National Library of Energy BETA

Sample records for biomass recalcitrance engineering

  1. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  2. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect (OSTI)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  3. BSCL use plan: Solving biomass recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Saccharification of lignocellulosic biomass has long been recognized as a potential low-cost source of mixed sugars for fermentation to fuel ethanol or chemicals. Several technologies have been developed over the years that allow this conversion process to occur, yet the significant challenge remaining is to make the process cost competitive.

  4. High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme combination for efficient bio-fuel production. National Renewable Energy Laboratory Ames Laboratory Contact NREL About This Technology Technology Marketing SummaryPipeline analysis speeds up the process for the selection of plant species with the lowest natural recalcitrance (resistance to sugar conversion) as well as the

  5. High Throughput Pretreatment and Enzyme Hydrolysis of Biomass: Screening Recalcitrance in Large Sample Populations (Presentation)

    SciTech Connect (OSTI)

    Decker, S. R.

    2010-10-01

    Presentation on the execution of the first high-throughput thermochemical pretreatment/enzyme digestion pipeline for screening biomass for recalcitrance.

  6. Genetic manipulation of lignin reduces recalcitrance and improves biomass ethanol production from switchgrass

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng; Fu, Chunxiang; Xiao, Xirong; Ge, Yaxin; Chen, Fang; Bouton, Joseph; Foston, Marcus; Dixon, Richard A; Wang, Zeng-Yu; Mielenz, Jonathan R

    2011-01-01

    Switchgrass is a leading dedicated bioenergy feedstock because it is a native, high yielding, perennial prairie grass with broad cultivation range and low agronomic input requirements. Biomass conversion research has developed pilot scale processes for production of ethanol and other alcohols but they remain costly primarily due to the intrinsic recalcitrance of biomass. We show here that switchgrass genetic modification can produce normal plants that have reduced thermochemical and enzymatic recalcitrance. Downregulation of the switchgrass caffeic O-methyltransferase gene decreases lignin content modestly, reduces the syringyl to guaiacyl lignin monomer ratio and increases the ethanol yield by up to a third using conventional biomass fermentation processes. The downregulated lines have wild-type biomass yields but require reduced pretreatment severity and 300-400% lower cellulase dosages for equivalent product yields significantly lowering processing costs. Alternately, our modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

  7. Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates

    SciTech Connect (OSTI)

    Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Xiao

    2014-04-01

    Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  8. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    SciTech Connect (OSTI)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.; Louchouarn, Patrick; Amonette, James E.; Herbert, Bruce

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  9. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thusmore » provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new and

  10. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    SciTech Connect (OSTI)

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new

  11. Biomass Engineering Ltd | Open Energy Information

    Open Energy Info (EERE)

    Engineering Ltd Jump to: navigation, search Name: Biomass Engineering Ltd Place: Newton-le-Willows, United Kingdom Zip: WA12 8DN Product: The company designs and manufactures small...

  12. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    Open Energy Info (EERE)

    and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology...

  13. Chapter 1: Feedstock Engineering and Biomass Pretreatments: New...

    Office of Scientific and Technical Information (OSTI)

    Engineering and Biomass Pretreatments: New Views for a Greener Biofuels Process Citation Details In-Document Search Title: Chapter 1: Feedstock Engineering and Biomass ...

  14. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  15. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  16. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  17. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; Foster, Cliff E.; Karlen, Steven D.; Smith, Rebecca A.; Ralph, John; Garvin, David F.; Sedbrook, John C.

    2016-05-26

    Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences and recombinantmore » inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD

  19. High-Throughput Screening of Recalcitrance Variations in Lignocellulosic Biomass: Total Lignin, Lignin Monomers, and Enzymatic Sugar Release

    SciTech Connect (OSTI)

    Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.; Lupoi, Jason S.; Doepkke, Crissa; Tucker, Melvin P.; Schuster, Logan A.; Mazza, Kimberly; Himmel, Michael E.; Davis, Mark F.; Gjersing, Erica

    2015-09-15

    The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, and permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables.

  20. Handbook of biomass downdraft gasifier engine systems

    SciTech Connect (OSTI)

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  1. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... HomeBiomass Permalink One-Pot-to-Prep Biomass for Biofuels Biofuels, Biomass, Energy, ...

  2. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a

  3. A small scale biomass fueled gas turbine engine

    SciTech Connect (OSTI)

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  4. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  5. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  6. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences ...

  7. Engineered plant biomass particles coated with biological agents

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  8. Engineered plant biomass particles coated with bioactive agents

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  9. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect (OSTI)

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  10. Implementing Systems Engineering in the U.S. Department of Energy Office of the Biomass Program: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Wooley, R.; Sandor, D.

    2007-03-01

    This paper describes how the Systems Integration Office is assisting the Department of Energy's Biomass Program by using systems engineering processes, practices and tools to guide decisions and achieve goals.

  11. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  12. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect (OSTI)

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  13. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  14. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  15. Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation)

    SciTech Connect (OSTI)

    Resch, M.; Donohoe, B.; Katahira, R.; Ashutosh, M.; Beckham, G.; Himmel, M.; Decker, S.

    2014-04-01

    Fungal free enzymes and bacterial complexed cellulosomes deconstruct biomass using different physical mechanisms. Free enzymes, which typically contain a large proportion of GH7 cellobiohydrolase, diffuse throughout the substrate and hydrolyze primarily from the cellulose reducing end, resulting in 'sharpened' macrofibrils. In contrast, complexed cellulosomes contain a diverse array of carbohydrate binding modules and multiple catalytic specificities leading to delamination and physical peeling of the cellulose macrofibril structures. To investigate how cellulose structure contributes to recalcitrance, we compared the deconstruction of cellulose I, II, and III; using free and complexed enzyme systems. We also evaluated both systems on Clean Fractionation and alkaline pretreated biomass, which remove much of the lignin, to determine the impact on enzyme loading reduction. Free fungal enzymes demonstrated a swelling of the outer surface of the plant cell walls while removing localized disruptions, resulting in a smooth surface appearance. Cellulosomes produced cell wall surfaces with localized areas of disruption and little surface layer swelling. These studies contribute to the overall understanding of biomass recalcitrance and how combining different enzymatic paradigms may lead to the formulation of new enzyme cocktails to reduce the cost of producing sugars from plant cell wall carbohydrates.

  16. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  17. Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

    Broader source: Energy.gov [DOE]

    Results of an investigation into effects of biofuels on engine- and system-out emissions, specifically US 2010 EPA exhaust after-treatment system from Mack Trucks

  18. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  19. Integrating Gasifiers and Reciprocating Engine Generators to Utilize Biomass-Based Fuel

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_aneja.pdf (2.21 MB) More Documents & Publications Technical Demonstration of 2010 Emissions Regulations over Transient Operation Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA

  20. Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignocellulosic Biomass - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  1. Molecular Siganture and Sources of Biochemical Recalcitrance of Organic C in Amozonian Dark Earths

    SciTech Connect (OSTI)

    Solomon,D.; Lehmann, J.; Thies, J.; Schafer, T.; Liang, B.; Kinyangi, J.; Neves, E.; Peterson, J.; Liuzao, F.; Skjemstad, J.

    2007-01-01

    Amazonian Dark Earths (ADE) are a unique type of soils developed through intense anthropogenic activities that transformed the original soils into Anthrosols throughout the Brazilian Amazon Basin. We conducted a comparative molecular-level investigation of soil organic C (SOC) speciation in ADE (ages between 600 and 8700 years B.P.) and adjacent soils using ultraviolet photo-oxidation coupled with {sup 13}C cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR), synchrotron-based Fourier transform infrared-attenuated total reflectance (Sr-FTIR-ATR) and C (1s) near edge X-ray absorption fine structure (NEXAFS) spectroscopy to obtain deeper insights into the structural chemistry and sources of refractory organic C compounds in ADE. Our results show that the functional group chemistry of SOC in ADE was considerably different from adjacent soils. The SOC in ADE was enriched with: (i) aromatic-C structures mostly from H- and C-substituted aryl-C, (ii) O-rich organic C forms from carboxylic-C, aldehyde-C, ketonic-C and quinine-C, and (iii) diverse group of refractory aliphatic-C moieties. The SOC in adjacent soils was predominantly composed of O-alkyl-C and methoxyl-C/N-alkyl-C structures and elements of labile aliphatic-C functionalities. Our study suggests that the inherent molecular structures of organic C due to selective accumulation of highly refractory aryl-C structures seems to be the key factor for the biochemical recalcitrance and stability of SOC in ADE. Anthropogenic enrichment with charred carbonaceous residues from biomass-derived black C (BC) is presumed to be the precursor of these recalcitrant polyaromatic structures. Our results also highlight the complementary role that might be played by organic C compounds composed of O-containing organic C moieties and aliphatic-C structures that persisted for millennia in these anthropic soils as additional or secondary sources of chemical recalcitrance of SOC in ADE. These organic C

  2. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used

  3. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    SciTech Connect (OSTI)

    Ramon Gonzalez; J. V. Shanks; K-Y. San .

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  4. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    SciTech Connect (OSTI)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.

  5. Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Foston, Marcus B.; Trajanob, Heather L.; Samuel, Reichel; Wyman, Charles E.; He, Jian; Ragauskas, Arthur J.

    2015-08-28

    Here, this study presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. 13C-enriched corn stover stems were pretreated at 170 °C for 60 min with a hot-water flow rate of 20 mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function ofmore » time. Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.« less

  6. Biomass Engineering: Transportation & Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to 20-30 cm upon mild compression * Pellets have lowest AI and do not compress Data ... can be transformed into crumbled pellets (AI 13cm) for 10ton. 13 | ...

  7. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; et al

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was usedmore » to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.« less

  8. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    SciTech Connect (OSTI)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y. -H. Percival

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  9. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. NREL: Biomass Research - Daniel J. Schell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Bioprocess Integration R&D section of the ... Research Interests Integrated biomass processing High solids ... CO, 2005-2013 Senior Biochemical Engineer, NREL, Golden, ...

  11. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  12. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops

  13. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect (OSTI)

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through

  14. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  15. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  16. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswal, Ajaya K.; Hao, Zhangying; Pattathil, Sivakumar; Yang, Xiaohan; Winkeler, Kim; Collins, Cassandra; Mohanty, Sushree S.; Richardson, Elizabeth A.; Gelineo-Albersheim, Ivana; Hunt, Kimberly; et al

    2015-03-12

    The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. The following are the results: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of bothmore » xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in

  17. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency

    SciTech Connect (OSTI)

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2015-01-13

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate – an intermediate of the shikimate pathway – into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.

  18. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2015-01-13

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimatemore » dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate – an intermediate of the shikimate pathway – into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.« less

  19. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Engineering New type of laser to help defeat threats to U.S. Navy. Los Alamos National Laboratory successfully tested a new high-current electron injector, a device that can be scaled up to produce the electrons needed to build a higher-power free-electron laser

  20. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  1. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  2. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  3. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the feeding and conversion of biomass and coal-biomass mixtures as essential upstream ... Activities support research for handling and processing of coal-biomass mixtures, ensuring ...

  4. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  5. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    SciTech Connect (OSTI)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  6. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  7. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  8. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  9. Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks to Final Products To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. Advanced biofuels are part of the United States' "all-of-the-above" energy strategy to develop domestic energy resources and win

  10. Carbon Cycle Engineering | Open Energy Information

    Open Energy Info (EERE)

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  11. Biomass torrefaction mill

    DOE Patents [OSTI]

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  12. Evaluation of High Throughput Screening Methods in Picking up Differences between Cultivars of Lignocellulosic Biomass for Ethanol Production

    SciTech Connect (OSTI)

    Lindedam, Jane; Bruun, Sander; Jorgensen, Henning; Decker, Stephen R.; Turner, Geoffrey B.; DeMartini, Jaclyn D.; Wyman, Charles E.; Felby, Claus

    2014-07-01

    Here, we present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. We found the best correlation of glucose yields between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). The three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.

  13. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  14. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  15. NREL: Biomass Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  16. NREL: Biomass Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  17. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  18. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon shelf-life. The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  19. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  20. Biomass Program Overview

    SciTech Connect (OSTI)

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  1. Biomass Webinar Presentation Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy.

  2. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  3. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  4. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock

    SciTech Connect (OSTI)

    Biswal, Ajaya K.; Hao, Zhangying; Pattathil, Sivakumar; Yang, Xiaohan; Winkeler, Kim; Collins, Cassandra; Mohanty, Sushree S.; Richardson, Elizabeth A.; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Ryno, David; Sykes, Robert W.; Turner, Geoffrey B.; Ziebell, Angela; Gjersing, Erica; Lukowitz, Wolfgang; Davis, Mark F.; Decker, Stephen R.; Hahn, Michael G.; Mohnen, Debra

    2015-03-12

    The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. The following are the results: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of both xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in Populus

  5. AGCO Biomass Solutions: Biomass 2014 Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGCO Biomass Solutions: Biomass 2014 Presentation AGCO Biomass Solutions: Biomass 2014 Presentation Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation farris_biomass_2014.pdf (2.11 MB) More Documents & Publications High Level Overview of DOE Biomass Logistics II Project Activities 2013 Peer Review Presentations-Feedstock Supply and Logistics Feedstock Supply and

  6. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  7. Russell Biomass | Open Energy Information

    Open Energy Info (EERE)

    Place: Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell,...

  8. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  9. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention ...

  10. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Biomass Characterization | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extractability, Bioenergy Research (2016) Compositional Analysis of Biomass Reference Materials: Results from an Interlaboratory Study, Bioenergy Research (2015) View all ...

  12. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  13. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  14. Small Modular Biomass Systems

    SciTech Connect (OSTI)

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  15. NREL: Biomass Research - Discovering Drop-In Biofuels to Leverage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drop-in fuels that are compatible with existing engines and fuel distribution. Biomass feedstocks such as crop residues and algae are available on a scale that other renewable...

  16. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  17. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  18. Seeger Engineering AG | Open Energy Information

    Open Energy Info (EERE)

    AG Jump to: navigation, search Name: Seeger Engineering AG Place: Hessisch Lichtenau, Hessen, Germany Zip: 37235 Sector: Biomass, Services Product: Services range from project...

  19. Energeticals power plant engineering | Open Energy Information

    Open Energy Info (EERE)

    generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References: energeticals power plant engineering1 This article is a stub....

  20. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  1. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    SciTech Connect (OSTI)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  2. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    SciTech Connect (OSTI)

    Denton, M. S.; Wilson, J.; Ahrendt, M. [RWE NUKEM Corporation (RNC), 800 Oak Ridge Tnpk., Suite A701, Oak Ridge, TN 37830 (United States); Bostick, W. D. [Materials and Chemistry Laboratory (MCL), Inc., East Tennessee Technology Park, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, TN 37830 (United States); DeSilva, F.; Meyers, P. [ResinTech, Inc., 1 ResinTech Plaza, 160 Cooper Road, West Berlin, NJ 08091 (United States)

    2006-07-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  3. Biomass Engineering: Size reduction, drying and densification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... when high durability and stable pellets are needed - Energy efficient dryers (grain or belt dryers) can be used for drying high moisture pellets Fig. 3 TEA analysis of ...

  4. Biomass Engineering: Harvest, Collection, and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 25, 2015 William A Smith, Ian J Bonner, & Lynn M Wendt Idaho National Laboratory ... variability." Biofuels 4: 111-127. Smith, W. A., et al. (2013). "Practical ...

  5. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  6. NREL: Biomass Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Biomass Research Home Capabilities Projects Facilities Research Staff Working with Us Data &...

  7. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  8. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  9. Biomass: Wood as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinator USDA Forest Service State & Private Forestry ... habitat and forest health Modern Woody Biomass ... Requires manual fuel delivery & stoking Pellets Meter ...

  10. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  11. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  12. Biomass | Open Energy Information

    Open Energy Info (EERE)

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  13. Biomass Indirect Liquefaction Workshop

    Broader source: Energy.gov [DOE]

    To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

  14. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  16. Biomass Feasibility Analysis Report

    SciTech Connect (OSTI)

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  17. Major Biomass Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours ...

  18. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to ...

  19. Gasification-based biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Biomass Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  1. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  3. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  4. Florida Biomass Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  5. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  6. Biomass Power Association (BPA) | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Biomass Power Association (BPA) AgencyCompany Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, -...

  7. Colusa Biomass Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biomass Energy Corporation Jump to: navigation, search Name: Colusa Biomass Energy Corporation Place: Colusa, California Zip: 95932 Sector: Biomass Product: Colusa Biomass Energy...

  8. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    SciTech Connect (OSTI)

    Cardenas, Jesus

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  9. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect (OSTI)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  10. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  11. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global ...

  12. NREL: Biomass Research - Capabilities in Biomass Process and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four ... A team of NREL researchers uses biomass process and sustainability analyses to bridge the ...

  13. NREL: Biomass Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas.Foust@nrel.gov Bratis, Adam Management, Biomass Laboratory Program Manager Adam.Bratis@nrel.gov Chum, Helena Management, Biomass Fellow Helena.Chum@nrel.gov Pienkos,...

  14. NREL: Biomass Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo of the Integrated...

  15. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  16. Understanding and engineering enzymes for enhanced biofuel production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  17. Hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  18. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  19. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  20. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  1. NREL: Biomass Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. June 3, 2015 NREL Cyanobacteria Ramps Up Photosynthesis-and New...

  2. The ultimate biomass refinery

    SciTech Connect (OSTI)

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  3. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  4. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  5. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 27, 2015 Biomass Basics Alexis Martin Fellow, Bioenergy Technologies Office Department of Energy 2 | Bioenergy Technologies Office Agenda * Overview of Bioenergy * Biomass to Biofuels Life Cycle * Importance of Bioenergy * 2016 BioenergizeME Infographic Challenge 3 | Bioenergy Technologies Office Questions and Comments Please record any questions and comments you may have during the webinar and send them to BioenergizeME@ee.doe.gov As a follow-up to the webinar, the presenter(s) will

  6. Flash hydrogenation of biomass

    SciTech Connect (OSTI)

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  7. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  8. Algae Biomass Summit

    Broader source: Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  9. Biomass 2011 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011_full_agenda.pdf (620.42 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010 Conference Agenda Biomass 2012

  10. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  11. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  12. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  13. Biomass Crop Assistance Program (BCAP) | Open Energy Information

    Open Energy Info (EERE)

    United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass...

  14. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    SciTech Connect (OSTI)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  15. Institute of Power Engineering (IEn) | Open Energy Information

    Open Energy Info (EERE)

    Name: Institute of Power Engineering (IEn) Place: Warsaw, Poland Sector: Biomass, Carbon, Efficiency, Hydrogen, Renewable Energy, Services Number of Employees: 501-1000 Year...

  16. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    SciTech Connect (OSTI)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.

  17. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  18. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  19. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  20. Fixed Bed Biomass Gasifier

    SciTech Connect (OSTI)

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  1. Fundamentals of thermochemical biomass conversion

    SciTech Connect (OSTI)

    Overend, R.P.; Milne, T.A.; Mudge, L.

    1985-01-01

    The contents of this book are: Wood and biomass ultrastructure; Cellulose, hemicellulose and extractives; Lignin; Pretreatment of biomass for thermochemical biomass conversion; A kinetic isotope effect in the thermal dehydration of cellobiose; Gasification and liquefaction of forest products in supercritical water; Thermochemical fractionation and liquefaction of wood; The pyrolysis and gasification of wood in molten hydroxide eutectics; Influence of alkali carbonates on biomass volatilization; Flash pyrolysis of biomass with reactive and non-reactive gases; Pyrolytic reactions and biomass; Product formation in the pyrolysis of large wood particles; The pyrolysis under vacuum of aspen poplar; Simulation of kraft lignin pyrolysis; and Kinetics of wood gasification by carbon dioxide and steam.

  2. Method for pretreating lignocellulosic biomass

    DOE Patents [OSTI]

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  3. Biomass Densification Workshop Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fractionation, blending, and densification treatments as engineered for the feedstock recipe. The feedstock undergoes compositional and attribute characterization prior to...

  4. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    SciTech Connect (OSTI)

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  5. Biofuels - Biomass Feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  6. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  7. Berlin Gorham Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gorham Biomass Facility Jump to: navigation, search Name Berlin Gorham Biomass Facility Facility Berlin Gorham Sector Biomass Location Coos County, New Hampshire Coordinates...

  8. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  9. Shasta 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2 Biomass Facility Jump to: navigation, search Name Shasta 2 Biomass Facility Facility Shasta 2 Sector Biomass Owner Wheelabrator Location Anderson, California Coordinates...

  10. Biodyne Pontiac Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  11. San Marcos Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  12. Hebei Jiantou Biomass Power | Open Energy Information

    Open Energy Info (EERE)

    Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

  13. Okeelanta 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2 Biomass Facility Jump to: navigation, search Name Okeelanta 2 Biomass Facility Facility Okeelanta 2 Sector Biomass Owner Florida Crystals Location South Bay, Florida Coordinates...

  14. Florida Biomass Energy Consortium | Open Energy Information

    Open Energy Info (EERE)

    Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

  15. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  16. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  17. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  18. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  19. Plummer Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plummer Biomass Facility Jump to: navigation, search Name Plummer Biomass Facility Facility Plummer Sector Biomass Owner Wood Power Location Plummer, Idaho Coordinates...

  20. Otay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  1. Florida Biomass Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Florida Biomass Energy Group Place: Gulf Breeze, Florida Zip: 32561 Sector: Biomass Product: Florida Biomass Energy Group is a Florida...

  2. SPI Sonora Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  3. Wheelabrator Saugus Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  4. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  5. Zilkha Biomass Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  6. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  7. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  8. Biomass Feedstock Composition and Property Database () | Data...

    Office of Scientific and Technical Information (OSTI)

    Biomass Feedstock Composition and Property Database Title: Biomass Feedstock Composition and Property Database The Office of Energy Efficiency and Renewable Energy's Biomass ...

  9. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  10. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  11. Novel System for Recalcitrance Screening Will Reduce Biofuels Production Costs; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes a high-throughput screening process, developed at NREL, that enables researchers to screen a large variety of biomass feedstocks for traits that indicate they would easily convert to fermentable sugars.

  12. Biomass Program Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  13. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  14. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  15. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  16. Mini-biomass electric generation

    SciTech Connect (OSTI)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  17. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics Biomass Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae, sewage, and other organic substances that may be used to make energy through chemical processes. Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and

  18. Biomass Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  19. A Hybrid Catalytic Route to Fuels from Biomass Syngas Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LanzaTech. All rights reserved. 1 A Hybrid Catalytic Route to Fuels from Biomass Syngas BETO's Project Peer Review, March 2015 Alexandria, VA Alice Havill Senior Process Engineer Project Principle Investigator Hybrid Catalytic Route to Fuels from Biomass Syngas Project Objective: develop a hybrid conversion technology for catalytic upgrading of biomass- derived syngas to jet fuel and chemicals while ensure the cost, quality and environmental requirements of the aviation industry are met System

  20. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  1. Strategies for optimizing algal biology for enhanced biomass production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  2. Biomass 2009 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009_full_agenda.pdf (323.99 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda ICAM Workshop

  3. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010_full_agenda.pdf (299 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011 Conference Agenda QTR Cornerstone Workshop 2014

  4. Eccleshall Biomass Ltd | Open Energy Information

    Open Energy Info (EERE)

    Eccleshall Biomass Ltd Jump to: navigation, search Name: Eccleshall Biomass Ltd Place: Eccleshall, United Kingdom Zip: ST21 6JL Sector: Biomass Product: Developing a 2.2MW biomass...

  5. ESD Biomass Ltd | Open Energy Information

    Open Energy Info (EERE)

    ESD Biomass Ltd Jump to: navigation, search Name: ESD Biomass Ltd Place: Neston, United Kingdom Zip: SN13 9TZ Sector: Biomass Product: Acts as advisor to firms developing biomass...

  6. Elucidating the Role of Ferrous Ion Cocatalyst in Enhancing Dilute Acid Pretreatment of Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Wei, H.; Donohoe, B. S.; Vinzant, T. B.; Ciesielski, P. N.; Wang, W.; Gedvilas, L. M.; Zeng, Y.; Johnson, D. K.; Ding, S. Y.; Himmel, M. E.; Tucker, M. P.

    2011-01-01

    Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe{sup 2+} ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe{sup 2+} ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe{sup 2+} ion pretreatment, in which delamination and fibrillation of the cell wall were observed. By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  7. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  8. Metro Wastewater Reclamation District Biomass Facility | Open...

    Open Energy Info (EERE)

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  9. NREL: Biomass Research - Thermochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and commercialization of biomass gasification is the integration of the gasifier with downstream syngas processing. ... Biomass Characterization Biochemical Conversion Thermochemical ...

  10. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  11. Biomass 2012 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. bio2012_final_agenda.pdf (340.96 KB) More Documents & Publications Biomass 2013 Agenda Biomass 2011 Conference Agenda Biomass 2010

  12. Biomass 2013 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass_2013_agenda.pdf (322.3 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2012 Agenda Biomass 2009

  13. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    SciTech Connect (OSTI)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  14. DOE 2014 Biomass Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 7/28/14 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle Standards * Let Free Markets Work - Mandates and subsidies distort the free market - Must meet consumers' needs - Follow automobile company recommendations as found in owner's manuals - Changes must be compatible with transportation fuel infrastructure * Use Sound Science - Adopt a systems approach, addressing

  15. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect (OSTI)

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  16. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  17. Port Graham Community Biomass Heat Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Biomass Heat Project Energy Efficiency and Renewable Energy DE- EE0005637 Patrick Norman, Port Graham Village Council and Charles Sink, Chugachmiut What is the project Who and where we are Nanwalek Tale of two grants DOE EFRE DE-EE0005637 * Start Date 6/1/2012 * End Date 12/31/2014 * Revision Date 9/10/2012 * Richmond Engineering, Inc./ Charles Nash Forestry Consulting hired 6/13/2014 AEA Grant # 7040061 * Start Date 7/1/2011 * End Date 12/31/2013 * Revision Date 2/1/2013 * ChenaPower,

  18. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    SciTech Connect (OSTI)

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.

  19. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrationalmore » spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.« less

  20. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect (OSTI)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  1. Economics of producing fuel pellets from biomass

    SciTech Connect (OSTI)

    Mani, S.; Sokhansanj, S.; Bi, X.; Turhollow, A.

    2006-05-15

    An engineering economic analysis of a biomass pelleting process was performed for conditions in North America. The pelletization of biomass consists of a series of unit operations: drying, size reduction, densifying, cooling, screening, and warehousing. Capital and operating cost of the pelleting plant was estimated at several plant capacities. Pellet production cost for a base case plant capacity of 6 t/h was about $51/t of pellets. Raw material cost was the largest cost element of the total pellet production cost followed by personnel cost, drying cost, and pelleting mill cost. An increase in raw material cost substantially increased the pellet production cost. Pellet plants with a capacity of more than 10 t/h decreased the costs to roughly $40/t of pellets. Five different burner fuels - wet sawdust, dry sawdust, biomass pellets, natural gas, and coal were tested for their effect on the cost of pellet production. Wet sawdust and coal, the cheapest burner fuels, produced the lowest pellet production cost. The environmental impacts due to the potential emissions of these fuels during the combustion process require further investigation.

  2. ECONOMICS OF PRODUCING FUEL PELLETS FROM BIOMASS

    SciTech Connect (OSTI)

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Turhollow Jr, Anthony F

    2005-09-01

    An engineering economic analysis of a biomass pelleting process was performed for conditions in North America. The biomass pelleting process consists of a series of unit operations namely drying, size reduction, pelletization, cooling, screening and warehousing. Capital and operating cost of the pelleting plant was estimated at several plant capacities. Pellet production cost for a base case plant capacity of 6 t/h was about $51/t of pellets. Raw material cost was the largest cost factor on the total pellet production cost followed by personnel cost, drying cost and pelleting mill cost. An increase in raw material cost substantially increased the pellet production cost. Large-scale pellet plants with a plant capacity of more than 10t/h decreased the costs to roughly $40/t of pellets. Five different burner fuels wet sawdust, dry sawdust, biomass pellets, natural gas and coal were tested for their effect on the cost of pellet production. Wet sawdust and coal, the cheapest burner fuels, produced the lowest pellet production cost. Tthe environmental impacts due to the potential emissions of these fuels during the combustion process require further investigation.

  3. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  4. Biomass process handbook

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  5. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  6. International Biomass Conference and Expo

    Broader source: Energy.gov [DOE]

    The International Biomass Conference and Expo will be held April 11–14, 2016, in Charlotte, North Carolina, and will gather bioeconomy experts across the supply chain. Bioenergy Technologies Office Technology Manager Elliott Levine will be moderating a panel titled, “The Near-Term Opportunity for Biomass as a Low-Carbon Coal Supplement or Replacement.” The panel will focus on the technological challenges and opportunities in the potential for biomass to replace coal.

  7. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    SciTech Connect (OSTI)

    Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.

    2010-03-01

    complex or 'recalcitrant' compounds will erroneously attribute a greater temperature sensitivity to those materials than they may actually possess.

  8. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  9. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  10. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  11. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  12. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  13. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  14. Bibliography on Biomass Feedstock Research: 1978-2002

    SciTech Connect (OSTI)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  15. Biomass Webinar Text Version | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational Course Webinar on Biomass: Text Version (153.94 KB) More Documents & Publications Biomass Webinar Presentation Slides Assessing Energy Resources Webinar Text Version Transcript: Biomass Clean Cities Webinar - Workforce Development

  16. Production of High-Quality Syngas via Biomass Gasification for Catalytic Synthesis of Liquid Fuels Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project 2015 Peer Review NC A&T Renewable Energy Center -Production of High-Quality Syngas via Biomass Gasification for Catalytic Synthesis of Liquid Fuels March 26 th 2015 Technology Area Review: Biomass Gasification Ghasem Shahbazi Biological Engineering North Carolina Agricultural and Technical State University Goal Statement The major goal of this project is to study an integrated biomass gasification and hot syngas cleaning process to produce high- quality syngas from woody biomass and

  17. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  18. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  19. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  20. Conditioning biomass for microbial growth

    DOE Patents [OSTI]

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  1. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  2. NREL: Energy Analysis - Biomass Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Biomass-fired integrated gasification combined-cycle system using a biomass energy crop Pulverized coal boiler representing an average U.S. coal-fired power plant Cofiring biomass ...

  3. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  4. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Biller, Patrick; Ross, Andrew; Schmidt, Andrew J.; Jones, Susanne B.

    2015-02-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described however they are of limited size and do not yet approach a demonstration scale of operation. With the results available process models have been developed and mass and energy balances determined. From these models process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.

  5. WeBiomass Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: www.webiomass.com Coordinates: 43.58070919775, -72.971301209182...

  6. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D ... ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Presentation ...

  7. Vanadium catalysts break down biomass for fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the...

  8. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  9. Biomass 2013: Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting ... September 2014 Monthly News Blast BETO Monthly News Blast, August 2013r Biomass 2012 ...

  10. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  11. NREL: Biomass Research - What Is a Biorefinery?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  12. Bamboo: An Overlooked Biomass Resource? (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 01 COAL, LIGNITE, AND PEAT; AGRICULTURAL WASTES; ASH CONTENT; BAMBOO; BIOMASS; ENERGY RECOVERY ...

  13. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect (OSTI)

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  14. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  15. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Conditioning biomass for microbial growth Title: Conditioning biomass for microbial growth You are accessing a document from the Department of Energy's (DOE) DOE Patents. This ...

  16. Biomass Indirect Liquefaction Strategy Workshop: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies Office Biomass Indirect ...

  17. Genetic manipulation of lignocellulosic biomass for bioenergy...

    Office of Scientific and Technical Information (OSTI)

    biomass for bioenergy Citation Details In-Document Search This content will become publicly available on September 7, 2017 Title: Genetic manipulation of lignocellulosic biomass ...

  18. Bioware Biomass Thermoconversion Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Bioware Biomass Thermoconversion Technologies Jump to: navigation, search Name: Bioware - Biomass Thermoconversion Technologies Place: Campinas, Brazil Zip: 13084-971 Product: The...

  19. Rocklin Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    References USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRocklinBiomassFacility&oldid398013" Categories: Energy Generation Facilities Stubs...

  20. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  1. Prairie City Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titlePrairieCityBiomassFacility&oldid397964" Feedback Contact needs updating Image needs updating...

  2. Chateaugay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChateaugayBiomassFacility&oldid397318" Feedback Contact needs updating Image needs updating...

  3. Riddle Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRiddleBiomassFacility&oldid398000" Feedback Contact needs updating Image needs updating...

  4. Bieber Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBieberPlantBiomassFacility&oldid397188" Feedback Contact needs updating Image needs updating...

  5. Bayport Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBayportBiomassFacility&oldid397176" Feedback Contact needs updating Image needs updating...

  6. Tracy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Name Tracy Biomass Facility Facility Tracy Sector Biomass Owner US Renewables Group Location Tracy, California Coordinates 37.7396513,...

  7. St. Paul Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSt.PaulBiomassFacility&oldid398161" Feedback Contact needs updating Image needs updating...

  8. SPI Anderson Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSPIAndersonBiomassFacility&oldid398041" Feedback Contact needs updating Image needs updating...

  9. Alexandria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAlexandriaBiomassFacility&oldid397132" Feedback Contact needs updating Image needs updating...

  10. Biomass Combustion Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  11. Mendota Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMendotaBiomassFacility&oldid397757" Feedback Contact needs updating Image needs updating...

  12. Baton Rogue Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBatonRogueBiomassFacility&oldid397172" Feedback Contact needs updating Image needs updating...

  13. Madera Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMaderaBiomassFacility&oldid397721" Feedback Contact needs updating Image needs updating...

  14. Okeelanta 1 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOkeelanta1BiomassFacility&oldid397873" Feedback Contact needs updating Image needs updating...

  15. New Meadows Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name New Meadows Biomass Facility Facility New Meadows Sector Biomass Owner Tamarack Energy Location New Meadows, Idaho Coordinates 44.9712808,...

  16. Oroville Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOrovilleBiomassFacility&oldid397894" Feedback Contact needs updating Image needs updating...

  17. Multitrade Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMultitradeBiomassFacility&oldid397817" Feedback Contact needs updating Image needs updating...

  18. Biomass Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  19. Ashland Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAshlandBiomassFacility&oldid397156" Feedback Contact needs updating Image needs updating...

  20. Chowchilla Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChowchillaBiomassFacility&oldid397324" Feedback Contact needs updating Image needs updating...

  1. Biomass Scenario Model | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline Topics:...

  2. Greenville Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleBiomassFacility&oldid397531" Feedback Contact needs updating Image needs updating...

  3. NREL: Learning - Student Resources on Biomass Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy The following resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy...

  4. Duluth Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDuluthBiomassFacility&oldid397416" Feedback Contact needs updating Image needs updating...

  5. Delano Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDelanoBiomassFacility&oldid397390" Feedback Contact needs updating Image needs updating...

  6. Mecca Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

  7. Burlington Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBurlingtonBiomassFacility&oldid397249" Feedback Contact needs updating Image needs updating...

  8. Woodland Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Woodland Biomass Facility Facility Woodland Sector Biomass Owner Xcel Energy Location Woodland, California Coordinates 38.6785157,...

  9. Williams Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleWilliamsBiomassFacility&oldid398342" Feedback Contact needs updating Image needs updating...

  10. Shasta 1 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleShasta1BiomassFacility&oldid398090" Feedback Contact needs updating Image needs updating...

  11. Improved Biomass Cooking Stoves | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Improved Biomass Cooking Stoves AgencyCompany Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan,...

  12. Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBridgewaterBiomassFacility&oldid397233" Feedback Contact needs updating Image needs updating...

  13. Reliant Energy Renewables Atascosita Biomass Facility | Open...

    Open Energy Info (EERE)

    Energy Renewables Atascosita Biomass Facility Jump to: navigation, search Name Reliant Energy Renewables Atascosita Biomass Facility Facility Reliant Energy Renewables Atascosita...

  14. Dinuba Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDinubaBiomassFacility&oldid397408" Feedback Contact needs updating Image needs updating...

  15. Category:Biomass | Open Energy Information

    Open Energy Info (EERE)

    B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid382520" Feedback Contact needs updating Image needs updating Reference...

  16. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  17. Lyonsdale Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Lyonsdale Biomass Facility Facility Lyonsdale Sector Biomass Owner CH Energy Group Location Lyonsdale, New York Coordinates 43.61861,...

  18. Aberdeen Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAberdeenBiomassFacility&oldid397114" Feedback Contact needs updating Image needs updating...

  19. Jeanerette Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleJeaneretteBiomassFacility&oldid397618" Feedback Contact needs updating Image needs updating...

  20. Fresno Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleFresnoBiomassFacility&oldid397486" Feedback Contact needs updating Image needs updating...

  1. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Energy Savers [EERE]

    Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable energy ...

  2. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Fuels and Chemicals from Lignocellulosic Biomass: Valorization of Lignin. Citation Details In-Document Search Title: Fuels and Chemicals from Lignocellulosic Biomass: Valorization ...

  3. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf (173.19 KB) More Documents & ...

  4. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Biomass: Valorization of Lignin Mike Kent Deconstruction Division Joint BioEnergy Institute Outline 1. Introduction: -fuels and chemicals from Ngnocellulosic biomass -need ...

  5. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening ...

  6. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, ...

  7. Liquid Transportation Fuels from Coal and Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid Tr anspor tation Fuels from Coal and Biomass Technological Status, Costs, and ... technologies for converting biomass and coal to liquid fuels that are deployable by ...

  8. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  9. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Broader source: Energy.gov (indexed) [DOE]

    ... 3 2.2 Biomass Feedstock Consumption ......Figure 2. Summary of biomass resource consumption ......

  10. 2011 Biomass Program Peer Review

    SciTech Connect (OSTI)

    Rossmeissl, Neil P.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Peer Review meeting.

  11. Biomass Resources and Technology Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Bio-Oil From Pyrolysis Biomass Power Current Commercial Technology * Almost all systems are combustion steam turbine * Most are grate stokers but FBC increasingly used * 1-110 MW ...

  12. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  13. Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163

    SciTech Connect (OSTI)

    Decker, S. R.

    2011-10-01

    An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

  14. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  15. Production of Butyric Acid and Butanol from Biomass

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production of Butyric Acid and Butanol from Biomass Final Report Work Performed Under: Contract No.: DE-F-G02-00ER86106 For: U.S. Department of Energy Morgantown, WV By David Ramey Environmental Energy Inc. 1253 N. Waggoner Road P.O. Box 15 Blacklick, Ohio 43004 And Shang-Tian Yang Department of Chemical and Biomolecular Engineering The Ohio State University 140 West 19 th Avenue Columbus, Ohio 43210 - 2004 - Table of Contents Page Proposal Face Page

  16. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect (OSTI)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  17. Biomass Research and Development Act of 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Conversion of biomass into biobased industrial products offers outstanding potential for benefit to the national interest.

  18. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  19. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  20. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect (OSTI)

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  1. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  2. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  3. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  4. April 2012 Biomass Program News Blast

    Broader source: Energy.gov [DOE]

    April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities, and events.

  5. biomass briquetting machine | OpenEI Community

    Open Energy Info (EERE)

    biomass briquetting machine Home There are currently no posts in this category. Syndicate content...

  6. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  7. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. deer09_stanton.pdf (1.7 MB) More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  8. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  9. Photo of the Week: Biomass Research at Oak Ridge National Laboratory |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Scientists and engineers at the Energy Department and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel and jet fuel. At Oak Ridge National Laboratory's Environmental Science Division, graduate students and researchers use transplanted trees in a number of studies, including those involving biomass conversion to biofuels. In this photo, graduate student Alina

  10. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect (OSTI)

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  11. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  12. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from non-food biomass Lab research can yield energy from non-food biomass Contact Editor Linda Anderman Email Community Programs Office

  13. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion. Because growing biomass removes carbon dioxide from the atmosphere, the net carbon emissions of this method can be low, especially if coupled with carbon capture, utilization, and

  14. Biomass 2010 Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Biomass 2010 Conference Biomass 2010 logo March 30-31, 2010 Hyatt Regency Crystal City 2799 Jefferson Davis Highway Arlington, VA 22202 Thank you to everyone who made Biomass 2010 a success, including the speakers, moderators, sponsors, and exhibitors! More than 600 attendees were able to discuss some of the most pressing issues in the biomass community as well as recent accomplishments and the challenges that lie ahead. We were able to focus on the role of biomass in our nation's

  15. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect (OSTI)

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  16. Opportunities for Biomass-Based Fuels and Products in a Refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory biomass13_male_2-d.pdf (891.45 KB) More Documents & Publications FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds 2013

  17. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  18. Custom Engineered Microcompartments for Enzyme Efficiency - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Custom Engineered Microcompartments for Enzyme Efficiency Lawrence Berkeley National Laboratory Contact LBL About This Technology Schematics of microcompartments, showing the encapsulated enzymes (green; top middle), the proteins that form the shell structure (left). Schematics of microcompartments, showing the encapsulated enzymes (green; top middle), the proteins that form the shell structure

  19. PNNL: About - Facilities - Bioproducts, Sciences, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (BSEL) Bioproducts, Sciences, and Engineering Laboratory (BSEL) Solving the puzzle of energy from a tangle of biomass BSEL BSEL BSEL BSEL In an energy-hungry modern world, getting to the future increasingly means getting back to nature. Over the next 25 years, the fastest growing sources of U.S. power will be renewables like wind, water, solar, and biomass. All of them represent production and delivery puzzles being solved by our researchers. Biomass, for one, has been a PNNL

  20. Biomass conversion to mixed alcohols

    SciTech Connect (OSTI)

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  1. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  2. Biomass Energy Production in California 2002: Update of the California Biomass Database

    SciTech Connect (OSTI)

    Morris, G.

    2002-12-01

    An updated version of the California Biomass Energy Database, which summarizes California's biomass energy industry using data from 2000 and 2001.

  3. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    SciTech Connect (OSTI)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  4. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. Humans have used biomass for thousands of years. Biomass is any organic material that has stored sunlight in the form of chemical energy. Wood is a well-known example of biomass: it can be burned for heat or shaped into building materials. There are many additional types of biomass that can be used to derive fuels, chemicals, and

  5. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  6. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  7. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  8. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  10. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  11. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  12. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  13. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  14. Sauder Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  15. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  16. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  17. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  18. Boralex Fort Fairfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fort Fairfield Biomass Facility Jump to: navigation, search Name Boralex Fort Fairfield Biomass Facility Facility Boralex Fort Fairfield Sector Biomass Location Aroostook County,...

  19. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  20. Jiangsu Guoxin Rudong Biomass Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoxin Rudong Biomass Power Co Ltd Jump to: navigation, search Name: Jiangsu Guoxin Rudong Biomass Power Co Ltd Place: Rudong, Jiangsu Province, China Sector: Biomass Product: The...

  1. Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product: China-based...

  2. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  3. Sri Balaji Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sri Balaji Biomass Power Pvt Ltd Jump to: navigation, search Name: Sri Balaji Biomass Power Pvt Ltd Place: Secunderabad, Andhra Pradesh, India Zip: 500003 Sector: Biomass Product:...

  4. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...

  5. Sinewave Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sinewave Biomass Power Pvt Ltd Jump to: navigation, search Name: Sinewave Biomass Power Pvt. Ltd. Place: Kolhapur, Maharashtra, India Zip: 416 012 Sector: Biomass Product:...

  6. Newby Island I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Newby Island I Biomass Facility Jump to: navigation, search Name Newby Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa...

  7. EERC Center for Biomass Utilization | Open Energy Information

    Open Energy Info (EERE)

    Center for Biomass Utilization Jump to: navigation, search Name: EERC Center for Biomass Utilization Place: Grand Forks, North Dakota Sector: Biofuels, Biomass Product: The mission...

  8. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  10. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  11. Yantai Tianli Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianli Biomass CHP Co Ltd Jump to: navigation, search Name: Yantai Tianli Biomass CHP Co Ltd Place: Yantai, Shandong Province, China Zip: 265300 Sector: Biomass Product:...

  12. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  13. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  14. Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Lianyungang Baoxin Biomass Cogeneration Co Ltd Place: Jiangsu Province, China Sector: Biomass...

  15. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  16. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  17. A Single Multi-Functional Enzyme for Efficient Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy ...

  18. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  19. S D Warren Somerset Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    D Warren Somerset Biomass Facility Jump to: navigation, search Name S D Warren Somerset Biomass Facility Facility S D Warren Somerset Sector Biomass Location Cumberland County,...

  20. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  1. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  2. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  3. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  4. Huaian Huapeng Biomass Electricity Co | Open Energy Information

    Open Energy Info (EERE)

    Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

  5. Covanta Hennepin Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal...

  6. Dunbarton Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Dunbarton Energy Partners LP Biomass Facility Jump to: navigation, search Name Dunbarton Energy Partners LP Biomass Facility Facility Dunbarton Energy Partners LP Sector Biomass...

  7. Smithtown Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Smithtown Energy Partners LP Biomass Facility Jump to: navigation, search Name Smithtown Energy Partners LP Biomass Facility Facility Smithtown Energy Partners LP Sector Biomass...

  8. Covanta Babylon Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal...

  9. Adrian Energy Associates LLC Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Adrian Energy Associates LLC Biomass Facility Jump to: navigation, search Name Adrian Energy Associates LLC Biomass Facility Facility Adrian Energy Associates LLC Sector Biomass...

  10. Boralex Stratton Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stratton Energy Biomass Facility Jump to: navigation, search Name Boralex Stratton Energy Biomass Facility Facility Boralex Stratton Energy Sector Biomass Location Franklin County,...

  11. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  12. Covanta Bristol Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal...

  13. Covanta Mid-Connecticut Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass...

  14. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  15. Covanta Fairfax Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type Municipal...

  16. Covanta Stanislaus Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type...

  17. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  18. Zhulu Huada Biomass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhulu Huada Biomass Co Ltd Jump to: navigation, search Name: Zhulu Huada Biomass Co Ltd Place: Shijiazhuang, Hebei Province, China Sector: Biomass Product: Zhangjiakou-based...

  19. Buena Vista Biomass Power LCC | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW...

  20. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  1. Brickyard Energy Partners LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Brickyard Energy Partners LLC Biomass Facility Jump to: navigation, search Name Brickyard Energy Partners LLC Biomass Facility Facility Brickyard Energy Partners LLC Sector Biomass...

  2. Tamarack Energy Partnership Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Partnership Biomass Facility Jump to: navigation, search Name Tamarack Energy Partnership Biomass Facility Facility Tamarack Energy Partnership Sector Biomass Location Adams...

  3. Taylor Biomass Energy LLC TBE | Open Energy Information

    Open Energy Info (EERE)

    Biomass Energy LLC TBE Jump to: navigation, search Name: Taylor Biomass Energy, LLC (TBE) Place: Montgomery, New York Zip: 12549-9900 Sector: Biomass Product: Montgomery-based...

  4. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  5. Hebei Milestone Biomass Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Milestone Biomass Energy Co Ltd Jump to: navigation, search Name: Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based...

  6. Shanxi Milestone Biomass Energy Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Milestone Biomass Energy Development Co Ltd Jump to: navigation, search Name: Shanxi Milestone Biomass Energy Development Co Ltd Place: China Sector: Biomass Product: China-based...

  7. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  8. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  9. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  10. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  11. M L Hibbard Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    L Hibbard Biomass Facility Jump to: navigation, search Name M L Hibbard Biomass Facility Facility M L Hibbard Sector Biomass Location St. Louis County, Minnesota Coordinates...

  12. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  13. Montenay Montgomery LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Montenay Montgomery LP Biomass Facility Jump to: navigation, search Name Montenay Montgomery LP Biomass Facility Facility Montenay Montgomery LP Sector Biomass Facility Type...

  14. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type...

  15. 2016 Bioenergizeme Infographic Challenge: Energy From Biomass | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy From Biomass 2016 Bioenergizeme Infographic Challenge: Energy From Biomass 2016 Bioenergizeme Infographic Challenge: Energy From Biomass

  16. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  17. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  18. Biomass Burning Observation Project (BBOP) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Biomass Burning Observation Project (BBOP) Final Campaign Report Citation Details In-Document Search Title: Biomass Burning Observation Project (BBOP) Final Campaign Report The Biomass ...

  19. Waste-to-Energy Biomass Digester with Decreased Water Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Waste-to-Energy Biomass Digester with Decreased Water Consumption Colorado State University Contact ...

  20. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  1. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  2. Bridgewater Power LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Power LP Biomass Facility Jump to: navigation, search Name Bridgewater Power LP Biomass Facility Facility Bridgewater Power LP Sector Biomass Location Grafton County, New Hampshire...

  3. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  4. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  5. Biomass energies: resources, links, constraints

    SciTech Connect (OSTI)

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  6. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  7. Biomass Oil Analysis: Research Needs and Recommendations

    SciTech Connect (OSTI)

    2004-06-01

    Report analyzing the use of biomass oils to help meet Office of the Biomass Program goals of establishing a commercial biorefinery by 2010 and commercilizing at least four biobased products.

  8. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.)

  9. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  10. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  11. Biomass One LP | Open Energy Information

    Open Energy Info (EERE)

    LP Jump to: navigation, search Name: Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One...

  12. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  13. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  14. New market potential: Torrefaction of Woody Biomass

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; J. Richard Hess

    2015-07-01

    According to researchers in Idaho National Laboratory’s Bioenergy Program, torrefaction of woody biomass could reduce variability in biomass feedstock and enable development of a commodity-type product for green energy generation and usage.

  15. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and ...

  16. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  17. Quinault Indian Nation - Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status Report Quinault Indian Nation Comprehensive Biomass Strategy Project In Partnership With: US Department of Energy Columbia-Pacific RC&EDD (ColPac) Project Overview * Identify and confirm Tribal energy needs * Comprehensive review of recent inventory of QIN biomass availability * Develop a biomass energy vision statement, goals and objectives * Identify and assess viable biomass energy options, both demand-side (those that reduce energy consumption) and supply-side (those that generate

  18. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  19. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    Definitions, Construction, and Description Citation Details In-Document Search Title: Biomass Scenario Model Scenario Library: Definitions, Construction, and Description ...

  20. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  1. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  2. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Biomass Conference DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute williams_biomass_2014.pdf (516.94 KB) More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Underground Storage Tanks: New Fuels and Compatibility A Vehicle Manufacturer's Perspective on

  3. Biomass Program Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Review Biomass Program Review This document summarizes the comments provided by our panels of expert reviewers at the Office of the Biomass Program Biennial Program Peer Review, held November 14-16, 2005 in Arlington, VA. The work evaluated in this document supports Department of Energy Biomass Program and the results of the review are major inputs used by the Program in making programmatic and funding decisions for the future. The recommendations of the panels have been taken

  4. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  5. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  6. Biomass 2014 Draft Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft Agenda (337.42 KB) More Documents & Publications Bioproducts to Enable Biofuels Workshop Agenda Bioenergy 2015 Agenda 2015 Project Peer Review Program Booklet

  7. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Biomass Indirect Liquefaction Presentation Biomass RDD Review Template pearson_rentech_clearfuels.pdf (1 MB) More Documents & Publications ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Strategy Workshop: Summary Report 2013 Peer Review Presnentations-Plenaries

  8. U.S. Department of Energy Biomass Program

    Broader source: Energy.gov [DOE]

    Biomass Program Acting Director Valerie Reed's presentation on the Biomass Program at the September 24–26, 2012, sixth annual Algae Biomass Summit, which was hosted by the Algae Biomass Organization.

  9. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  10. Chapter 7: New Insights into Microbial Strategies for Biomass...

    Office of Scientific and Technical Information (OSTI)

    Conversion of Biomass to Advanced Biofuels Publisher: Amsterdam, Netherlands: ... PHYSICAL, AND ANAYLYTICAL CHEMISTRY biofuels; biomass; cellulases; natural paradigms; ...

  11. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated ... renewable biomass feedstocks to sustainable and fungible transportation fuels * ...

  12. NREL: Biomass Research - Chemical and Catalyst Science Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion performance, measure mass transport, and develop links between biomass ... Biorefinery Processes Microalgal Biofuels Biomass Process & Sustainability ...

  13. Methods for producing and using densified biomass products containing pretreated biomass fibers

    DOE Patents [OSTI]

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  14. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    A review team established by the Department of Energy conducted an assessment of the US biomass power industry. The review team visited with more than 50 organizations representing all sectors of the biomass power industry including utilities, independent power producers, component manufacturers, engineering and construction contractors, agricultural organizations, industrial users, and regulatory organizations. DOE solicited industry input for the development of the Biomass Power Division`s Five Year Plan. DOE believed there was a critical need to obtain industry`s insight and working knowledge to develop the near- and long-term plans of the program. At the heart of this objective was the desire to identify near-term initiatives that the program could pursue to help accelerate the further development of biomass power projects.

  15. Biomass 2013: Breakout Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Singh received a bachelor's of science degree in chemistry and a doctorate in natural ... of the research projects (including chemistry, biology, physics, and engineering), and ...

  16. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  17. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, Los Alamos Charles Farrar Email Leader, UCSD Michael Todd Email Los Alamos Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting

  18. February 2012 Biomass Program News Blast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012_newsblast.pdf (121.83 KB) More Documents & Publications Biomass Program Monthly News Blast - March 2012 April 2012 Biomass Program News Blast Biomass Program Monthly News Blast January 2012

  19. Biomass Program Monthly News Blast: August | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. august_news_blast.pdf (198.18 KB) More Documents & Publications Biomass Program Monthly News Blast: June Biomass Program News Blast: September Biomass Program Monthly News Blast: July

  20. Quinault Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Biomass Strategy Project In partnership with Columbia-Pacific RC&EDD Jesse Cardenas Executive Director Quinault Indian Reservation Overview n The Quinault Indian Reservation (QIR) contains 208,105 acres of forested land in a single, triangular block n Located in the southwest corner of the Olympic Peninsula in Western Washington and includes the villages of Taholah, Queets, and Amanda Park n It is bounded on the west by the Pacific Ocean and 28 miles of preserved shoreline,

  1. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  2. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and efficient reactors, allowing for smaller reactors and streamlined processes that will convert coal into valuable products at low cost and with high energy efficiency. Here, the specific emphasis will be reactors enabling conversion of coal-biomass to liquid fuels, Novel reactors, advanced manufacturing, etc. will be

  3. Port Graham Community Building Biomass Heating Design Project

    SciTech Connect (OSTI)

    Norman, Patrick; Sink, Charles

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  4. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    SciTech Connect (OSTI)

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  5. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOE Patents [OSTI]

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  6. Engineering yeast consortia for surface-display of complex cellulosome structures

    SciTech Connect (OSTI)

    Chen, Wilfred

    2014-03-31

    As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach was to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the

  7. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    SciTech Connect (OSTI)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    for C. ljungdahlii include carbon monoxide, which can be derived from industrial waste gases or the conversion of recalcitrant biomass to syngas, as well as hydrogen, another syngas component. The finding that carbon and electron flow in C. ljungdahlii can be diverted from the production of acetate to butyrate synthesis is an important step toward the goal of renewable commodity production from carbon dioxide with this organism.

  8. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  9. Advanced Engine Trends, Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Trends, Challenges and Opportunities Advanced Engine Trends, Challenges and Opportunities Presents mega trends for future powertrains facing energy diversity and powertrain efficiency issues deer11_taub.pdf (4.86 MB) More Documents & Publications Looking From A Hilltop: Automotive Propulsion System Technology Quarterly Biomass Program/Clean Cities State Web Conference: May 6, 2010 Advanced Propulsion Technology Strategy

  10. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  11. Biomass Energy Data Book: Edition 3

    SciTech Connect (OSTI)

    Boundy, Robert Gary; Davis, Stacy Cagle

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  12. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  13. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  14. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  16. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  17. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics This infographic was created by students from Albany Academies and Academy of the Holy Names in Albany, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy,

  19. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  20. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  1. Opportunities for Farmers in Biomass Feedstock Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm Budget Plan Example Farm Statistics and Management Practices: * 1700 acres (1200 acres wheat, 500 acres potatoes) * 3 year crop rotation (wheat, wheat, potatoes) * If harvested, 1 ton / acre straw removal * Straw Contract Price ($10-$15 / ton in the field) Crop Rotation Removal Point Tons Harvested Removal Net Cost

  2. Apparatus and method for pyrolyzing biomass material

    SciTech Connect (OSTI)

    Diebold, J.P.; Reed, T.B.

    1981-08-21

    A technique for pyrolyzing biomass materials is disclosed wherein a hot surface is provided having a predetermined temperature which is sufficient to pyrolyze only the surface strata of the biomass material without substantially heating the interior of the biomass material thereby providing a large temperature gradient from the surface strata inwardly of the relatively cool biomass materials. Relative motion and physical contact is produced between the surface strata and the hot surface for a sufficient period of time for ablative pyrolyzation by heat conduction to occur with minimum generation of char.

  3. Biomass 2014: Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * 2 Anaerobic digesters using swine manure as principle feedstock; * Solid fuel pellets from woody biomass; and * 2 Biodiesel from waste greases and oils. 11 Scope * ...

  4. Biomass IBR Fact Sheet: Haldor Topsoe, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Haldor Topsoe, Inc. will integrate the Carbona Gasification and the Haldor Topsoe TIGAS (Topsoe Integrated Gasoline Synthesis) proprietary processes to produce renewable gasoline from woody biomass.

  5. Map of Biomass Facilities | Open Energy Information

    Open Energy Info (EERE)

    ng","group":"","inlineLabel":"","visitedicon":"","text":"Biomass...

  6. Catalytic fast pyrolysis of lignocellulosic biomass (Journal...

    Office of Scientific and Technical Information (OSTI)

    Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass ...

  7. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL evaluates the biomass resources statistically and spatially using geographic information systems (GIS) and other techniques. This analysis examines the amount of resources ...

  8. Biomass Program Monthly News Blast: August

    Broader source: Energy.gov (indexed) [DOE]

    Lab Opens the Advanced Biofuels Process Demonstration Unit On August 18, 2011, Biomass ... a ribbon-cutting event of the Advanced Biofuels Process Demonstration Unit, located at ...

  9. Biomass Indirect Liquefaction Strategy Workshop: Summary Report

    Broader source: Energy.gov [DOE]

    This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

  10. Pacific Lumber Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titlePacificLumberBiomassFacility&oldid397905" Feedback Contact needs updating Image needs updating...

  11. Okeelanta Cogeneration Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Database Retrieved from "http:en.openei.orgwindex.php?titleOkeelantaCogenerationBiomassFacility&oldid397875" Feedback Contact needs updating Image needs updating...

  12. Biodyne Beecher Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBiodyneBeecherBiomassFacility&oldid397198" Feedback Contact needs updating Image needs updating...

  13. Schiller Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleSchillerStationBiomassFacility&oldid398074" Feedback Contact needs updating Image needs updating...

  14. Biomass Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book AgencyCompany Organization: United States Department of Energy Partner: Oak Ridge...

  15. Milliken Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleMillikenLandfillBiomassFacility&oldid397777" Feedback Contact needs updating Image needs updating...

  16. Schiller Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleSchillerBiomassFacility&oldid398073" Feedback Contact needs updating Image needs updating...

  17. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleArborHillsBiomassFacility&oldid397151" Feedback Contact needs updating Image needs updating...

  18. Fairhaven Power Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleFairhavenPowerBiomassFacility&oldid397454" Feedback Contact needs updating Image needs updating...

  19. Biomass Energy Services Inc | Open Energy Information

    Open Energy Info (EERE)

    Services Inc Jump to: navigation, search Name: Biomass Energy Services Inc Place: Tifton, Georgia Zip: 31794 Product: Biodiesel plant developer in Cordele, Georgia. References:...

  20. BKK Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBKKLandfillBiomassFacility&oldid397166" Feedback Contact needs updating Image needs updating...