Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impact of forest biomass residues to the energy supply chain on regional air quality  

Science Journals Connector (OSTI)

Abstract The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO2 and O3.

S. Rafael; L. Tarelho; A. Monteiro; E. Sá; A.I. Miranda; C. Borrego; M. Lopes

2015-01-01T23:59:59.000Z

2

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

3

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

4

Importance of Biomass Production and Supply | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Importance of Biomass Production and Supply Importance of Biomass Production and Supply Bryce Stokes gave this presentation at the Symbiosis Conference. symbiosisconferencestokes...

5

Feedstock Supply and Logistics:Biomass as a Commodity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Feedstock Supply and Logistics:Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

6

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

7

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

8

Kaisheng Biomass Residue Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Kaisheng Biomass Residue Power Co Ltd Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name Kaisheng Biomass Residue Power Co., Ltd. Place Nanping City, Fujian Province, China Zip 365001 Sector Biomass Product Chinese developer of a CDM registered biomass plant. References Kaisheng Biomass Residue Power Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Kaisheng Biomass Residue Power Co., Ltd. is a company located in Nanping City, Fujian Province, China . References ↑ "[ Kaisheng Biomass Residue Power Co., Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Kaisheng_Biomass_Residue_Power_Co_Ltd&oldid=347879" Categories: Clean Energy Organizations

9

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Broader source: Energy.gov (indexed) [DOE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

10

Phytoplankton biomass and residual nitrate in the pelagic ecosystem  

Science Journals Connector (OSTI)

...research-article Research Article Phytoplankton biomass and residual nitrate in the pelagic ecosystem...are linked to changes in the chlorophyll biomass. The model can be treated analytically...Mathematical bounds are found for the autotrophic biomass and the residual nitrate in terms of the...

2003-01-01T23:59:59.000Z

11

Addressing Biomass Supply Chain Challenges With AFEX™ Technology  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX™ Technology Allen Julian, Chief Business Officer, MBI

12

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network [OSTI]

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

13

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-Print Network [OSTI]

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facility’s residue handling challenges and input demands. A number of feedstock, technology, oxidizer...

Georgeson, Adam

2012-02-14T23:59:59.000Z

14

Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina  

Science Journals Connector (OSTI)

Abstract The present article assesses the residual biomass availability and its energy potential in the Party of General Pueyrredón, a region located southeast of the province of Buenos Aires, Argentina. These were considered herbaceous and vegetable residues derived from the agricultural activity developed in the region, and forest residues resulting from the pruning of urban trees and garden maintenance. The estimates were based on statistical information of the 2011–2012 harvest and a series of parameters obtained from an extensive literature review. The calculations resulted in an availability of residual biomass of 204,536 t/year, implying an energy potential of 2605 TJ/year. If this biomass is used to generate electricity, it could supply 76,000 users from Mar del Plata city, the largest consumer center in the region. If the same available biomass is used for heat generation, 25,160 users could be supplied by the available residual biomass. The authors concluded that the residual biomass energy potential is significant in the studied region, but a more detailed study must be conducted to assess the techno-economic feasibility of using the available residual biomass as alternative energy source.

Justo José Roberts; Agnelo Marotta Cassula; Pedro Osvaldo Prado; Rubens Alves Dias; José Antonio Perrella Balestieri

2015-01-01T23:59:59.000Z

15

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

16

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market  

Broader source: Energy.gov [DOE]

More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to discussions about the ongoing challenges and achievements in the bioenergy industry. Biomass 2011 addressed key issues in important areas, such as feedstock supply, conversion pathways, algal biofuels, investment risk and innovation, regulation and policy, and the international perspective.

17

Erratum to: Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

Two regrettable errors occurred in citing a critical funding source for the multi-location research summarized in the 2014 article entitled “Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplie...

Douglas L. Karlen; Jane M. F. Johnson

2014-09-01T23:59:59.000Z

18

Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain in the Midwest  

E-Print Network [OSTI]

Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain in the Midwest W. Alex of a biomass-to-ethanol supply chain in a 9-state region in the Midwestern United States. A biochemical and enzymatic hydrolysis. Locations and capacities of biorefineries are determined simultaneously with biomass

Benjaafar, Saifallah

19

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

Broader source: Energy.gov [DOE]

An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply"

20

Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain W. Alex Marvin a  

E-Print Network [OSTI]

Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain W. Alex Marvin a , Lanny design a b s t r a c t This paper presents an optimization study of the net present value of a biomass hydrolysis. Optimal locations and capacities of biorefineries are determined simultaneously with biomass

Benjaafar, Saifallah

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic...

22

Addressing Biomass Supply Chain Challenges With AFEX? Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

biorefinery locations * Collection area may not be practical * Potential for spoilage Logistics Challenge Visualized AFEX Depot Biorefinery * 100-200 tonsday of biomass * Draw...

23

The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks  

E-Print Network [OSTI]

biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a...

McLaughlin, Will

2012-02-14T23:59:59.000Z

24

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

25

A network design model for biomass to energy supply chains with anaerobic digestion systems  

Science Journals Connector (OSTI)

Abstract Development and implementation of renewable energy systems, as a part of the solution to the worldwide increasing energy consumption, have been considered as emerging areas to offer an alternative to the traditional energy systems with limited fossil fuel resources and to challenge environmental problems caused by them. Biomass is one of the alternative energy resources and agricultural, animal and industrial organic wastes can be treated as biomass feedstock in biomass to energy conversion systems. This study aims to develop an effective supply chain network design model for the production of biogas through anaerobic digestion of biomass. In this regard, a mixed integer linear programming model is developed to determine the most appropriate locations for the biogas plants and biomass storages. Besides the strategic decisions such as determining the numbers, capacities and locations of biogas plants and biomass storages, the biomass supply and product distribution decisions can also be made by this model. Mainly, waste biomass is considered as feedstock to be digested in anaerobic digestion facilities. To explore the viability of the proposed model, computational experiments are performed on a real-world problem. Additionally, a sensitivity analysis is performed to account for the uncertainties in the input data to the decision problem.

?ebnem Y?lmaz Balaman; Hasan Selim

2014-01-01T23:59:59.000Z

26

Assessing Maturity in Sweet Sorghum Hybrids and its Role in Daily Biomass Supply  

E-Print Network [OSTI]

in ___________ This thesis follows the style of Crop Science. 2 feed and food grain markets. Finally, perceived concerns over fuel versus food will continue to affect policy and production practices (Hoekman, 2009). Because our biofuel needs cannot be met... by starch-derived ethanol alone, ligno- cellulosic biomass sources will also be required (Heaton et al., 2008). There are many potential ligno-cellulosic biomass sources ranging from crop and wood residue to dedicated bioenergy crops grown specifically...

Burks, Payne

2012-07-16T23:59:59.000Z

27

A Multi-Objective, Hub-and-Spoke Supply Chain Design Model For Densified Biomass  

SciTech Connect (OSTI)

In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for long-haul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus in not just on the costs associated with meeting these standards, but also exploring the social and environmental benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.

Md S. Roni; Sandra Eksioglu; Kara G. Cafferty

2014-06-01T23:59:59.000Z

28

Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains in the Rockies  

E-Print Network [OSTI]

Mountain forests. Most active forest management activities on public and private land, such as thinning be converted into fuel, heat and electricity. Eagle Valley Clean Energy in Gypsum, Colorado, is one such facility, and is Colorado's first dedicated biomass power plant, producing 11.5 megawatts of electricity

29

Linear and nonlinear TAR panel unit root analyses for solid biomass energy supply of European countries  

Science Journals Connector (OSTI)

Biomass is one of the major sources of renewable energy in the World. This paper aims at observing primary biomass energy supply in some EU countries within periods1971–2009 and 1982–2009. Following related two panel data sets for biomass in EU, this work employs linear models and nonlinear threshold autoregression (TAR) models to test linearity against nonlinearity and nonstationarity against stationarity. If nonlinearity is found, then, the next step is to search transition variable and threshold value of the panel data sets. This paper eventually has the purpose to reveal if EU countries converge in the production of biomass in a linear form or nonlinear form. Findings show that panel of Austria, Denmark, Finland, France and Portugal follows nonlinear process and reaches partial convergence in per million primary solid biomass energy supply. However, the involvement of Belgium, Greece, Norway, Poland and Sweden to the panel yields linearity and divergence. One may suggest policy makers of EU and/or OECD, upon conclusion of this paper, to revise their energy policies to stimulate both production and consumption of biomass energy source.

Faik Bilgili

2012-01-01T23:59:59.000Z

30

Residual biomass recovery from fully-mechanized delayed thinnings on Spanish Pinus spp. plantations  

Science Journals Connector (OSTI)

Abstract In Spain, five million hectares of conifer plantations require thinning. As only a small part produces pulpwood, they are a major potential biomass resource. A time-study is performed on the recovery of logging residues in a Pinus plantation on gentle terrain in order to analyze the main factors affecting the productivity and cost of biomass and pulpwood harvesting. The first factor is the branches and tops piling method, either using the forest harvester head to bunch them along the strip road sides (method S) while processing the timber, or leaving them on the strip road centre (method C) and using a 175 HP bulldozer with a raking implement to pile them up afterwards. The second factor is the top diameter separating pulpwood and biomass, 8 or 10 cm. Mechanized felling-processing productivity is greater for the method C and the smaller diameter. Hauling biomass off with forwarder is also significantly more productive when piled by bulldozer. Productivity equations were fitted for pulpwood and biomass forwarding. The direct cost of biomass recovery ranged from €29.7 to €31.5 per green tonne (H = 51%). The roundwood and biomass effective yields – per hectare – were measured. This allowed evaluating the cost balance for roundwood/roundwood plus biomass harvesting, based on the net income per hectare. Under the 2013 Spanish market conditions, recovery of residual biomass is economically preferable to harvesting only roundwood in the studied stands. The greater net income balance corresponds to the piling method using the bulldozer (C) and the larger top diameter (10 cm).

E. Tolosana; R. Laina; Y. Ambrosio; M. Martín

2014-01-01T23:59:59.000Z

31

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format  

Broader source: Energy.gov [DOE]

This abstract from AGCO presents the project objectives for the integration of advanced logistical systems and focused bioenergy harvesting technologies that supply crop residues and energy crops in a large bale format.

32

Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries  

SciTech Connect (OSTI)

Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

2014-07-01T23:59:59.000Z

33

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply  

Broader source: Energy.gov [DOE]

The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of the country's present petroleum consumption.

34

A systemic approach for dimensioning and designing anaerobic bio-digestion/energy generation biomass supply networks  

Science Journals Connector (OSTI)

Abstract Anaerobic bio-digestion/energy generation complexes using animal waste raw materials represent an important component of renewable energy initiatives and policies worldwide, and are significant contributors to broaden sustainability efforts. In such projects bio-power feasibility depends heavily on generation complex access to biomass which is of costly transportation. As a result, an important component of renewable energy planning is the optimization of a logistics system to guarantee low-cost access to animal waste. This access is a function of local characteristics including number and geographic location of organic waste sources, operating and maintenance costs of the generation facility, energy prices, and marginal contribution of biomass collected and delivered to the anaerobic bio-digestion unit. Because biomass exhibits high transportation costs per unit of energy ultimately generated, and because different types of biomass have different biogas-generating properties, design of the supply logistics system can be the determinant factor towards economic viability of energy generation from an anaerobic bio-digestion plant. Indeed, to address this problem it is helpful to consider the farms, the logistics system, the anaerobic bio-digestion plant, and the generation plant as subsystems in an integrated system. Additionally, the existence of an outlet for manure may allow farmers to significantly raise boundaries of one constraint they face, namely disposing of animal waste, therefore permitting increases in farm production capacity. This paper suggests and outlines a systematic methodology to address the design of such systems.

João Neiva de Figueiredo; Sérgio Fernando Mayerle

2014-01-01T23:59:59.000Z

35

A supply chain network design model for biomass co-firing in coal-fired power plants  

SciTech Connect (OSTI)

We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

2014-01-01T23:59:59.000Z

36

Multiobjective Optimization of Biomass to Energy Supply Chains in an Uncertain Environment  

Science Journals Connector (OSTI)

Abstract The aim of this study is to design supply chain network for biomass to energy conversion systems for the regions having high potential of animal wastes and energy crops production and to reveal economical and environmental benefits from these systems. To this aim, a fuzzy multiobjective mixed integer linear programming (MILP) model is constructed. The model includes environmental and monetary objectives and it is structured as a multiperiod model in order to consider variation in the parameters. The model is solved by using different fuzzy goal programming (FGP) approaches.

?ebnem Yilmaz Balaman; Hasan Selim

2014-01-01T23:59:59.000Z

37

Biomass gasification using low-temperature solar-driven steam supply  

Science Journals Connector (OSTI)

Abstract A numerical modeling study on the low-temperature steam gasification process is presented to outline the possibility to drive the process with an integrated Concentrated Solar Power (CSP) plant, which provides low-temperature steam, with the aim of preserving a comparable efficiency of the new plant with traditional high-temperature biomass gasification processes. To meet this, the effective parameters and operating conditions are assessed and determined for low-temperature biomass gasification by means of sensitivity analysis, in order to find out the optimal design of the new gasifier. Crucial parameters comprise the residence time of the solid fuel and of the gas phase (leading to efficient gas–solid interactions), as well as the amount of injected oxygen and steam. Moreover, several operative parameters such as content of moisture in the biomass feedstock, size of the solid particles, equivalence ratio and structural components amount in the biomass feedstock are taken into account to optimize the operation. The molar ratio of H2/CO has been selected as a benchmark of efficiency in the process because the produced syngas would be applied in the methanol synthesis process, which needs a molar ratio of H2/CO close to the value of two. The percentage of the solid residue (weight % of the solid feedstock) has been evaluated along with the molar ratio of H2/CO in the low-temperature process to guide the re-design of the solar driven gasifier, in terms of reactor volume and amount of required oxygen and steam, which are necessary to sustain the process. The modeling and simulation to design the process have been accomplished by a comprehensive modeling package (GASDS), which includes kinetics of biomass devolatilization and pyrolysis, gasification, and secondary gas phase kinetic schemes. The gasifier, owing to its intrinsic multi-scale nature, is simulated describing both the particle and the reactor scales.

Zohreh Ravaghi-Ardebili; Flavio Manenti; Michele Corbetta; Carlo Pirola; Eliseo Ranzi

2015-01-01T23:59:59.000Z

38

Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues  

Science Journals Connector (OSTI)

A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells.

Hayati Olgun; Sibel Ozdogan; Guzide Yinesor

2011-01-01T23:59:59.000Z

39

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GW. 1986. Biomass production from herbaceous plant. In biomass energy development. WH Smith (ed.). Plenum Press, New York, NY. pp. 163-175. 165 U.S. BILLION-TON UPDATE: BIOMASS...

40

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Social dimensions of energy supply alternatives in steelmaking: comparison of biomass and coal production scenarios in Australia  

Science Journals Connector (OSTI)

Abstract Global climatic change is driving research and development in low emissions technologies. One such technology is the use of charcoal from biomass in steelmaking. This paper adapts social life cycle assessment methodologies to analyse the social dimensions of energy supply alternatives in steelmaking using regionalised production scenarios in Australia. Three energy supply alternatives are investigated: charcoal produced from Radiata pine plantation forestry; charcoal produced from Mallee eucalypt revegetation on agricultural land; and metallurgical coal. Impact indicators analysed include land-use, employment, workplace health & safety and a qualitative analysis of identified stakeholder issues. The research finds that biomass alternatives are significant generators of direct employment at the regional level; have concomitantly higher rates of workplace injuries and represent a significant change in land-use. Charcoal produced from Mallee biomass planted as a conservation measure on farmland, however, has the benefit of representing a shared land-use that provides an additional farm revenue stream and assists dryland salinity management. The paper finds that full substitution of coal by pine or Mallee charcoal does not provide a unique solution for optimising the social performance of the energy supply alternatives across all indicators.

Fitsum S. Weldegiorgis; Daniel M. Franks

2014-01-01T23:59:59.000Z

42

The prospects of energy forestry and agro-residues in the Lithuania's domestic energy supply  

Science Journals Connector (OSTI)

Recent restructuring of the European agricultural sector should reduce the volume of traditional agricultural production dramatically and withdraw huge areas of arable land from turnover. As a result there is a great potential in breeding short rotation forestry (SRF) and short rotation coppice (SRC) plantations in uncultivated land of good agrarian condition. Lithuania (LIT) has a great potential for expanding local biofuel market and reap the derivative effects in relation to energy and environment on faster growing biomass like SRF, SRC and straw. Energy forestry and agro-residues lessen the environmental impact connected to energy production and consumption and contribute to meeting Lithuania's international obligations for the discharge of greenhouse gasses (CO2, CH4, N2O), sustainability and biodiversity. This review contains practical information on the experience acquired by establishing SRF plantations in LIT as well as utilisation of energy forestry and agro-residues for heat and power. The paper details cultivation and harvesting of SRF, rationality of production, types and applications of industrial combustion systems. It was carefully compiled on the basis of available literature sources, national information and experiences and suggestions from local farmers. Other important issues, including support and incentive mechanisms as well as examples of successful implementation, are also discussed.

Laurencas Raslavi?ius; Vytautas Ku?inskas; Algirdas Jasinskas

2013-01-01T23:59:59.000Z

43

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

44

Comparative Life Cycle Assessment (LCA) of Construction and Demolition (C&D) Derived Biomass and U.S. Northeast Forest Residuals Gasification for Electricity Production  

Science Journals Connector (OSTI)

Comparative Life Cycle Assessment (LCA) of Construction and Demolition (C&D) Derived Biomass and U.S. Northeast Forest Residuals Gasification for Electricity Production ... Various types of organic waste including (a) agriculture and forestry residues and (b) municipal and industrial wastes (i.e., biodegradable municipal solid waste, plastic waste, construction and demolition (C&D) waste, and sewage sludge) are considered as potential feedstock for bioenergy and chemicals production. ...

Philip Nuss; Kevin H. Gardner; Jenna R. Jambeck

2013-03-15T23:59:59.000Z

45

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

46

Proposal for the award of a contract, without competitive tendering, for the supply of UHV residual gas analysers for the LHC  

E-Print Network [OSTI]

This document concerns the award of a contract, without competitive tendering, for the supply of UHV residual gas analysers for the LHC. The Finance Committee is invited to agree to the negotiation of a contract, without competitive tendering, with PFEIFFER INFICON (DE) for the supply of 30 UHV residual gas analysers for a total amount of 1 050 500 Swiss francs, not subject to revision, and an option for up to eight extra units for an amount not exceeding 280 133 Swiss francs, not subject to revision, bringing the total amount to 1 330 633 Swiss francs, not subject to revision.

2005-01-01T23:59:59.000Z

47

NREL: Renewable Resource Data Center - Biomass Resource Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

48

Influence of Combustion Conditions on Yields of Solvent-Extractable Anhydrosugars and Lignin Phenols in Chars: Implications for Characterizations of Biomass Combustion Residues  

SciTech Connect (OSTI)

Anhydrosugars, such as levoglucosan and its isomers (mannosan, galactosan), as well as the solvent-extractable lignin phenols (methoxylated phenols) are thermal degradation products of cellulose/hemicellulos and lignin, respectively. These two groups of biomarkers are often used as unique tracers of combusted biomass inputs in diverse environmental media. However, detail characterization of the relative proportion and signatures of these compounds in highly heterogeneous plant-derived chars/charcoals are still scarce. Here we conducted a systematic study to investigate the yields of solvent-extractable anhydrosugars and lignin phenols in twenty-five lab-made chars produced from different plant materials under different combustion conditions. Solvent extractable anhydrosugars and lignin phenols were only observed in chars formed below 350 C and yields were variable across different combustion temperatures. The yields mannosan (M) and galactosan (G) decreased more rapidly than those of levoglucosan (L) under increasing combustion severity (temp. and duration), resulting in variable L/M and L/(M+G) ratios, two diagnostic ratios often used for identification of combustion sources (e.g. hardwoods vs. softwoods vs. grasses). On the other hand, the results of this study suggest that the ratios of the major solvent-extractable lignin phenols (vanillyls (V), syringyls (S), cinnamyls (C)) provide additional source reconstruction potential despite observed variations with combustion temperature. We thus propose using a property property plot (L/M vs. S/V) as an improved means for source characterization of biomass combustion residues. The L/M-S/V plot has shown to be effective in environmental samples (soil organic matter, atmospheric aerosols) receiving substantial inputs of biomass combustion residues.

Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce

2011-10-01T23:59:59.000Z

49

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

50

Cost, energy and carbon dioxide (CO2) effectiveness of a harvesting and transporting system for residual forest biomass  

Science Journals Connector (OSTI)

The purpose of this study is to examine the feasibility of a system to harvest logging residues (or slashes) as a new resource for energy in Japan. A harvesting and transporting system ... the system is discussed...

Takuyuki Yoshioka; Kazuhiro Aruga; Hideo Sakai…

2002-08-01T23:59:59.000Z

51

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Broader source: Energy.gov (indexed) [DOE]

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

52

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

Parker, Nathan

2007-01-01T23:59:59.000Z

53

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

2004). "Optimizing Forest Biomass Exploitation for Energyat a Regional Level." Biomass and Bioenergy, 26(1), 15-25.Energy Crop Feedstock." Biomass and Bioenergy, 18(4), 309-

Parker, Nathan C

2007-01-01T23:59:59.000Z

54

The study of biomass yield and macromolecular content of microalgae change as a function of physiological state and nutrient supply conditions  

E-Print Network [OSTI]

biomass and macromolecular content, nutrient composition and physiological states, the optimal growth condition and maximum biomass and biofuel productivity can be achieved. The aim of this study was to determined how the biomass and macromolecular content...

Chen, Guo

2013-12-31T23:59:59.000Z

55

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network [OSTI]

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in… (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

56

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

57

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

58

The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production  

Science Journals Connector (OSTI)

Abstract Sugarcane bagasse is the residue produced by mills after juice is extracted from sugarcane. Other important solid residues in the sugarcane-to-sugar-and-ethanol production chain are the leaves and tops of the stalks (together referred to as cane trash). Although it represents a significant portion of the energy in sugarcane, cane trash is currently left in the fields. This paper has described and analyzed how residues (bagasse and cane trash) are produced from sugarcane and their use as an energy source in the production of ethanol. Also, it presents a review of the physical properties and characteristics of bagasse and cane trash and estimate their energy potential. Bagasse and cane trash have similar fuel characteristics to other biomasses fuels. Special attention should be given to the characteristics of cane trash ash, which has higher fusibility and alkali levels than bagasse. A flowchart of a typical mill was described and the thermal and mechanical energy consumption at various stages of the production process was determined. Of the energy consumed as work, about 58% is accounted for by milling and juice extraction, and 33% by the generation of electricity for use in the plant. In a typical mill using steam generators operating at average pressure and temperature (22 bar, 300–360 °C), about 15% of the bagasse produced is surplus, and an average of 480 kg of steam is used per tonne of cane processed. An energy consumption analysis revealed that there was significant scope for reducing the amount of steam needed to operate the turbines in mills because of the low isentropic efficiencies identified. Cane trash, which is not yet used for energy production, also shows great energy potential because it is produced in similar quantities to bagasse, and its calorific value is only slightly lower.

Waldir Antonio Bizzo; Paulo César Lenço; Danilo José Carvalho; João Paulo Soto Veiga

2014-01-01T23:59:59.000Z

59

Session 1A Feedstock Supply, Logistics, Processing, and Composition  

Science Journals Connector (OSTI)

A cost effective and sustainable supply of biomass feedstocks is a cribical component of a viable...

Hans-Joachim G. Jung; David N. Thompson

2005-01-01T23:59:59.000Z

60

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

62

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

63

EA-1957: Cabin Creek Biomass Facility, Placer County, California  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

64

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

65

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

66

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan C

2007-01-01T23:59:59.000Z

67

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan

2007-01-01T23:59:59.000Z

68

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Hydrogen Production by Gasification of Biomass." Departmentand Celik, Fuat (2005). "Gasification-Based Fuels andon a study of slagging gasification for MSW that reported

Parker, Nathan C

2007-01-01T23:59:59.000Z

69

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Hydrogen Production by Gasification of Biomass." Departmentand Celik, Fuat (2005). "Gasification-Based Fuels andon a study of slagging gasification for MSW that reported

Parker, Nathan

2007-01-01T23:59:59.000Z

70

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

71

High Level Overview of DOE Biomass Logistics II Project Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Level Overview of DOE Biomass Logistics II Project Activities High Level Overview of DOE Biomass Logistics II Project Activities Breakout Session 1B-Integration of Supply...

72

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

73

Availability Assessment of Carbonaceous Biomass in California as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuel  

E-Print Network [OSTI]

is available for biomass conversion technologies, animalor residual biomass materials for conversion into valuableCalifornia’s biomass resources is based on conversion as

Valkenburg, C; Norbeck, J N; Park, C S

2005-01-01T23:59:59.000Z

74

Design of a Factories’ Supply System with Biomass in Order to Be Used as an Alternative Fuel—A Case Study  

Science Journals Connector (OSTI)

Energy Fuels, 2007, 21 (6), ... Biomass is in general the matter that is produced from live organisms such as animals and plants on a renewable basis(1-3). ... El Saeidy, E. Renewable energy in Egypt. ...

Evangelos Petrou; Athanassios Mihiotis

2007-09-21T23:59:59.000Z

75

International Conference on Engineering for Waste and Biomass Valorisation September 10-13, 2012 Porto, Portugal USE OF AUTO SHREDDER RESIDUES GENERATED BY POST  

E-Print Network [OSTI]

-13, 2012 � Porto, Portugal USE OF AUTO SHREDDER RESIDUES GENERATED BY POST SHREDDER TECHNOLOGY of plastics and residuals metals. This fraction undergoes Post-Shredder Treatments, to extract 30-50 wt characterization of fractions sampled on an industrial line of treatment of automotive residues. The results feed

Paris-Sud XI, Université de

76

Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants  

Science Journals Connector (OSTI)

Abstract Parasitically providing the energy required for CO2 capture from retrofitted coal power plants can lead to a significant loss in output of electricity. In this study, different configurations of auxiliary units are investigated to partially or totally meet the energy requirements for MEA post-combustion capture in a 500 MW sub-critical coal-fired plant. The auxiliary unit is either a boiler, providing only the heat required for solvent regeneration in the capture process or a combined heat and power (CHP) unit, providing both heat and electricity. Using biomass in auxiliary units, the grid loss is reduced without increasing fossil fuel consumption. The results show that using a biomass CHP unit is more favourable than using a biomass boiler both in terms of CO2 emission reductions and power plant economic viability. By using an auxiliary biomass CHP unit, both the emission intensity and the cost of electricity would be marginally lower than for a coal plant with capture. Further emission reductions occur if CO2 is captured both from the coal plant and the auxiliary biomass CHP, resulting in negative emissions. However, high incentive schemes (a carbon price higher than 55 $/t CO2 or a combination of lower carbon price and renewable energy certificates) or a low biomass price (lower than 1 $/GJ) are required to make CO2 capture from both the coal plant and the auxiliary biomass CHP unit economically attractive. All cost comparisons are for CO2 capture only and CO2 transport and storage are not included in this study.

Zakieh Khorshidi; Minh T. Ho; Dianne E. Wiley

2015-01-01T23:59:59.000Z

77

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass  

Science Journals Connector (OSTI)

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass ... Six biomasses with different chemical compositions ... ... Therefore, different types of woody biomass and biomass residues (shells) were thermochemically converted in an atmospheric flow ... ...

Jacob N. Knudsen; Peter A. Jensen; Weigang Lin; Kim Dam-Johansen

2005-02-10T23:59:59.000Z

78

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation… (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

79

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

80

Availability and Assessment of Carbonaceous Biomass in the United States as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuels  

E-Print Network [OSTI]

is available for biomass conversion technologies, animalor residual biomass materials for conversion into valuableCalifornia’s biomass resources is based on conversion as

Valkenburg, C; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment  

E-Print Network [OSTI]

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

Bae, Jin-Woo

82

A mixed integer nonlinear programming (MINLP) supply chain optimisation framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK  

Science Journals Connector (OSTI)

Abstract The co-firing of biomass and fossil fuels in conjunction with CO2 capture and storage (CCS) has the potential to lead to the generation of relatively inexpensive carbon negative electricity. In this work, we use a mixed integer nonlinear programming (MINLP) model of carbon negative energy generation in the UK to examine the potential for existing power generation assets to act as a carbon sink as opposed to a carbon source. Via a Pareto front analysis, we examine the technical and economic compromises implicit in transitioning from a dedicated fossil fuel only to a carbon negative electricity generation network. A price of approximately £30–50/t CO2 appears sufficient to incentivise a reduction of carbon intensity of electricity from a base case of 800 kg/MWh to less than 100 kg/MWh. However, the price required to incentivise the generation of carbon negative electricity is in the region of £120–175/t of CO2. In order for biomass to energy with CCS (BECCS) to be commercially attractive, the power plants in question must operate at a high load factor and high rates of CO2 capture. The relative fuel cost is a key determinant of required carbon price. Increasing biomass availability also reduces the cost of generating carbon negative electricity; however one must be cognisant of land use change implications.

O. Akgul; N. Mac Dowell; L.G. Papageorgiou; N. Shah

2014-01-01T23:59:59.000Z

83

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

84

The European Forest Institute and the Finnish Forest Research Institute: The supply of woody biomass from the forests in the EU can be  

E-Print Network [OSTI]

Karelia in Eastern Finland showed that if the paying ability of a user of logging residues reduces 4, Finnish Forest Research Institute, tel. +358 50 391 3088, perttu.anttila @ metla.fi Final reports: http://ec.europa.eu/energy/renewables/studies/bioenergy

85

Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks  

Science Journals Connector (OSTI)

Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks ... Forestry residue is one of the most viable biomass feedstocks for liq. ...

Jieling Zhang; Hossein Toghiani; Dinesh Mohan; Charles U. Pittman, Jr.; Rebecca K. Toghiani

2007-05-25T23:59:59.000Z

86

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

87

Characterization of Gaseous- and Particle-Phase Emissions from the Combustion of Biomass-Residue-Derived Fuels in a Small Residential Boiler  

Science Journals Connector (OSTI)

The aim of this study was to fill the gap in the data of emissions from the combustion of agricultural biomass fuels. ... Before starting each experiment, the heat transfer medium (water) was preheated to 70 °C by an additional natural gas boiler, with the objective to reach optimal combustion conditions quicker and avoid condensation on the surfaces of the boiler during the startup phase. ... hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. ...

Edvinas Krugly; Dainius Martuzevicius; Egidijus Puida; Kestutis Buinevicius; Inga Stasiulaitiene; Inga Radziuniene; Algirdas Minikauskas; Linas Kliucininkas

2014-07-15T23:59:59.000Z

88

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Maps Biomass Maps These maps illustrate the biomass resources available in the United States by county. Biomass feedstock data are analyzed both statistically and graphically using a geographic information system (GIS). The following feedstock categories are evaluated: crop residues, forest residues, primary and secondary mill residues, urban wood waste, and methane emissions from manure management, landfills, and domestic wastewater treatment. Biomass Resources in the United States Map of Total Biomass Resources in the United States Total Resources by County Total Biomass per Square Kilometer These maps estimate the biomass resources currently available in the United States by county. They include the following feedstock categories: crop residues (5 year average: 2003-2007) forest and primary mill residues

89

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan…

2007-01-01T23:59:59.000Z

90

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

91

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

92

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and  

E-Print Network [OSTI]

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

Toohey, Darin W.

93

The economic potential of producing energy from agricultural biomass  

E-Print Network [OSTI]

allocation of farm land to meet the forced biomass energy supplies. Most conventional crop prices rise and all biomass feedstock prices rise with increasing feedstock production. As a consequence, farmers receive increased profits. Consumers, however...

Jerko, Christine

1996-01-01T23:59:59.000Z

94

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

95

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

96

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

97

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

98

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

99

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

100

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biomass Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

102

Biomass Program Monthly News Blast: June  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on topics surrounding the use of biomass as a replacement for petroleum to supply the energy, products, and power markets. Paul Bryan will be attending the conference for the...

103

Biomass Program Monthly News Blast: May  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market - The New Horizons of Bioenergy July 26-27, 2011, at the Gaylord National Resort and Convention Center in...

104

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

105

ORNL/TM-2008/105 Cost Methodology for Biomass  

E-Print Network [OSTI]

ORNL/TM-2008/105 Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Resource and Engineering Systems Environmental Sciences Division COST METHODOLOGY FOR BIOMASS FEESTOCKS ....................................................................................................... 3 2.1.1 Integrated Biomass Supply Analysis and Logistics Model (IBSAL).......................... 6 2

Pennycook, Steve

106

Production of Mallee Biomass in Western Australia: Energy Balance Analysis  

Science Journals Connector (OSTI)

Production of Mallee Biomass in Western Australia: Energy Balance Analysis† ... If mallee crops prove commercially viable, a considerable centrally harvested biomass supply could be available for conversion to renewable energy and other industrial products. ... This study presents a systematic analysis of overall energy balance of mallee biomass production in WA. ...

Hongwei Wu; Qiang Fu; Rick Giles; John Bartle

2007-09-25T23:59:59.000Z

107

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Lédé

2012-01-01T23:59:59.000Z

108

Economic development through biomass systems integration in central Florida  

SciTech Connect (OSTI)

A biomass to energy system for central Florida was conceptualized with sugarcane as the main feedstock. Additional feedstocks include elephantgrass, leucaena (woody tropical legume), and Eucalyptus. Juice will be pressed from sugarcane and sugars fermented into ethanol with conventional technology. Enough sugarcane will be grown to supply a conventional ethanol plant with juice for a 330 day operating period each yr. Juice will be condensed to 24 degrees Brix for direct conversion during the approximately 100 day harvest season and to 70 degrees Brix for storage and use the remaining 230 days. Residues (mainly lignin), from converting lignocellulosic materials to ethanol, will fuel the plant including evaporators for sugarcane juice. Sugarcane presscake, elephantgrass, leucaena, and Eucalyptus will be feedstocks for the lignocellulose conversion processes. The lignocellulose plant will be sized to convert all sugarcane presscake as it is produced to reduce storage costs. Elephantgrass, leucaena and Eucalyptus will feed the plant outside sugarcane harvest season. The biomass/energy system will produce 123,230,000 L (32,830,000 gal) of ethanol per year with 90% conversion of sugars from juice, hemicellulose, and cellulose to ethanol. Estimated cost of producing ethanol form various feedstocks include: sugarcane $0.25/L ($0.94/gal), elephantgrass $0.30/L ($1.13/gal), 1 leucaena $0.28/L ($1.06/gal), and Eucalyptus $0.28/L (1.07/gal). Future opportunities exist for development of a chemical industry based on lignocellulose materials from biomass.

Stricker, J.A.; Rahmani, M.; Hodges, A.W. [Univ. of Florida, Gainesville, FL (United States)] [and others

1995-11-01T23:59:59.000Z

109

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

110

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

111

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

112

Size Reduction and Densification of Lignocellulosic Biomass Feedstock for Biopower, Bioproducts, and  

E-Print Network [OSTI]

Size Reduction and Densification of Lignocellulosic Biomass Feedstock for Biopower, Bioproducts reduction and densification of lignocellulosic biomass feedstock play a crucial role in the preprocessing and supply of biomass. Size reduction is an operation where the size distribution of biomass particles

113

Federal Energy Management Program: Biomass Energy Resources and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. Photo of two men standing in front of large sugar cane plants. Sugar cane is used in Hawaii and other locations to produce energy and ethanol for alternative fuels. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops.

114

Sustainable Use of Regional Wood Biomass in Kushida River Basin, Japan  

Science Journals Connector (OSTI)

The wood biomass supply may change with altered forest management practices (thinning, harvesting, and plantation), and a few studies have focused ... of forest management from the view point of wood biomass prod...

Makoto Ooba; Tsuyoshi Fujita; Motoyuki Mizuochi…

2012-12-01T23:59:59.000Z

115

Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors  

SciTech Connect (OSTI)

Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

2014-02-01T23:59:59.000Z

116

Co-firing in coal power plants and its impact on biomass feedstock availability  

Science Journals Connector (OSTI)

Abstract Several states have a renewable portfolio standard (RPS) and allow for biomass co-firing to meet the RPS requirements. In addition, a federal renewable fuel standard (RFS) mandates an increase in cellulosic ethanol production over the next decade. This paper quantifies the effects on local biomass supply and demand of different co-firing policies imposed on 398 existing coal-fired power plants. Our model indicates which counties are most likely to be able to sustain cellulosic ethanol plants in addition to co-firing electric utilities. The simulation incorporates the county-level biomass market of corn stover, wheat straw, switchgrass, and forest residues as well as endogenous crop prices. Our scenarios indicate that there is sufficient feedstock availability in Southern Minnesota, Iowa, and Central Illinois. Significant supply shortages are observed in Eastern Ohio, Western Pennsylvania, and the tri-state area of Illinois, Indiana, and Kentucky which are characterized by a high density of coal-fired power plants with high energy output.

Jerome Dumortier

2013-01-01T23:59:59.000Z

117

Exploration of regional and global cost–supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios  

Science Journals Connector (OSTI)

We explored the production cost of energy crops at abandoned agricultural land and at rest land at a regional and a global level to the year 2050 using four different land-use scenarios. The estimations were based on grid cell data on the productivity of short-rotation crops on the available land over time and assumptions regarding the capital and the labour input required to reach these productivity levels. It was concluded that large amounts of grown biomass at abandoned agricultural land and rest land, 130–270 EJ yr?1 (about 40–70% of the present energy consumption) may be produced at costs below $2 GJ?1 by 2050 (present lower limit of cost of coal). Interesting regions because of their low production cost and significant potentials are the Former USSR, Oceania, Eastern and Western Africa and East Asia. Such low costs presume significant land productivity improvements over time and cost reductions due to learning and capital-labour substitution. An assessment of biomass fuel cost, using the primary biomass energy costs, showed that the future costs of biomass liquid fuels may be in the same order of the present diesel production costs, although this may change in the long term. Biomass-derived electricity costs are at present slightly higher than electricity baseload costs and may directly compete with estimated future production costs of fossil fuel electricity with CO2 sequestration. The present world electricity consumption of around 20 PWh yr?1 may be generated in 2050 at costs below $45 MWh?1 in A1 and B1 and below $55 MWh?1 in A2 and B2. At costs of $60 MWh?1, about 18 (A2) to 53 (A1) PWh yr?1 can be produced.

Monique Hoogwijk; André Faaij; Bert de Vries; Wim Turkenburg

2009-01-01T23:59:59.000Z

118

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

119

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

120

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

122

Development of a Web-based woody biomass energy expert system.  

E-Print Network [OSTI]

??Woody biomass is evolving as a potential bioenergy feedstock at an industrial scale to provide the required supply for industries relying on these resources at… (more)

Dhungana, Sabina.

2009-01-01T23:59:59.000Z

123

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Data Biomass Data These datasets represent the biomass resource availability in the United States by county. The estimates are based on county-level statistics and/or point-source data gathered from the U.S. Department of Agriculture, U.S. Forest Service, EPA and other organizations. Geographic Coordinate System Name: GCS_North_American_1983 Coverage File Size Last Updated Metadata Urban Wood and Secondary Mill Residues (Zip 6.8 MB) 5/23/2012 Urban Wood and Secondary Mill Residues.xml Geographic Coordinate System Name: WGS 1984 Coverage File Size Last Updated Metadata Crop Residues (Zip 6.81 MB) 10/28/2008 Crop Residues.xml Forest and Primary Mill Residues (Zip 69.75 MB) 10/28/2008 Forest and Primary Mill Residues.xml Note - These datasets are designed to be used in GIS software applications.

124

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

125

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

126

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

127

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

129

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

130

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

131

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

132

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

133

High Level Overview of DOE Biomass Logistics II Project Activities  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

134

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network [OSTI]

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

135

Systems and procedures for integrated recovery of forest biomass  

SciTech Connect (OSTI)

Whether recovery of forest biomass will become a common procedure depends on how acceptable biomass is for fuel and fiber, what the demand is for it, how stable is its supply, and how economic it is when it comes to energy. Manufacturers appear interested in continuing to develop machines and systems that recover biomass resulting from silvicultural treatments, final harvests, and site preparation. (Refs. 9).

Walbridge, T.A.; Stuart, W.B.

1983-03-01T23:59:59.000Z

136

Building Bio-based Supply Chains: Theoretical Perspectives on Innovative Contract Design  

E-Print Network [OSTI]

supply chain for renewable energy production, this frameworkof biomass production for renewable energy products—mayenergy production, primarily for co- firing electricity generation facilities. 1 State renewable

Endres, Jody M.; Endres, A. Bryan; Stoller, Jeremy J.

2013-01-01T23:59:59.000Z

137

Hydrothermal Liquefaction of Biomass in Hot-Compressed Water, Alcohols, and Alcohol-Water Co-solvents for Biocrude Production  

Science Journals Connector (OSTI)

HTL technology is particularly promising for converting wet biomass resources such as microalgae, agro waste streams (e.g., manures), municipal/industrial wastewater sludge and fresh/green forest biomass/residues...

Chunbao Charles Xu; Yuanyuan Shao…

2014-01-01T23:59:59.000Z

138

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

139

Advanced Supply System Validation Workshop  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a diverse group of stakeholders to examine, discuss, and validate analysis assumptions used to move beyond current feedstock supply systems designed to support the agriculture and forestry industries. Participants will discuss assumptions relating to volume and transportation logistics, biomass quality, and operational risks. The outcome of the workshop will include a report summarizing the expert opinions shared during the workshop.

140

Climate benefits from alternative energy uses of biomass plantations in Uganda  

E-Print Network [OSTI]

consumption is derived from the combustion of biomass sources such as fuelwood, charcoal and residues. A veryClimate benefits from alternative energy uses of biomass plantations in Uganda Giuliana Zanchi a be produced by biomass based energy systems in Anaka, a rural settlement in the Amuru district in northern

Vermont, University of

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utilization of Biomass in Mediterranean-Type Ecosystems: A Summary and Synthesis1  

E-Print Network [OSTI]

Utilization of Biomass in Mediterranean-Type Ecosystems: A Summary and Synthesis1 C. Eugene Conrad of Mediterranean- type ecosystems to supply biomass as a supplemen- tal source of energy is a natural result to less than 25° C. Also, wet-season precip- itation approaches 1000 mm. Biomass from such ecosystems

Standiford, Richard B.

142

Assessment of Biomass Resources in Afghanistan  

SciTech Connect (OSTI)

Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

Milbrandt, A.; Overend, R.

2011-01-01T23:59:59.000Z

143

Thermal Use of Biomass in The United States | Open Energy Information  

Open Energy Info (EERE)

of Biomass in The United States of Biomass in The United States Jump to: navigation, search The biomass heat exchanger furnace can burn husklage, wood residue, or other biomass fuels to produce warm air for space heating or for process use such as grain drying. Courtesy of DOE/NREL. Credit - Energetics The United States much less biomass to produce thermal energy even when compared with developed countries. In 2003, the United States only consumed 727 kilotons of oil equivalent (ktoe) of biomass to produce thermal energy while consuming 6,078 ktoe of biomass to produce electricity. On the other hand, Europe consumed 6,978 ktoe of biomass to produce useful thermal energy while consuming 5,663 ktoe of biomass as electricity. In Europe (especially Sweden and other Nordic Countries) the use of biomass for heat

144

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

145

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

146

NREL: Biomass Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

147

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

148

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

149

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

150

Supplemental Gas Supplies  

Gasoline and Diesel Fuel Update (EIA)

. . Supplemental Gas Supplies by State, 1996 (Million Cubic Feet) Table State Synthetic Natural Gas Propane- Air Refinery Gas Biomass Gas Other Total Alabama ...................... 0 18 0 0 0 18 Colorado...................... 0 344 0 0 a 6,443 6,787 Connecticut ................. 0 48 0 0 0 48 Delaware ..................... 0 1 0 0 0 1 Georgia........................ 0 94 0 0 0 94 Hawaii.......................... 2,761 0 0 0 0 2,761 Illinois .......................... 0 488 3,423 0 0 3,912 Indiana......................... 0 539 0 0 b 2,655 3,194 Iowa............................. 0 301 0 0 0 301 Kentucky...................... 0 45 0 0 0 45 Maine........................... 0 61 0 0 0 61 Maryland...................... 0 882 0 0 0 882 Massachusetts ............ 0 426 0 0 0 426 Michigan ...................... 0 0 0 0 c 21,848 21,848 Minnesota.................... 0 709 0 0 0 709 Missouri

151

Woody biomass energy potential in 2050  

Science Journals Connector (OSTI)

Abstract From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm3/year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m3). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%.

Pekka Lauri; Petr Havlík; Georg Kindermann; Nicklas Forsell; Hannes Böttcher; Michael Obersteiner

2014-01-01T23:59:59.000Z

152

Petroleum Supply Annual 1997, Volume 1  

Gasoline and Diesel Fuel Update (EIA)

7, Volume 1 7, Volume 1 Entire . The entire report as a single file. PDF 1.0MB . . Front Matter . Cover Page, Contacts, Preface, and Table of Contents Page PDF . . Summary Statistics . Summary Statistics Tables S1 Crude Oil and Petroleum Products Overview, 1981-Present PDF S2 Crude Oil Supply and Disposition, 1981-Present PDF S3 Crude Oil and Petroleum Product Imports, 1981-Present PDF S4 Finished Motor Gasoline Supply and Disposition PDF S5 Distillate Fuel Oil Supply and Disposition, 1981-Present PDF S6 Residual Fuel Oil Supply and Disposition, 1981-Present PDF S7 Jet Fuel Supply and Disposition, 1981-Present PDF S8 Propane/Propylene Supply and Disposition, 1981-Present PDF S9 Liquefied Petroleum Gases Supply and Disposition, 1981-Present PDF S10 Other Petroleum Products Supply and Disposition, 1981-Present PDF

153

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen über den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

154

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

156

Sustainable Heat and Electricity from Sugarcane Residues Gasification in Brazil  

Science Journals Connector (OSTI)

Sugarcane residues, in the form of bagasse and cane tops and leaves, represent a large renewable biomass energy resource in Brazil. Bagasse is currently used to satisfy the energy needs of the sugar and alcohol i...

Ausilio Bauen

2002-01-01T23:59:59.000Z

157

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

158

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

159

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

160

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

162

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

163

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

164

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

165

NREL: Energy Analysis - Sustainable Biomass Resource Development and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A flowchart illustrating the process flow of life-cycle assessment. Enlarge image NREL's international work in sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can use existing resources in a sustainable manner. It also examines the environmental and socio-economic impacts of resource development and use. Our analysts also look at the relationship of sustainable land use and biomass resource development. They look at whether there is available land to support bioenergy. They also study how we can use this available land for biomass resource development in a sustainable manner. Another key question is how biomass resource development is linked to food supply,

166

Renewable Fuel Supply Ltd RFSL | Open Energy Information  

Open Energy Info (EERE)

Supply Ltd RFSL Supply Ltd RFSL Jump to: navigation, search Name Renewable Fuel Supply Ltd (RFSL) Place United Kingdom Zip W1J 5EN Sector Biomass Product UKâ€(tm)s largest supplier of biomass to the UK co-firing power stations. References Renewable Fuel Supply Ltd (RFSL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuel Supply Ltd (RFSL) is a company located in United Kingdom . References ↑ "[fsl@@Pikefsl@@Renewablefsl@@generationfsl@@sub*-Utilityfsl@@Photovoltanicsfsl@@Fuelfsl@@Wind-Poerfsl@@/ Renewable Fuel Supply Ltd (RFSL)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuel_Supply_Ltd_RFSL&oldid=350339" Categories:

167

Biomass energy analysis for crop dehydration  

SciTech Connect (OSTI)

In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

Whittier, J.P.; Haase, S.G.; Quinn, M.W. [and others

1994-12-31T23:59:59.000Z

168

BNL | Biomass Burns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

169

The Use of Biomass for Power Generation in the U.S.  

SciTech Connect (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

170

ESD Biomass Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name ESD Biomass Ltd Place Neston, United Kingdom Zip SN13 9TZ Sector Biomass Product Acts as advisor to firms developing biomass plants, with regard to planning applications and securing fuel supplies. Coordinates 53.29039°, -3.064554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.29039,"lon":-3.064554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Definition: Biomass Cook Stove | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Biomass Cook Stove Jump to: navigation, search Dictionary.png Biomass Cook Stove A Stove that is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are the most common way of cooking and heating food in developing countries.[1] View on Wikipedia Wikipedia Definition "Cooking stove" redirects here. For a kitchen cooker, stove, range, oven, or stove top, see Kitchen stove. In cooking, a cook stove is heated by burning wood, charcoal, animal dung or crop residue. Cook stoves are commonly used for cooking and heating food in developing countries. Developing countries consume little energy compared to developed nations; however, over 50% of the energy that they do use goes into cooking food.

172

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

173

Energy Dispersive X-ray Fluorescence Analysis of Sulfur in Biomass  

Science Journals Connector (OSTI)

An energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method was developed to analyze low ppm level sulfur (S) in biomass feedstocks and in subsequent residues from pretreatment reactions. ... Representative biomass feedstocks and pretreatment residues were analyzed for S. ... The goal of this project was to determine whether an energy dispersive X-ray fluorescence (ED-XRF) spectroscopy method is effective in conducting sulfur analysis of woody biomass feedstocks at an appropriately useful sensitivity, especially when used to effectively monitor the extent of sulfur removal after biomass pretreatment reactions. ...

J. Michael Robinson; Staci R. Barrett; Kevin Nhoy; Rajesh K. Pandey; Joseph Phillips; Oscar M. Ramirez; Richard I. Rodriguez

2009-03-06T23:59:59.000Z

174

NREL: Biomass Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

175

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

176

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

177

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

renewable energy resources include biomass, solar thermal resources”:  wind,  closed?loop  biomass,  open? loop  biomass,  geothermal  energy,  solar 

Cattolica, Robert

2009-01-01T23:59:59.000Z

178

Downdraft gasification of biomass.  

E-Print Network [OSTI]

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with… (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

179

Biomass: Biogas Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

180

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

182

Biomass Resource Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

183

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

184

NREL: Biomass Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

185

Biomass Indirect Liquefaction Workshop  

Broader source: Energy.gov [DOE]

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

186

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

187

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

188

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

189

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

190

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

191

Chapter 2 - Biomass for Biorefining: Resources, Allocation, Utilization, and Policies  

Science Journals Connector (OSTI)

Abstract This chapter discusses the importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass use. Bioenergy development depends on maximizing the amount of biomass obtained from agriculture and forestry, while prioritizing nature conservation and the protection of soils, water, and biodiversity. The major challenges facing the commercial production of biofuels and bioproducts are sustainable biomass availability and capital-intensive biomass processing facilities. The two main competitors for biomass resources are biopower and biofuels, and their future status depends on the federal and state regulations governing them. A combination of policies encouraging infrastructure investment and supporting favorable market conditions appears to be the most effective means for establishing an economically sustainable biofuel supply chain. Understanding the extent of biomass resources, their potential in energy markets, and the most economic utilization of biomass is important in the development of policies that improve energy security and mitigate climate change.

Stephen R. Hughes; Nasib Qureshi

2014-01-01T23:59:59.000Z

192

NREL: Computational Science - Enzymatic Conversion of Biomass to Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Conversion of Biomass to Fuels Enzymatic Conversion of Biomass to Fuels Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) and their partners use the latest terascale high-performance computers to probe the complex enzymatic cellulose depolymerization (i.e., breakdown) at the molecular level as biomass is converted to fuels. For a sustainable and economically viable liquid-fuel economy, America needs a carbon-neutral alternative to fossil fuels. Lignocellulosic biomass (i.e., agricultural residues, energy crops, and wood) could serve as the dominant feedstock for biofuels, if it can be efficiently and economically converted to its component sugars for microbial fermentation. One major obstacle to the use of biomass is the high resistance of crystalline

193

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

194

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

195

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-18T23:59:59.000Z

196

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-11T23:59:59.000Z

197

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

198

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

199

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

200

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

202

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

203

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

204

Developing better biomass feedstock | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

205

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

206

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

207

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

208

Initial Market Assessment for Small-Scale Biomass-Based CHP  

SciTech Connect (OSTI)

The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

Brown, E.; Mann, M.

2008-01-01T23:59:59.000Z

209

Energy Department Announces $12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $12 million in funding to advance the production of cost-competitive, high-performance carbon fiber material from renewable non-food-based feedstocks such as agricultural residues and woody biomass.

210

Hydro-Québec Distribution- Biomass- EAP 2011-1 (Quebec, Canada)  

Broader source: Energy.gov [DOE]

Hydro-Québec Distribution established a program for the purchase of 300 MW of electricity in Quebec from cogeneration based residual forest biomass. Each project is limited to a maximum of 50 MW....

211

Research and development on biomass energy in China  

Science Journals Connector (OSTI)

Like developed countries, China is facing two serious constraints energy shortage and environmental pollution, which hinder the development of the national economy and improvements in living conditions. On the other hand, China has a huge amount of biomass resource. It is estimated that the total amount of biomass resource is up to 5.2x108 tons of oil equivalent (TOE) in which crop residue resource is up to 2.7x108 TOE, firewood over 5.2x107 TOE and animal dung about 1.0x108 TOE. Biomass is a clean energy resource and can be explored as a convenient energy. Since the 1980s, several Chinese institutes have developed various biomass energy conversion technologies and applied these successfully in rural areas. Up to 1999, about 1.58 million TOE of energy consumption in China came from biomass energy through energy-efficient technology and biomass energy conversion technology. China is planning to develop biomass energy on a larger scale. By 2010, energy provided by these technologies may reach up to 14.1 million TOE. Through advanced technologies, biomass will give us more benefits in energy, the environment and the economy if some problems related to technical, economic, political and financial issues can be resolved successfully.

Z. Yuan; C.Z. Wu; H. Huang; G.F. Lin

2002-01-01T23:59:59.000Z

212

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

213

Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees  

E-Print Network [OSTI]

Biomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential of residual biomass. To offset the cost of handling this low-value timber, additional marketing options States market for such products. However, less is known of the capability of essential oils extracted

214

Energy Department Announces $10 Million for Technologies to Produce Advanced Biofuel Products from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $10 million in funding to advance the production of advanced biofuels, substitutes for petroleum-based feedstocks, and bioproducts made from renewable, non-food-based biomass, such as agricultural residues and woody biomass.

215

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

216

Scaling up biomass gasifier use: an application-specific approach  

Science Journals Connector (OSTI)

Biomass energy accounts for about 11% of the global primary energy supply, and it is estimated that about 2 billion people worldwide depend on biomass for their energy needs. Yet, most of the use of biomass is in a primitive and inefficient manner, primarily in developing countries, leading to a host of adverse implications on human health, environment, workplace conditions, and social well being. Therefore, the utilization of biomass in a clean and efficient manner to deliver modern energy services to the world's poor remains an imperative for the development community. One possible approach to do this is through the use of biomass gasifiers. Although significant efforts have been directed towards developing and deploying biomass gasifiers in many countries, scaling up their dissemination remains an elusive goal. Based on an examination of biomass gasifier development, demonstration, and deployment efforts in India—a country with more than two decades of experiences in biomass gasifier development and dissemination, this article identifies a number of barriers that have hindered widespread deployment of biomass gasifier-based energy systems. It also suggests a possible approach for moving forward, which involves a focus on specific application areas that satisfy a set of criteria that are critical to deployment of biomass gasifiers, and then tailoring the scaling up strategy to the characteristics of the user groups for that application. Our technical, financial, economic and institutional analysis suggests an initial focus on four categories of applications—small and medium enterprises, the informal sector, biomass-processing industries, and some rural areas—may be particularly feasible and fruitful.

Debyani Ghosh; Ambuj D Sagar; V.V.N. Kishore

2006-01-01T23:59:59.000Z

217

Biomass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

218

CLC of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

219

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

220

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

222

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

223

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

224

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

225

Biomass energy in China and its potential Li Jingjing  

E-Print Network [OSTI]

& Mining Unit, East Asia and the Pacific Region, The World Bank #172 Xizhimennei Avenue, 100035, Beijing, P of firewood and agricultural residues for cooking and heating brings with it detrimental effects of indoor air pollution and associated adverse health impacts. In addition, the time spent collecting biomass fuels

226

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field...

227

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-October 2014 (Thousand Barrels per Day) Commodity Supply...

228

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks...

229

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

230

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

231

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

232

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

233

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

234

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

235

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

236

Co-gasification of petroleum coke and biomass  

Science Journals Connector (OSTI)

Abstract Gasification may be an attractive alternative for converting heavy oil residue – petroleum coke into valuable synthetic gas. Due to the low reactivity of petroleum coke, it is maybe preferable to convert it in combination with other fuels such as biomass. Co-gasification of petroleum coke and biomass was studied in an atmospheric bubbling fluidised bed reactor and a thermogravimetric analyser (TGA) at KTH Royal University of Technology. Biomass ash in the blends was found to have a catalytic effect on the reactivity of petroleum coke during co-gasification. Furthermore, this synergetic effect between biomass and petcoke was observed in the kinetics data. The activation energy Ea determined from the Arrhenius law for pure petcoke steam gasification in the TGA was 121.5 kJ/mol, whereas for the 50/50 mixture it was 96.3, and for the 20/80 blend – 83.5 kJ/mol.

Vera Nemanova; Araz Abedini; Truls Liliedahl; Klas Engvall

2014-01-01T23:59:59.000Z

237

Biomass 2008: Fueling Our Future Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must diversify our energy sources, our energy suppliers, and our energy supply routes. President Bush challenged us to move toward diversification at an aggressive rate when he announced his Advanced Energy Initiative or AEI. AEI provides for the development of energy alternatives to fossil fuels

238

Mini-biomass electric generation  

SciTech Connect (OSTI)

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

239

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

240

Assessment of secondary crop residues. Final report  

SciTech Connect (OSTI)

This report is the first of three reports assessing the feasibility of converting secondary agricultural residues to energy in the form of either methane gas or ethyl alcohol. Secondary agricultural residues are defined in this study as those residues resulting from biomass processing to produce primary products; e.g., whey from cheese processing, vegetable processing wastes, residues from paper pulping, etc. This report summarizes the first two phases of this study, data compilation, and evaluation. Subsequent reports will analyze the technical and economic feasibility of converting these residues to energy and the implementability of this technology. The industries for which data has been compiled in this report include vegetable, fruit, seafood, meat, poultry, and dairy processing and the pulp, paper, and paperboard industry. The data collected include raw product input, final processed product output, residue types, and quantity, residue concentration, biodegradability, seasonality of production, and geographic distribution of processing facilities. In general, these industries produce a relatively solid residue ranging in total solids concentration from 10 to 50% and a dilute liquid residue with an organic content (measured as COD or BOD) ranging from a few hundred to a few thousand mg/l. Due to the significant quantities of residues generated in each of the industries, it appears that the potential exists for generating a substantial quantity of energy. For a particular industry this quantity of energy can range from only one percent upwards to nearly thirty-five percent of the total processing energy required. The total processing energy required for the industries included in this study is approximately 2.5 quads per year. The potential energy which can be generated from these industrial residues will be 0.05 to 0.10 quads per year or approximately 2 to 4 percent of the total demand.

Ashare, E.; Leuschner, A.P.; West, C.E.; Langton, B.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

242

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

243

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

244

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

245

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

246

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

247

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

248

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

249

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

250

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

251

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

252

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

253

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

254

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

255

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

256

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

257

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

258

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

259

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

260

NREL: Climate Neutral Research Campuses - Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

263

Fixed Bed Biomass Gasifier  

SciTech Connect (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

264

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

265

Nutrient release from combustion residues of two contrasting herbaceous vegetation types  

E-Print Network [OSTI]

(muffle and flame burning) to combust herbaceous biomass from contrasting nutrient level sites to estimate caused by a fire is the combustion and charring of vegetation. Both C and N contained in plant biomassNutrient release from combustion residues of two contrasting herbaceous vegetation types Benjamin A

Florida, University of

266

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

267

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

268

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

269

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

270

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

271

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

272

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

273

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

274

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

275

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

276

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network [OSTI]

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

277

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

278

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

279

Energy from Biomass  

Science Journals Connector (OSTI)

Renewable energy refers to a wide range of naturally occurring and replenishable energy sources that can give a contribution to the needs of the five basic energetic markets: centralized electricity supply, de...

Piergiorgio Zappelli; James J. Leahy

2003-01-01T23:59:59.000Z

280

Air Gasification of Biomass in a Downdraft Fixed Bed:? A Comparative Study of the Inorganic and Organic Products Distribution  

Science Journals Connector (OSTI)

The gasification of lignocellulosic residues by means of such simple and versatile plants is dictated by the necessity of developing technologies capable of processing different biomass feedstocks for small-scale power production (e.g. ... Elemental Composition (wt %) and Fixed Carbon on Dry Matter of the Three Biomass Feedstocks ... Table 2.? Meana Trace Metal Contents (mg/Kg in ash) of Three Different Biomass Feedstocks ...

I. De Bari; D. Barisano; M. Cardinale; D. Matera; F. Nanna; D. Viggiano

2000-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Supply Systems Analyst  

Broader source: Energy.gov [DOE]

In this position you will serve as a Supply Systems Analyst for Supply Chain Services. The incumbent is responsible for managing and supporting multiple electronic database systems, including Asset...

282

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

283

Crop Residue Considerations for Sustainable Bioenergy Feedstock Supplies  

Science Journals Connector (OSTI)

The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market ... , and several other factors affecting the fledgling bioenergy industry are addressed in this s...

Douglas L. Karlen; Jane M. F. Johnson

2014-06-01T23:59:59.000Z

284

Quantitative appraisal of biomass resources and their energy potential in Egypt  

Science Journals Connector (OSTI)

Abstract The utilization of biomass as a renewable source of energy is important from the energetic as well as the environmental viewpoint. It can reduce the rate of fossil fuel depletion caused by the rapid increase in energy consumption. This paper presents an estimation of the biomass and its potential energy in Egypt. Four main types of biomass energy sources are included: agricultural residues (dedicated bioenergy crop residues), municipal solid wastes, animal wastes, and sewage sludge. The potential biomass quantity and its theoretical energy content were computed according to statistical reports, literature reviews, and personal investigations. The results show that Egypt produces a considerable amount of biomass with a total theoretical energy content of 416.9×1015 J. The dry biomass produced from bioenergy crop residue sources has been estimated at about 12.33 million tons/year, of which 63.75% is produced from rice straw. This source represents the highest percentage (44.6%) of the total theoretical potential energy in Egypt, followed by municipal solid wastes, which could produce 41.7% from an annual amount of 34.6 million tons. Meanwhile, the rest of the total theoretical potential energy could be produced from animal and sewage wastes. The estimated biomass with its considerable potential energy content represents an important renewable energy source in Egypt.

N. Said; S.A. El-Shatoury; L.F. Díaz; M. Zamorano

2013-01-01T23:59:59.000Z

285

Biomass: Potato Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

286

Experimental and theoretical study on the characteristics of vacuum residue gasification in an entrained-flow gasifier  

Science Journals Connector (OSTI)

About 200,000 bpd (barrel/day) vacuum residue oil is produced from oil refineries in Korea. These are supplied to use asphalt, high sulfur fuel oil, and upgrading residue hydro-desulfurization units. High sulfur ...

Young-Chan Choi; Jae-Goo Lee; Sang-Jun Yoon…

2007-01-01T23:59:59.000Z

287

Feedstock and Conversion Supply System Design and Analysis  

SciTech Connect (OSTI)

The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

J. Jacobson; R. Mohammad; K. Cafferty; K. Kenney; E. Searcy; J. Hansen

2014-09-01T23:59:59.000Z

288

Indicator-based economic, environmental, and social sustainability assessment of a small gasification bioenergy system fuelled with food processing residues from the Mediterranean agro-industrial sector  

Science Journals Connector (OSTI)

Abstract Small-scale gasification systems coupled with internal combustion engines could be innovative alternatives for combined heat and power production when fuelled with agricultural residues, providing benefits related to both food processing waste management and sustainable agriculture. In the present study, an indicator-based estimation of sustainability was performed for a gasification-based bioenergy system considering not only economic but also environmental and social issues. The analysed scenario consisted of an installed capacity of 40 kWel, with an investment cost estimated to be approximately 1520 €/kWhel and a net profit up to 20,000 €/year. However, commercial success depends on instruments of reducing capital investment, such as subsidies, electricity feed-in tariffs, and biomass prices. Additional benefits such as low- or zero-cost feedstock and zero-cost biomass logistics suggest that small-scale gasification systems based on agricultural residues are likely to play an important role in future energy supplies for Mediterranean countries.

P. Manara; A. Zabaniotou

2014-01-01T23:59:59.000Z

289

Biomass Feedstock National User Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

integration of preprocessing systems * Feedstock Feasibility Studies Feedstock SupplyLogistics Demonstration Collaborations That Span the Biofuels Supply Chain PDU: Feedstock...

290

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

293

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

294

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

295

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

296

Economic Approach to Assess the Forest Carbon Implications of Biomass Energy  

Science Journals Connector (OSTI)

The model has been updated for this analysis with demand functions for biomass energy in five regions of the U.S. (Northeast, South, North Central, West, and Pacific Northwest), that include forest-specific cost functions that average about $40/m3 for harvesting and transporting forest residues and industrial roundwood to meet these demands. ... We test the influence of significantly higher biomass energy demand for both rates of annual growth in global GDP per capita. ...

Adam Daigneault; Brent Sohngen; Roger Sedjo

2012-04-19T23:59:59.000Z

297

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

298

Driving on Biomass  

Science Journals Connector (OSTI)

...ethanol. Since the introduction of the DOE billionton...burning carbon-based fuels is only 30 to 40...The increased fuel efficiency of diesel...tax incentives and fuel cost recoveries...Increasing supplies of biodiesel is one priority...Targets might include engineering crops to retain...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

299

Supply | OpenEI  

Open Energy Info (EERE)

Supply Supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

300

Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs  

SciTech Connect (OSTI)

The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biomass 2014: Breakout Speaker Biographies  

Broader source: Energy.gov [DOE]

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29–July 30 in Washington, D.C.

302

Biomass 2009: Fueling Our Future  

Broader source: Energy.gov [DOE]

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

303

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

304

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

305

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

306

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

307

Magnets and Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

308

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

309

The Role of Sustainability Standards in the Energetic Use of Palm Oil Plantation Residues: Case Study of Cameroon  

Science Journals Connector (OSTI)

This chapter aims to discuss the sustainability aspects of using residual wood from plantations for the production of electricity and heat. ... There are continuous debates about the potential of biomass feedstoc...

Michael Schmidt; Berthold Hansmann; Pia Dewitz

2014-01-01T23:59:59.000Z

310

Northeast regional biomass program. Second & third quarterly reports, October 1, 1995--March 31, 1996  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut. Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market.

NONE

1996-07-01T23:59:59.000Z

311

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

312

Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations  

SciTech Connect (OSTI)

This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

2013-03-01T23:59:59.000Z

313

NUFinancials Supply Chain  

E-Print Network [OSTI]

NUFinancials Supply Chain FMS801 & 803 Purchasing Glossary 03/31/2010 © 2010 Northwestern University FMS801 & 803 1 Purchasing Glossary Guide to terms used in iBuyNU and NUFinancials purchasing Term, faculty salary, office supplies. Similar to CUFS Object Code, Revenue Source, and Balance Sheet. Note

Shull, Kenneth R.

314

Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals  

Science Journals Connector (OSTI)

Abstract The extraction, supply and use of fossil energy carriers and chemicals is a day-by-day increasingly critical issue, linked as it is to severe damages to environment and human health, not to talk of the shrinking availability of fossil fuels worldwide. Therefore, research on suitable alternatives to the extensive use of fossil-based fuels and chemicals is crucial: the potential of Brassica carinata, a non-food oil crop, to grow on marginal lands in Campania Region was investigated, focusing on the production of biodiesel from seeds and platform chemicals from agricultural and extraction residues via an innovative conversion route (so-called Biofine process) in a local industry. The aim of this paper is to evaluate the performance of such an agro-industrial system for biodiesel and bio-chemicals. A comparison with an equivalent system only producing biodiesel and thermal energy is also carried out. A Life Cycle Assessment (LCA) is performed by means of commercial LCA software (Simapro 7.3.0), investigating energy requirements and environmental impacts (global warming, acidification, abiotic depletion, human toxicity, eutrophication and photochemical oxidation). Results show that, in spite of claims of biomass-based “greenness”, both systems still rely on large fractions of non-renewable energy sources (around 90% of the total use) and mostly affect the same impact categories (abiotic depletion and global warming). The agricultural phase contributes to the total impact more than the industrial extraction and conversion steps, being the nitrogen fertilizers responsible for most of impacts of both systems. However, the conversion of lignocellulosic residues into chemicals instead of heat, conserves the structural quality of natural polymers in the form of marketable value added products (ethyl levulinate and formic acid), also translating into large energy savings compared to traditional chemical routes.

G. Fiorentino; M. Ripa; S. Mellino; S. Fahd; S. Ulgiati

2014-01-01T23:59:59.000Z

315

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

316

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

317

Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions  

Science Journals Connector (OSTI)

Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal–coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.

Magín Lapuerta; Juan J. Hernández; Amparo Pazo; Julio López

2008-01-01T23:59:59.000Z

318

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

319

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

320

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

322

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

323

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

324

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

325

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

326

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Broader source: Energy.gov [DOE]

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

327

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

328

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

329

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

330

Hydrogen Supply: Pathways and Strategies  

E-Print Network [OSTI]

electrolysis, biomass gasification), issue is cost ratherrequired for H2 via gasification 100 million H vehicles w/

Ogden, Joan M

2005-01-01T23:59:59.000Z

331

NREL: Biomass Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

332

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

333

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

334

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

335

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

336

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

337

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

338

Biomass 2014: Additional Speaker Biographies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

339

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

340

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Biomass Burning Observation Project (BBOP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

342

Biomass Renewable Energy Opportunities and Strategies | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

343

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

344

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

345

Biomass Webinar Presentation Slides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

346

Pelleting characteristics of torrefied forest biomass.  

E-Print Network [OSTI]

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 °C) to generate energy dense and hydrophobic biomass suitable for producing pellets.… (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

347

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

348

Heat transfer efficiency of biomass cookstoves.  

E-Print Network [OSTI]

??Nearly half of the world’s human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical… (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

349

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

350

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

351

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

352

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

353

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

354

Barloworld Supply Chain Software USA  

E-Print Network [OSTI]

Barloworld Supply Chain Software USA Supply Chain Consultant / Inventory Analyst Position November 2011 #12;Barloworld SCS USA ­ Supply Chain / Inventory Analyst Aug 2011 Page 2 of 4 INTRODUCTION Barloworld Supply Chain Software (SCS) USA would like to invite you to apply for a Supply Chain

Heller, Barbara

355

Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III  

SciTech Connect (OSTI)

The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

Not Available

1985-11-01T23:59:59.000Z

356

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

357

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

358

Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995  

SciTech Connect (OSTI)

The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

NONE

1995-07-01T23:59:59.000Z

359

A review on torrefied biomass pellets as a sustainable alternative to coal in power generation  

Science Journals Connector (OSTI)

Abstract The torrefaction of biomass is a thermochemical process based on the de composition of hemicellulose, which is the dominant reaction, while the cellulose and lignin fractions remain almost unaffected. Torrefaction of biomass improves its physical properties like grindability, particle shape, size, and distribution, pelletability, and composition properties like moisture, carbon and hydrogen contents, and calorific value. The already higher energy density can be increased further by a pelletizing step after torrefaction. These improved properties make torrefied biomass particularly suitable for co-firing in power plants. Co-firing biomass with fossil fuels is one of the solutions to reduce the greenhouse gas emissions of existing power plants. Several studies on torrefaction of biomass for heat and power applications have been documented in the literature, which need to be reviewed and analyzed for further actions in the field, because significant gaps remain in the understanding of the biomass torrefaction process, which necessitate further study, mainly concerning the characterization of the torrefaction chemical reactions, investigation of equipment performance and design, and elucidation of supply chain impacts. This is the main objective of the present review study, which consists in three parts. The first part focuses on the mechanism of biomass torrefaction. It is followed by a review of biomass co-firing with coal. Finally, market opportunities for the process are discussed.

L.J.R. Nunes; J.C.O. Matias; J.P.S. Catalão

2014-01-01T23:59:59.000Z

360

Cost analysis for high-volume and long-haul transportation of densified biomass feedstock  

Science Journals Connector (OSTI)

Using densified biomass to produce biofuels has the potential to reduce the cost of delivering biomass to biorefineries. Densified biomass has physical properties similar to grain, and therefore, the transportation system in support of delivering densified biomass to a biorenery is expected to emulate the current grain transportation system. By analyzing transportation costs for products like grain and woodchips, this paper identifies the main factors that impact the delivery cost of densified biomass and quantifies those factors’ impact on transportation costs. This paper provides a transportation-cost analysis which will aid the design and management of biofuel supply chains. This evaluation is very important because the expensive logistics and transportation costs are one of the major barriers slowing development in this industry. Regression analysis indicates that transportation costs for densified biomass will be impacted by transportation distance, volume shipped, transportation mode used, and shipment destination, just to name a few. Since biomass production is concentrated in the Midwestern United States, a biorefinery’s shipments will probably come from that region. For shipments from the Midwest to the Southeast US, barge transportation, if available, is the least expensive transportation mode. If barge is not available, then unit trains are the least expensive mode for distances longer than 161 km (100 miles). For shipments from the Midwest to the West US, unit trains are the least expensive transportation mode for distances over 338 km (210 miles). For shorter distances, truck is the least expensive transportation mode for densified biomass.

Daniela Gonzales; Erin M. Searcy; Sandra D. Ek?io?lu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biofuels supply chain characterization  

E-Print Network [OSTI]

Ethanol can be made from agricultural residues like wheat straw and from crops dedicated to energy use, like switchgrass. We study the logistics aspects of this transformation and determine the main characteristics of the ...

Banerjee, Anindya, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

362

Power Supply Fundamentals  

Science Journals Connector (OSTI)

Liquid Crystal Displays require dedicated power supply circuits to support their specific requirements. Many different display technologies coexist in the market and compete for their market share. While the p...

Oliver Nachbaur

2012-01-01T23:59:59.000Z

363

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

364

European supply chain study  

E-Print Network [OSTI]

Introduction: Supply chain management has been defined as, "..a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that merchandise is produced and distributed at the ...

Puri, Mohitkumar

2009-01-01T23:59:59.000Z

365

Washington's power supply collapse  

Science Journals Connector (OSTI)

... ON 25 July 1983 the Washington Public Power Supply System (WPPSS) defaulted on 2,250 million of municipal revenue bonds. This, ... has been polemical and accusatory in nature, blaming the Washington State Supreme Court, the Bonneville ...

Roger H. Bezdek

1985-09-26T23:59:59.000Z

366

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

367

Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation  

E-Print Network [OSTI]

Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near Keywords: salt marsh organic sediments accretion sea-level rise belowground biomass carbon storage a b model we explore how marsh stratigraphy responds to sediment supply and the rate of sea- level rise

368

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

369

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

370

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

371

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

372

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

373

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

374

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

375

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

376

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

377

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

378

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

379

Energy Department Announces $11 Million to Advance Renewable Carbon Fiber Production from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today up to $11.3 million for two projects that aim to advance the production of cost-competitive, high-performance carbon fiber material from renewable, non-food-based feedstocks, such as agricultural residues and woody biomass.

380

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3088  

E-Print Network [OSTI]

to agriculture, wind, and solar? Michigan forests grow over 700 million cubic feet of wood each year. ThatWoody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3088 BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 Where Does Michigan's Wood Supply

382

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

383

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

384

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

385

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

386

A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties  

Science Journals Connector (OSTI)

Earthworm burrows can be significant preferential flow paths for water and contaminants to move to subsurface drainage networks and groundwater. Thus earthworm biomass could serve as an indicator of such transport potential, and therefore, inform risk assessments associated with water contamination resulting from land application of fertilizer amendments. In this study, we evaluated relationships and interactions between earthworm biomass, soil properties (bulk density, particle size, organic matter, surface residue), land management (crop type, tillage approach), and soil hydraulic properties (field saturated hydraulic conductivity and air-entry tension) for the purpose of building regionally based models to predict earthworm biomass. Data were collected from 43 fields distributed throughout eastern Ontario, Canada. Earthworm biomass was measured using “hot mustard” methods (early autumn) and in situ soil hydraulic properties were determined using pressure infiltrometers (late summer/early fall). Classification and Regression Tree (CART) data mining techniques were used to develop tree-structured models to predict biomass from site environmental data. CART regression tree models had coefficients of determination between 0.50 (not including soil hydraulic properties) and 0.55 (including soil hydraulic properties). Both regression trees split all earthworm biomass data (N = 243) into two groupings defined on the basis of tillage treatment. No-tilled field biomass averaged 192.1 g m?2 (S.D. = 71.5 g m?2), and biomass data for conventionally tilled sites subdivided into terminal groupings on the basis of “higher surface residue cover” (biomass average = 107.9 g m?2 (S.D. = 81.1 g m?2) and ‘lower surface residue cover’ (62.4 g m?2 (S.D. = 54.6 g m?2)) classes. Soil physical and hydraulic data were not important predictors of biomass for tilled datasets; whereas they were more important for no-tilled datasets. For both regression trees, no-till biomass stratified into terminal biomass groupings defined on the basis of bulk density, clay content, and silt content; and for the model including soil hydraulic properties, additionally by soil air-entry tension and surface residue cover. However, bulk density was deemed in the model to be a proxy for years a field was in no-tillage; a positive relationship existed between bulk density and biomass. Overall, the terminal tree groups with the highest average earthworm biomasses were for no-till soils with bulk densities >1.4 g cm?3 (longer term no-tillage). Regression tree variance reductions associated with the in situ measurements of field saturated hydraulic conductivity and air-entry tension were insignificant or small. Generally, empirical models predicting earthworm biomass at large spatial scales in agroecosystems using soils and land management information, should consider utilizing variables that express tillage practice, surface residue coverage, years in no-tillage, and soil particle size; however, variable interactions should be considered.

G. Ouellet; D.R. Lapen; E. Topp; M. Sawada; M. Edwards

2008-01-01T23:59:59.000Z

387

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

388

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect (OSTI)

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

389

Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal  

SciTech Connect (OSTI)

There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.

Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

2012-06-01T23:59:59.000Z

390

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

391

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

392

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

393

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

394

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

395

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

396

Petroleum Supply Monthly Archives  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Supply Monthly Petroleum Supply Monthly Petroleum Supply Monthly Archives With Data for December 2011 | Release Date: February 29, 2012 Changes to Table 26. "Production of Crude Oil by PAD District and State": Current State-level data are now included in Table 26, in addition to current U.S. and PAD District sums. State offshore production for Louisiana, Texas, Alaska, and California, which are included in the State totals, are no longer reported separately in a "State Offshore Production" category. Previously, State-level values lagged 2 months behind the U.S. and PAD District values. Beginning with this publication, they will be on the same cycle. Also included in this publication are two additional pages for Table 26 that provide October and November data. With the release of

397

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

398

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

399

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

400

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

402

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

403

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

404

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

405

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

406

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

407

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

408

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

409

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

410

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

411

Alternate Water Supply System  

Office of Legacy Management (LM)

Alternate Water Supply Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank

412

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

413

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

414

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

415

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

416

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

417

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 36. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, December 2011 (Thousand Barrels) PAD District and State of Entry Residual Fuel Oil Less than 0.31 % sulfur 0.31 to 1.00 % sulfur Greater than 1.00 % sulfur Total PAD District 1 .......................................................... 1,020 137 5,018 6,175 Connecticut ........................................................... - - - - Delaware .............................................................. - - 323 323 Florida ................................................................... - - 1,026 1,026 Georgia ................................................................. - - 954 954 Maine .................................................................... 2 4 - 6 Maryland

418

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

419

Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

NONE

1995-07-01T23:59:59.000Z

420

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

422

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

423

Investigacin Supply chain collaboration  

E-Print Network [OSTI]

. These interactions among firms' decisions ask for alignment and coordination of actions. Therefore, game theory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain

Boucherie, Richard J.

424

Negotiations Within Supply Chains  

Science Journals Connector (OSTI)

In this paper we consider a negotiation between a supplier and its retailer. Due to the supplier's commitments with other customers the negotiation is about the maximum order quantity the retailer can order at a fixed price. We propose a structuring ... Keywords: capacity, contract, cooperation, negotiations, scenario, supply chain management

Carsten Homburg; Christoph Schneeweiss

2000-05-01T23:59:59.000Z

425

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

FIGURE Modified Lurgi Gasifier with Liquefaction Reactor2 + 2.152 H20 (residue) Gasifier input: Solid residue Oxygen

Ergun, Sabri

2012-01-01T23:59:59.000Z

426

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

427

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

428

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

429

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

430

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

431

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

432

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

433

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

434

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

435

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

436

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

437

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

438

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

439

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

440

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

442

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

443

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

444

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

445

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

446

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

447

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

448

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

449

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

450

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

451

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

452

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

453

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

454

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

455

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

456

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

457

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

458

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy,” biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

459

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

460

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

462

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

463

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers [EERE]

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

464

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

465

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

466

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

467

Supply Stores | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supply Stores Supply Stores Supply Stores DOE Self Service Supply Stores at Headquarters Operated by: Paperclips, Etc. and the Winston-Salem Industries for the Blind DOE Self-Service Supply Stores Hours of Operation: 9:00 a.m. through 4:00 p.m. Monday through Friday DOE Supply Stores Locations Location Phone Fax Forrestal Room GA-171 (202) 554-1451 (202) 554-1452 (202) 554-7074 Germantown Room R-008 (301) 515-9109 (301) 515-9206 (301) 515-8751 The stores provide an Office Supply Product inventory that is tailored to meet the DOE customer's requirements. Office Supply items that are not carried in the store inventory can be special ordered, see the Catalog Order Form section below. The stores are operated for the Department of Energy, Office of Administration, Office of Logistics and Facility Operations, for the Supply

468

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

469

Materials - Recycling - Shredder Residue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

470

Combustion of single biomass particles in air and in oxy-fuel conditions  

Science Journals Connector (OSTI)

Abstract The combustion behaviors of four different pulverized biomasses were evaluated in the laboratory. Single particles of sugarcane bagasse, pine sawdust, torrefied pine sawdust and olive residue were burned in a drop-tube furnace, set at 1400 K, in both air and O2/CO2 atmospheres containing 21, 30, 35, and 50% oxygen mole fractions. High-speed and high-resolution images of single particles were recorded cinematographically and temperature–time histories were obtained pyrometrically. Combustion of these particles took place in two phases. Initially, volatiles evolved and burned in spherical envelope flames of low-luminosity; then, upon extinction of these flames, char residues ignited and burned in brief periods of time. This behavior was shared by all four biomasses of this study, and only small differences among them were evident based on their origin, type and pre-treatment. Volatile flames of biomass particles were much less sooty than those of previously burned coal particles of analogous size and char combustion durations were briefer. Replacing the background N2 gas with CO2, i.e., changing from air to an oxy-fuel atmosphere, at 21% O2 impaired the intensity of combustion; reduced the combustion temperatures and lengthened the burnout times of the biomass particles. Increasing the oxygen mole fraction in CO2 to 28–35% restored the combustion intensity of the single biomass particles to that in air.

Juan Riaza; Reza Khatami; Yiannis A. Levendis; Lucía Álvarez; María V. Gil; Covadonga Pevida; Fernando Rubiera; José J. Pis

2014-01-01T23:59:59.000Z

471

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

472

The world energy supply  

Science Journals Connector (OSTI)

The pattern of the world's energy supply has undergone dramatic changes over the last century, and particularly over the last twenty years. The growth in the world's population and the ever-greater demand for energy will lead to the global environment being subjected to considerable strain. The world will require a new type of energy system, one that is technically feasible, but which will face many difficulties in gaining social and economic acceptance. The world's future energy supply will depend upon the rational exploitation of resources and the development of high technical standards in the fields of reliability and safety. The required social changes will include a change to more energy-conserving life styles and a strengthening of international co-operation in long-term energy and environmental research and development.

L.H.Th. Rietjens

1991-01-01T23:59:59.000Z

473

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

3.PDF 3.PDF Table 13. Crude Oil Supply, Disposition, and Ending Stocks by PAD District, January 2012 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production .................................................... 734 29,902 109,919 12,961 36,593 190,109 6,133 Alaskan ............................................................. - - - - - - - - - 18,374 593 Lower 48 States ................................................ - - - - - 171,734 5,540 Imports (PAD District of Entry) ............................. 26,368 53,695 142,073 10,783 31,429 264,348 8,527 Commercial ...................................................... 26,368 53,695 142,073 10,783 31,429 264,348 8,527 Strategic Petroleum Reserve (SPR) ................. - - - - - - - Net Receipts .........................................................

474

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

475

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) PAD District and State of Entry Residual Fuel Oil Less than 0.31 % sulfur 0.31 to 1.00 % sulfur Greater than 1.00 % sulfur Total PAD District 1 .......................................................... 2,129 113 4,619 6,861 Connecticut ........................................................... - - - - Delaware .............................................................. - 104 203 307 Florida ................................................................... - - 1,262 1,262 Georgia ................................................................. - - 691 691 Maine .................................................................... 3 - - 3 Maryland ............................................................... - - - - Massachusetts ......................................................

476

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

477

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

478

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

479

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

480

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

Note: This page contains sample records for the topic "biomass residue supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

482

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

483

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

484

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

485

Biomass Webinar Text Version | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

486

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; André P. C. Faaij

2009-06-01T23:59:59.000Z

487

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

488

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

489

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

490

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

491

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

492

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water† ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

493

Petroleum supply monthly, February 1988. [Contains glossary  

SciTech Connect (OSTI)

Total US demand for petroleum products during February 1988 averaged about 17.6 million barrels per day, 0.9 million barrels per day above the average of a year earlier. This marks the third consecutive month in which total product supplied has exceeded 17.0 million barrels per day. For the most part, the disposition of the major products continued to follow seasonal patterns. Total products stocks dropped by 26.0 million barrels to 683.1 million barrels. Refinery utilization fell from January's 82.8 percent rate to 81.1 percent. Crude oil imports from Saudi Arabia rose to 1.2 million barrels per day, 0.4 million barrels per day above the average for January. Unusually mild weather, especially in the Mid-Atlantic states and New England, kept deliveries of both distillate and residual fuel oil virtually unchanged from January's high seasonal levels, although both were still well above the levels for these products the same time last year. Distillate demand averaged 3.5 million barrels per day in February, five percent above the February 1987 average. Residual fuel oil demand was 1.6 million barrels per day this month, nine percent greater than a year ago. Part of this increase in demand from the previous year reflects the improved competitive position of residual fuel oil in some utility and industrial markets, mostly due to increases in natural gas prices starting in the fourth quarter of 1987. 12 figs.

Not Available

1988-04-25T23:59:59.000Z

494

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

495

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

496

Biomass Derivatives Competitive with Heating Oil Costs.  

Broader source: Energy.gov [DOE]

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

497

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

498

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network [OSTI]

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

499

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

500

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z