTech Connect (OSTI)

Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

Jones, Susanne B.; Male, Jonathan L.

2012-02-01T23:59:59.000Z

276

Catalytic Tar Reforming for Cleanup and Conditioning of Biomass-derived Syngas  

SciTech Connect (OSTI)

Biomass gasification is being investigated to produce clean syngas from biomass or biorefinery residues as an intermediate that can be used directly as a fuel for integrated heat and power production or further refined and upgraded by various processing technologies. Conditioning of biomass-derived syngas, with an emphasis on tar reforming, to make it a suitable feed for high temperature, pressurized liquid fuels synthesis is the goal of current research efforts.

Dayton, D. C.; Bain, R. L.; Phillips, S. D.; Magrini-Bair, K.; Feik, C. J.

2006-01-01T23:59:59.000Z

277

Geoantineutrino Spectrum, 3He/4He-ratio Distribution in the Earth's Interior and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's Core  

E-Print Network [OSTI]

The description problem of geoantineutrino spectrum and reactor antineutrino experimental spectrum in KamLAND, which takes place for antineutrino energy \\~2.8 MeV, and also the experimental results of the interaction of uranium dioxide and carbide with iron-nickel and silicaalumina melts at high pressure (5-10 GP?) and temperature (1600-2200C) have motivated us to consider the possible consequences of the assumption made by V.Anisichkin and coauthors that there is an actinid shell on boundary of liquid and solid phases of the Earth's core. We have shown that the activation of a natural nuclear reactor operating as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in particular, the neutron- fission progressive wave of Feoktistov and/or Teller-Ishikawa-Wood) can be such a physical consequence. The simplified model of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is developed. The results of the numerical simulation of neutron-fission wave in two-phase UO2/Fe medium on a surface of the Earth's solid core are presented. The georeactor model of 3He origin and the 3He/4He-ratio distribution in the Earth's interior is offered. It is shown that the 3He/4He ratio distribution can be the natural quantitative criterion of georeactor thermal power. On the basis of O'Nions-Evensen-Hamilton geochemical model of mantle differentiation and the crust growth supplied by actinid shell on the boundary of liquid and solid phases of the Earth's core as a nuclear energy source (georeactor with power of 30 TW), the tentative estimation of geoantineutrino intensity and geoantineutrino spectrum on the Earth surface are given.

V. D. Rusov; V. N. Pavlovich; V. N. Vaschenko; V. A. Tarasov; T. N. Zelentsova; V. N. Bolshakov; D. A. Litvinov; S. I. Kosenko; O. A. Byegunova

2006-09-13T23:59:59.000Z

278

Kinetic Modeling of Cellulosic Biomass to Ethanol Via Simultaneous Saccharification and  

E-Print Network [OSTI]

ARTICLE Kinetic Modeling of Cellulosic Biomass to Ethanol Via Simultaneous Saccharification. Biotechnol. Bioeng. 2009;102: 66­72. ? 2008 Wiley Periodicals, Inc. KEYWORDS: cellulose; ethanol; model validation Introduction Conversion of cellulosic biomass to ethanol and other liquid fuels is of interest

California at Riverside, University of

279

Factors influencing algal biomass in hydrologically dynamic salt ponds in a subtropical salt marsh  

E-Print Network [OSTI]

realized, underscoring the importance of understanding algal dynamics in such systems. Benthic and planktonic chlorophyll-a (surrogate for total algal biomass), sediment AFDW, total suspended solids, salinity, and nutrients were examined in marsh ponds...

Miller, Carrie J.

2009-05-15T23:59:59.000Z

280

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS)WebmasterBiomass

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed,Tracy Biomass

282

Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous  

SciTech Connect (OSTI)

PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

Dick Wingerson

2004-12-15T23:59:59.000Z

283

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

284

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

285

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

286

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

287

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

288

On the Fluctuations that Order and Frustrate Liquid Water  

E-Print Network [OSTI]

Most nonpolar liquids have heat capacities that range from 8the maximum liquid state heat capacity[173]. ExperimentallyLIQUID AND SOLID WATER (a) Density (b) Compressibility (c) Heat Capacity

Limmer, David

2013-01-01T23:59:59.000Z

289

Sustainable Biomass Supply Systems  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

290

YEAR 2 BIOMASS UTILIZATION  

SciTech Connect (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

291

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network [OSTI]

of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

292

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

293

Biomass Scenario Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09BiomassAct ofBiomass

294

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

295

Northeast regional biomass program. Retrospective, 1983--1993  

SciTech Connect (OSTI)

Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

Savitt, S.; Morgan, S. [eds.] [Citizens Conservation Corp., Boston, MA (United States)

1995-01-01T23:59:59.000Z

296

I Reproducedwith pennissionfrom Elsevier Preparedfor Proceedingsof the4thBiomassConferenceof theAmericas,ElsevierScience,Ltd.,Oxford,UK, 1999.  

E-Print Network [OSTI]

with solid biomass. It is also far more efficient (Fig. 1), even considering biomass-to-fuels conversion. We present a preliminary assessment of the cost for producing these fuels from com stalks today to meet household cooking needs. 2. ENERGY BALANCES FOR F-T COOKING FUELS FROM BIOMASS Two clean

297

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

298

ENERGY FROM BIOMASS AND  

E-Print Network [OSTI]

in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

299

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

300

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

302

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

303

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

304

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

305

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

306

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

307

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

308

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

309

Reburn system with feedlot biomass  

DOE Patents [OSTI]

The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

Annamalai, Kalyan; Sweeten, John M.

2005-12-13T23:59:59.000Z

310

Liquid and solid phase compositions in a partially frozen JP-5 fuel low in n-alkanes. Memorandum report April 1983-January 1984  

SciTech Connect (OSTI)

A JP-5 low in n-alkanes was partially frozen at several temperatures 9 to 15 C below its normal freezing point of -53 C. In spite of their low concentrations in the starting fuel, the n-alkanes were the predominant components in the solid phase crystallizing from the fuel. In this respect, this JP-5 behaves in a fashion similar to other jet fuels which contain 3 to 5 times the amounts of n-alkanes.

Van Winkle, T.L.; Hazlett, R.N.; Beal, E.J.; Mushrush, G.W.

1984-06-27T23:59:59.000Z

311

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

312

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

313

Solid evacuated microspheres of hydrogen  

DOE Patents [OSTI]

A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

1982-01-01T23:59:59.000Z

314

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

315

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

316

A Review on Biomass Torrefaction Process and Product Properties  

SciTech Connect (OSTI)

Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

2011-08-01T23:59:59.000Z

317

Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest  

SciTech Connect (OSTI)

To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25 C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for {approximately}360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25 C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17{alpha}(H)- and 17{beta}(H)-hopanes, 5{alpha}(H),14{alpha}(H)-, 5{beta}(H),14{alpha}(H)-, 5{alpha}(H),14{beta}(H)-, and 5{beta}(H),14{beta}(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms. Calculations of this kind permit comprehensive thermodynamic description of the chemical evolution of organic matter with increasing depth in sedimentary basins.

Richard, L.; Helgeson, H.C. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics] [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

1998-12-01T23:59:59.000Z

318

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

1995-12-26T23:59:59.000Z

319

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

1995-01-01T23:59:59.000Z

320

Core-Shell Diamond as a Support for Solid-Phase Extraction and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid...

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effect of Contact Line Curvature on Solid-Fluid Surface Tensions Without Line Tension C. A. Ward* and Jiyu Wu  

E-Print Network [OSTI]

Effect of Contact Line Curvature on Solid-Fluid Surface Tensions Without Line Tension C. A. Ward neglected adsorption at the solid-liquid interface and its effect on the surface tension of this interface-liquid interface can be determined, as can the surface tensions of the solid-liquid and solid-vapor interfaces. DOI

Ward, Charles A.

322

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network [OSTI]

c v is the solid or liquid heat capacity at constant volume,heat capacities and might be slightly retrograde. Retrograde liquid-

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

323

E-Print Network 3.0 - acid liquid radioactive Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processing liquids, electroplating solutions and radioactive tank wastes. A researcher works... solid and liquid radioactive samples. NMR research has been performed on nuclear...

324

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

325

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

326

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

Li, Hongjia

2012-01-01T23:59:59.000Z

327

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhatActivities in Biomass

328

Biomass 2013: Welcome  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass 2013

329

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuelsBiomass Renewable

330

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

331

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

332

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

333

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

334

Biomass Rapid Analysis Network (BRAN)  

SciTech Connect (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

335

Biomass power for rural development  

SciTech Connect (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

336

Methods and apparatus for catalytic hydrothermal gasification of biomass  

DOE Patents [OSTI]

Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

2012-08-14T23:59:59.000Z

337

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

338

Illinois coal/RDF coprocessing to produce high quality solids and liquids. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect (OSTI)

It is the aim of this study to provide information pertinent to the development of a coal/RDF pyrolysis process capable of economically creating valuable products from high sulfur Illinois coal. This project will be carried out in a systematic manner. First, samples will be properly selected prepared, preserved and characterized. Then coals, various plastics, cellulose, and a high quality RDF will be pyrolyzed, steam pyrolyzed, hydro-pyrolyzed, and liquefied at various conditions. Next, blends of coal with various RDF components will be reacted under the same conditions. From this work synergistic effects will be identified and process parametric studies will be conducted on the appropriate mixtures and single components. Product quality and mass balances will be obtained on systems showing promise. Preliminary pyrolysis work will be conducted on a TGA. Over 100 microreactor experiments have been performed and the acquisition of products for analysis has been achieved. Interactions occur between 400--450{degrees}C. The use of higher temperatures should be avoided if liquids are the.desired product. Although, these results are preliminary they are also very encouraging.

Hippo, E.J.; Palmer, S.R.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

1994-06-01T23:59:59.000Z

339

19 APRIL 2002 VOL 296 SCIENCE www.sciencemag.org478 the structure of the liquid could be gained  

E-Print Network [OSTI]

from the liquid at the solid-liquid alumina interface. The work by Donnelly et al. (1) follows of TEM in the study of liquids in contact with solids. To- gether with the works by Howe (15) and Sasaki. Experimental elucidation of the atomic structure of the liquid-solid interface is in- herently difficult

Reif, John H.

340

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect (OSTI)

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 ???????°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biomass in the Deregulated Marketplace: Current Issues for Biomass Power  

SciTech Connect (OSTI)

This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

Not Available

1998-12-01T23:59:59.000Z

342

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network [OSTI]

in management of liquid and solid waste, Multan City, JuneResource Center. (2004). Solid waste management study,The secondary data on solid waste and its management aspects

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

343

Carbonic Acid Pretreatment of Biomass  

SciTech Connect (OSTI)

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

2003-05-31T23:59:59.000Z

344

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

345

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

346

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

347

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

348

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

349

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

350

Northeast regional biomass program. First quarter report, October--December 1993  

SciTech Connect (OSTI)

This progress report presents summaries of various projects which were in operation or being planned during this quarter period. Projects included testing the efficiency of using wood chips as fuel in heating systems, barriers to commercial development of wood pellet fuels, studies of more efficient and less polluting wood stoves, work on landfill gas utilization, directories of facilities using biomass fuels, surveys of biomass conversion processes to liquid fuels, for commercial development, etc.

NONE

1994-05-01T23:59:59.000Z

351

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

352

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

353

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

354

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

355

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

356

NREL: Biomass Research - Daniel J. Schell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

357

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

358

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

359

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

360

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supplying High-Quality, Raw Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

362

Converting Biomass to High-Value Feedstocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

363

Biomass Guidelines (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

364

Hydrogen Production Cost Estimate Using Biomass Gasification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is...

365

First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2  

SciTech Connect (OSTI)

This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

366

SolidEnergy Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The...

367

The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations  

SciTech Connect (OSTI)

In this study, the potential of important biomass energy sources and animal solid wastes of Turkey were determined and the potential of these as a source of fuel in thermal generating stations to produce electricity was studied. The effects of biomass and lignite coal usage on the environment were reported comparatively. Considering total cereal products and fatty seed plants, approximately 50--65 million tons per year of biomass and 11,051 million tons of solid matter animal waste are produced, and 60% of biomass is seen as possible to use for energy. The primary energy of applicable biomass was evaluated as 467--623 Peta Joule (PJ) and the energy of animal residues as 50,172 PJ. This amount of energy is equal to 22--27% of Turkey`s annual primary energy consumption, (6,308 million tons of oil equivalent).

Acaroglu, M. [Selcuk Univ. Technical Coll., Konya (Turkey). Dept. of Agricultural Machinery; Aksoy, A.S. [Ege Univ. Solar Energy Inst., Izmir (Turkey). Dept. of Energy Sources; Oeguet, H. [Selcuk Univ. Faculty of Agriculture, Konya (Turkey). Dept. of Agricultural Machinery

1999-05-01T23:59:59.000Z

368

Use of graphitized carbon beads for gas liquid chromatography  

DOE Patents [OSTI]

Carbonized resin microspheroids are used as a column packing in gas-solid chromatography and as a support in gas-liquid chromatography.

Talmi, Yair (Oak Ridge, TN); Pollock, Charles B. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

369

Countercurrent Process for Lignin Separation from Biomass Matrix  

SciTech Connect (OSTI)

The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

Kiran Kadam; Ed Lehrburger

2006-03-31T23:59:59.000Z

370

Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass  

SciTech Connect (OSTI)

This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

Huffman, Gerald

2012-12-31T23:59:59.000Z

371

Ohio Biomass Energy Program (Ohio)  

Broader source: Energy.gov [DOE]

Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

372

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission

373

Biomass Supply for a Bioenergy  

E-Print Network [OSTI]

Resource assessment do we have enough biomass? Techno-economic analysis can biofuels be produced at competitive prices? Integrated biorefineries what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

374

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

375

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

376

Biomass Surface Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

Not Available

2012-04-01T23:59:59.000Z

377

November 2011 Competition for biomass among  

E-Print Network [OSTI]

remain high, limiting the development of national or even regional markets for biomass feedstocks. We

Noble, James S.

378

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

379

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

380

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

382

Solids Accumulation Scouting Studies  

SciTech Connect (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

383

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

384

Fluidized bed pyrolysis of terrestrial biomass feedstocks  

SciTech Connect (OSTI)

Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

385

Effect of Adsorption on the Surface Tensions of Solid-Fluid Interfaces C. A. Ward* and Jiyu Wu  

E-Print Network [OSTI]

Effect of Adsorption on the Surface Tensions of Solid-Fluid Interfaces C. A. Ward* and Jiyu Wu is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, [1] SV and [1] SL

Ward, Charles A.

386

Fiscalini Farms Biomass Energy Project  

SciTech Connect (OSTI)

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

387

Charge transfer kinetics at the solidsolid interface in porous electrodes  

E-Print Network [OSTI]

Interfacial charge transfer is widely assumed to obey the ButlerVolmer kinetics. For certain liquidsolid interfaces, the MarcusHushChidsey theory is more accurate and predictive, but it has not been applied to porous ...

Bai, Peng

388

Vibrational Spectroscopy of Liquid Mixtures and Solid/Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in water for several temperatures. Findings suggest that through the use of high-performance computing, researchers can significantly improve their predictive power of aqueous...

389

Biomass IBR Fact Sheet: Enerkem  

Broader source: Energy.gov [DOE]

Enerkems biorefinery in northern Mississippi will convert heterogeneous (mixed) sorted municipal solid waste into ethanol.

390

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

391

A VACANCY MODEL IN SOLID HELIUM IV B. CASTAING  

E-Print Network [OSTI]

536 A VACANCY MODEL IN SOLID HELIUM IV B. CASTAING Groupe de Physique des Solides de l here a new approach to the problem of vacancies in solid Helium 4, describing them as small liquid droplets. In this model the vacancy effective mass is very small : 0.1 mHe, where mHe is the atomic mass

Boyer, Edmond

392

Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles Gokhan Percina)  

E-Print Network [OSTI]

by bonding a thin piezoelectric annular disk to a thin edge clamped circular plate. Liquids or solid particles, such as coal and metals. To date, there has been no report of a drop-on-demand solid particle a thin piezoelectric annular plate onto a thin edge clamped circular plate. Liquids or small solid

Khuri-Yakub, Butrus T. "Pierre"

393

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

394

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

395

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

396

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

397

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

398

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

399

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

400

Biomass Resources Overview and Perspectives on Best Fits for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

402

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger Scale | Department of

403

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPCElectricalofVoltageEmployeeEmployees

404

Hydrogen Production: Biomass-Derived Liquid Reforming | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet Hydrogen

405

Coal and Biomass to Liquids | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy ChuCleanCrosscutting

406

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen Program and VehicleCoolingCompensation

407

Coal and Coal-Biomass to Liquids FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly Ash asCoaland

408

REFINING AND END USE STUDY OF COAL LIQUIDS  

SciTech Connect (OSTI)

This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

Unknown

2002-01-01T23:59:59.000Z

409

Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China  

Broader source: Energy.gov [DOE]

Breakout Session 3DFostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

410

Mechanism of constitution liquid film migration  

SciTech Connect (OSTI)

Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

NONE

1999-06-01T23:59:59.000Z

411

Biomass Biorefinery for the production of Polymers and Fuels  

SciTech Connect (OSTI)

The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nations dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the growers ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

Dr. Oliver P. Peoples

2008-05-05T23:59:59.000Z

412

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

413

Biomass Feedstock Composition and Property Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

414

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

415

Biomass Equipment and Materials Compensating Tax Deduction  

Broader source: Energy.gov [DOE]

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

416

Biomass energy systems program summary  

SciTech Connect (OSTI)

Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

None

1980-07-01T23:59:59.000Z

417

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

418

Biomass from Combined Backseatter Modeling  

E-Print Network [OSTI]

and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

Weishampel, John F.

419

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

420

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

422

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

423

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

424

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

425

Co-processing of agricultural and biomass waste with coal  

SciTech Connect (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

426

Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portal BiomassUsing Anhydrous Liquid

427

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

428

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

429

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

430

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

431

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

432

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

433

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

434

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

435

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

436

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

437

Original article Micronutrients in biomass fractions  

E-Print Network [OSTI]

Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

Boyer, Edmond

438

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

439

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z

440

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

442

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

small irrigation power, municipal solid waste, andinto Municipal Solid Waste Gasification for PowerMunicipalSolidWasteGasificationforPowerGeneration.

Cattolica, Robert

2009-01-01T23:59:59.000Z

443

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

power, municipal solid waste, and qualifiedbroadly, municipal solid waste (MSW) into simplerinto Municipal Solid Waste Gasification for Power

Cattolica, Robert

2009-01-01T23:59:59.000Z

444

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

445

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

446

A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels  

SciTech Connect (OSTI)

Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

2010-09-01T23:59:59.000Z

447

Magnetic Resonance Facility (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientists to run their own liquid sample analysis * Solid-state analysis of biomass feedstocks, biomass- related materials, and polymers * Analysis of compounds with...

448

The conversion of biomass to ethanol and microbial biomass protein  

E-Print Network [OSTI]

/andii fermentation resulting in 20% CP (dry substrate basis), a 2000% increase over untreated BAG (1 % CP). Fermentations with high solids ratios and no agitation provided the most economically attractive MBP production method. Essential amino acid profiles...

Reshamwala, Sultan

1994-01-01T23:59:59.000Z

449

A Review on Biomass Torrefaction Process and Product Properties for Energy Applications  

SciTech Connect (OSTI)

Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

2011-10-01T23:59:59.000Z

450

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-09-30T23:59:59.000Z

451

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

Unknown

2001-12-31T23:59:59.000Z

452

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-06-30T23:59:59.000Z

453

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-03-31T23:59:59.000Z

454

Biomass Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas and Fuel Cells2008:Biomass

455

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

456

Plasma-Surface Interactions on Liquids  

SciTech Connect (OSTI)

Liquid plasma-facing surfaces have been suggested as an option for advanced fusion devices, particularly in regions where solid materials may not survive over long operating periods. Because liquid surfaces can be replenished, they offer the possibility of tolerating intense particle bombardment and of recovering from off-normal events. As a preliminary step in understanding the nature of plasma-surface interactions on liquids, the authors consider some of the surface processes occurring in liquids undergoing irradiation by energetic particles. These include (1) sputtering, (2) segregation of liquid component species and impurities, (3) evaporation, and (4) trapping and release of incident particles. Aspects of these processes are examined for several candidate liquids, which represent three types of low-Z liquids: pure metals (Li), metallic alloys (Sn-Li), and compound insulators (Li{sub 2}BeF{sub 4}).

R. Bastasz; W. Eckstein

2000-05-01T23:59:59.000Z

457

Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake  

SciTech Connect (OSTI)

Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

2008-04-26T23:59:59.000Z

458

Northeast Regional Biomass Program. Ninth year, Fourth quarterly report, July--September 1992  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

Lusk, P.D.

1992-12-01T23:59:59.000Z

459

Solid fuel applications to transportation engines  

SciTech Connect (OSTI)

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

Not Available

1980-06-01T23:59:59.000Z

460

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

SciTech Connect (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass Energy Data Book: Edition 2  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

2009-12-01T23:59:59.000Z

462

Biomass Energy Data Book: Edition 4  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

2011-12-01T23:59:59.000Z

463

Biomass Energy Data Book: Edition 3  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

2010-12-01T23:59:59.000Z

464

Biomass Energy Data Book: Edition 1  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

2006-09-01T23:59:59.000Z

465

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

466

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Of course, the liquid fuel (ethanol) is usually a mores The use of ethanol as fuel is environmentally benignprimarily with the use of ethanol as a fuel in the state of

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

467

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne

468

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to: navigation,APNAAPS Biomass

469

Solid0Core Heat-Pipe Nuclear Batterly Type Reactor  

SciTech Connect (OSTI)

This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

Ehud Greenspan

2008-09-30T23:59:59.000Z

470

EA-1115: Liquid Waste Treatment at the Nevada Test Site, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to treat low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the U.S. Department of Energy Nevada...

471

Biomass Resource Allocation among Competing End Uses  

SciTech Connect (OSTI)

The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

2012-05-01T23:59:59.000Z

472

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network [OSTI]

Biomass feedstocks .Materials and Methods Biomass feedstocks Two kinds ofthe screening of biomass feedstocks. In this study, a one-

Gao, Xiadi

2013-01-01T23:59:59.000Z

473

E-Print Network 3.0 - area consumer liquid Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a liquid-solid coexistence model, we critically examined melting in the superheating regime Source: Li, Mo - School of Materials Science and Engineering, Georgia Institute of...

474

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

475

Estimates of US biomass energy consumption 1992  

SciTech Connect (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

476

Bayport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector BiomassBayport Biomass

477

Biomass 2014 Breakout Speaker Biographies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass

478

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

479

NREL: Biomass Research - Ryan M. Ness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ryan M. Ness Ryan Ness is a research technician with the National Bioenergy Center Biomass Analysis Group at NREL. Ryan has been with NREL since 2007. Ryan's primary...

480

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

Note: This page contains sample records for the topic "biomass solids liquids" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

482

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

483

NREL: Biomass Research - Courtney E. Payne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

484

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

485

NREL: Biomass Research - Eric P. Knoshaug  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on...

486

NREL: Biomass Research - Gregg T. Beckham  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bonds. An illustration of lignin is shown below. In current selective routes for biomass utilization, lignin is typically burned for heat and power. However, the energy and...

487

NREL: Biomass Research - Justin B. Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's Natio