Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Scenario Model | Open Energy Information  

Open Energy Info (EERE)

Biomass Scenario Model Biomass Scenario Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Scenario Model (BSM) Agency/Company /Organization: National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options Topics: Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: bsm.nrel.gov/ Country: United States Cost: Free OpenEI Keyword(s): EERE tool, Biomass Scenario Model UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Biomass Scenario Model Documentation: Data and References  

SciTech Connect

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

2013-05-01T23:59:59.000Z

3

A simple model to assess the sensitivity of grassland dairy systems to scenarios of seasonal biomass production variability  

Science Conference Proceedings (OSTI)

In recent decades, dairy herds of the peri-Mediterranean area have coped with high climatic variability, which has contributed to weakening their economic equilibrium. Survey studies highlighted that climatic impact depends on the strategies of farmers, ... Keywords: Biomass production variability, Cattle farming system, Modelling, System sensitivity

A. Lurette; C. Aubron; C. -H. Moulin

2013-04-01T23:59:59.000Z

4

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

DOE Green Energy (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

5

Scenario Driven Data Modelling  

... an alert is generated that allows humans to query the model and a stored version of the data that matched the model. The high level steps of SDDM are as follows: ...

6

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

7

ULCOS scenarios and economic modeling  

E-Print Network (OSTI)

Modeling activities and scenario building are at the heart of the economic analysis delivered by the ULCOS program. Two main objectives were followed in the framework of SP9. First the modeling team had to provide a set of coherent energy economic scenarios using POLES model. Second, the economic conditions for the emergence of the ULCOS technologies were analyzed. ULCOS contributes to the elaboration of contrasted scenarios that the steel industry could face in the long term. To aim at these objectives specific tools have been used: POLES model for the global energy system modeling and ISIM model for the steel sector based prospective ([1] Hidalgo, 2003). The most promising steel production technologies identified in ULCOS Phase 1 have been introduced into ISIM as generic technologies. ISIM was then integrated as a module into POLES modeling system. The main model outputs are the energy prices and mixes and the steel sector balances with a focus on the technology mix. Actually the climate policy scenarios developped in project allow making recommendations to the steel industry in terms of sustainable development but also in terms of business strategy.

Elie Bellevrat

2009-01-01T23:59:59.000Z

8

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

9

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

10

Biomass Allocation Model - Comparing alternative uses of scarce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Allocation Model - Comparing alternative uses of scarce biomass energy resource through estimations of future biomass use for liquid fuels and electricity. Title Biomass...

11

Biomass Model for the Egg Production Method  

E-Print Network (OSTI)

Biomass Model for the Egg Production Method KEITH PARKER' Southwest Fisheries Center, National estimable and constant over the field snmpling interval. Spawning biomass is then estimated as a function are derived and given. The relationship between the spawning biomass of a fish stock and its production

12

Analysis of Two Biomass Gasification/Fuel Cell Scenarios for Small-Scale Power Generation  

DOE Green Energy (OSTI)

Two scenarios were examined for small-scale electricity production from biomass using a gasifier/fuel cell system. In one case, a stand-alone BCL/FERC gasifier is used to produce synthesis gas that is reformed and distributed through a pipeline network to individual phosphoric acid fuel cells. In the second design, the gasifier is integrated with a molten carbonate fuel cell stack and a steam bottoming cycle. In both cases, the gasifiers are fed the same amount of material, with the integrated system producing 4 MW of electricity, and the stand-alone design generating 2 MW of electricity.

Amos, W. A.

1999-01-12T23:59:59.000Z

13

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

NONE

1998-10-20T23:59:59.000Z

14

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

2000-01-28T23:59:59.000Z

15

Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages A United States Regional Study The 4th and 5th grade gifted and talented students in the Project Idea Plus classes at Highlands School and Mill Street School apparently have just received e-mail from Moscow, Russia! Actually, these two classes are involved in a humanities simulation. Check out these hints for facilitating the unit. Most school district curricula include the traditional United States regional study. This project is an innovative way to cover the same material emphasizing engaged learning with the Internet. It is a unit that integrates social studies and language arts as well as thinking skills. The teachers have planned this project so that their classes will be able to interact using telecommunications. This offers an opportunity for students

16

Biomass reburning - Modeling/engineering studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

Sheldon, M.; Marquez, A.; Zamansky, V.

2000-07-27T23:59:59.000Z

17

Modeling Clean and Secure Energy Scenarios for the Indian Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean and Secure Energy Scenarios for the Indian Power Sector in 2030 Title Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030 Publication Type Report...

18

Biomass Reburning - Modeling/Engineering Studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

1998-04-30T23:59:59.000Z

19

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

Vladimir Zamansky; Chris Lindsey

1999-10-29T23:59:59.000Z

20

scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario Summary Student Page Internet Links Index These are the first few days of the 96 - 97 course and a new list of students has been given to the teacher. Twenty-seven new students will form his class, some with familiar surnames. Most of the students in the bilingual 4th & 5th grade need extra help in some of the subject areas of instruction. Some students just came from another country and have very little educational experiences. Most of them lack the Basic English skills to succeed and compete in a regular classroom. The challenge is there! How being so close to the XXI Century, "The Information Era," will the teacher be able to provide his students with, the necessary skills to succeed in the job market of the future? Fortunately, a few months ago the teacher was

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Project RELATIVITY Scenario HELP Index Summary Scenario Reference Student Pages Introduction: Mr. Brian Wegley is part of a talented science staff at Glenbrook South High School. Glenbrook South High School is set in an educationally supportive and affluent community. The physics staff work in teams teaching physics to over 80% of the student population and are constantly looking for ways to use technology to empower students with the ability to apply learned concepts of physics to their lives. With this goal in mind, the physics staff has instituted a second-semester project which is an engaging, student directed project. It currently runs parallel with a traditionally-formatted, highly-structured physics course and is preceded by many smaller, developmental projects during the first semester. The

22

scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

SPACE SPACE Scenario HELP Index Summary Scenario Internet Links Student Pages September The students from 7-2 team at Grissom Junior High have started the school year by sending e-mail messages about themselves to sixth graders at a Chicago public school and high school students in Nashville. They have sent a message about how they are looking forward to sharing ideas on astronomy and short biography about Grissom and themselves. They hope to set up a project with the two schools. Other students want to know if other schools around the world could be contacted. The math teacher says she will try to make arrangements but to see if they could come up with some ideas on ways they could contact other schools themselves. Astronomy is part of the seventh grade science curriculum. This year, the

23

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 ? December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

NONE

1999-01-28T23:59:59.000Z

24

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

25

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

26

Biomass Reburning: Modeling/Engineering Studies  

SciTech Connect

Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

Vladimir M. Zamansky

1998-01-20T23:59:59.000Z

27

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

28

Scenario Modelling: A Holistic Environmental and Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Contact Us Department Contacts Media Contacts Scenario Modelling: A Holistic Environmental and Energy Management Technique for Building Managers Speaker(s): James...

29

H2A Delivery Scenario Model and Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

H2A Delivery Scenario Model H2A Delivery Scenario Model and Analyses Marianne Mintz and Jerry Gillette DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8, 2005 2 Pioneering Science and Technology Office of Science U.S. Department of Energy Topics * Delivery Scenarios - Current status - Future scenarios * Delivery Scenarios model - Approach - Structure - Current status - Results * Pipeline modeling - Approach - Key assumptions - Results * Next Steps 3 Pioneering Science and Technology Office of Science U.S. Department of Energy Delivery Scenarios 4 Pioneering Science and Technology Office of Science U.S. Department of Energy Three-Quarters of the US Population Reside in Urbanized Areas East of the Mississippi there are many large, proximate urban areas. In the West

30

Models of National Energy Systems -focusing on biomass energy  

E-Print Network (OSTI)

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

31

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

Vladimir Zamansky; David Moyeda; Mark Sheldon

2000-04-28T23:59:59.000Z

32

Modular analysis and modelling of risk scenarios with dependencies  

Science Conference Proceedings (OSTI)

The risk analysis of critical infrastructures such as the electric power supply or telecommunications is complicated by the fact that such infrastructures are mutually dependent. We propose a modular approach to the modelling and analysis of risk scenarios ... Keywords: Critical infrastructure, Dependency, Modular risk analysis, Risk scenario, Threat modelling

Gyrd Brndeland; Atle Refsdal; Ketil Stlen

2010-10-01T23:59:59.000Z

33

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

34

Application of CHL model for estimating biomass pyrolysis yield  

Science Conference Proceedings (OSTI)

The pyrolysis of wood biomass represents a valid technique for recovering "green" fuel from residues of forestry and other activities, in agriculture as in industry, where wood and other plant residues are available. Wood biomass is essentially a composite ... Keywords: CHL model, biogas yield, biomass, numerical analysis, pyrolysis, rate estimation

Francesco Marra

2007-12-01T23:59:59.000Z

35

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions  

E-Print Network (OSTI)

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions Weiyuan Zhu, Johan in the atmosphere have led to renewed interest in energy from plant biomass. Surfing the internet or flipping to a series of concerns, apprehensions and challenges presented by a shift to a heavier reliance on biomass

California at Davis, University of

36

ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT  

DOE Green Energy (OSTI)

This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

2000-10-01T23:59:59.000Z

37

Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stri ngent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

Status: Published Citation: Luckow, P; Wise, M; Dooley, J; and Kim S. 2010. Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios. In International Journal of Greenhouse Gas Control, Volume 4, Issue 5, 2010, pp. 865-877. Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting stringent global climate policy targets by the end of the century....

2010-12-31T23:59:59.000Z

38

Scenario Modelling: A Holistic Environmental and Energy Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Modelling: A Holistic Environmental and Energy Management Scenario Modelling: A Holistic Environmental and Energy Management Technique for Building Managers Speaker(s): James O'Donnell Date: September 30, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Vladimir Bazjanac At the operational level of organisations, building managers most commonly evaluate environmental and energy performance. They originate from a variety of technical and non-technical backgrounds with corresponding experiences, knowledge and skill sets. The profile of building managers as established in this work accounts for this diverse variation. Building performance data and information that is typically available for the established profile of building managers is insufficient for optimum operation. This presentaion presents the scenario modelling technique

39

Multiple regression models of the volumetric stem biomass  

Science Conference Proceedings (OSTI)

The development of a simple model was presented for obtaining the volumetric stem biomass of a tropical tree species. To model the volumetric stem biomass, Cinnamomum of family Lauracea was chosen. Mensuration data were collected based on two volumetric ... Keywords: best model, correlation tests, interactions, multiple regression, selection criteria, stem volume, volumetric equations

Noraini Abdullah; Zainodin H. J. Jubok; J. B. Nigel Jonney

2008-07-01T23:59:59.000Z

40

On a numerical model for gasification of biomass materials  

Science Conference Proceedings (OSTI)

In this paper, a thermochemical equilibrium model is used to predict the performance of a downdraft gasifier. Numerical results are shown to be in good agreement with those of the experiments. Different biomass materials are tested using the model and ... Keywords: biomass, gasification, mathematical modeling, renewable energy, thermochemical equilibrium

Mahdi Vaezi; Mohammad Passandideh-Fard; Mohammad Moghiman

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Delivery Model for H2A Analysis: A Spreadsheet Model For Hydrogen Delivery Scenarios  

E-Print Network (OSTI)

FINAL REPORT HYDROGEN DELIVERY MODEL FOR H2AA SPREADSHEET MODEL FOR HYDROGEN DELIVERY SCENARIOS Joan M.Department of Energy Hydrogen, Fuel Cells and Infrastructure

Ogden, Joan

2004-01-01T23:59:59.000Z

42

Hydrogen Delivery Model for H2A Analysis: A Spreadsheet Model for Hydrogen Delivery Scenarios  

E-Print Network (OSTI)

FINAL REPORT HYDROGEN DELIVERY MODEL FOR H2AA SPREADSHEET MODEL FOR HYDROGEN DELIVERY SCENARIOS Joan M.Department of Energy Hydrogen, Fuel Cells and Infrastructure

Ogden, Joan M

2004-01-01T23:59:59.000Z

43

Inflation scenario via the Standard Model Higgs boson and LHC  

E-Print Network (OSTI)

We consider a quantum corrected inflation scenario driven by a generic GUT or Standard Model type particle model whose scalar field playing the role of an inflaton has a strong non-minimal coupling to gravity. We show that currently widely accepted bounds on the Higgs mass falsify the suggestion of the paper arXiv:0710.3755 (where the role of radiative corrections was underestimated) that the Standard Model Higgs boson can serve as the inflaton. However, if the Higgs mass could be raised to $\\sim 230$ GeV, then the Standard Model could generate an inflationary scenario with the spectral index of the primordial perturbation spectrum $n_s\\simeq 0.935$ (barely matching present observational data) and the very low tensor-to-scalar perturbation ratio $r\\simeq 0.0006$.

A. O. Barvinsky; A. Yu. Kamenshchik; A. A. Starobinsky

2008-09-11T23:59:59.000Z

44

Catalytic Esterification of Model Compounds of Biomass Pyrolysis Oil  

Science Conference Proceedings (OSTI)

Biomass pyrolysis oil is a complex mixture containing a wide variety of oxygenated compounds, which results in difficulties in bio-oil upgrading. To gain a clearer understanding of the reaction pathways, seven compounds were chosen to represent biomass ... Keywords: pyrolysis oil, model compounds, catalytic esterification

Zuo-gang Guo; Shu-rong Wang; Ying-ying Zhu

2009-10-01T23:59:59.000Z

45

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

to Hydrogen to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad Elgowainy Argonne National Laboratory Comparison of Delivery Pathways- V1.0 vs. V2.0 2 1 3 i delivery by a Loading, the plant Version 1.0 character zed components for 3 pathways with single mode. conditioning and storage are at or adjacent to Liquid Hydrogen (LH) Truck H2 Production 100 or 1500 kg/d Compressed H2 (CH) Truck H2 Production 3 or 7 kpsi 100 or 1500 kg/d H2 Production Gaseous H2 Pipeline 100 or 1500 kg/d HDSAM V1.0 Estimates Delivery Cost for 3 Pathways 4 H2 H2 1 2 3 H2 Distribution and Ci I. Liquid H2 Distribution: HDSAM V2.0 Simulates Nine Pathways Production Production LH Terminal LH Terminal Production LH Terminal Transmission Transmission Distribution

46

New Model Links Ocean Conditions to Squid Biomass  

E-Print Network (OSTI)

Ocean Conditions to Squid Biomass Baldo Marinovic, Institutewill migrate inshore and their biomass when they do. Since

Marinovic, Baldo

2007-01-01T23:59:59.000Z

47

Technical Manual for the SAM Biomass Power Generation Model  

SciTech Connect

This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

Jorgenson, J.; Gilman, P.; Dobos, A.

2011-09-01T23:59:59.000Z

48

Technical Manual for the SAM Biomass Power Generation Model  

DOE Green Energy (OSTI)

This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

Jorgenson, J.; Gilman, P.; Dobos, A.

2011-09-01T23:59:59.000Z

49

Volumetric stem biomass modelling using multiple regression  

Science Conference Proceedings (OSTI)

This paper presented the development of a simple model for obtaining the stem volume of a tropical tree species, that is, Cinnamomum iners based on the two volumetric equations, namely, the Huber's and Newton's equations. Variables considered during ... Keywords: best model, correlation tests, interactions, multiple regression, selection criteria, stem volume, volumetric equations

Noraini Abdullah; Zainodin Hj. Jubok; J. B. Nigel Jonney

2007-12-01T23:59:59.000Z

50

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-Print Network (OSTI)

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facilitys residue handling challenges and input demands. A number of feedstock, technology, oxidizer and product options are available for gasification along with combinations thereof. The objective of this work is to create a systematic method for optimizing the design of a residual biomass gasification unit. In detail, this work involves development of an optimization superstructure, creation of a biorefining scenario, process simulation, equipment sizing & costing, economic evaluation and optimization. The superstructure accommodates different feedstocks, reactor technologies, syngas cleaning options and final processing options. The criterion for optimization is annual worth. A biorefining scenario for the production of renewable diesel fuel from seed oil is developed; gasification receives the residues from this biorefinery. Availability of Soybeans, Jatropha, Chinese Tallow and woody biomass material is set by land use within a 50-mile radius. Four reactor technologies are considered, based on oxidizer type and operating pressure, along with three syngas cleaning methods and five processing options. Results show that residual gasification is profitable for large-scale biorefineries with the proper configuration. Low-pressure air gasification with filters, water-gas shift and hydrogen separation is the most advantageous combination of technology and product with an annual worth of $9.1 MM and a return on investment of 10.7 percent. Low-pressure air gasification with filters and methanol synthesis is the second most advantageous combination with an annual worth of $9.0 MM. Gasification is more economic for residue processing than combustion or disposal, and it competes well with natural gas-based methanol synthesis. However, it is less economic than steam-methane reforming of natural gas to hydrogen. Carbon dioxide credits contribute to profitability, affecting some configurations more than others. A carbon dioxide credit of $33/t makes the process competitive with conventional oil and gas development. Sensitivity analysis demonstrates a 10 percent change in hydrogen or electricity price results in a change to the optimal configuration of the unit. Accurate assessment of future commodity prices is critical to maximizing profitability.

Georgeson, Adam

2010-12-01T23:59:59.000Z

51

A model for the vacuum pyrolysis of biomass.  

E-Print Network (OSTI)

??Biomass is a significant renewable energy source and much research is currently being done to enable the production of biofuels and chemicals from biomass. This (more)

Rabe, Richardt Coenraad

2005-01-01T23:59:59.000Z

52

ANALYSIS OF BIOMASS HARVEST, HANDLING, AND COMPUTER MODELING.  

E-Print Network (OSTI)

??Biomass materials are currently considered for use in direct combustion systems, and for value added products. The major roadblock associated with implementation of biomass into (more)

Brownell, Douglas

2009-01-01T23:59:59.000Z

53

Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1  

E-Print Network (OSTI)

Modelling of a solar-powered supercritical water biomass gasifier Laurance A Watson1 , John D Pye2 to efficiently gasify biomass would offer one potential source of sustainable hydrocarbons and deliver desirable

54

POEM-PM: an emission model for secondary pollution control scenarios  

Science Conference Proceedings (OSTI)

The paper describes the POEM-PM (POllutant Emission Model for gas and Particulate Matter) emission model design. The model, providing actual and alternative emission scenarios, represents a decision support tool to evaluate emission control strategy ... Keywords: Air pollution control, Emission model, Emission model validation, Multiphase modelling system

Claudio Carnevale; Veronica Gabusi; Marialuisa Volta

2006-03-01T23:59:59.000Z

55

Estimating forest biomass in the USA using generalized allometric models and MODIS land products  

E-Print Network (OSTI)

Estimating forest biomass in the USA using generalized allometric models and MODIS land products 2006; published 11 May 2006. [1] Spatially-distributed forest biomass components are essential to understand carbon cycle and the impact of biomass burning emissions on air quality. We estimated the density

Kuligowski, Bob

56

Modeling Shrimp Biomass and Viral Infection for Production of Biological Countermeasures  

E-Print Network (OSTI)

Modeling Shrimp Biomass and Viral Infection for Production of Biological Countermeasures H. T of large quantities of therapeutic and/or preventative countermeasures. We couple equations for biomass machinery in an existing biomass for the production of a vaccine or antibody by infection using a virus

57

Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First  

E-Print Network (OSTI)

Chapter 10 Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First. In this contribution we discuss four selected example systems related to the thermal conversion of biomass reaction steps, for the biomass gasification process would be of tremendous value to engineers who try

Dean, Anthony M.

58

Multiscale/Multiphysics Modeling of Biomass Thermochemical Processes  

SciTech Connect

Computational problems in simulating biomass thermochemical processes involve coupling processes that span several orders of magnitude in space and time. Computational difficulties arise from the multitude of the problem governing equations, each typically applying over a narrow range of spatiotemporal scales, thus making it necessary to represent the processes as the result of the interaction of multiple physics modules, termed here as multiscale/multiphysics (MSMP) coupling. Predictive simulations for such processes require algorithms that can efficiently integrate the underlying MSMP methods across the scales in order to achieve prescribed accuracy and control the computational cost. In addition, MSMP algorithms must scale to one hundred thousand processors or more in order to effectively harness the new computational resources and accelerate the scientific advances. In this chapter, we discuss the state-of-the-art in modeling the macro-scale phenomena in a biomass pyrolysis reactor along with details of the shortcomings and prospects in improving predictability. We also introduce the various multiphysics modules needed to model thermochemical conversion at lower spatiotemporal scales. Furthermore, we illustrate the need for MSMP coupling for thermochemical processes in biomass and provide an overview of the wavelet-based coupling techniques we have developed recently. In particular, we provide details about the compound wavelet matrix (CWM) and the dynamic CWM (dCWM) methods and show they are highly efficient in transferring information among multiphysics models across multiple temporal and spatial scales. The algorithmic gain is in addition to the parallel spatial scalability from traditional domain decomposition methods. The CWM algorithms are serial in time and limited by the smallest-system time-scales. In order to relax this algorithmic constraint, we have recently coupled time parallel (TP) algorithms to CWM, thus yielding a novel approach termed tpCWM. We present preliminary results from the tpCWM technique, indicating that we can accelerate time-to-solution by 2 to 3-orders of magnitude even on 20-processors and this can potentially constitute a new paradigm for MSMP simulations. If such improvements in simulation capability can be generalized, the tpCWM approach can lead the way to predictive simulations of biomass thermochemical processes.

Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Frantziskonis, G. [University of Arizona

2010-01-01T23:59:59.000Z

59

Emission Scenario Dependency of Precipitation on Global Warming in the MIROC3.2 Model  

Science Conference Proceedings (OSTI)

The precipitation sensitivity per 1 K of global warming in twenty-first-century climate projections is smaller in an emission scenario with larger greenhouse gas concentrations and aerosol emissions, according to the Model for Interdisciplinary ...

Hideo Shiogama; Seita Emori; Kiyoshi Takahashi; Tatsuya Nagashima; Tomoo Ogura; Toru Nozawa; Toshihiko Takemura

2010-05-01T23:59:59.000Z

60

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chemical Sub-models in biomass Jenny Jones, Alan Williams,  

E-Print Network (OSTI)

by liquid-phase processing.3 Thermal depolymerization of biomass can be ach- ieved by pyrolysis. Pyrolysis hydrolysis and pyrolysis can be combined to decompose the maximum amount of biomass to reactive intermediates to pyrolysis alone, suggesting that the choice of technology for biomass deconstruction will likely depend

62

Evaluating a biomass resource: The TVA region-wide biomass resource assessment model  

DOE Green Energy (OSTI)

Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

Downing, M.; Graham, R.L.

1993-12-31T23:59:59.000Z

63

Rip Singularity Scenario and Bouncing Universe in a Chaplygin Gas Dark Energy Model  

E-Print Network (OSTI)

We choose a modified Chaplygin Gas Dark energy model for considering some its cosmological behaviors. In this regards, we study different Rip singularity scenarios and bouncing model of the universe in context of this model. We show that by using suitable parameters can explain some cosmological aspects of the model.

S. Davood Sadatian

2013-09-28T23:59:59.000Z

64

Program on Technology Innovation: An Aspen Plus Model of Biomass Torrefaction  

Science Conference Proceedings (OSTI)

In 2009, the Electric Power Research Institute (EPRI) developed an Aspen Plus model of biomass torrefaction to use as a tool for evaluating different torrefaction process conditions. This report describes the model in detail, as well as the results from the model simulation of five biomass fuels.

2009-12-08T23:59:59.000Z

65

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol enzymatic based process. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areasfeed handling, product recovery and purification, wastewater treatment lignin burner and boiler-turbogenerator, and utilitiesare included. NREL engaged Delta-T Corporation to assist in the process design evaluation, equipment costing, and overall plant integration. The process design and costing for the lignin burner and boiler turbogenerator has been reviewed by Reaction Engineering Inc. and the wastewater treatment by Merrick Company. An overview of both reviews is included here. The purpose of this update was to ensure that the process design and equipment costs were reasonable and consistent with good engineering practice for plants of this type using available technical data. This work has resulted in an economic model that can be used to predict the cost of producing ethanol from cellulosic biomass using this technology if a plant were to be built in the next few years. The model was also extended using technology improvements that are expected to be developed based on the current DOE research plan. Future process designs and cost estimates are given for the years 2005, 2010, and 2015.

Galvez, A.; Ibsen, K.; Majdeski, H.; Ruth, M.; Sheehan, J.; Wooley, R.

1999-07-20T23:59:59.000Z

66

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol enzymatic based process. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment lignin burner and boiler--turbogenerator, and utilities--are included. NREL engaged Delta-T Corporation to assist in the process design evaluation, equipment costing, and overall plant integration. The process design and costing for the lignin burner and boiler turbogenerator has been reviewed by Reaction Engineering Inc. and the wastewater treatment by Merrick and Company. An overview of both reviews is included here. The purpose of this update was to ensure that the process design and equipment costs were reasonable and consistent with good engineering practice for plants of this type using available technical data. This work has resulted in an economic model that can be used to predict the cost of producing ethanol from cellulosic biomass using this technology if a plant were to be built in the next few years. The model was also extended using technology improvements that are expected to be developed based on the current DOE research plan. Future process designs and cost estimates are given for the years 2005, 2010, and 2015.

Wooley, R.; Ruth, M.; Sheehan, J.; Ibsen, K.; Majdeski, H.; Galvez, A.

1999-07-20T23:59:59.000Z

67

Biomass Resource Allocation among Competing End Uses  

DOE Green Energy (OSTI)

The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

2012-05-01T23:59:59.000Z

68

Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model  

SciTech Connect

In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

Blair, N.; Hand, M.; Short, W.; Sullivan, P.

2008-06-01T23:59:59.000Z

69

Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model  

DOE Green Energy (OSTI)

In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

Blair, N.; Hand, M.; Short, W.; Sullivan, P.

2008-06-01T23:59:59.000Z

70

Economic Modeling of Mid-Term Electric Generation Scenarios  

Science Conference Proceedings (OSTI)

The type and stringency of environmental mandates and carbon regulation in the next 10 years continue to be a topic of substantial uncertainty and debate. This study applies a model-based approach for exploring the potential magnitude of shifts in electric generation trends that could occur over a broad range of future environmental regulatory outcomes. Cases examined include a path of stringent environmental regulations, a high cost carbon policy, and their combination. This study is a follow-on modelin...

2010-12-31T23:59:59.000Z

71

Defining assessment projects and scenarios for policy support: Use of ontology in Integrated Assessment and Modelling  

Science Conference Proceedings (OSTI)

Integrated Assessment and Modelling (IAM) provides an interdisciplinary approach to support ex-ante decision-making by combining quantitative models representing different systems and scales into a framework for integrated assessment. Scenarios in IAM ... Keywords: Collaborative approach, Integration, Knowledge management, Multi-disciplinary teams, Policy assessment

S. Janssen; F. Ewert; Hongtao Li; I. N. Athanasiadis; J. J. F. Wien; O. Thrond; M. J. R. Knapen; I. Bezlepkina; J. Alkan-Olsson; A. E. Rizzoli; H. Belhouchette; M. Svensson; M. K. van Ittersum

2009-12-01T23:59:59.000Z

72

Cellulosic ethanol: progress towards a simulation model of lignocellulosic biomass;  

SciTech Connect

A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials, and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. The force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work will enable full simulations of lignocellulose. This work presents a molecular mechanics force field for lignin that is compatible with the CHARMM potential energy function. The parameterization was based on reproducing quantum-mechanically derived target data. Special care was taken to correctly describe the most common lignin linkage: the {beta}-O-4{prime} bond. The partial atomic charge of the oxygen and carbon atoms participating in the linkage were derived by examining interactions between a lignin fragment model compound and a water molecule. Dihedral parameters were obtained by reproducing QM potential energy profiles, with emphasis placed on reproducing accurately the thermally sampled low energy regions. The remaining bond and angle parameters were derived using the AFMM method. In order to test the validity of the force field a simulation of a lignin-dimer crystal was performed. The overall good agreement between the structural properties of the MD run and the experiment provide confidence that the force field can be used in simulation of biomass. The accurate computer simulation of lignin in lignocellulose will present significant challenges. Unlike many biological macromolecules that have been studied with molecular simulation, both the chemical and three-dimensional structures of lignin are relatively poorly researched. However, the present force field provides a basis for constructing molecular models of lignin systems, and, in combination with a range of biophysical measurements, significant progress in determining structures of lignocellulosic biomass can be expected in the near future.

Petridis, Loukas [ORNL; Smith, Jeremy C [ORNL

2008-01-01T23:59:59.000Z

73

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

74

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

75

NREL: Energy Analysis - Models and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

infrastructure analysis model. Biomass Scenario Model (BSM) Determine which supply chain changes would have the greatest potential to accelerate the deployment of biofuels....

76

A Context Model and Reasoning System to improve object trackingin complex scenarios  

Science Conference Proceedings (OSTI)

Tracking algorithms in computer vision usually fail when dealing with complex scenarios. This paper presents an extension of a general tracking system that uses context knowledge to solve tracking issues. The context layer represents knowledge about ... Keywords: Context based reasoning, Knowledge modeling, Video processing, Visual tracking

A. M. Snchez; M. A. Patricio; J. Garca; J. M. Molina

2009-10-01T23:59:59.000Z

77

Open government in policy development: from collaborative scenario texts to formal policy models  

Science Conference Proceedings (OSTI)

The technical capacities of service offers for e-government and e-participation have considerably progressed over the last years. Yet, the principles of good governance are still not well implemented, especially when it comes to policy development. Governments ... Keywords: e-governance, e-government, open collaboration, policy modeling, scenario generation

Maria A. Wimmer

2011-02-01T23:59:59.000Z

78

Psychiatric Consultation Record Retrieval Using Scenario-Based Representation and Multilevel Mixture Model  

Science Conference Proceedings (OSTI)

Psychiatric consultation record retrieval attempts to help people to efficiently and effectively locate the consultation records relevant to their depressive problems. Consultation records can also make people aware that they are not alone, because many ... Keywords: Information retrieval (IR), multilevel mixture model (MMM), natural language processing, scenario-based representation, text mining

Liang-Chih Yu; Chung-Hsien Wu; Fong-Lin Jang

2007-07-01T23:59:59.000Z

79

Evaluating functional displays for hydropower system: model-based guidance of scenario design  

Science Conference Proceedings (OSTI)

We discuss the human role in hydropower system control, noting how it is different from other supervisory control environments and noting the typical shortcomings in current displays provided to hydropower system controllers. We describe steps towards ... Keywords: Evaluation, Functional displays, Human control model, Human supervisory control, Hydropower system control, Scenario design, Situation awareness, Trust

Xilin Li; Penelope Sanderson; Rizah Memisevic; William Wong; Sanjib Choudhury

2006-10-01T23:59:59.000Z

80

Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)  

DOE Green Energy (OSTI)

The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

82

Biomass characterization and reduced order modeling of mixed-feedstock gasification  

E-Print Network (OSTI)

There has been much effort to characterize and model coal for use in combustion and gasification. This work seeks to delineate the differences and similarities between biomass and coal, with emphasis on the state of the ...

Chapman, Alex J. (Alex Jacob)

2011-01-01T23:59:59.000Z

83

Estimation of Shortwave Direct Radiative Forcing of Biomass-Burning Aerosols Using New Angular Models  

Science Conference Proceedings (OSTI)

Using a new angular distribution model (ADM) for smoke aerosols, the instantaneous top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) is calculated for selected days over biomass-burning regions in South America. The visible and ...

Xiang Li; Sundar A. Christopher; Joyce Chou; Ronald M. Welch

2000-12-01T23:59:59.000Z

84

Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER  

Science Conference Proceedings (OSTI)

Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.

Murakami, Masanori [ORNL; Park, Jin Myung [ORNL

2011-01-01T23:59:59.000Z

85

Regional climate change scenarios over the United States produced with a nested regional climate model  

Science Conference Proceedings (OSTI)

Two continuous 31/2-year-long climate simulation over the continental United States are discussed, one of present-day conditions and one for conditions under double carbon dioxide concentration, conducted with a limited area model (LAM) nested in a general circulation model (GCM). The models used are a version of the NCAR Community Climate Model (CCM) at rhomboidal 15 spectral resolution and the climate version of the NCAR/Penn State mesoscale model (MM4) at 60-km gridpoint spacing. For present-day conditions the model temperatures are within 1[degrees]-2[degrees]C of observations except over the Great Lakes region, where temperature is overpredicted. The CCM overpredicts precipitation throughout the continental United States (overall by about 60%) and especially over the West (by up to 300%). The nested MM4 overpredicts precipitation over the West but underpredicts it over the eastern United States. In addition, it produces a large amount of topographically and lake-induced sub-GCM grid-scale detail that compares well with available high-resolution climate data. Overall, the nested MM4 reproduces observed spatial and seasonal precipitation patterns better than the driving CCM. Doubled carbon dioxide-induced temperature change scenarios produced by the two models generally differ by less than several tenths of a degree except over the Great Lakes region where, because of the presence of the lakes in the nested model, the two model scenarios differ by more than one degree. Conversely, precipitation change scenarios from the two model simulations can locally differ in magnitude, sign, spatial, and seasonal detail. These differences are associated with topographical features in the MM4, such as the presence of steep coastal ranges in the western United States. This work illustrates the feasibility of the use of the nested modeling technique for long-term regional climate simulation. 43 refs., 19 figs., 6 tabs.

Giorgi, F.; Brodeur, C.S.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States))

1994-03-01T23:59:59.000Z

86

The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios  

SciTech Connect

Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

2010-10-08T23:59:59.000Z

87

Mod`ele Probit Multivarie Ordinal Dynamique. Application `a l'estimation de la Biomasse d'un  

E-Print Network (OSTI)

Mod`ele Probit Multivari´e Ordinal Dynamique. Application `a l'estimation de la Biomasse d Montpellier Cedex 5, France R´esum´e La biomasse d'un individu ou d'un peuplement est difficilement mesurable- ment, permettent d'´evaluer les biomasses pour diff´erents compartiments (feuille

Paris-Sud XI, Université de

88

Inflationary scenario in the supersymmetric economical 3-3-1 model  

SciTech Connect

We construct the supersymmetric economical 3-3-1 model which contains inflationary scenario and avoids the monopole puzzle. Based on the spontaneous symmetry breaking pattern (with three steps), the F-term inflation is derived. The slow-roll parameters element of and {eta} are calculated. By imposing as experimental five-year WMAP data on the spectral index n, we have derived a constraint on the number of e-folding N{sub Q} to be in the range from 25 to 50. The scenario for large-scale structure formation implied by the model is a mixed scenario for inflation and cosmic string, and the contribution to the CMBR temperature anisotropy depends on the ratio M{sub X}/M{sub Pl}. From the COBE data, we have obtained the constraint on the M{sub X} to be M{sub X} element of [1.22 x 10{sup 16}, 0.98 x 10{sup 17}] GeV. The upper value M{sub X} {approx_equal} 10{sup 17} GeV is a result of the analysis in which the inflationary contribution to the temperature fluctuations measured by the COBE is 90%. The coupling {alpha} varies in the range: 10{sup -7}-10{sup -1}. This value is not so small, and it is a common characteristics of the supersymmetric unified models with the inflationary scenario. The spectral index n is a little bit smaller than 0.98. The SUGRA corrections are slightly different from the previous consideration. When {xi} << 1 and {alpha} lies in the above range, the spectral index gets the value consistent with the experimental five-year WMAP data. Comparing with string theory, one gets {xi} < 10{sup -8}. Numerical analysis shows that {alpha} {approx} 10{sup -6}. To get inflation contribution to the CMBR temperature anisotropy {approx}90%, the mass scale M{sub X} < 3.5 x 10{sup 14} GeV.

Huong, D. T., E-mail: dthuong@iop.vast.ac.vn; Long, H. N., E-mail: hnlong@iop.vast.ac.v [Institute of Physics (Viet Nam)

2010-05-15T23:59:59.000Z

89

Scenario Driven Data Modelling: A Method for Integrating Diverse Sources of Data and Data Streams  

SciTech Connect

Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting massive data streams into usable knowledge.

Griffith, Shelton D [ORNL; Quest, Daniel J [ORNL; Brettin, Thomas S [ORNL; Cottingham, Robert W [ORNL

2011-01-01T23:59:59.000Z

90

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

E-Print Network (OSTI)

of Carbon Dioxide Emissions on GNP Growth: Interpretation ofMcNeil et al Enduse Global Emissions Mitigation Scenarios (Keywords Greenhouse gas emissions, emissions scenarios,

McNeil, Michael A.

2010-01-01T23:59:59.000Z

91

A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization  

SciTech Connect

It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 4060 kg/m3 for lignocellulosic and 200400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

Jaya Shankar Tumuluru; Christopher T. Wright

2010-06-01T23:59:59.000Z

92

Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Market Modeling of Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Paul N. Leiby, David L. Greene and David Bowman Oak Ridge National Laboratory A presentation to the Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Drawing from several other DOE models, HyTrans integrates supply and demand in a dynamic non-linear market model to 2050. * H2A - Hydrogen Production - Hydrogen Delivery * PSAT & ASCM - Fuel economy - 2010/2015 cost & performance goals * ORNL Vehicle Choice Model - Fuel availability - Make & model diversity - Price, fuel economy, etc. * Vehicle Manufacturing Cost Estimates (assisted by OEMs)

93

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS  

E-Print Network (OSTI)

TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS of Mathematics Texas A&M University College Station, TX 77843 ABSTRACT A combustion model using three mixture fractions has been developed for accurate simulation of coal:manure combustion. This model treats coal

Daripa, Prabir

94

Modeling Plot-Level Biomass and Volume Using Airborne and Terrestrial Lidar Measurements  

E-Print Network (OSTI)

The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program provides a diverse selection of data used to assess the status of the nations forested areas using sample locations dispersed throughout the country. Airborne, and more recently, terrestrial lidar (light detection and ranging) systems are capable of producing accurate measurements of individual tree dimensions and also possess the ability to characterize three-dimensional vertical forest structure. This study investigates the potential of airborne and terrestrial scanning lidar systems for modeling forest volume and aboveground biomass on FIA subplots in the Malheur National Forest, eastern Oregon. A methodology for the creation of five airborne lidar metric sets (four point cloud-based and one individual tree based) and four terrestrial lidar metric sets (three height-based and one distance-based) is presented. Metrics were compared to estimates of subplot aboveground biomass and gross volume derived from FIA data using national and regional allometric equations respectively. Simple linear regression models from the airborne lidar data accounted for 15 percent of the variability in subplot biomass and 14 percent of the variability in subplot volume, while multiple linear regression models increased these amounts to 29 percent and 25 percent, respectively. When subplot estimates of biophysical parameters were scaled to the plot-level and compared with plot-level lidar metrics, simple linear regression models were able to account for 60 percent of the variability in biomass and 71 percent of the variation in volume. Terrestrial lidar metrics produced moderate results with simple linear regression models accounting for 41 percent of the variability in biomass and 46 percent of the variability in volume, with multiple linear regression models accounting for 71 percent and 84 percent, respectively. Results show that: (1) larger plot sizes help to mitigate errors and produce better models; and (2) a combination of height-based and distance-based terrestrial lidar metrics has the potential to estimate biomass and volume on FIA subplots.

Sheridan, Ryan D.

2011-05-01T23:59:59.000Z

95

MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION  

SciTech Connect

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

2013-08-01T23:59:59.000Z

96

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

97

Evaluating Potential for Large Releases from CO2 StorageReservoirs: Analogs, Scenarios, and Modeling Needs  

SciTech Connect

While the purpose of geologic storage of CO{sub 2} in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO{sub 2} is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO{sub 2} were to occur at the land surface, especially where CO{sub 2} could accumulate. In this paper, we develop possible scenarios for large CO{sub 2} fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies.

Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang,Chin-Fu; Karimjee, Anhar

2005-09-19T23:59:59.000Z

98

A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases  

E-Print Network (OSTI)

Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

Seager, S; Hu, R

2013-01-01T23:59:59.000Z

99

Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model  

E-Print Network (OSTI)

The expanded growth model is developed to describe accumulation of plant biomass (Mg ha 21) and mineral elements (kg ha 21) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

Allen R. Overman; Richard V. Scholtz Iii

2011-01-01T23:59:59.000Z

100

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PERSPECTIVES Scenarios &  

E-Print Network (OSTI)

Buildings Transport Industry Transformation Power Generation ACT Scenarios 2050 +137% #12;INTERNATIONAL Buildings Transport Industry Transformation Power Generation ACT Scenarios 2050 +137% +6% #12;INTERNATIONAL Baseline 2030 Baseline 2050 Map No CCS Other Buildings Transport Industry Transformation Power Generation

102

Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France and  

E-Print Network (OSTI)

1 Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France Introduction Renewable energy sources such as biomass and biofuels are increasingly being seen as important of biofuels on the final consumption of energy in transport should be 10%. The long-term target is to reduce

Paris-Sud XI, Université de

103

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

104

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

105

Nafus, A., Mcclaran, M. P., Archer, S. R. & Throop, H. L. (2009) Multi-species allometric models predict grass biomass in semi-Desert rangeland. Rangeland Ecology & Management  

E-Print Network (OSTI)

predict grass biomass in semi-Desert rangeland. Rangeland Ecology & Management (In Press) Abstract Multi-species allometric models to predict grass biomass may increase field study efficiency by eliminating the need-species regression models predicting current years' aboveground biomass for 8 common cespitose grass species. Simple

Archer, Steven R.

106

Moving from Status to Trends: Forest Inventory and Analysis Symposium 2012 357GTR-NRS-P-105 BIOMASS MEASUREMENT AND MODELING CHALLENGES  

E-Print Network (OSTI)

Moving from Status to Trends: Forest Inventory and Analysis Symposium 2012 357GTR-NRS-P-105 BIOMASS. MacFarlane, and Aaron R. Weiskittel1 Abstract.--Biomass models for most commercially important, the current models can have poor predictive ability for the proportions of biomass found in major tree

107

Vapor Phase Catalytic Upgrading of Model Biomass-Derived Oxygenate Compounds  

SciTech Connect

When biomass is converted to a liquid bio-oil through pyrolysis, it has a significantly higher oxygen content compared to petroleum fractions. In order to convert the pyrolysis products into infrastructure-compatible fuels, oxygen removal is required. Oxygen removal can be achieved by both hydrotreating (which requires the addition of hydrogen) and decarboxylation or decarbonylation, whereby oxygen is rejected as CO2 and CO, respectively. In the present contribution, a number of catalysts were tested for their activity and selectivity in deoxygenation of model biomass-derived oxygenated compounds (e.g., acetic acid, phenol). Comparison of catalytic activity of materials for different compounds, as well as material characterization results will be discussed. Materials tested will include modified zeolites and supported transition metal catalysts.

Yung, M. M.; Gomez, E.; Kuhn, J. N.

2012-01-01T23:59:59.000Z

108

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

and the available biomass supply in the regions formallyapplied the wind and biomass supply curves that areWork Sensitivity analysis on biomass supply, wind siting

Blair, N.

2010-01-01T23:59:59.000Z

109

Modeling of the reburn process with the use of feedlot biomass as a reburn fuel  

E-Print Network (OSTI)

Coal fired power plants will face many challenges in the near future as new regulations, such as the Clear Sky Act, are being implemented. These regulations impose much stricter limits on NOx emissions and plan to impose limits on mercury emissions from coal fired boilers. At this time no technologies are currently being implemented for control of Hg and this explains the strong interest in this area by the Department of Energy (DOE). Reburn technology is a very promising technology to reduce NOx emissions. Previous experimental research at TAMU reported that Feedlot Biomass (FB) can be a very effective reburn fuel, for reduction of NOx up to 90%-95%; however, little work has been done to model such a process with Feedlot Biomass as reburn fuel. The present work addresses the development of a reburn model to predict NOx and Hg emissions. The model accounts for finite rate of heating of solid fuel particles, mixing with NOx laden hot gases, size distribution, finite gas phase and heterogeneous chemistry, and oxidation and reduction reactions for NOx and Hg. To reduce the computational effort all the reactions, except those involved in mercury oxidation, are modeled using global reactions. Once the model was validated by comparison with experimental findings, extensive parametric studies were performed to evaluate the parameters controlling NOx reduction. From DOE research programs some experimental data regarding the capture of mercury from power plant is available, but currently no experimental data are available for Hg emission with reburn process. This model has shown a very large mercury reduction using biomass as a reburn fuel. The model recommends the following correlations for optimum reduction of NOx: Equivalence Ratio should be above 1.05; mixing time should be below 100ms (especially for biomass); pure air can be used as the carrier gas; the thermal power fraction of the reburner should be between 15% and 25%; residence time should be at least 0.5s and the Surface Mean Diameter (SMD) of the size distribution should be as small as possible, at least below 100 m.

Colmegna, Giacomo

2007-05-01T23:59:59.000Z

110

Investigation of hydrodynamics of a dual fluidized bed biomass steam gasifier using a cold model: The effect of fluidising agent on gasification performance  

E-Print Network (OSTI)

Investigation of hydrodynamics of a dual fluidized bed biomass steam gasifier using a cold model) biomass steam gasifiers are able to produce gas with low tar and high hydrogen contents and have shown a promising potential for converting the biomass to hydrogen-rich syngas. The DFB gasifier system

Hickman, Mark

111

A scenario-based approach towards open collaboration for policy modelling  

Science Conference Proceedings (OSTI)

In the context of current increasing variety, interconnectivity and alteration, many methods and tools for planning and decision-making such as time series analysis and trend extrapolation do not longer work out. Along the demands for good governance ... Keywords: open collaboration, policy development, scenario building, stakeholder involvement

Melanie Bicking; Maria A. Wimmer

2011-08-01T23:59:59.000Z

112

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

the fraction of biomass co-firing or any other multi-fuelSolar Geothermal Wind Biomass Co-Firing Biomass (LFG, IGCC,Biomass Dedicated ? Co-firing Geothermal Solar Wind Total

Blair, N.

2010-01-01T23:59:59.000Z

113

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

114

Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model  

E-Print Network (OSTI)

We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is at the order of the magnitude of $10^{-22} (e-cm)$ ($10^{-20} (e-cm)$) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment.

E. O. Iltan

2005-02-28T23:59:59.000Z

115

Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling  

E-Print Network (OSTI)

. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered of biomass are analogies to coal, the physical properties of the milled biomass are significantly different-treatment and milling or pulverising process used in a particular power plant. Most biomass particles in use

Yan, Yong

116

Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area  

SciTech Connect

This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modeling and illustrate the benefits of the methodology I providing better estimates of predictive uncertiay8, quantitative results for use in assessing risk, and an improved understanding of the system behavior and the limitations of the models.

Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

2007-07-30T23:59:59.000Z

117

Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts  

Science Conference Proceedings (OSTI)

Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCD of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.

Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.; Sturgeon, M.; Katahira, R.; Beckham, G. T.

2013-01-01T23:59:59.000Z

118

Analysis of market penetration scenarios of clean coal technologies in China using the LLNL China Energy Model  

SciTech Connect

This paper presents the results of an analysis of the market penetration of Clean Coal Technologies in the electric utility market in China. The analysis is based on a model of the Chinese energy system developed at Lawrence Livermore National Laboratory. Under this model, the market penetration of a technology depends on the relative prices of all technologies in a market. The model assumes that for each technology there is a distribution of effective prices to the consumers in the market place. The prices for each technology computed in the model are assumed to be the means of these distributions: sometime the effective price is greater than this and sometimes it is less. Thus even a relatively expensive technology may cost less than its competitors in a fraction of the transactions. Using several scenarios about the possible dispersion of prices, we estimate the market share of CCTs over the next 50 years. We find that some CCTs penetrate under all scenarios, but the more expensive ones only show significant penetration when larger values of price dispersion are assumed. Generally the penetration of the CCTs is 15% or less of the market by 2020. However, advanced pulverized coal does exceed 15% in some cases.

Lamont, A

1998-08-17T23:59:59.000Z

119

Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols  

SciTech Connect

The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction.

Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E. [Michigan Univ., Ann Arbor, MI (United States)

1997-09-01T23:59:59.000Z

120

MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS  

DOE Green Energy (OSTI)

It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.

James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Rare B{sub (s)} decays in the standard model and in a scenario with two universal extra dimensions  

SciTech Connect

I consider the exclusive B{yields}K*{gamma}, B{yields}K*{sub 2}{gamma}, B{sub s}{yields}{phi}{gamma} and B{yields}K{eta}{sup ( Prime )}{gamma} radiative decays in the Standard Model and in a scenario with two universal extra dimensions compactified on a chiral square. Computed branching fractions depend on 1/R, the size of the extra dimensions, so that comparison with available data allows to put bounds on such a parameter. The most stringent bound comes from the mode B*{sup 0}{yields}K*{sup 0}{gamma} and reads: 1/R > 710 GeV.

Biancofiore, Pietro [Dipartimento di Fisica, Universita di Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari (Italy)

2012-10-23T23:59:59.000Z

122

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

3 and an increase in biomass fuel prices. Increased biomassin an increase in biomass fuel prices. Round 1 ComparisonMore biomass, less wind 75% lower REC price 50% lower

Blair, N.

2010-01-01T23:59:59.000Z

123

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

consisted of wind, solar (PV & thermal), biomass (includingof cofiring), and geothermal Solar PV and biomass used on-rmal Biomass (All Type s) Solar (PV & The rmal- Ele ctric)

Blair, N.

2010-01-01T23:59:59.000Z

124

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

eligible hydropower, landfill gas, and municipal solidgeothermal, biomass, landfill gas, solar, ocean, and theCo-Fired Biomass Landfill Gas Solar Ocean Existing (2004) Y

Blair, N.

2010-01-01T23:59:59.000Z

125

Catalytic Fast Pyrolysis of Furan Over Zsm-5 Catalysts: A Model Biomass Conversion Reaction.  

E-Print Network (OSTI)

??Due to its low cost and availability, lignocellulosic biomass is receiving significant attention worldwide as a feedstock for renewable liquid bio-fuels. We have recently shown (more)

Cheng, Yu-Ting

2012-01-01T23:59:59.000Z

126

Biomass electricity plant allocation through non-linear modeling and mixed integer optimization.  

E-Print Network (OSTI)

?? Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This dissertation uses (more)

Smith, Robert Kennedy

2012-01-01T23:59:59.000Z

127

A Generalized Biomass Pyrolysis Model Based on Superimposed Cellulose, IIemi-CCIIU1OSC and Lignin Kinetics  

E-Print Network (OSTI)

this paper is to present a model for the numerical simulation of macro-particle of general of the is to predict pyrolysis yields associated with "typical" biomass samples. Potential alterations necessary to account for mineral and moisture content pressure arc postponed for future work. A ncw based on superimposed CC1IU1OSC,

R. S. Miller; J. Bellan; I. Ignin Kinetics; J. Bj. An; Jd Iyqmlsion; Greek Syqbols

1997-01-01T23:59:59.000Z

128

Alternative scenarios of green consumption in Italy: An empirically grounded model  

Science Conference Proceedings (OSTI)

Any transition towards a more environmentally sustainable world will strongly depend on people's willingness to adopt the best available practices. We present here the Consumption Italy (CITA) model, an empirically grounded agent-based model designed ... Keywords: Agent-based-modelling, Carbon footprint, Environmental policies, Household consumption

Giangiacomo Bravo, Elena Vallino, Alessandro K. Cerutti, Maria Beatrice Pairotti

2013-09-01T23:59:59.000Z

129

"Optimization of Zero Length Chromatographic System and Measuring Properties of Model Compounds from Biomass Pyrolysis"  

E-Print Network (OSTI)

on alternatives for fossil derived liquid transportation fuels. Biomass is considered a promising alternative due to its abundance and renewability. Various products from different biomass sources have been proposed interesting, second generation transportation fuel is pyrolysis oil, obtained by flash pyrolysis

Mountziaris, T. J.

130

Three-dimensional image-based modelling of linear features for plant biomass estimation  

Science Conference Proceedings (OSTI)

Biomass estimation is important for biological research and agricultural management. Low-cost two-dimensional 2D computer vision has been applied to non-contact biomass estimation. However, the rapid increase of computing power has enabled the use of ...

RanNisim Lati, Alex Manevich, Sagi Filin

2013-09-01T23:59:59.000Z

131

NQAATechnical Memorandum NMFS BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES  

E-Print Network (OSTI)

NQAATechnical Memorandum NMFS APRIL BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES FORWASHINGTON corrpletsformalreview,editorialamtrd,ordetailedediting. APRIL 1990 BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES rockfish (S.jordani). A biomass-based delay- difference model with knife-edge recruitment appeared

132

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network (OSTI)

New regulations like the Clean Air Interstate Rule (CAIR) will pose greater challenges for Coal fired power plants with regards to pollution reduction. These new regulations plan to impose stricter limits on NOX reduction. The current regulations by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously at the Coal and Biomass energy lab at Texas A&M reported that dairy biomass can be an effective Reburn fuel with NOX reduction of up to 95%; however little work has been done to model such a process with Feedlot Biomass as a blend with the main burner fuel. The present work concerns with development of a zero dimensional for a low NOx burner (LNB) model in order to predict NOX emissions while firing a blend of Coal and dairy biomass. Two models were developed. Model I assumes that the main burner fuel is completely oxidized to CO,CO2,H20 and fuel bound nitrogen is released as HCN, NH3, N2; these partially burnt product mixes with tertiary air, undergoes chemical reactions specified by kinetics and burns to complete combustion. Model II assumes that the main burner solid fuel along with primary and secondary air mixes gradually with recirculated gases, burn partially and the products from the main burner include partially burnt solid particles and fuel bound nitrogen partially converted to N2, HCN and NH3. These products mix gradually with tertiary air, undergo further oxidation-reduction reactions in order to complete the combustion. The results are based on model I. Results from the model were compared with experimental findings to validate it. Results from the model recommend the following conditions for optimal reduction of NOx: Equivalence Ratio should be above 0.95; mixing time should be below 100ms. Based on Model I, results indicate that increasing percentage of dairy biomass in the blend increases the NOx formation due to the assumption that fuel N compounds ( HCN, NH3) do not undergo oxidation in the main burner zone. Thus it is suggested that model II must be adopted in the future work.

Uggini, Hari

2012-05-01T23:59:59.000Z

133

An error model for inter-vehicle communications in highway scenarios at 5.9GHz  

Science Conference Proceedings (OSTI)

The design and evaluation of Inter-Vehicle Communication (IVC) protocols rely much on the accurate and efficient computational simulations. For simulations of Medium Access Control (MAC) and higher layers, the modeling work of underlying Physical layer ... Keywords: DSRC, IEEE 802.11p, ITS, inter-vehicle communications, packet error ratio, wireless channel model

Yunpeng Zang; Lothar Stibor; Georgios Orfanos; Shumin Guo; Hans-Juergen Reumerman

2005-10-01T23:59:59.000Z

134

Regional Climate Change Scenarios over the United States Produced with a Nested Regional Climate Model  

Science Conference Proceedings (OSTI)

In this paper two continuous 3-year-long climate simulations over the continental United States are discussed, one for present-day conditions and one for conditions under double carbon dioxide concentration, conducted with a limited area model (...

Filippo Giorgi; Christine Shields Brodeur; Gary T. Bates

1994-03-01T23:59:59.000Z

135

DOE Hydrogen Analysis Repository: H2A Delivery Scenario Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis Model (HDSAM) Project Summary Full Title: H2A Delivery Scenario Analysis Model (HDSAM) Project ID: 218 Principal Investigator: Marianne Mintz Keywords: Models;...

136

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network (OSTI)

. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry but originates below from the neighboring loops. The initial heating of the solar wind plasma is achieved, Coronal Expansion and Solar Wind (Springer-Verlag, Heidelberg, 1972). 8. E. Leer, T. E. Holzer, Solar Phys

137

Biofuel and Bioenergy implementation scenarios  

E-Print Network (OSTI)

Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

138

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

Science Conference Proceedings (OSTI)

This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

2009-05-29T23:59:59.000Z

139

Quantifying the Value of Hydropower in the Electric Grid: Modeling Results for Future Scenarios  

Science Conference Proceedings (OSTI)

Work reported in this Technical Report is part of a larger study that is made up of multiple components and intends to utilize and enhance tools that can value hydropower assets in a changing electric grid. The studys main objective is to develop a methodology to facilitate improved valuation and resource planning for pumped storage and conventional hydropower projects in the future electric transmission grid.This report covers Modeling Results for Future Electricity Market ...

2012-12-31T23:59:59.000Z

140

Modeling the coupled effects of heat transfer. thermochemistry, and kinetics during biomass torrefaction  

E-Print Network (OSTI)

Torrefaction is a thermal pretreatment process which improves the energy density, storage, grinding, and handling characteristics of raw biomass. Research efforts to date have focused on empirical measurements of the fuel ...

Bates, Richard Burton

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

142

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

143

BIOMASS-TO-ENERGY FEASIBILITY STUDY  

DOE Green Energy (OSTI)

The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

Cecil T. Massie

2002-09-03T23:59:59.000Z

144

Modeling Simulation Of Pyrolysis Of Biomass: Effect Of Thermal Conductivity, Reactor Temperature And Particle Size On Product Concentrations  

E-Print Network (OSTI)

The simultaneous chemical kinetics and heat transfer model is used to predict the effects of the most important physical and thermal properties (thermal conductivity, reactor temperature and particle size) of the feedstock on the convective-radiant pyrolysis of biomass fuels. The effects of these parameters have been analyzed for different geometries such as slab, cylinder and sphere. Finite difference method is employed for solving heat transfer model equation while Runge-Kutta 4 th order method is used for solving chemical kinetics model equations. Simulations are carried out for equivalent radius ranging from 0.0000125 m to 0.02 m, and temperature ranging from 303 K to 2100 K.

Chaurasia And Babu; A. S. Chaurasia; B. V. Babu

2003-01-01T23:59:59.000Z

145

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

146

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

147

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

148

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

149

The Influence on Climate Change of Differing Scenarios for Future Development Analyzed Using the MIT Integrated Global System Model  

E-Print Network (OSTI)

A wide variety of scenarios for future development have played significant roles in climate policy discussions. This paper presents projections of greenhouse gas (GHG) concentrations, sea level rise due to thermal expansion ...

Prinn, Ronald G.

150

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

chains and emission factors for the generation, transmission and distribution portions of the electricityAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

151

Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies  

Science Conference Proceedings (OSTI)

The MC2CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas ...

M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

1998-10-01T23:59:59.000Z

152

Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development  

Science Conference Proceedings (OSTI)

Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

2010-08-01T23:59:59.000Z

153

Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development  

DOE Green Energy (OSTI)

Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200230C and 270280C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 251000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

2010-08-01T23:59:59.000Z

154

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

155

A review of scenario generation methods  

Science Conference Proceedings (OSTI)

Stochastic programming models provide a powerful paradigm for decision making under uncertainty. In these models the uncertainties are captured by scenario generation and so are crucial to the quality of solutions obtained. Presently there do not exist ... Keywords: decision making, scenario generation, scenarios, stochastic optimisation, stochastic programming, uncertainty

Sovan Mitra; Nico Di Domenica

2010-12-01T23:59:59.000Z

156

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

DOE Green Energy (OSTI)

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

157

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

SciTech Connect

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

158

Rooftop Photovoltaics Market Penetration Scenarios  

DOE Green Energy (OSTI)

The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

2008-02-01T23:59:59.000Z

159

Modeling Tomorrow's Biorefinery - the NREL Biochemical Pilot Plant; Biomass Program (Brochure)  

NLE Websites -- All DOE Office Websites (Extended Search)

great ideas into viable solutions great ideas into viable solutions requires the ability to test theories under real world conditions. Few companies have the resources to build pilot-scale processing plants to test their ideas. The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) helps by sharing its world-class equipment and expertise with industry and other research organizations through a variety of contractual arrangements. At the NREL campus in Golden, Colo., researchers use state-of-the-art laboratories to develop and improve the technologies that convert biomass to fuels, chemicals, and materials. One of the most important tools available to biomass researchers is the Biochemical Pilot Plant housed in the Alternative Fuels User Facility (AFUF). In this facility,

160

A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe  

E-Print Network (OSTI)

This work is motivated by the work of Kim et al (2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy inter- acting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this inter- action. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolu- tion of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.

Rahul Ghosh; Surajit Chattopadhyay; Ujjal Debnath

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2003-04-30T23:59:59.000Z

162

Regional load-curve models: scenario and forecast using the DRI model. Final report. [Forecasts of electric power loads in 32 US regions  

SciTech Connect

Regional load curve models were constructed for 32 regions that have been created by aggregating hourly load data from 146 electric utilities. These utilities supply approximately 95% of the electricity consumed in the continental US. The 32 models forecast electricity demands by hour, 8784 regional load forecasts per year. Because projections are made for each hour in the year, contemporaneous forecasts are available for peak demands, megawatt hour demands, load factors, load duration curves, and typical load shapes. The forecast scenario is described and documented in this volume and the forecast resulting from the use of this scenario is presented. The highlights of this forecast are two observations: (1) peak demands will once again become winter phenomena. By the year 2000, 18 of the 32 regions peak in a winter month as compared with the 8 winter peaking regions in 1977. In the heating season, the model is responsive to the number of heating degree-hours, the penetration rate of electric heating equipment, and the rate at which this space conditioning equipment is utilized, which itself is functionally dependent on the level of real electricity prices and real incomes. Thus, as the penetration rate of electric heating equipment increases, winter season demands grow more rapidly than demands in other seasons and peaks begin to appear in winter months; and (2) load factors begin to increase in the forecast, reversing the trend which began in the early 1960s. Nationally, load factors do not leap upwards, instead they increase gradually from .609 in 1977 to .629 in the year 2000. The improvement is more consequential in some regions, with load factors increasing, at times, by .10 or more. In some regions, load factors continue to decline.

Platt, H.D.

1981-08-01T23:59:59.000Z

163

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

164

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

COVERED (From - To) Renewable Energy and Efficiency Modelinga Common High Renewable Energy Penetration Scenario in 2025OnLocation) National Renewable Energy Laboratory 1617 Cole

Blair, N.

2010-01-01T23:59:59.000Z

165

IPCC Special Report on Emissions Scenarios  

Office of Scientific and Technical Information (OSTI)

IPCC Special Report on Emissions Scenarios IPCC Special Report on Emissions Scenarios Get Javascript Other reports in this collection Special Report on Emissions Scenarios Foreword Preface Summary for policymakers Technical Summary Chapters Chapter 1: Background and Overview Chapter 2: An Overview of the Scenario Literature Chapter 3: Scenario Driving Forces Chapter 4: An Overview of Scenarios Chapter 5: Emission Scenarios Chapter 6: Summary Discussions and Recommendations Appendices index I: SRES Terms of Reference: New IPCC Emission Scenarios II: SRES Writing Team and SRES Reviewers III: Definition of SRES World Region IV: Six Modeling Approaches V: Database Description VI: Open Process VII Data tables VIII Acronyms and Abbreviations IX Chemical Symbols X Units XI Glossary of Terms XII List of Major IPCC Reports

166

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

167

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

168

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

169

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

170

Assessment of effectiveness of geologic isolation systems. A conceptual simulation model for release scenario analysis of a hypothetical site in Columbia Plateau Basalts  

SciTech Connect

This report is a status report for an evolving methodology for release scenario development for underground nuclear waste repositories. As such, it is intended for use as a reference point and a preliminary description of an evolving geoscience methodology. When completed this methodology will be used as a tool in developing disruptive release scenarios for analyzing the long-term safety of geological nuclear waste repositories. While a basalt environment is used as an example, this report is not intended to reflect an actual site safety assessment for a repository in a media. It is rather intended to present a methodology system framework and to provide discussions of the geological phenomena and parameters that must be addressed in order to develop a methodology for potential release scenarios. It is also important to note that the phenomena, their interrelationships, and their relative importance along with the overall current structure of the model will change as new geological information is gathered through additional peer review, geotechnical input, site specific field work, and related research efforts.

Stottlemyre, J.A.; Petrie, G.M.; Benson, G.L.; Zellmer, J.T.

1981-01-01T23:59:59.000Z

171

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

172

A component based model for the prediction of the product yields of the pyrolysis of a biomass particle.  

E-Print Network (OSTI)

??Pyrolysis of biomass can produce several useful, renewable products: biochar for soil amendment and long-term carbon sequestration; tars for chemicals and biofuels; and syngas as (more)

Eberly, Brian C.

2010-01-01T23:59:59.000Z

173

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

174

Use of a predictive model for the impact of cofiring coal/biomass blends on slagging and fouling propensity  

Science Conference Proceedings (OSTI)

The paper describes an investigation of slagging and fouling effects when cofiring coal/biomass blends by using a predictive model for large utility boilers. This model is based on the use a zone computational method to determine the midsection temperature profile throughout a boiler, coupled with a thermo-chemical model, to define and assess the risk of elevated slagging and fouling levels during cofiring of solid fuels. The application of this prediction tool was made for a 618 MW thermal wall-fired pulverized coal boiler, cofired with a typical medium volatile bituminous coal and two substitute fuels, sewage sludge and sawdust. Associated changes in boiler efficiency as well as various heat transfer and thermodynamic parameters of the system were analyzed with slagging and fouling effects for different cofiring ratios. The results of the modeling revealed that, for increased cofiring of sewage sludge, an elevated risk of slagging and high-temperature fouling occurred, in complete contrast to the effects occurring with the utilization of sawdust as a substitute fuel. 30 refs., 9 figs.,1 tab.

Piotr Plaza; Anthony J. Griffiths; Nick Syred; Thomas Rees-Gralton [Cardiff University, Cardiff (United Kingdom). Centre for Research in Energy

2009-07-15T23:59:59.000Z

175

Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios  

Science Conference Proceedings (OSTI)

We compare Community Earth System Model results to marine observations for the 1990s, and examine climate change impacts on biogeochemistry at the end of the 21st century under two future scenarios (Representative Concentration Pathways, RCP 4.5 ...

J. Keith Moore; Keith Lindsay; Scott C. Doney; Matthew C. Long; Kazuhiro Misumi

176

Comments on climate change scenario development  

Science Conference Proceedings (OSTI)

A short review is presented of progress in climate change scenario development. Sources of uncertainty are discussed. Critical assessment of climate models for their veracity in describing the present climate is considered essential. Methods of deriving ... Keywords: Climate change, Global climate models, Greenhouse effect, Scenarios

A. B. Pittock

1995-05-01T23:59:59.000Z

177

Optimization of a photobioreactor biomass production using natural light  

E-Print Network (OSTI)

We address the question of optimization of the biomass long term productivity in the framework of microalgal biomass production in photobioreactors under the influence of day/night cycles. For that, we propose a simple bioreactor model accounting for light attenuation in the reactor due to biomass density and obtain the control law that optimizes productivity over a single day through the application of Pontryagin's maximum principle, with the dilution rate being the control. An important constraint on the obtained solution is that the biomass in the reactor should be at the same level at the beginning and at the end of the day so that the same control can be applied everyday and optimizes the long term productivity. Several scenarios are possible depending on the microalgae's strain parameters and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang control or, if the growth rate of the algae is very strong in the presence of light, constant maximal dilution. A bifurcation diagr...

Grognard, Frdric; Pierre, Masci; Bernard, Olivier

2010-01-01T23:59:59.000Z

178

Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems  

Science Conference Proceedings (OSTI)

This paper presents a cost modeling approach and the economic feasibility for selected plant configurations operating under three modes: air gasification

Rajesh S. Kempegowda; yvind Skreiberg; Khanh-Quang Tran

2012-01-01T23:59:59.000Z

179

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

180

Air Pollution Project: Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary HELP Index Summary Scenario Internet Links Student Pages SubjectContent Area: ScienceChemistry, Environment - Air Pollution Target Audience: High school chemistry...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

COMMISSION SCENARIO ANALYSES OF  

E-Print Network (OSTI)

high penetrations of energy efficiency measures and renewable energy generation (both rooftop solar efficiency, renewable generation, solar photo voltaic, greenhouse gases, power generation, scenario analysis

182

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

183

Abrupt Climate Change Scenario Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Abrupt Climate Change Scenario Technologies Abrupt Climate Change Scenario Technologies Speaker(s): Tina Kaarsberg Date: April 27, 2006 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jayant Sathaye This talk examines the potential for several types of technologies that hitherto have not been a focus of U.S. climate technology planning. It was inspired by the latest climate science data and modeling which suggest that an abrupt warming (+10oF in 10 years), is an increasingly plausible scenario. The technologies described in the session rapidly reduce the risk of climate change and increase our ability to respond quickly. All of the technologies also have other public benefits. (Summary follows): For more information about this seminar, please contact: JoAnne Lambert 510.486.4835, or send e-mail to JMLambert@lbl.gov

184

Scenario Evaluation, Regionalization & Analysis (SERA) | Open Energy  

Open Energy Info (EERE)

Scenario Evaluation, Regionalization & Analysis (SERA) Scenario Evaluation, Regionalization & Analysis (SERA) Jump to: navigation, search Tool Summary Name: Scenario Evaluation, Regionalization & Analysis (SERA) Agency/Company /Organization: National Renewable Energy Laboratory Scenario Evaluation, Regionalization & Analysis (SERA) Screenshot Logo: Scenario Evaluation, Regionalization & Analysis (SERA) SERA (Scenario Evaluation, Regionalization & Analysis) is a geospatially and temporally oriented infrastructure analysis model that determines the optimal production and delivery scenarios for hydrogen, given resource availability and technology cost. Given annual H2 demands on a city-by-city basis, forecasts of feedstock costs, and a catalog of available hydrogen production and transportation technologies, the model generates

185

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

186

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

187

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

188

The reduction of plankton biomass induced by mesoscale stirring: a modelling study in the Benguela upwelling  

E-Print Network (OSTI)

Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal stirring in upwelling areas. In order to better understand this phenomenon, we consider a system of oceanic flow from the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We compute horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection and latitudinal difference in Primary Production, also mediated by the flow, seem to be the dominant processes involved. We estimate that mesoscale processes are responsible for 30 to 50% of the offshore fluxes of biological tracers. In the northern area, other factors not taken into account in our simulation are influencing the ecosystem. We suggest explanations for these results in the context of studies performed in other eastern boundary upwelling areas.

Ismael Hernndez-Carrasco; Vincent Rossi; Emilio Hernndez-Garca; Veronique Garon; Cristbal Lpez

2011-12-16T23:59:59.000Z

189

The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling  

E-Print Network (OSTI)

Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal stirring in upwelling areas. In order to better understand this phenomenon, we consider a system of oceanic flow from the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We compute horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection and latitudinal difference in Primary Production, also mediated by the flow, seem to be the dominant processes involved. We estimate that mesoscale processes are responsible for 30 to 50% of the offshore fluxes of biological tracers. In the northern area, other factors not taken into account in our simulation are influencing the ecosystem. We suggest explanations for these results in the context of studies performed in other eastern boundary upwelling areas.

Ismael Hernndez-Carrasco; Vincent Rossi; Emilio Hernndez-Garca; Veronique Garon; Cristbal Lpez

2011-12-16T23:59:59.000Z

190

Synthesizing hierarchical state machines from expressive scenario descriptions  

Science Conference Proceedings (OSTI)

There are many examples in the literature of algorithms for synthesizing state machines from scenario-based models. The motivation for these is to automate the transition from scenario-based requirements to early behavioral design models. To date, however, ... Keywords: State machine synthesis, interaction overview diagrams, scenario-based requirements, software modeling

Jon Whittle; Praveen K. Jayaraman

2010-01-01T23:59:59.000Z

191

An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions  

SciTech Connect

Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in row crop production are also investigated.

David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

2012-07-01T23:59:59.000Z

192

Modeling the Vulnerability of an Urban Groundwater System due to the Combined Impacts of Climate Change and Management Scenarios  

Science Conference Proceedings (OSTI)

Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the ...

M. Sekhar; M. Shindekar; Sat K. Tomer; P. Goswami

2013-08-01T23:59:59.000Z

193

Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios  

Science Conference Proceedings (OSTI)

Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special ...

Thomas R. Knutson; Joseph J. Sirutis; Gabriel A. Vecchi; Stephen Garner; Ming Zhao; Hyeong-Seog Kim; Morris Bender; Robert E. Tuleya; Isaac M. Held; Gabriele Villarini

2013-09-01T23:59:59.000Z

194

A Regional-Scale GIS-Based Modeling System for Evaluating the Potential Costs and Supplies of Biomass from Biomass Crops  

DOE Green Energy (OSTI)

A GIS-based modeling system was developed for analyzing the geographic variation in potential bioenergy feedstock supplies and optimal locations for siting bioenergy facilities. The modeling system is designed for analyzing individual US states but could readily be adapted to any geographic region.

Graham, R.L.; English, B.C.; Noon, C.E.; Liu, W.; Daly, M.J.; Jager, H.I.

1996-06-24T23:59:59.000Z

195

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

196

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

197

Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios  

Science Conference Proceedings (OSTI)

Twenty-first century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multi-model ensembles using theCMIP3/A1B (Late 21st century) and CMIP5/RCP4.5 (Early and Late 21st ...

Thomas R. Knutson; Joseph J. Sirutis; Gabriel A. Vecchi; Steven Garner; Ming Zhao; Hyeong-Seog Kim; Morris Bender; Robert E. Tuleya; Isaac M. Held; Gabriele Villarini

198

Modeling the vulnerability of an urban groundwater system due to the combined impacts of climate change and management scenarios  

Science Conference Proceedings (OSTI)

Climate change impact on a groundwater dependent small urban town has been investigated in the semi-arid hard rock aquifer in South India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the ...

M. Sekhar; M. Shindekar; Sat K. Tomer; P. Goswami

199

Searches for the Higgs boson in Minimal Supersymmetric CP-conserving and CP-violating Standard Model scenarios at LEP  

E-Print Network (OSTI)

It is important to study extended models containing more than one physical Higgs boson in the spectrum. In particular, Two Higgs Doublet Models (2HDMs) are attractive extensions of the SM, predicting new phenomena with the fewest new parameters. The Higgs sector in the Minimal Supersymmetric extension of the SM (MSSM) is a 2HDM itself. The neutral Higgs searches performed at LEP are showing no evidence of the presence of a signal and have therefore been interpreted in the context of 2HDMs. Depending on the model considered exclusion of large regions of the parameter space can be obtained, but the existence of the lightest Higgs boson with masses lower than 90 GeV is not ruled out in all models by LEP. In the MSSM at least one of the neutral Higgs bosons is predicted to have its mass close to the electroweak energy scale; when radiative corrections are included, this mass should be less than about 140 GeV. This prediction provides a strong motivation for searches at present and future colliders.

Pamela Ferrari

2005-05-12T23:59:59.000Z

200

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model  

SciTech Connect

We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than the difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.

Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg; Bauer, Susanne E.; Koch, Dorothy M.; Unger, Nadine; Menon, Surabi; Miller, Ron L.; Schmidt, Gavin A.; Streets, David G.

2007-03-26T23:59:59.000Z

202

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

203

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant  

SciTech Connect

This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

None

1998-10-30T23:59:59.000Z

205

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

206

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

207

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

208

Problem-orientable numerical algorithm for modelling multi-dimensional radiative MHD flows in astrophysics -- the hierarchical solution scenario  

E-Print Network (OSTI)

We present a hierarchical approach for enhancing the robustness of numerical solvers for modelling radiative MHD flows in multi-dimensions. This approach is based on clustering the entries of the global Jacobian in a hierarchical manner that enables employing a variety of solution procedures ranging from a purely explicit time-stepping up to fully implicit schemes. A gradual coupling of the radiative MHD equation with the radiative transfer equation in higher dimensions is possible. Using this approach, it is possible to follow the evolution of strongly time-dependent flows with low/high accuracies and with efficiency comparable to explicit methods, as well as searching quasi-stationary solutions for highly viscous flows. In particular, it is shown that the hierarchical approach is capable of modelling the formation of jets in active galactic nuclei and reproduce the corresponding spectral energy distribution with a reasonable accuracy.

A. A. Hujeirat

2004-10-26T23:59:59.000Z

209

Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development  

Science Conference Proceedings (OSTI)

A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications.

Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

2011-08-01T23:59:59.000Z

210

Liberia-NREL Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Liberia-NREL Biomass Resource Assessment Liberia-NREL Biomass Resource Assessment Jump to: navigation, search Logo: Liberia Biomass Resource Assessment Name Liberia Biomass Resource Assessment Agency/Company /Organization National Renewable Energy Laboratory Partner U.S. Agency for International Development Sector Energy Focus Area Biomass Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/docs/fy09o Country Liberia Western Africa References Assessment of Biomass Resources in Liberia [1] Abstract This study was conducted to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels

211

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

SciTech Connect

This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

2010-11-01T23:59:59.000Z

212

Empirically Downscaled Multimodel Ensemble Temperature and Precipitation Scenarios for Norway  

Science Conference Proceedings (OSTI)

A number of different global climate model scenarios are used in order to infer local climate scenarios for various locations in Norway. Results from empirically downscaled multimodel ensembles of temperature and precipitation for the period 2000...

Rasmus E. Benestad

2002-11-01T23:59:59.000Z

213

Workforce management strategies in a disaster scenario.  

Science Conference Proceedings (OSTI)

A model of the repair operations of the voice telecommunications network is used to study labor management strategies under a disaster scenario where the workforce is overwhelmed. The model incorporates overtime and fatigue functions and optimizes the deployment of the workforce based on the cost of the recovery and the time it takes to recover. The analysis shows that the current practices employed in workforce management in a disaster scenario are not optimal and more strategic deployment of that workforce is beneficial.

Kelic, Andjelka; Turk, Adam L.

2008-08-01T23:59:59.000Z

214

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

215

The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks  

E-Print Network (OSTI)

Comprehensive analyses are conducted of the holistic farm production-harvesting-transporting-pre-refinery storage supply chain paradigm which represents the totality of important issues affecting the conversion facility front-gate costs of delivered biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a hypothetical 30-million gallon conversion facility with high-energy sorghum (HES) and switchgrass (SG) cellulosic biomass feedstock for a 12-month period on a sustainable basis. A corporate biomass feedstock farming entity business organization structure is assumed. Because SG acreage was constrained in the analysis, both HES and SG are in the optimal baseline solution, with the logistics supply chain costs (to the front gate of the conversion facility) totaling $53.60 million on 36,845 acres of HES and 37,225 acres of SG (total farm acreage is 187,760 acres, including HES rotation acres), i.e., $723.67 per harvested acre, $1.7867 per gallon of biofuel produced not including any conversion costs, and $134.01 per dry ton of the requisite 400,000 tons of biomass feedstock. Several sensitivity scenario analyses were conducted, revealing a potential range in these estimates of $84.75-$261.52 per dry ton of biomass feedstock and $1.1300-$3.4870 per gallon of biofuel. These results are predicated on simultaneous consideration of capital and operating costs, trafficable days, timing of operations, machinery and labor constraints, and seasonal harvested biomass feedstock yield relationships. The enhanced accuracy of a comprehensive, detailed analysis as opposed to simplistic approach of extrapolating from crop enterprise budgets are demonstrated. It appears, with the current state of technology, it is uneconomical to produce cellulosic biomass feedstocks in the Middle Gulf Coast, Edna-Ganado, Texas area. That is, the costs estimated in this research for delivering biomass feedstocks to the frontgate of a cellulosic facility are much higher than the $35 per ton the Department of Energy suggests is needed. The several sensitivity scenarios evaluated in this thesis research provides insights in regards to needed degrees of advancements required to enhance the potential economic competitiveness of biomass feedstock logistics in this area.

McLaughlin, Will

2011-12-01T23:59:59.000Z

216

Special Issue -Economic and Energy System Modelling  

E-Print Network (OSTI)

to the RED scenario, and also drives replacement of coal generation with biomass co-firing. In the RED

Mottram, Nigel

217

Salt Creek Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages Two branches of Salt Creek run through the city of Rolling Meadows, Illinois, not far from our school. Five members of our team of eighth grade teachers from different subject areas (science, language arts, bilingual education and special education), decided to develop an interdisciplinary study of Salt Creek as a way of giving our students authentic experiences in environmental studies. The unit begins when students enter school in August, running through the third week of September, and resuming for three weeks in October. Extension activities based on using the data gathered at the creek continue throughout the school year, culminating in a presentation at a city council meeting in the spring.

218

Air Pollution Project: Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario Internet Links Student Pages Oak Park and River Forest High School in Oak Park, IL, is a four-year (9-12) comprehensive high school with an enrollment of approximately 2800 students. The communities of Oak Park and River Forest are located just west of Chicago. Student backgrounds vary greatly socio-economically, ethnically (63% Caucasian, 28% African-American, 4% Hispanic, 4% Asian) and culturally. Average student standardized test scores are above the state and national averages. The chemistry class is a cross section of the lower 70% of the school community. Students in Ms. Bardeen's regular chemistry class, grades 10, 11 & 12 enter the computer lab, access the Internet on their computers, and begin to work with their teams on their current project. Students are busy talking with

219

Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Vimmerstedt, L. J.; Bush, B.; Peterson, S.

2012-05-01T23:59:59.000Z

220

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

222

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

223

Automated Prototyping of User Interfaces Based on UML Scenarios  

Science Conference Proceedings (OSTI)

User interface (UI) prototyping and scenario engineering have become popular techniques. Yet, the transition from scenario to formal specifications and the generation of UI code is still ill-defined and essentially a manual task, and the two techniques ... Keywords: Unified Modeling Language, scenario engineering, user interface prototyping

Mohammed Elkoutbi; Ismal Khriss; Rudolf K. Keller

2006-01-01T23:59:59.000Z

224

Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis  

SciTech Connect

A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

2010-06-01T23:59:59.000Z

225

Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

Science Conference Proceedings (OSTI)

Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

2009-09-01T23:59:59.000Z

226

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

227

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

228

Base case and perturbation scenarios  

SciTech Connect

This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State? s energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a ?tiebreaker;? to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a quantitative scoring system for issue areas were applied under the base case, a tractable quantitative decision model incorporating scenarios and their likelihoods could be developed and appli& in the decision process. LLNL has developed four perturbation scenarios that address the following issues: l} low economic growth, 2) high natural gas prices, 3) dysfunctional markets, and 4) a preference for green power. We have proposed a plausible scenario that addresses each issue for discussion and consideration by the CEC. In addition, we have provided an example application of the four perturbation scenarios in a qualitative framework for evaluation of issue areas developed for the PIEPC program. A description of each of the perturbation scenarios and a discussion of how they could effect decisions about today? s R&D funding is included. The scenarios attempt to cover a broad spectrum of plausible outcomes in a deregulated market environment. Nowever, Vhey are not a comprehensive and rigorously defined list of the most probable scenarios, but rather a qualitative inference based upon knowledge and expertise in the energy field.

Edmunds, T

1998-10-01T23:59:59.000Z

229

Biomass Energy and Competition for Land  

E-Print Network (OSTI)

We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

Reilly, John

230

Sight and Sound - Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario Summary Student Pages Internet Links Index Introduction Development/Rationale for the Year-End Project Teacher Preparation for the Year-End Project The Sight and Sound Project - an Anecdotal Account Introduction to and Selection of Year-End Projects Conducting the Literature Search Project Proposal Conducting the Experiments Wrapping up with the Reports and Presentations Introduction: Mr. Tom Henderson is part of a talented science staff at Glenbrook South High School. Glenbrook South High School (GBS) is set in an educationally supportive and affluent community. The physics staff work in teams teaching physics to over 80 percent of the student population and are constantly looking for ways to use technology to empower students with the ability to apply learned concepts of physics to their lives. With this goal in mind,

231

COFIRING BIOMASS WITH LIGNITE COAL  

DOE Green Energy (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

232

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

233

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

factor based NREL model (NREL CSP specific model) Costs (requirement with wind and CSP (which was still too expensiveClass 3 = 77 GW Round 1 CSP Capacity by Class No N CSP b

Blair, N.

2010-01-01T23:59:59.000Z

234

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Three additional biomass co-firing test burns have been conducted. In the first test (Test 3), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through the center of the burner. In the second test (Test 4), 100% Pratt seam coal was burned in a repeat of the initial test condition of Test 1, to reconcile irregularities in the data from the first test. In the third test (Test 5), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through an external pipe directed toward the exit of the burner. Progress has continued in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and Preparations are under way for continued pilot-scale combustion experiments. Finally, a presentation was made at a Biomass Cofiring Project Review Meeting held at the NETL in Pittsburgh, PA on June 20-21.

Larry G. Felix; P. Vann Bush

2001-07-17T23:59:59.000Z

235

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

236

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

237

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200C to 300C, where mostly the hemicellulose components of a biomass depolymerise. (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

238

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricityfor that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

240

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

cost of capital Wind Deployment System model ii Executive Summary Energycosts, performance and fuel prices taken from EIAs Annual Energy Outlook (AEO), 20% wind

Blair, N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

DATES COVERED (From - To) Renewable Energy and EfficiencyModels Addressed a Common High Renewable Energy PenetrationWood (OnLocation) National Renewable Energy Laboratory 1617

Blair, N.

2010-01-01T23:59:59.000Z

242

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

243

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

244

Sensitivity of North American agriculture to ENSO-based climate scenarios and their socio-economic consequences: Modeling in an integrated assessment framework  

Science Conference Proceedings (OSTI)

A group of Canadian, US and Mexican natural resource specialists, organized by the Pacific Northwest National Laboratory (PNNL) under its North American Energy, Environment and Economy (NA3E) Program, has applied a simulation modeling approach to estimating the impact of ENSO-driven climatic variations on the productivity of major crops grown in the three countries. Methodological development is described and results of the simulations presented in this report. EPIC (the Erosion Productivity Impact Calculator) was the agro-ecosystem model selected-for this study. EPIC uses a daily time step to simulate crop growth and yield, water use, runoff and soil erosion among other variables. The model was applied to a set of so-called representative farms parameterized through a specially-assembled Geographic Information System (GIS) to reflect the soils, topography, crop management and weather typical of the regions represented. Fifty one representative farms were developed for Canada, 66 for the US and 23 for Mexico. El Nino-Southern Oscillation (ENSO) scenarios for the EPIC simulations were created using the historic record of sea-surface temperature (SST) prevailing in the eastern tropical Pacific for the period October 1--September 30. Each year between 1960 and 1989 was thus assigned to an ENSO category or state. The ENSO states were defined as El Nino (EN, SST warmer than the long-term mean), Strong El Nino (SEN, much warmer), El Viejo (EV, cooler) and Neutral (within {+-}0.5 C of the long-term mean). Monthly means of temperature and precipitation were then calculated at each farm for the period 1960--1989 and the differences (or anomalies) between the means in Neutral years and EN, SEN and EV years determined. The average monthly anomalies for each ENSO state were then used to create new monthly statistics for each farm and ENSO-state combination. The adjusted monthly statistics characteristic of each ENSO state were then used to drive a stochastic-weather simulator that provided 30 years of daily-weather data needed to run EPIC. Maps and tables of the climate anomalies by farm show climatic conditions that differ considerably by region, season and ENSO state.

Rosenberg, N.J.; Izaurralde, R.C.; Brown, R.A.; Sands, R.D. [Pacific Northwest National Lab., Richland, WA (United States); Legler, D. [Florida State Univ., Tallahassee, FL (United States). Center for Ocean Atmosphere Prediction Studies; Srinivasan, R. [Texas A and M Univ., College Station, TX (United States). Blacklands Research Center; Tiscareno-Lopez, M.

1997-09-01T23:59:59.000Z

245

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

246

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

247

A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model  

DOE Green Energy (OSTI)

A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

Not Available

1994-10-01T23:59:59.000Z

248

Igneous Event Scenario  

Science Conference Proceedings (OSTI)

Previous risk analyses by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) indicate that a future igneous event at Yucca Mountain could lead to significant increases in calculated probability-weighted, mean-annual dose rates. A technical report is being prepared by EPRI that examines the various steps and sub-processes inherent in such a scenario for a repository at Yucca Mountain. Specific steps that are being evaluated include: determination of the probability...

2003-12-08T23:59:59.000Z

249

Climate Change Mitigation: An Analysis of Advanced Technology Scenarios  

SciTech Connect

This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

2006-09-18T23:59:59.000Z

250

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Efficiency, bottom-up, china, emissions scenarios, end use, energy demand, forecasting, greenhouse gas emissions, india, modelling, Multi-Country, refrigerators URL...

251

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

curves Renewable energy supply curves Least cost dispatchcosts and performance of all conventional power and renewable energyrenewable portfolio standard Stochastic Energy Deployment System model Union of Concerned Scientists weighted average cost

Blair, N.

2010-01-01T23:59:59.000Z

252

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

253

Design Scenarios: Enabling transparent parametric design spaces  

Science Conference Proceedings (OSTI)

This paper presents a novel methodology called Design Scenarios (DSs) intended for use in conceptual design of buildings. DS enables multidisciplinary design teams to streamline the requirements definition, alternative generation, analysis, and decision-making ... Keywords: Conceptual design, Design spaces, Ontology, Parametric modeling, Process mapping, Requirements modeling

Victor Gane; John Haymaker

2012-08-01T23:59:59.000Z

254

FROM THE COLOR-MAGNITUDE DIAGRAM OF {omega} CENTAURI AND (SUPER-)ASYMPTOTIC GIANT BRANCH STELLAR MODELS TO A GALACTIC PLANE PASSAGE GAS PURGING CHEMICAL EVOLUTION SCENARIO  

Science Conference Proceedings (OSTI)

We have investigated the color-magnitude diagram of {omega} Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a helium abundance in the range Y = 0.35-0.40. To explain the faint subgiant branch of the reddest stars ('MS-a/RG-a' sequence), isochrones for the observed metallicity ([Fe/H] Almost-Equal-To -0.7) appear to require both a high age ({approx}13 Gyr) and enhanced CNO abundances ([CNO/Fe] Almost-Equal-To 0.9). Y Almost-Equal-To 0.35 must also be assumed in order to counteract the effects of high CNO on turnoff colors and thereby to obtain a good fit to the relatively blue turnoff of this stellar population. This suggests a short chemical evolution period of time (=} 6.8 M{sub Sun }, M{sub He,core} {>=} 1.245 M{sub Sun }) predict too large N enhancements, which limit their role in contributing to the extreme populations. In order to address the observed central concentration of stars with He-rich abundance, we show here quantitatively that highly He- and N-enriched AGB ejecta have particularly efficient cooling properties. Based on these results and on the reconstruction of the orbit of {omega} Cen with respect to the Milky Way, we propose the Galactic plane passage gas purging scenario for the chemical evolution of this cluster. The bMS population formed shortly after the purging of most of the cluster gas as a result of the passage of {omega} Cen through the Galactic disk (which occurs today every {approx}40 Myr for {omega} Cen) when the initial mass function of the dominant population had 'burned' through most of the Type II supernova mass range. AGB stars would eject most of their masses into the gas-depleted cluster through low-velocity winds that sink to the cluster core due to their favorable cooling properties and form the bMS population. In our discussion we follow our model through four passage events, which could explain some key properties not only of the bMS but also of the MS-a/RGB-a and the s-enriched stars.

Herwig, Falk; VandenBerg, Don A.; Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Ferguson, Jason [Department of Physics, Wichita State University Wichita, KS 67260 (United States); Paxton, Bill, E-mail: fherwig@uvic.ca, E-mail: vandenbe@uvic.ca, E-mail: jason.ferguson@wichita.edu, E-mail: paxton@kitp.ucsb.edu [KITP/UC Santa Barbara, Santa Barbara, CA 93106 (United States)

2012-10-01T23:59:59.000Z

255

On simplifying allometric analyses of forest biomass Dimitris Zianis*  

E-Print Network (OSTI)

On simplifying allometric analyses of forest biomass Dimitris Zianis* , Maurizio Mencuccini biomass plays a key role in sustainable management and in estimating forest carbon stocks. The most common mathematical model in biomass studies takes the form of the power function M ¼ aDb where a and b

Mencuccini, Maurizio

256

Mobile Biomass Pelletizing System  

DOE Green Energy (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

257

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

258

Agriculture, land use, and commercial biomass energy  

SciTech Connect

In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

1996-06-01T23:59:59.000Z

259

An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model  

Science Conference Proceedings (OSTI)

Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation ... Keywords: Decision support, Ecological value, Ecosystem restoration, Land-use planning, Quality of life, Sea level rise mitigation, Sustainability

W. B. Labiosa; W. M. Forney; A. -M. Esnard; D. Mitsova-Boneva; R. Bernknopf; P. Hearn; D. Hogan; L. Pearlstine; D. Strong; H. Gladwin; E. Swain

2013-03-01T23:59:59.000Z

260

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1 During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier. The gasification tests were completed. The GTI U-GAS model was used to check some of the early test results against the model predictions. Additional modeling will be completed to further verify the model predictions and actual results.

Unknown

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiation Detection Computational Benchmark Scenarios  

SciTech Connect

Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNLs ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

2013-09-24T23:59:59.000Z

262

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ({approx}1.0% S). The dual-register burner is a generic low-NO{sub x} burner that incorporates two independent wind boxes. In the second test (Test 11), regular ({approx}70% passing 200 mesh) and finely ground ({approx}90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO{sub x} and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002.

Larry G. Felix; P. Vann Bush

2002-04-30T23:59:59.000Z

263

Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2  

SciTech Connect

Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

Pruess, K.

2011-05-15T23:59:59.000Z

264

PRISM 2.0: Regional Energy and Economic Model Development and Initial Application: Phase 2: Electric Sector CO2 Reduction Options to 2050: Dimensions of Technology, Energy Costs, and Environmental Scenarios  

Science Conference Proceedings (OSTI)

EPRI conducted an analysis of electric sector CO2 reduction options to 2050 across a range of scenarios covering dimensions of technology costs and availability, energy costs, and CO2 constraints. Using its U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) model, EPRI calculated the impact of changes in generation portfolio, generation capacity, expenditures, and electricity prices on power sector costs. This analysis estimates different levels of ...

2013-11-06T23:59:59.000Z

265

Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis  

SciTech Connect

This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

1998-09-01T23:59:59.000Z

266

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

267

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

268

Hydrogen and FCV Implementation Scenarios, 2010 - 2025  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario 1 Vehicle Transition and Deployment Scenario 2 Vehicle Transition and Deployment Scenario 3 Vehicle Transition and Deployment SUMMARY In response to the National Research...

269

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

270

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

271

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

272

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

273

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

274

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

275

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

276

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

277

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

278

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

279

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

280

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Greenhouse Gas Initiative Scenario Database | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Initiative Scenario Database Greenhouse Gas Initiative Scenario Database Jump to: navigation, search Tool Summary Name: Greenhouse Gas Initiative Scenario Database Agency/Company /Organization: Science for Global Insight Sector: Climate, Energy, Land Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: www.iiasa.ac.at/web-apps/ggi/GgiDb/dsd?Action=htmlpage&page=about Cost: Free References: Greenhouse Gas Initiative Scenario Database[1] The GGI (Greenhouse Gas Initiative) scenario database documents the results of a set of greenhouse gas emission scenarios that were created using the IIASA Integrated Assessment Modeling Framework and previously documented in a special issue of the Technological Forecasting and Social Change.

282

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

283

Reducing the uncertainties in carbon emissions fromReducing the uncertainties in carbon emissions from tropical deforestation -the BIOMASS mission  

E-Print Network (OSTI)

from tropical deforestation - the BIOMASS mission Shaun Quegan University of Sheffield x average biomassCem = deforested area x average biomass (UN Framework Convention on Climate Change Good Practice Guide 2003) #12;How well is biomass known? Model Model + SatelliteInterpolation Model

284

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

285

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

286

Biomass fuels: a national plan  

SciTech Connect

The options and potentials of biomass fuel production for the U.S. are reviewed. The following options are discussed: plant or vegetable oils, direct combustion of wood, production of biogas, and alcohol fuels. It is considered essential that a national planning model is developed to integrate the biofuel requirements for arable land and commercial forests with those for food and other traditional uses. (Refs. 32)

Mitchell, T.E.; Schroer, B.J.; Ziemke, M.C.; Peters, J.F.

1983-04-01T23:59:59.000Z

287

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

288

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.

Larry G. Felix; P. Vann Bush

2002-10-26T23:59:59.000Z

289

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

Larry G. Felix; P. Vann Bush

2002-01-31T23:59:59.000Z

290

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the second Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two biomass co-firing test burns have been conducted. In the first test, up to 20% by weight dry hardwood sawdust and dry switchgrass was co-milled Pratt seam coal. In the second test, also with Pratt seam coal, up to 10% by weight dry hardwood sawdust was injected through the center of the burner. Progress has continued in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preliminary results of CFD modeling efforts have been received and Preparations are under way for continued pilot-scale combustion experiments.

Larry G. Felix; P. Vann Bush

2001-04-30T23:59:59.000Z

291

The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program  

DOE Green Energy (OSTI)

This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

1992-04-01T23:59:59.000Z

292

Energy Scenarios for East Asia: 2005-2025  

E-Print Network (OSTI)

We describe several scenarios for economic development and energy use in East Asia based on the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. Historic ...

Paltsev, Sergey

293

Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks  

SciTech Connect

Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

2009-06-01T23:59:59.000Z

294

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

295

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

296

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

297

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

298

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

299

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

300

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection in Amsterdam, The Netherlands, in June, 2002.

Larry G. Felix; P. Vann Bush

2002-07-01T23:59:59.000Z

302

NREL: Energy Analysis - Biomass Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Technology Analysis Biomass Technology Analysis Conducting full life-cycle assessments for biomass products, including electricity, biodiesel, and ethanol, is important for determining environmental benefits. NREL analysts use a life-cycle inventory modeling package and supporting databases to conduct life-cycle assessments. These tools can be applied on a global, regional, local, or project basis. Integrated system analyses, technoeconomic analyses, life-cycle assessments (LCAs), and other analysis tools are essential to our research and development efforts. They provide an understanding of the economic, technical, and even global impacts of renewable technologies. These analyses also provide direction, focus, and support to the development and commercialization of various biomass conversion technologies. The economic

303

Benchmark scenarios for the NMSSM  

E-Print Network (OSTI)

We discuss constrained and semi--constrained versions of the next--to--minimal supersymmetric extension of the Standard Model (NMSSM) in which a singlet Higgs superfield is added to the two doublet superfields that are present in the minimal extension (MSSM). This leads to a richer Higgs and neutralino spectrum and allows for many interesting phenomena that are not present in the MSSM. In particular, light Higgs particles are still allowed by current constraints and could appear as decay products of the heavier Higgs states, rendering their search rather difficult at the LHC. We propose benchmark scenarios which address the new phenomenological features, consistent with present constraints from colliders and with the dark matter relic density, and with (semi--)universal soft terms at the GUT scale. We present the corresponding spectra for the Higgs particles, their couplings to gauge bosons and fermions and their most important decay branching ratios. A brief survey of the search strategies for these states at the LHC is given.

A. Djouadi; M. Drees; U. Ellwanger; R. Godbole; C. Hugonie; S. F. King; S. Lehti; S. Moretti; A. Nikitenko; I. Rottlaender; M. Schumacher; A. Teixeira

2008-01-28T23:59:59.000Z

304

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

305

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

306

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

307

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

308

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

309

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

310

Periodic optimal control for biomass productivity maximization in a photobioreactor using natural light  

E-Print Network (OSTI)

We address the question of optimization of the microalgal biomass long term productivity in the framework of production in photobioreactors under the influence of day/night cycles. For that, we propose a simple bioreactor model accounting for light attenuation in the reactor due to biomass density and obtain the control law that optimizes productivity over a single day through the application of Pontryagin's maximum principle, with the dilution rate being the main control. An important constraint on the obtained solution is that the biomass in the reactor should be at the same level at the beginning and at the end of the day so that the same control can be applied everyday and optimizes some form of long term productivity. Several scenarios are possible depending on the microalgae's strain parameters and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang control or, if the growth rate of the algae is very strong in the presence of light, constant maximal dilution. A bifurcation...

Grognard, Frdric; Bernard, Olivier

2012-01-01T23:59:59.000Z

311

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

312

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN COFIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the first Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The project goals and detailed plans were presented in two project kickoff meetings; one at NETL in Pittsburgh and one in Birmingham, AL at Southern Research Institute. Progress has been made in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preparations are under way for the initial pilot-scale combustion experiments.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2001-01-24T23:59:59.000Z

313

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

314

Executive Summary High-Yield Scenario Workshop Series Report  

SciTech Connect

To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate High-Yield Scenario (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

2009-12-01T23:59:59.000Z

315

Modeling and Analysis of Renewable Generation in a Sustainable Portfolio  

Science Conference Proceedings (OSTI)

This Technical Update reports the results of work to enhance EPRIs financial model of the U.S. electric sector by improving the representations for the role wind and biomass generation in the future U.S. generation mix. The model simulates generation capacity expansion and dispatch at the national and regional levels over the period 2010 to 2050. The model evaluates the possible effects of climate policy, renewable portfolio standard (RPS), energy efficiency, technology availability, and market scenarios...

2010-12-17T23:59:59.000Z

316

Baseline scenario(s) for muon collider proton driver  

DOE Green Energy (OSTI)

This paper gives an overview of the various muon collider scenarios and the requirements they put on the Proton Driver. The required proton power is about 4-6MW in all the scenarios, but the bunch repetition rate varies between 12 and 65Hz. Since none of the muon collider scenarios have been simulated end-to-end, it would be advisable to plan for an upgrade path to around 10MW. Although the proton driver energy is flexible, cost arguments seems to favor a relatively low energy. In particular, at Fermilab 8GeV seems most attractive, partly due to the possibility of reusing the three existing fixed energy storage rings for bunch manipulations.

Jansson, Andreas; /Fermilab

2008-07-01T23:59:59.000Z

317

Complexity of event structure in IE scenarios  

Science Conference Proceedings (OSTI)

This paper presents new Information Extraction scenarios which are linguistically and structurally more challenging than the traditional MUC scenarios. Traditional views on event structure and template design are not adequate for the more complex scenarios.The ...

Silja Huttunen; Roman Yangarber; Ralph Grishman

2002-08-01T23:59:59.000Z

318

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass  

E-Print Network (OSTI)

LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report, LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report AFUEL Transesterified, biomass-derived oil or biodiesel can

Delucchi, Mark; Lipman, Timothy

2003-01-01T23:59:59.000Z

319

Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling  

DOE Green Energy (OSTI)

The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

Newes, E.; Inman, D.; Bush, B.

2011-01-01T23:59:59.000Z

320

A New Global Set of Downscaled Temperature Scenarios  

Science Conference Proceedings (OSTI)

A new set of empiricalstatistical downscaled seasonal mean temperature scenarios is presented for locations spread across all continents. These results are based on the Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, the ...

Rasmus E. Benestad

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

322

The economic potential of producing energy from agricultural biomass  

E-Print Network (OSTI)

Agricultural biomass is a substitute for fossil fuels, which could provide a sustained energy feedstock and possibly reduce further accumulations of greenhouse gases. However, these feedstocks currently face a market dominated by low cost fossil fuels; hence, are largely unable to be supplied at a competitive price. This study examined how forcing increased biomass energy generation, along with improvements in biomass production technology, will impact agricultural feedstock prices and economically impact the well-being of the agricultural sector. An U.S. agricultural sector model, a dynamic, nonlinear, mathematical program, determined the economic effects of using increased supplies of agricultural biomass for energy. The model incorporated production and use of potential biomass energy feedstocks, such as switchgrass and short rotation poplar. Also, the model introduced future biomass technologies, based on current research involving more productive biomass crops and more efficient conversion activities which produce ethanol and biomass electricity. The forced supply of new biomass crops, along with corn, involves several levels of energy production. This forced supply was based on projected ethanol demands and land capability for biomass production. The model determined the optimal mix of corn and energy crops to meet the biomass feedstock goals for energies. The resultant model appraises the effects of increasing biomass feedstocks for the years 1990, 2000, 2010, and 2020. The results show that initially, fuel prices using biomass feedstocks may be as much as 50 % greater than equivalent fossil fuel supplied energy. But due to technology the price of biomass feedstocks decreases over time. The analysis predicts that the agricultural feedstock price and the price of fossil fuels may equalize between the years 201 0 and 2020. The forced production of agricultural energy crops changes cropping patterns and prices for conventional crops as well. The agricultural energy crops and corn receive a greater allocation of farm land to meet the forced biomass energy supplies. Most conventional crop prices rise and all biomass feedstock prices rise with increasing feedstock production. As a consequence, farmers receive increased profits. Consumers, however, experience a loss in well-being due to the higher cost of energy feedstock and food products. National well-being experiences a net loss.

Jerko, Christine

1996-01-01T23:59:59.000Z

323

The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada  

SciTech Connect

Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

Stephen, Jamie [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Kloeck, T. [Alberta Agriculture; Townley-Smith, Lawrence [AAFC; Stumborg, Mark [AAFC

2010-01-01T23:59:59.000Z

324

Uncertainty in Integrated Assessment Scenarios  

SciTech Connect

The determination of climate policy is a decision under uncertainty. The uncertainty in future climate change impacts is large, as is the uncertainty in the costs of potential policies. Rational and economically efficient policy choices will therefore seek to balance the expected marginal costs with the expected marginal benefits. This approach requires that the risks of future climate change be assessed. The decision process need not be formal or quantitative for descriptions of the risks to be useful. Whatever the decision procedure, a useful starting point is to have as accurate a description of climate risks as possible. Given the goal of describing uncertainty in future climate change, we need to characterize the uncertainty in the main causes of uncertainty in climate impacts. One of the major drivers of uncertainty in future climate change is the uncertainty in future emissions, both of greenhouse gases and other radiatively important species such as sulfur dioxide. In turn, the drivers of uncertainty in emissions are uncertainties in the determinants of the rate of economic growth and in the technologies of production and how those technologies will change over time. This project uses historical experience and observations from a large number of countries to construct statistical descriptions of variability and correlation in labor productivity growth and in AEEI. The observed variability then provides a basis for constructing probability distributions for these drivers. The variance of uncertainty in growth rates can be further modified by expert judgment if it is believed that future variability will differ from the past. But often, expert judgment is more readily applied to projected median or expected paths through time. Analysis of past variance and covariance provides initial assumptions about future uncertainty for quantities that are less intuitive and difficult for experts to estimate, and these variances can be normalized and then applied to mean trends from a model for uncertainty projections. The probability distributions of these critical model drivers, and the resulting uncertainty in projections from a range of models, can provide the basis of future emission scenario set designs.

Mort Webster

2005-10-17T23:59:59.000Z

325

EXTREME CYBER SCENARIO PLANNING & FAULT TREE ...  

Science Conference Proceedings (OSTI)

... Impact Analysis Threat Actor Analysis For each scenario Aim: Select scenarios that could have a catastrophic impact on the organisation Page 23. ...

2013-04-08T23:59:59.000Z

326

RESEARCH ARTICLE Optimal Scenario Tree Reduction for ...  

E-Print Network (OSTI)

scenarios) for streamflows of the jth hydroelectric plant. Our choice is based on the fact that when scenarios are discarded, variance tends to decrease.

327

Application of a Polythermal Three-Dimensional Ice Sheet Model to the Greenland Ice Sheet: Response to Steady-State and Transient Climate Scenarios  

Science Conference Proceedings (OSTI)

Steady-state and transient climate-change computations are performed with the authors three-dimensional polythermal ice sheet model Simulation Code for Polythermal Ice Sheets for the Greenland Ice Sheet. The distinctive feature of this model is ...

Ralf Greve

1997-05-01T23:59:59.000Z

328

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network (OSTI)

an energy crop. Biomass & Bioenergy, 17, 305-314. Avallone,model SECRETS. Biomass & Bioenergy, 26, 221-227. DeLuchi,1627. Lemus, R. , Lal, R. , 2005. Bioenergy crops and carbon

Qing, Qing

2010-01-01T23:59:59.000Z

329

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

330

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

331

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

332

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

333

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

334

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

335

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

336

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

337

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

338

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

339

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

340

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

342

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

343

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon...

345

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

346

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

347

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

348

Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, RMLevinson@LBL.gov 7 May 2012 Solar reflective "cool" roofs save energy, money, and CO 2 when applied to air-conditioned buildings; improve comfort when applied to...

349

Simulation of Hydrogen Production from Biomass Catalytic Gasification  

Science Conference Proceedings (OSTI)

In this study, biomass catalytic gasification process for producing H2-rich gas was presented. The process consists of mainly two fluidized bedsa gasifier and a CaO regenerator. The objective of this research is to develop a computer model of ... Keywords: biomass gasification, hydrogen production, Aspen Plus

Shan Cheng; Qian Wang; Hengsong Ji

2010-12-01T23:59:59.000Z

350

Organisational scenarios and legacy systems  

Science Conference Proceedings (OSTI)

A legacy system is made up of technical components and social factors (such as software, people, skills, business processes) which no longer meet the needs of the business environment. The study of legacy systems has tended to be biased towards a software ... Keywords: Business process, Legacy system, Scenario, Software

Carole Brooke; Magnus Ramage

2001-10-01T23:59:59.000Z

351

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

352

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

353

Biomass Thermochemical Conversion Program. 1983 Annual report  

DOE Green Energy (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

354

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

355

Hidden Higgs Scenarios: new constraints and prospects at the LHC  

E-Print Network (OSTI)

We review the motivation for hidden Higgs scenarios and discuss the light CP odd Higgs scenario in the NMSSM as an example. We summarize experimental constraints including recent limits from BaBar and Aleph. The main part of the talk is the discussion of dominant decay modes of the standard model like Higgs boson, and related decay modes of the charged Higgs and heavy CP even Higgs bosons, in these scenarios with the focus on signatures and prospects for the LHC. Examples include the direct production of a light CP odd Higgs boson, and a light charged Higgs boson in top quark decays.

Radovan Dermisek

2010-08-02T23:59:59.000Z

356

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

357

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

358

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

359

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

360

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

362

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

363

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

364

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

365

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

366

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

367

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

368

User interface prototyping based on UML scenarios and high-level Petri nets  

Science Conference Proceedings (OSTI)

In this paper, we suggest a requirement engineering process that generates a user interface prototype from scenarios and yields a formal specification of the system in form of a high-level Petri net. Scenarios are acquired in the form of sequence diagrams ... Keywords: high-level petri net, scenario specification, unified modeling language, user interface prototyping

Mohammed Elkoutbi; Rudolf K. Keller

2000-06-01T23:59:59.000Z

369

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

370

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

371

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

372

Outlook for Biomass Ethanol Production and Demand  

Reports and Publications (EIA)

This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

Information Center

2000-04-01T23:59:59.000Z

373

Assessment of Biomass Pelletization Options for Greensburg, Kansas:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Biomass Pelletization Options for Greensburg, Kansas: Assessment of Biomass Pelletization Options for Greensburg, Kansas: Executive Summary Assessment of Biomass Pelletization Options for Greensburg, Kansas: Executive Summary This executive summary provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. 45843.pdf More Documents & Publications Assessment of Biomass Pelletization Options for Greensburg, Kansas Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009 Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009; Appendices

374

Assessment of Biomass Pelletization Options for Greensburg, Kansas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Biomass Pelletization Options for Greensburg, Kansas Assessment of Biomass Pelletization Options for Greensburg, Kansas Assessment of Biomass Pelletization Options for Greensburg, Kansas This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report. 48073.pdf More Documents & Publications Assessment of Biomass Pelletization Options for Greensburg, Kansas: Executive Summary Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009 Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009; Appendices

375

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

376

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

377

Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements  

Science Conference Proceedings (OSTI)

Large quantity of residual biomass with possible energy and industrial end can be obtained from management operations of urban forests. The profitability of exploiting this resource is conditioned by the amount of existing biomass within urban community ... Keywords: Allometric relationships, Crown modeling, Residual biomass, TLS, Urban forest, Volume equations

A. FernNdez-SarrA; B. VelZquez-Mart; M. Sajdak; L. MartNez; J. Estornell

2013-04-01T23:59:59.000Z

378

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

379

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2000-10-24T23:59:59.000Z

380

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

382

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

383

The jamming scenario - an introduction and outlook  

E-Print Network (OSTI)

The jamming scenario of disordered media, formulated about 10 years ago, has in recent years been advanced by analyzing model systems of granular media. This has led to various new concepts that are increasingly being explored in in a variety of systems. This chapter contains an introductory review of these recent developments and provides an outlook on their applicability to different physical systems and on future directions. The first part of the paper is devoted to an overview of the findings for model systems of frictionless spheres, focussing on the excess of low-frequency modes as the jamming point is approached. Particular attention is paid to a discussion of the cross-over frequency and length scales that govern this approach. We then discuss the effects of particle asphericity and static friction, the applicability to bubble models for wet foams in which the friction is dynamic, the dynamical arrest in colloids, and the implications for molecular glasses.

Andrea J. Liu; Sidney R. Nagel; Wim van Saarloos; Matthieu Wyart

2010-06-11T23:59:59.000Z

384

Bounding biomass in the Fisher equation  

E-Print Network (OSTI)

The FKPP equation with a variable growth rate and advection by an incompressible velocity field is considered as a model for plankton dispersed by ocean currents. If the average growth rate is negative then the model has a survival-extinction transition; the location of this transition in the parameter space is constrained using variational arguments and delimited by simulations. The statistical steady state reached when the system is in the survival region of parameter space is characterized by integral constraints and upper and lower bounds on the biomass and productivity that follow from variational arguments and direct inequalities. In the limit of zero-decorrelation time the velocity field is shown to act as Fickian diffusion with an eddy diffusivity much larger than the molecular diffusivity and this allows a one-dimensional model to predict the biomass, productivity and extinction transitions. All results are illustrated with a simple growth and stirring model.

Daniel A. Birch; Yue-Kin Tsang; William R. Young

2007-03-17T23:59:59.000Z

385

Bounding biomass in the Fisher equation  

E-Print Network (OSTI)

The FKPP equation with a variable growth rate and advection by an incompressible velocity field is considered as a model for plankton dispersed by ocean currents. If the average growth rate is negative then the model has a survival-extinction transition; the location of this transition in the parameter space is constrained using variational arguments and delimited by simulations. The statistical steady state reached when the system is in the survival region of parameter space is characterized by integral constraints and upper and lower bounds on the biomass and productivity that follow from variational arguments and direct inequalities. In the limit of zero-decorrelation time the velocity field is shown to act as Fickian diffusion with an eddy diffusivity much larger than the molecular diffusivity and this allows a one-dimensional model to predict the biomass, productivity and extinction transitions. All results are illustrated with a simple growth and stirring model.

Birch, Daniel A; Young, William R

2007-01-01T23:59:59.000Z

386

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Entanglement cost in practical scenarios  

E-Print Network (OSTI)

We quantify the one-shot entanglement cost of an arbitrary bipartite state, that is the minimum number of singlets needed by two distant parties to create a single copy of the state up to a finite accuracy, using local operations and classical communication only. This analysis, in contrast to the traditional one, pertains to scenarios of practical relevance, in which resources are finite and transformations can only be achieved approximately. Moreover, it unveils a fundamental relation between two well-known entanglement measures, namely, the Schmidt number and the entanglement of formation. Using this relation, we are able to recover the usual expression of the entanglement cost as a special case.

Francesco Buscemi; Nilanjana Datta

2009-06-19T23:59:59.000Z

389

Addressing an Uncertain Future Using Scenario Analysis  

E-Print Network (OSTI)

a scenario may be an oil price hike in a future year, whichon the impact of high oil prices on the global economy (seethe scenario of a high oil price (of US$35/barrel, which is

Siddiqui, Afzal S.; Marnay, Chris

2008-01-01T23:59:59.000Z

390

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

391

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

392

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

393

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

394

Biomass Engineering Prize Competition Announced  

Science Conference Proceedings (OSTI)

Posted on: 7/30/2010 12:00:00 AM... The DownEast 2010 Biomass Engineering Prize Competition is seeking innovative solutions focused on revitalizing an...

395

Biomass Pretreatment for Integrated Steelmaking  

Science Conference Proceedings (OSTI)

Presentation Title, Biomass Pretreatment for Integrated Steelmaking. Author(s), Shiju Thomas, Paul Cha, Steven J McKnight, Vincent A Bouma, Andrew L Petrik,

396

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

397

Biomass Rapid Analysis Network (BRAN)  

DOE Green Energy (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

398

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

399

Economically consistent long-term scenarios for air pollutant emissions  

Science Conference Proceedings (OSTI)

Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

Smith, Steven J.; West, Jason; Kyle, G. Page

2011-09-08T23:59:59.000Z

400

Integrated Analysis of Market Transformation Scenarios with HyTrans  

DOE Green Energy (OSTI)

This report presents alternative visions of the transition of light-duty vehicle transportation in the United States from petroleum to hydrogen power. It is a supporting document to the U.S. Department of Energy's Summary Report, "Analysis of the Transition to a Hydrogen Economy and the Potential Hydrogen Infrastructure Requirements" (U.S. DOE, 2007). Three alternative early transition scenarios were analyzed using a market simulation model called HyTrans. The HyTrans model simultaneously represents the behavior of fuel suppliers, vehicle manufacturers and consumers, explicitly recognizing the importance of fuel availability and the diversity of vehicle choices to consumers, and dependence of fuel supply on the existence of market demand. Competitive market outcomes are simulated by means of non-linear optimization of social surplus through the year 2050. The three scenarios specify different rates and geographical distributions of market penetration for hydrogen fuel cell vehicles from 2012 through 2025. Scenario 1 leads to 2 million vehicles on U.S. roads by 2025, while Scenarios 2 and 3 result in 5 million and 10 million FCVs in use by 2025, respectively. The HyTrans model "costs out" the transition scenarios and alternative policies for achieving them. It then tests whether the scenarios, together with the achievement of the DOE's technology goals for fuel cell vehicles and hydrogen infrastructure technologies could lead to a sustainable transition to hydrogen powered transportation. Given the achievement of DOE's ambitious technology goals, all three scenarios appear to lead to a sustainable transition to hydrogen. In the absence of early transition deployment effort, no transition is likely to begin before 2045. The cumulative costs of the transition scenarios to the government range from $8 billion to $45 billion, depending on the scenario, the policies adopted and the degree of cost-sharing with industry. In the absence of carbon constraining policies, the transition to hydrogen achieves about the same reduction in CO2 emissions as a transition to advanced gasoline-electric hybrid vehicles. With significant carbon policy, drastic reductions in well-to-wheel CO2 emissions are possible. Energy transition modeling is a newly evolving field and much remains to be done to improve the utility of models like HyTrans.

Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; Bowman, David Charles [ORNL

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

402

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

403

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

404

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network (OSTI)

Increases in demand, lower emission standards, and reduced fuel supplies have fueled the recent effort to find new and better fuels to power the necessary equipment for societys needs. Often, the fuels chosen for research are renewable fuels derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis and ignition behavior characteristics, combustion modeling, emissions modeling, small scale combustion experiments, pilot scale commercial combustion experiments, and cost analysis of the fuel usage for both feedlot biomass and dairy biomass. This paper focuses on fuel property analysis and pyrolysis and ignition characteristics of feedlot biomass. Deliverables include a proximate and ultimate analysis, pyrolysis kinetics values, and ignition temperatures of four types of feedlot biomass (low ash raw manure [LARM], low ash partially composted manure [LAPC], high ash raw manure [HARM], and high ash partially composted manure [HAPC]) as well as blends of each biomass with Texas lignite coal (TXL). Activation energy results for pure samples of each fuel using the single reaction model rigorous solution were as follows: 45 kJ/mol (LARM), 43 kJ/mol (LAPC), 38 kJ/mol (HARM), 36 kJ/mol (HAPC), and 22 kJ/mol (TXL). Using the distributed activation energy model the activation energies were 169 kJ/mol (LARM), 175 kJ/mol (LAPC), 172 kJ/mol (HARM), 173 kJ/mol (HAPC), and 225 kJ/mol (TXL). Ignition temperature results for pure samples of each of the fuels were as follows: 734 K (LARM), 745 K (LAPC), 727 (HARM), 744 K (HAPC), and 592 K (TXL). There was little difference observed between the ignition temperatures of the 50% blends of coal with biomass and the pure samples of coal as observed by the following results: 606 K (LARM), 571 K (LAPC), 595 K (HARM), and 582 K (HAPC).

Martin, Brandon Ray

2006-12-01T23:59:59.000Z

405

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers  

DOE Green Energy (OSTI)

The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) ''Renugas'' gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

Bain, R. L.

1992-01-01T23:59:59.000Z

406

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

407

U.S. Department of Energy Biomass Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biofuels Technology Algae Biofuels Technology Office Of Biomass Program Energy Efficiency and Renewable Energy Jonathan L. Male May 27, 2010 Biomass Program * Make cellulosic ethanol cost competitive, at a modeled cost for mature technology of $1.76/gallon by 2017 * Help create an environment conducive to maximizing production and use of biofuels- 21 billion gallons of advanced biofuels per year by 2022 (EISA) Feedstocks Biofuels Infrastructure Integrated Biorefineries Conversion Develop and transform our renewable and abundant, non-food, biomass resources into sustainable, cost-competitive, high-performance biofuels, bioproducts and biopower. Focus on targeted research, development, and demonstration * Through public and private partnerships * Deploy in integrated biorefineries

408

The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US  

DOE Green Energy (OSTI)

This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

1992-04-01T23:59:59.000Z

409

The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US  

SciTech Connect

This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

1992-04-01T23:59:59.000Z

410

Scenarios with Composite Higgs Bosons  

E-Print Network (OSTI)

Typical models with composite Higgs bosons are briefly reviewed. We also introduce the isospin symmetric Higgs model recently proposed in Ref. 1.

Michio Hashimoto

2013-04-18T23:59:59.000Z

411

Scenarios with Composite Higgs Bosons  

E-Print Network (OSTI)

Typical models with composite Higgs bosons are briefly reviewed. We also introduce the isospin symmetric Higgs model recently proposed in Ref. 1.

Hashimoto, Michio

2013-01-01T23:59:59.000Z

412

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

413

OUT Success Stories: Biomass Gasifiers  

DOE Green Energy (OSTI)

The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation.

Jones, J.

2000-08-31T23:59:59.000Z

414

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

415

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

416

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

417

Biomass Electricity in California Elizabeth K. Stoltzfus  

E-Print Network (OSTI)

Biomass Electricity in California Elizabeth K. Stoltzfus Energy and Resources Group University would also like to thank Bryan Jenkins and other members of the California Biomass Collaborative............................................................................................................................. 1 1.1 Biomass Electricity in California Today

Kammen, Daniel M.

418

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

419

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Webinar Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy...

420

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

with greater supply of biomass, such as northernareasof highersupplywillenablebiomasstobesecuredsupplyoffeedstockis keycomponentindevelopingaviablebiomass

Cattolica, Robert

2009-01-01T23:59:59.000Z

422

GASIFICATION BASED BIOMASS CO-FIRING  

DOE Green Energy (OSTI)

Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

2003-01-01T23:59:59.000Z

423

Technical Underpinnings for Sustainable Biomass Power  

Science Conference Proceedings (OSTI)

This report documents the results of a study commissioned by the Electric Power Research Institute (EPRI) with additional funding support by the Tennessee Valley Authority (TVA) and Ontario Power Generation (OPG). The study provides a model to analyze the impacts of a variety of anticipated and unexpected risk factors on the availability and pricing of biomass wood fuel within a project supply region. Anticipated risk factors include increasing demand and competition for wood fuel, increasing input costs...

2012-02-22T23:59:59.000Z

424

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

425

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

426

Addressing an Uncertain Future Using Scenario Analysis  

Science Conference Proceedings (OSTI)

The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below shows an estimate of how the history of natural gas fired generating costs has evolved over the last three decades. The costs shown incorporate both the well-head gas price and an estimate of how improving generation technology has gradually tended to lower costs. The purpose of this paper is to explore scenario analysis as a method for introducing uncertainty into EERE's forecasting in a manner consistent with the preceding observation. The two questions are how could it be done, and what is its academic basis, if any. Despite the interest in uncertainty methods, applying them poses some major hurdles because of the heavy reliance of EERE on forecasting tools that are deterministic in nature, such as the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS is the source of the influential Annual Energy Outlook whose business-as-usual (BAU) case, the Reference Case, forms the baseline for most of the U.S. energy policy discussion. NEMS is an optimizing model because: 1. it iterates to an equilibrium among modules representing the supply, demand, and energy conversion subsectors; and 2. several subsectoral models are individually solved using linear programs (LP). Consequently, it is deeply rooted in the recent past and any effort to simulate the consequences of a major regime shift as depicted in Figure 1 must come by applying an exogenously specified scenario. And, more generally, simulating futures that lie outside of our recent historic experience, even if they do not include regime switches suggest some form of scenario approach. At the same time, the statistical validity of scenarios that deviate significantly outside the ranges of historic inputs should be questioned.

Siddiqui, Afzal S.; Marnay, Chris

2006-12-15T23:59:59.000Z

427

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

428

SPI Lincoln Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Lincoln Biomass Facility Jump to: navigation, search Name SPI Lincoln Biomass Facility Facility SPI...

429

Montgomery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Montgomery Biomass Facility Jump to: navigation, search Name Montgomery Biomass Facility Facility...

430

Deblois Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Deblois Biomass Facility Jump to: navigation, search Name Deblois Biomass Facility Facility Deblois...

431

West Enfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon West Enfield Biomass Facility Jump to: navigation, search Name West Enfield Biomass Facility Facility West...

432

MM Nashville Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon MM Nashville Biomass Facility Jump to: navigation, search Name MM Nashville Biomass Facility Facility MM...

433

Olokele Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Olokele Biomass Facility Jump to: navigation, search Name Olokele Biomass Facility Facility Olokele...

434

Pennsbury Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Pennsbury Biomass Facility Jump to: navigation, search Name Pennsbury Biomass Facility Facility...

435

Celanese Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Celanese Biomass Facility Jump to: navigation, search Name Celanese Biomass Facility Facility Celanese...

436

Central LF Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Central LF Biomass Facility Jump to: navigation, search Name Central LF Biomass Facility Facility...

437

US Sugar Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon US Sugar Biomass Facility Jump to: navigation, search Name US Sugar Biomass Facility Facility US Sugar...

438

Rocklin Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Rocklin Biomass Facility Jump to: navigation, search Name Rocklin Biomass Facility Facility Rocklin...

439

Glendale Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Glendale Biomass Facility Jump to: navigation, search Name Glendale Biomass Facility Facility Glendale...

440

SPI Quincy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Quincy Biomass Facility Jump to: navigation, search Name SPI Quincy Biomass Facility Facility SPI...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Kettle Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kettle Falls Biomass Facility Jump to: navigation, search Name Kettle Falls Biomass Facility Facility...

442

DG Whitefield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon DG Whitefield Biomass Facility Jump to: navigation, search Name DG Whitefield Biomass Facility Facility DG...

443

Viking Northumberland Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Viking Northumberland Biomass Facility Jump to: navigation, search Name Viking Northumberland Biomass Facility...

444

Livermore Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Livermore Biomass Facility Jump to: navigation, search Name Livermore Biomass Facility Facility...

445

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca...

446

Oxnard Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Oxnard Biomass Facility Jump to: navigation, search Name Oxnard Biomass Facility Facility Oxnard...

447

Westwood Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Westwood Biomass Facility Jump to: navigation, search Name Westwood Biomass Facility Facility Westwood...

448

Buckeye Florida Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Buckeye Florida Biomass Facility Jump to: navigation, search Name Buckeye Florida Biomass Facility Facility...

449

Wilmarth Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wilmarth Biomass Facility Jump to: navigation, search Name Wilmarth Biomass Facility Facility Wilmarth...

450

El Nido Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon El Nido Biomass Facility Jump to: navigation, search Name El Nido Biomass Facility Facility El Nido...

451

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba...

452

Stratton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Stratton Biomass Facility Jump to: navigation, search Name Stratton Biomass Facility Facility Stratton...

453

Jonesboro Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Jonesboro Biomass Facility Jump to: navigation, search Name Jonesboro Biomass Facility Facility...

454

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

455

Salinas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Salinas Biomass Facility Jump to: navigation, search Name Salinas Biomass Facility Facility Salinas...

456

Coventry LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Coventry LFG Biomass Facility Jump to: navigation, search Name Coventry LFG Biomass Facility Facility...

457

Lanchester Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Lanchester Biomass Facility Jump to: navigation, search Name Lanchester Biomass Facility Facility...

458

Troy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Troy Biomass Facility Jump to: navigation, search Name Troy Biomass Facility Facility Troy Sector...

459

SPI Loyalton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Loyalton Biomass Facility Jump to: navigation, search Name SPI Loyalton Biomass Facility Facility SPI...

460

Sherman Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sherman Biomass Facility Jump to: navigation, search Name Sherman Biomass Facility Facility Sherman...

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

462

Warren Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Warren Biomass Facility Jump to: navigation, search Name Warren Biomass Facility Facility Warren...

463

Collins Pine Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Collins Pine Biomass Facility Jump to: navigation, search Name Collins Pine Biomass Facility Facility...

464

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...

465

Fort Fairfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Fort Fairfield Biomass Facility Jump to: navigation, search Name Fort Fairfield Biomass Facility Facility...

466

Putney Basketville Site Biomass CHP Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. 25 5 Bioenergy Overview Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing,...

467

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here ... The methods of the invention use solar thermal energy as the energy source for the biomass pyrolysis or ...

468

BSCL Use Plan: Solving Biomass Recalcitrance  

DOE Green Energy (OSTI)

Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

2005-08-01T23:59:59.000Z

469

Utility Promoters for Biomass Feedstock Biotechnology ...  

Technology Marketing Summary. Genetic optimization of biomass is necessary to improve the rates and final yields of sugar release from woody biomass.

470

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here youll find marketing summaries of biomass and biofuels technologies available for licensing ...

471

Biomass Energy Services Inc | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Services Inc Place Tifton, Georgia Zip 31794 Product Biodiesel plant developer in Cordele, Georgia. References Biomass Energy Services Inc1 LinkedIn Connections...

472

Biomass Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

473

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

474

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from...

475

Conservation of Biomass Fuel, Firewood (Minnesota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation of Biomass Fuel, Firewood (Minnesota) Conservation of Biomass Fuel, Firewood (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned...

476

Biomass Engineering Ltd | Open Energy Information  

Open Energy Info (EERE)

"Biomass Engineering Ltd" Retrieved from "http:en.openei.orgwindex.php?titleBiomassEngineeringLtd&oldid342847" Categories: Clean Energy Organizations Companies...

477

Biomass Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Biomass Resources Corporation Jump to: navigation, search Name Biomass Resources Corporation Place West Palm Beach, Florida Zip 33401 Product The Company has established a unique...

478

Particle and feeding characteristics of biomass powders.  

E-Print Network (OSTI)

?? Milling of biomass is a necessary key step in suspension gasification or powder combustion. Milled biomass powders are often cohesive, have low bulk density (more)

Falk, Joel

2013-01-01T23:59:59.000Z

479

Biomass Integrated Gasification Combined Cycles (BIGCC).  

E-Print Network (OSTI)

??Conversion of biomass to energy does not contribute to the net increase of carbon dioxide in the environment, therefore the use of biomass waste as (more)

Yap, Mun Roy

2004-01-01T23:59:59.000Z

480

Regionalized Global Energy Scenarios Meeting Stringent Climate Targets  

E-Print Network (OSTI)

to generate the energy supply mix that would meet given energy demands at lowest cost, assuming strongRegionalized Global Energy Scenarios Meeting Stringent Climate Targets ­ cost effective fuel in the energy system it is less costly to reduce CO2-emissions #12;Global energy system model #12;Global energy

Note: This page contains sample records for the topic "biomass scenario model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Non-Standard Structure Formation Scenarios  

E-Print Network (OSTI)

Observations on galactic scales seem to be in contradiction with recent high resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy halos. In this contribution we are exploring the differences between a Warm Dark Matter model and a CDM model where the power on a certain scale is reduced by introducing a narrow negative feature (''dip''). This dip is placed in a way so as to mimic the loss of power in the WDM model: both models have the same integrated power out to the scale where the power of the Dip model rises to the level of the unperturbed CDM spectrum again. Using N-body simulations we show that that the new Dip model appears to be a viable alternative to WDM while being based on different physics: where WDM requires the introduction of a new particle species the Dip stems from a non-standard inflationary period. If we are looking for an alternative to the currently challenged standard LCDM structure formation scenario, neither the LWDM nor the new Dip model can be ruled out with respect to the analysis presented in this contribution. They both make very similar predictions and the degeneracy between them can only be broken with observations yet to come.

Alexander Knebe; Brett Little; Ranty Islam; Julien Devriendt; Asim Mahmood; Joe Silk

2002-09-30T23:59:59.000Z

482

Recoverable Robust Knapsack: the Discrete Scenario Case  

E-Print Network (OSTI)

Feb 24, 2011... different customers according to their demands maximizing the profit of ... In this paper, we show that for a fixed number of discrete scenarios...

483

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

484

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

485

2010 - 2025 Scenario Analysis and Transition Strategies  

NLE Websites -- All DOE Office Websites (Extended Search)

2025 Scenario Analysis Sig Gronich Technology Validation Manager Manager- Transition Strategies DOE Hydrogen Program DOE Hydrogen Program The President's Hydrogen Fuel Initiative...

486

energy scenarios | OpenEI Community  

Open Energy Info (EERE)

- 14:37 Four new publications help advance renewable energy development energy scenarios fossil fuels OECD OpenEI policy Renewable Energy Four publications giving guidance to...

487

Transport Test Problems for Radiation Detection Scenarios  

Science Conference Proceedings (OSTI)

This is the final report and deliverable for the project. It is a list of the details of the test cases for radiation detection scenarios.

Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

2012-09-30T23:59:59.000Z