Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production  

Science Journals Connector (OSTI)

...Multi-Year Program Plan, 2007-2012” (OBP, U.S. Department of Energy, Washington, DC, 2005) (http://www1.eere.energy.gov/biomass/pdfs/mypp.pdf). 4 Biofuels Research Advisory Council , “Biofuels in the European Union...

Michael E. Himmel; Shi-You Ding; David K. Johnson; William S. Adney; Mark R. Nimlos; John W. Brady; Thomas D. Foust

2007-02-09T23:59:59.000Z

2

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

3

Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass  

E-Print Network (OSTI)

recalcitrance or when designing processing conditions to efficiently convert a specific biomass feedstock

California at Riverside, University of

4

Plant Biomass and Mechanisms of Recalcitrance Activity Lead: Debra Mohnen  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Mechanisms of Recalcitrance Activity Biomass and Mechanisms of Recalcitrance Activity Lead: Debra Mohnen 1.2 Cell Wall Synthesis and Mechanisms of Recalcitrance Activity Lead: Al Darvill TASK 1. Nucleotide-sugar/polysaccharide domain - Bar-Peled TASK 2. Cellulose domain - Kalluri TASK 3. Xylan and other hermiceluloses domain - York TASK 4. Pectin domain - Mohnen TASK 5. APAP1 domain - Tan TASK 6. Lignin domain - Dixon TASK 7. Transcription factor domain - Dixon TASK 8. Cellular/subcellular localization domain - Hahn 1.2.1: Cell Wall Synthesis and Mechanisms of Recalcitrance Activity (Darvill) 1.1 TOP and Elite Populus and Switchgrass and System Analysis Lead: Tuskan / Dixon 1.1.2: TOP and Elite Line Analysis Platform and Protocols (Nelson) 1.1.1: Selection of the TOP Populus and Switchgrass Lines

5

Identify Molecular Structural Features of Biomass Recalcitrance Using Nondestructive Microscopy and Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify Molecular Structural Features of Biomass Recalcitrance Using Non- Identify Molecular Structural Features of Biomass Recalcitrance Using Non- destructive Microscopy and Spectroscopy Shi-You Ding 1 , Mike Himmel 1 , Sunney X. Xie 2 1 National Renewable Energy Laboratory, Golden, CO 2 Harvard University, Cambridge, MA Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to fuels and other bio-based products. However, the chemical and enzymatic conversion processes developed during the past 80 years are inefficient and expensive. The inefficiency of these processes is in part due to the lack of knowledge about the structure of biomass itself; the plant cell wall is indeed a complex nano-composite material at the molecular and nanoscales. Current processing strategies have been derived empirically, with

6

Investigating Commercial Cellulase Performances Toward Specific Biomass Recalcitrance Factors Using Reference Substrates  

SciTech Connect

Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Xiao

2014-04-01T23:59:59.000Z

7

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

of the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsof the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsfor analytical pyrolysis. 7.5.2 Biomass analysis All biomass

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

8

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

Techniques for Biomass Conversion. Bioeng. Res. 2009; 2 179-Deconstruction in Biomass Conversion. In preparation LloydTechniques for Biomass Conversion. BioEnergy Research 2009;

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

9

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production  

Science Journals Connector (OSTI)

...the hydrated cellulose surface (15). The strong interchain...closely associated to the surface of the rigid cellulose crystallite...group C3 (blue) are 18 surface chains that are subcrystalline...chemical and enzymatic treatments. A pretreatment step...the solubilization of xylan in hemicellulose appears...

Michael E. Himmel; Shi-You Ding; David K. Johnson; William S. Adney; Mark R. Nimlos; John W. Brady; Thomas D. Foust

2007-02-09T23:59:59.000Z

10

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

11

State Grid and Shenzhen Energy Group Biomass Engineering Technology...  

Open Energy Info (EERE)

Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research...

12

Changes in composition and sugar release across the annual rings of Populus wood and implications on recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

composition composition and sugar release across the annual rings of Populus wood and implications on recalcitrance Jaclyn D. DeMartini, Charles E. Wyman ⇑ Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507, United States a r t i c l e i n f o Article history: Received 9 July 2010 Received in revised form 30 August 2010 Accepted 31 August 2010 Available online xxxx Keywords: Pretreatment Enzymatic hydrolysis Biomass recalcitrance Age effects Populus wood a b s t r a c t Understanding structural characteristics that are responsible for biomass recalcitrance by identifying why it is more difficult for some plants, or portions of plants, to release their sugars would be extremely valuable in overcoming this barrier. With this in mind, this study investigated the recalcitrance of wood

13

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

14

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-18T23:59:59.000Z

15

Engineered plant biomass feedstock particles  

DOE Patents (OSTI)

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-11T23:59:59.000Z

16

Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering of a High-Throughput Screening System to Identify Cellulosic Biomass, Pretreatments, and Enzyme Formulations That Enhance Sugar Release Michael H. Studer, Jaclyn D. DeMartini, Simone Brethauer, Heather L. McKenzie, Charles E. Wyman Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, California 92507; telephone: þ951-781-5791; fax: þ951-781-5790; e-mail: charles.wyman@ucr.edu Received 7 April 2009; revision received 21 August 2009; accepted 31 August 2009 Published online 3 September 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22527 ABSTRACT: The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary

17

State Grid and Shenzhen Energy Group Biomass Engineering Technology  

Open Energy Info (EERE)

and Shenzhen Energy Group Biomass Engineering Technology and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre Place Beijing Municipality, China Sector Biomass Product The centre focuses on biomass technology research and provides integrated technologic and service support for biomass utilisation and industrialisation. References State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre is a company located in Beijing Municipality, China .

18

Diesel Engine Combustion of Biomass Pyrolysis Oils  

Science Journals Connector (OSTI)

Biomass pyrolysis oils are manufactured through a moderate-temperature process (?500 °C) in which the biomass feedstock is subjected to rapid heating in the absence of air, where it vaporizes, cracks, and is condensed after a short residence time (?500 ms) into a dark brown liquid composed of a complex mixture of oxygenated hydrocarbons whose heating value is approximately half that of No. 2 diesel fuel. ... The combustion air inlet temperature can be preheated up to 130 °C through the use of an in-line electric heater, which allows engine operation with fuels that have long ignition delay, without relying on any ignition additives. ... Their data showed that in addition to reducing the peak heat release magnitude, slower chemical kinetics resulted in reduced rate of instantaneous heat release (the slope of the instantaneous heat release curve) in the early combustion phase, resulting in delayed peak heat release timing relative to SOC. ...

Alan Shihadeh; Simone Hochgreb

2000-02-15T23:59:59.000Z

19

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Aftertreatment Systems -- DEER Conference 1 6 October 2011 Kevin Barnum Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance DEER 2011 Conference...

20

Engineered microbial systems for enhanced conversion of lignocellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

752; 752; NO. OF PAGES 6 Please cite this article in press as: Elkins JG, et al. Engineered Q1microbial systems for enhanced conversion of lignocellulosic biomass, Curr Opin Biotechnol (2010), doi:10.1016/ j.copbio.2010.05.008 Available online at www.sciencedirect.com Engineered microbial systems for enhanced conversion of lignocellulosic biomass James G Elkins, Babu Raman and Martin Keller In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost- effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Biomass Research - Eric P. Knoshaug  

NLE Websites -- All DOE Office Websites (Extended Search)

Eric P. Knoshaug Eric P. Knoshaug Photo of Eric Knoshaug Eric P. Knoshaug is a senior scientist in the Applied Science section of the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He joined NREL in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on recalcitrant biomass substrates, and increasing lipid production in microalgae. Current projects include: Pentose utilization in yeast Algal growth systems Algal lipid production and nitrogen stress responses Enzymatic degradation of algal biomass. Research Interests Microbiology Molecular biology Microbial physiology Fermentation and growth systems development Metabolic engineering

22

Handbook of biomass downdraft gasifier engine systems  

SciTech Connect

This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

Reed, T B; Das, A

1988-03-01T23:59:59.000Z

23

Development of Practical Stirling Engine for Co-Generation System Using Woody Biomass Fuels  

Science Journals Connector (OSTI)

With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel suc...

Akira Hoshi; Nobutoshi Tezuka; Seizi Sasaki…

2009-01-01T23:59:59.000Z

24

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network (OSTI)

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

25

High-Throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

High-throughput High-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass Jaclyn D. DeMartini 1,2,3,Ã and Charles E. Wyman 1,2,3 1 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 BioEnergy Science Center, Oak Ridge, USA 22.1 Introduction: The Need for High-throughput Technologies The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when com- bined with optimized pretreatment processes and enzyme mixtures, could potentially

26

Structural Design and Parameter Research on the Biomass Direct-fired Stirling Engine  

Science Journals Connector (OSTI)

It makes a brief description of the forms and main parameters of the ? Stirling engine with the rhombic drive mechanism. The paper makes a deep analysis and found mathematical models on the cycle performance of ? Stirling engine, illustrates ... Keywords: Stirling engine, biomass, direct-fired, rhombic driving mechanism, performance simulation

Xu Zhang; Yan Ma

2010-08-01T23:59:59.000Z

27

Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellulosic Cellulosic Biofuels: Importance, Recalcitrance, and Pretreatment Lee Lynd 1,2 and Mark Laser 1 1 Thayer School of Engineering, Dartmouth College, Hanover, USA 2 BioEnergy Science Center, Oak Ridge, USA 2.1 Our Place in History The two most profound societal transformations in history have been spawned by radical shifts in human- kind's use of natural resources. The agricultural revolution, which spanned about two millennia beginning around 4000 BC, saw hunter-gatherer societies subsisting on wild plants and animals being largely dis- placed by those cultivating the land to produce crops and domesticated livestock. The industrial revolution followed, beginning around 1700 and lasting roughly two hundred years, during which time preindustrial agricultural societies gave way to those harnessing precious metals and fossil energy to develop sophisti- cated economies centered

28

Engineered plant biomass particles coated with bioactive agents  

DOE Patents (OSTI)

Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

Dooley, James H; Lanning, David N

2013-07-30T23:59:59.000Z

29

Engineered plant biomass particles coated with biological agents  

DOE Patents (OSTI)

Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

Dooley, James H.; Lanning, David N.

2014-06-24T23:59:59.000Z

30

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan…

2007-01-01T23:59:59.000Z

31

Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Metabolic Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass Minseok Cha 1,3 , Daehwan Chung 1,3 , James G Elkins 2,3 , Adam M Guss 2,3 and Janet Westpheling 1,3* Abstract Background: Members of the anaerobic thermophilic bacterial genus Caldicellulosiruptor are emerging candidates for consolidated bioprocessing (CBP) because they are capable of efficiently growing on biomass without conventional pretreatment. C. bescii produces primarily lactate, acetate and hydrogen as fermentation products, and while some Caldicellulosiruptor strains produce small amounts of ethanol C. bescii does not, making it an attractive background to examine the effects of metabolic engineering. The recent development of methods for genetic manipulation has set the stage for rational engineering of this genus for improved biofuel

32

Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii  

SciTech Connect

Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

Chung, Daehwan [University of Georgia, Athens, GA; Cha, Minseok [University of Georgia, Athens, GA; Guss, Adam M [ORNL; Westpheling, Janet [University of Georgia, Athens, GA

2014-01-01T23:59:59.000Z

33

Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass  

SciTech Connect

Background: Members of the anaerobic thermophilic bacterial genus Caldicellulosiruptor are emerging candidates for consolidated bioprocessing (CBP) because they are capable of efficiently growing on biomass without conventional pretreatment. C. bescii produces primarily lactate, acetate and hydrogen as fermentation products, and while some Caldicellulosiruptor strains produce small amounts of ethanol C. bescii does not, making it an attractive background to examine the effects of metabolic engineering. The recent development of methods for genetic manipulation has set the stage for rational engineering of this genus for improved biofuel production. Here, we report the first targeted gene deletion, the gene encoding lactate dehydrogenase (ldh), for metabolic engineering of a member of this genus. Results: A deletion of the C. bescii L-lactate dehydrogenase gene (ldh) was constructed on a non-replicating plasmid and introduced into the C. bescii chromosome by marker replacement. The resulting strain failed to produce detectable levels of lactate from cellobiose and maltose, instead increasing production of acetate and H2 by 21-34% relative to the wild type and pyrFA parent strains. The same phenotype was observed on a real-world substrate switchgrass (Panicum virgatum). Furthermore, the ldh deletion strain grew to a higher maximum optical density than the wild type on maltose and cellobiose, consistent with the prediction that the mutant would gain additional ATP with increased acetate production. Conclusions: Deletion of ldh in C. bescii is the first use of recently developed genetic methods for metabolic engineering of these bacteria. This deletion resulted in a redirection of electron flow from production of lactate to acetate and hydrogen. New capabilities in metabolic engineering combined with intrinsic utilization of lignocellulosic materials position these organisms to provide a new paradigm for consolidated bioprocessing of fuels and other products from biomass.

Cha, Minseok [University of Georgia, Athens, GA; Chung, Daehwan [University of Georgia, Athens, GA; Elkins, James G [ORNL; Guss, Adam M [ORNL; Westpheling, Janet [University of Georgia, Athens, GA

2013-01-01T23:59:59.000Z

34

Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine  

SciTech Connect

Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

Johansson, L. [Stirling Thermal Motors, Inc., Ann Arbor, MI (United States); Ziph, B.; McKeough, W.; Houtman, W.

1996-12-31T23:59:59.000Z

35

Novel System for Recalcitrance Screening Will Reduce Biofuels Production Costs, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

This new system will allow researchers to much more rapidly screen large numbers of samples This new system will allow researchers to much more rapidly screen large numbers of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio- fuels conversion processes. NREL will be screening thousands of variants of different biomass feedstocks to link genetic traits with environmental factors that can enhance biomass conver- sion efficiencies. Identifying the genes controlling the anatomical, chemical, and morphologi- cal features of biomass is essential to develop the next generation of low-cost, easily convert- ible biomass feedstocks. To identify superior performing biomass feedstocks using approaches that account for natural diversity and randomness, researchers must measure the cell wall chemistry and recalcitrance

36

Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation)  

SciTech Connect

Fungal free enzymes and bacterial complexed cellulosomes deconstruct biomass using different physical mechanisms. Free enzymes, which typically contain a large proportion of GH7 cellobiohydrolase, diffuse throughout the substrate and hydrolyze primarily from the cellulose reducing end, resulting in 'sharpened' macrofibrils. In contrast, complexed cellulosomes contain a diverse array of carbohydrate binding modules and multiple catalytic specificities leading to delamination and physical peeling of the cellulose macrofibril structures. To investigate how cellulose structure contributes to recalcitrance, we compared the deconstruction of cellulose I, II, and III; using free and complexed enzyme systems. We also evaluated both systems on Clean Fractionation and alkaline pretreated biomass, which remove much of the lignin, to determine the impact on enzyme loading reduction. Free fungal enzymes demonstrated a swelling of the outer surface of the plant cell walls while removing localized disruptions, resulting in a smooth surface appearance. Cellulosomes produced cell wall surfaces with localized areas of disruption and little surface layer swelling. These studies contribute to the overall understanding of biomass recalcitrance and how combining different enzymatic paradigms may lead to the formulation of new enzyme cocktails to reduce the cost of producing sugars from plant cell wall carbohydrates.

Resch, M.; Donohoe, B.; Katahira, R.; Ashutosh, M.; Beckham, G.; Himmel, M.; Decker, S.

2014-04-01T23:59:59.000Z

37

World Academy of Science, Engineering and Technology 64 2012 Effect of Biomass Feedstocks on the  

E-Print Network (OSTI)

and selectivity in hydrogenated biodiesel. In this work, the effect of biomass feedstocks (i.e. beef

Hydrogenated Biodiesel; Panatcha Bovornseripatai; Siriporn Jongpatiwut; Somchai Osuwan; Suchada Butnark

38

The influence of feedstock drying on the performance and economics of a biomass gasifier–engine CHP system  

Science Journals Connector (OSTI)

The need to dry biomass feedstocks before they can be gasified can place a large energy and capital cost burden on small-to-medium scale biomass gasification plants for the production of heat and power. Drying may not always be unavoidable, but as biomass moisture content to the gasifier increases, the quality of the product gas deteriorates along with the overall performance of the whole system. This system modelling study addresses the influence of feedstock moisture content both before and after drying on the performance and cost of a biomass gasifier–engine system for combined heat and power at a given scale and feedstock cost. The scale range considered 0.5–3.0 MWe. The system comprises an updraft gasifier with external thermal and catalytic tar cracking reactors, gas clean-up and a spark-ignition gas engine. A spreadsheet-based system model is constructed, with individual worksheets corresponding to sub-models of system components, and a number of drying technology options and modes of operation are examined. Wherever possible, data supplied by manufacturers or taken from real systems is used in the construction of the sub-models, particularly in the derivation of cost functions.

J.G. Brammer; A.V. Bridgwater

2002-01-01T23:59:59.000Z

39

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

SciTech Connect

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

40

RESEARCH Open Access Agave proves to be a low recalcitrant  

E-Print Network (OSTI)

is well known for tequila and other liquor production in Mexico, has recently gained attention because of its attractive potential to launch sustainable bioenergy feedstock solutions for semi-arid and arid of studying agave's low recalcitrance for developments in improving cellulosic energy crops. Keywords: Agave

California at Riverside, University of

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Applications of biomass Stirling engines for electrification -A case study of rural areas in Bolivia.  

E-Print Network (OSTI)

?? This report provides a study and a simulation of a feasible system configuration for the implementation of a Stirling engine for electrification of rural… (more)

Arco Sola, Javier

2014-01-01T23:59:59.000Z

42

Department of Mechanical and Nuclear Engineering Spring 2013 Project Name Large Scale Biomass Combustion Verification and Analysis  

E-Print Network (OSTI)

Biomass Combustion Verification and Analysis Overview Team PSU PENNTAP 2 was tasked with determining was to produce a user-friendly analytical model of the Challenger 400 series biomass combustion system of experts in the field of biomass combustion and its analysis. These experts were Fred Fries of Dillon

Demirel, Melik C.

43

Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction  

Science Journals Connector (OSTI)

(5, 6) The ideal process to produce biofuels from lignocellulosic biomass would be a single step reactor at short residence times where solid biomass is directly converted into a liquid fuel. ... with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). ... conversion processes that include combustion, gasification, liquefaction, hydrogenation and pyrolysis, have been used to convert the biomass into various energy products. ...

Yu-Ting Cheng; George W. Huber

2011-04-26T23:59:59.000Z

44

Optimization of the performance ofdown-draft biomass gasifier installedat National Engineering Research &Development (NERD) Centre ofSri Lanka.  

E-Print Network (OSTI)

?? Using biomass gasification to produce combustible gas is one of the promising sustainable energy optionsavailable for many countries. At present, a few small scale… (more)

Gunarathne, Duleeka

2012-01-01T23:59:59.000Z

45

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

46

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network (OSTI)

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

47

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

Arwa K, Renata B, Tu M. Weak Lignin-Binding Enzymes. Appl.Vinzant TB. Deposition of Lignin Droplets Produced DuringM, Tuskan GA, Wyman CE. Lignin Content in Natural Populus

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

48

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network (OSTI)

Bioenerg. Res. (010-9086-2 The Joint BioEnergy Institute (JBEI): DevelopingThe mission of the Joint BioEnergy Institute is to advance

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

49

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

Science Journals Connector (OSTI)

The mission of the Joint BioEnergy Institute is to advance the development of the next-generation of biofuels—liquid fuels derived from the solar energy...

Henrik Vibe Scheller; Seema Singh; Harvey Blanch; Jay D. Keasling

2010-06-01T23:59:59.000Z

50

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

Energy Crop A9 Ethanol Yield from Energy Crop A10 CO 2 fromthe density and energy content of ethanol were assumed to beand use of ethanol from cellulosic energy crops grown in

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

51

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

such as furfural and 5- hydroxymethylfurfural (5-HMF) in theproducts such as 5-hydroxymethylfurfural and furfural,

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

52

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

and within wood chips. 5.3.3.3 Moisture content and localchip moisture content (%), G is the specific gravity of the woodmoisture content and related total pore volume within pretreated wood chips

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

53

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

Cellulose Hydrolysis and the Potential of Enzyme Recycle to Enhance the Efficiency of an Integrated Wood to Ethanol

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

54

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

al. (2009). Figure 3.5. 5. GLBRC’s HTPH system, including (Research Center Center’s (GLBRC) HTPH system shown in Figure57 Figure 3.5. GLBRC’s HTPH system, including (a)iWall

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

55

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

56

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

57

Donnerstag, 24. Juli 2003 Biomasse Info-Zentrum  

E-Print Network (OSTI)

Centre Biogas - fuel cell Dust engine/-turbine ORC--process Hot Gasturbine Gasification - engine-engine Steamprocess Bioethanol - engine Methanol - engine* Methanol - fuel cell* Co- Combustion Biogas Methan - fuel 8 Biomasse Info-Zentrum Biomass Information Centre Internal Combustion Engine, Biogas #12;Donnerstag

58

NREL: Biomass Research - Jeffrey G. Linger, Ph.D.  

NLE Websites -- All DOE Office Websites (Extended Search)

metabolic engineering of Z. mobilis for use in biofuels production. Research Interests Biomass to biofuels conversion Microbial strain development Metabolic engineering Fundamental...

59

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

60

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

62

AGCO Biomass Solutions: Biomass 2014 Presentation  

Energy.gov (U.S. Department of Energy (DOE))

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

63

Assembly of Xylanases into Designer Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic Substrate  

Science Journals Connector (OSTI)

...Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic...cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic...hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation...

Sarah Moraïs; Yoav Barak; Yitzhak Hadar; David B. Wilson; Yuval Shoham; Raphael Lamed; Edward A. Bayer

2011-12-01T23:59:59.000Z

64

Biomass Basics  

Energy.gov (U.S. Department of Energy (DOE))

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

65

Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine  

Science Journals Connector (OSTI)

Abstract Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120 kWe have been performed. Woodchips are used as gasification feedstock to produce syngas, which is then utilized to feed the anode side of the SOFC stacks. A thermal efficiency of 0.424 LHV (lower heating value) for the plant is found to use 89.4 kg/h of feedstock to produce the above mentioned electricity. Thermoeconomic analysis shows that the production price of electricity is 0.1204 $/kWh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214 $/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity at a cost that is competitive with the corresponding renewable systems of the same size.

Masoud Rokni

2014-01-01T23:59:59.000Z

66

Direct Conversion of Biomass to Fuel | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

67

NREL: Biomass Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

68

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

69

Biomass shock pretreatment  

SciTech Connect

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

70

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

71

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Lédé

2012-01-01T23:59:59.000Z

72

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network (OSTI)

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

Kammen, Daniel M.

73

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

74

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity  

E-Print Network (OSTI)

to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor into biofuels. Key Result Through expression of a single gene derived from bacteria, transgenic maize. Transgenic Plants Lower the Costs of Cellulosic Biofuels NREL Highlights SCIENCE E1 cellulase expression

75

ORNL/TM-2008/105 Cost Methodology for Biomass  

E-Print Network (OSTI)

ORNL/TM-2008/105 Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Resource and Engineering Systems Environmental Sciences Division COST METHODOLOGY FOR BIOMASS FEESTOCKS ....................................................................................................... 3 2.1.1 Integrated Biomass Supply Analysis and Logistics Model (IBSAL).......................... 6 2

Pennycook, Steve

76

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

77

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

78

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

79

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

80

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

82

Biomass Analytical Library  

NLE Websites -- All DOE Office Websites (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

83

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

84

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

85

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

86

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

87

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

88

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

89

10January 1998 Small-Scale Gasification-Based Biomass Power Generation  

E-Print Network (OSTI)

, gasified biomass canbe usedto power internal combustion engines(ICEs), gasturbines, and fuel cells, all. Historical Perspective on Biomass-Gasifier/Internal Combustion Engine (BiG/ICE) Systems Gasified wood10January 1998 I Small-Scale Gasification-Based Biomass Power Generation Eric D. Larson Centerfor

90

Mapping Biomass Distribution Potential  

E-Print Network (OSTI)

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

91

NREL: Biomass Research - Daniel J. Schell  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel J. Schell Daniel J. Schell Photo of Daniel Schell Daniel Schell is a senior biochemical engineer and supervisor of the Bioprocess Integration R&D section of the National Bioenergy Center at NREL. Mr. Schell has more than 25 years of research experience in bio-based conversion of lignocellulosic biomass and has expertise in integrated operations at the bench and pilot scales. He also manages numerous projects for industrial clients investigating various aspects of lignocellulosic biomass conversion and currently leads a multi-disciplinary team of engineers, microbiologists, and chemists. Research Interests Integrated biomass processing High solids biomass conversion Fermentation development Separation processes Technoeconomic analysis Measurement uncertainty Pilot plant operation and process scale up

92

Paper 2H-03, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds--2002. Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey,  

E-Print Network (OSTI)

Paper 2H-03, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds--2002. Proceedings of the Third International Conference on Remediation of Chlorinated. INTRODUCTION Recent detection of perchlorate in several surface waters and groundwater wells used to supply

93

Towards sustainable production of clean energy carriers from biomass resources  

Science Journals Connector (OSTI)

A great fraction of the world’s energy requirements are presently met through the unfettered use of fossil-derived fuels. However, due to the anticipated demise of these energy sources and the environmental and socioeconomic concerns associated with their use, a recent paradigm shift is to displace conventional fuels with renewable energy sources. Among various alternatives, biomasses have garnered tremendous interests as potential feedstock for clean energy production. While numerous biorefinery schemes and conversion technologies exist for the transformation of biomass into usable energy forms, they are not cost-efficient and economically viable to compete with the existing petroleum-refinery technologies. In particular, the recalcitrant nature of several feedstock presents a major technological obstacle for their processing and transformation. Providentially, the synergistic integration of various biochemical and bioprocessing technologies is aiding in the establishment of future biomass energy programs. This article reviews the state of the art and future challenges in the recent development of biomass and associated transformation technologies for clean production of biofuels.

Kajan Srirangan; Lamees Akawi; Murray Moo-Young; C. Perry Chou

2012-01-01T23:59:59.000Z

94

NREL: Biomass Research - Josh Schaidle  

NLE Websites -- All DOE Office Websites (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

95

Characterization of biochars to evaluate recalcitrance and agronomic performance Akio Enders a  

E-Print Network (OSTI)

Keywords: Biomass Black carbon Charcoal Proximate analysis Pyrolysis a b s t r a c t Biochars (n = 94) were, 1982) depend on the conditions during pyrolysis as well as the composition of the feedstock biomass from 0% to 77.4% (w/w). Greater pyrolysis temperature for low-ash biochars increased fixed carbon

Lehmann, Johannes

96

Seeger Engineering AG | Open Energy Information  

Open Energy Info (EERE)

Seeger Engineering AG Jump to: navigation, search Name: Seeger Engineering AG Place: Hessisch Lichtenau, Hessen, Germany Zip: 37235 Sector: Biomass, Services Product: Services...

97

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

98

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

99

Sandia National Laboratories: Lignocellulosic Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

100

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

102

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

103

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen über den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

104

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Pretreated densified biomass products  

SciTech Connect

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

106

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

107

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

108

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

109

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

110

Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides  

Science Journals Connector (OSTI)

...efforts to improve cellulosic technologies are underway, stimulated by, among others, the U.S. Department of Energy (www1.eere.energy.gov/biomass). Chitin is the most important nonplant structural biopolymer, occurring in, e.g., the exoskeletons...

Svein J. Horn; Pawel Sikorski; Jannicke B. Cederkvist; Gustav Vaaje-Kolstad; Morten Sørlie; Bjørnar Synstad; Gert Vriend; Kjell M. Vårum; Vincent G. H. Eijsink

2006-01-01T23:59:59.000Z

111

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

112

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

113

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

114

NREL: Biomass Research - Richard L. Bain  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard L. Bain Richard L. Bain Photo of Richard Bain Richard Bain is a Principal Engineer in the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, Colorado. He has worked at NREL since 1990 and has extensive experience in the thermal conversion of biomass, municipal wastes, coal, and petroleum. He is a lead researcher in the area of production of transportation fuels and hydrogen via thermochemical conversion of biomass; technical advisor to the U.S. Department of Energy (DOE) and U.S. Department of Agriculture (USDA) on biofuels demonstrations; and Task Leader for the International Energy Agency Bioenergy Annex Biomass Gasification Task. Dr. Bain manages biomass gasification research activities for the Fuel Cell Technologies Program at NREL and coordinates support to the USDA for

115

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

116

NREL: Biomass Research - Jonathan J. Stickel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jonathan J. Stickel Jonathan J. Stickel Photo of Jonathan J. Stickel Jonathan Stickel is a senior research engineer in the Biochemical Process R&D group of the National Bioenergy Center at NREL. His primary role is the leader (Principal Investigator) for the Process Science of Enzymatic Hydrolysis subtask of the NREL Biomass Program. This work involves fundamental and applied research of the fluid mechanics, mass transfer, and reaction kinetics of biomass undergoing enzymatic hydrolysis in order to improve overall conversion yields and process economics. Education Ph.D., Chemical Engineering, University of California at Davis, 2006 B.S., Chemical Engineering, Rensselaer Polytechnic Institute, 1999 Professional Experience Senior Research Engineer, National Renewable Energy Laboratory,

117

Hydrothermal processing of high-lipid biomass to fuels  

E-Print Network (OSTI)

High-lipid algae are potential sources of biofuels. Lipids in this biomass provide a straightforward chemical route to hydrocarbon-based high energy-density fuels needed for diesel and jet engines. However, current schemes ...

Johnson, Michael C., Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

118

Workshop on the Fundamentals of Thermochemical Biomass Conversion  

Science Journals Connector (OSTI)

For the purposes of this workshop the term “fundamentals” was taken to mean the basic science (of a chemical and physical nature) underlying the engineering side of thermochemical biomass conversion. The variety ...

M. A. Connor; J. P. Diebold; K. Sjöström

1997-01-01T23:59:59.000Z

119

Fermentable sugars by chemical hydrolysis of biomass  

Science Journals Connector (OSTI)

...to that of a control glucose/xylose mixture...an efficient system for polysaccharide...comprise an integrated process for...hydrolyzed by treatment with HCl and...Fig. 5. Integrated process...demonstration plants. Lessons...Engineering plants and enzymes...Biomass and Wastes , Comparative...

Joseph B. Binder; Ronald T. Raines

2010-01-01T23:59:59.000Z

120

Ash Transformation Chemistry during Combustion of Biomass  

Science Journals Connector (OSTI)

The financial support from the Botnia-Atlantica program, the Enhanced Forest Biomass Production, the Swedish Farmers Foundation for Agricultural Research (SLF), the Thermal Engineering Research Foundation (Värmeforsk), the Swedish Energy Agency (STEM), the Swedish Research Council and the National (Swedish) Strategic Research Program Bio4Energy are gratefully acknowledged. ...

Dan Boström; Nils Skoglund; Alejandro Grimm; Christoffer Boman; Marcus Öhman; Markus Broström; Rainer Backman

2011-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

122

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

123

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

124

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions countries it is already implemented for several years. #12;Slovak Centre of Biomass Use for Energy Slovakia

125

"Optimization of Zero Length Chromatographic System and Measuring Properties of Model Compounds from Biomass Pyrolysis"  

E-Print Network (OSTI)

Compounds from Biomass Pyrolysis" Ross Kendall Faculty Mentor: Dr. Paul Dauenhauer, Chemical Engineering by using what he made to measure many of the compounds involved in biomass pyrolysis. If we can understand to retrieve diffusion coefficients of many intermediates of the biomass pyrolysis reaction. From this data

Mountziaris, T. J.

126

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

127

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

renewable energy resources include biomass, solar thermal resources”:  wind,  closed?loop  biomass,  open? loop  biomass,  geothermal  energy,  solar 

Cattolica, Robert

2009-01-01T23:59:59.000Z

128

Downdraft gasification of biomass.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with… (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

129

Biomass: Biogas Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

130

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

131

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

132

Biomass Resource Library  

NLE Websites -- All DOE Office Websites (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

133

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

134

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

135

Biomass Indirect Liquefaction Workshop  

Energy.gov (U.S. Department of Energy (DOE))

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

136

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

137

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

138

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

139

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

140

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass  

Science Journals Connector (OSTI)

Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%).

Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan Li

2013-01-01T23:59:59.000Z

142

Avant Garde Engineers Consultant Pvt ltd | Open Energy Information  

Open Energy Info (EERE)

Avant Garde Engineers Consultant Pvt ltd Jump to: navigation, search Name: Avant Garde Engineers & Consultant Pvt ltd. Place: Porur Chennai, India Zip: 600116 Sector: Biomass...

143

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

144

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

145

Module Handbook Specialisation Biomass Energy  

E-Print Network (OSTI)

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

146

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

147

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

148

Engineering  

Science Journals Connector (OSTI)

... and, as a result, connected information regarding the use of indicators on internal combustion engines is not readily obtainable. The author, who designed that most useful instrument, the ... in the manipulation of these instruments. His survey is limited to the combined piston, spring and pencil-lever types, and traces their development from the original instrument devised by ...

1939-03-11T23:59:59.000Z

149

Engineering Engineering  

E-Print Network (OSTI)

Engineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education varieties of engineering and engineering technology majors found anywhere in the United States. This means

Maroncelli, Mark

150

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

151

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

152

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

153

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

154

Developing better biomass feedstock | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

155

NREL: Biomass Research - Video Text  

NLE Websites -- All DOE Office Websites (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

156

Bioconversion of biomass to methane  

SciTech Connect

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

157

Biomass Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

158

Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)  

DOE Data Explorer (OSTI)

The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

159

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

160

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

162

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

163

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

164

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

165

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

166

DOE 2014 Biomass Conference  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

167

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

168

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

169

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

170

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

171

Biomass 2014 Poster Session  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

172

Fermentable sugars by chemical hydrolysis of biomass  

Science Journals Connector (OSTI)

...Laboratory, Department of Energy , Golden, CO ). 17 Braconnot H...Alcohol Fuel Production ( Solar Energy Research Institute...by the Department of Energy through the Great...potential requires the economical conversion of recalcitrant...

Joseph B. Binder; Ronald T. Raines

2010-01-01T23:59:59.000Z

173

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

174

Integrating Gasifiers and Reciprocating Engine Generators to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. Introduction Internal combustion reciprocating engine generators (gensets)...

175

Sandia National Laboratories: Engineering Alternative Fuel with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Report Offers Reliable Way to Evaluate Unintentional Islanding Risk Engineering Alternative Fuel with Cyanobacteria On February 27, 2013, in Biofuels, Biomass, Energy,...

176

Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Biofuels Find More Like This Return to Search Engineered Biosynthesis of Alternative Biodiesel Fuel Lawrence Berkeley National Laboratory Contact LBL About This...

177

Analysis of syngas formation and ecological efficiency for the system of treating biomass waste and other solid fuels with CO2 recuperation based on integrated gasification combined cycle with diesel engine  

Science Journals Connector (OSTI)

Biomass combustion is a more complex process and its model solving is difficult than combustion of traditional liquid fuels. At the same...2...] to obtain the data for operating regimes of ICE with syngas-based d...

A. Y. Pilatau; H. A. Viarshyna…

2014-10-01T23:59:59.000Z

178

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

179

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

180

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

182

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

183

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

184

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

185

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

186

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

187

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

188

NREL: International Activities - Biomass Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

189

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

190

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

191

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

192

NREL: Biomass Research - David W. Templeton  

NLE Websites -- All DOE Office Websites (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

193

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

194

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

195

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

196

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

197

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

198

NREL: Climate Neutral Research Campuses - Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

199

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fixed Bed Biomass Gasifier  

SciTech Connect

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

202

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

203

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants  

E-Print Network (OSTI)

, sediments, and/or ground water. It has gained acceptance over the last decade as a cost- effective an economic and ecologically attractive remediation technique. This study focused on the effects of different, noninvasive, and complementary technology for engineering-based remediation methods (Pilon-Smits, 2005

204

Biomass Feedstock National User Facility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

205

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

206

E-Print Network 3.0 - animal ecosystem engineers Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the approach with regards to ecosystem engineering... in an engineered ecosystem (e.g., water purification, biomass production, etc.). In the short term, the objective......

207

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

208

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

209

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

210

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

211

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

212

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

213

13, 3226932289, 2013 Biomass burning  

E-Print Network (OSTI)

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

214

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

215

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

216

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

217

Mini-biomass electric generation  

SciTech Connect

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

218

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

219

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

220

Driving on Biomass  

Science Journals Connector (OSTI)

...from gasoline engines in performance...increased fuel efficiency of diesel engines could yield...petroleum consumption if much of...from gas to diesel. The higher...of a diesel engine can be offset...incentives and fuel cost recoveries...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

222

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

223

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

224

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

225

Development of a commercial enzymes system for lignocellulosic biomass saccharification  

SciTech Connect

DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

Manoj Kumar

2012-12-20T23:59:59.000Z

226

Experimental and Simulation Study of Fluidization Behavior of Palm Biomass in a Circulating Fluidized Bed Riser  

Science Journals Connector (OSTI)

? Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City, Egypt ... Compared with the other renewable energy resources, biomass is abundant in annual production, up to 2740 quads (1 quad = 1015 Btu), with geographically widespread distribution in the world. ...

Ahmad Hussain; Iqbal Ahmed; Hani Hussain Sait; Mohamed Ismail Bassyouni; Abdelkarim Morsy Hegab; Syed Waheed ul Hasan; Farid Nasir Ani

2013-11-15T23:59:59.000Z

227

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Waste Biomass-Extracted Surfactants for Heavy Oil Removal  

Science Journals Connector (OSTI)

The potential synergism between biobased surfactants, produced from the alkaline extraction of waste biomass, and a synthetic surfactant was assessed. ... Since the principles of soil washing (critical Ca) were first developed for reservoir engineering, one expects that the ultralow (surfactant-enhanced oil recovery operations. ...

Matthew D. Baxter; Edgar Acosta; Enzo Montoneri; Silvia Tabasso

2014-02-03T23:59:59.000Z

230

High-biomass sorghums for biomass biofuel production  

E-Print Network (OSTI)

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

231

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

232

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

233

Biomass 2014: Breakout Speaker Biographies  

Energy.gov (U.S. Department of Energy (DOE))

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29–July 30 in Washington, D.C.

234

Biomass 2009: Fueling Our Future  

Energy.gov (U.S. Department of Energy (DOE))

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

235

NREL: Biomass Research - Joseph Shekiro  

NLE Websites -- All DOE Office Websites (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

236

Biomass IBR Fact Sheet: POET  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

237

NREL: Biomass Research - Michael Resch  

NLE Websites -- All DOE Office Websites (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

238

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

239

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

240

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Production of Butyric Acid and Butanol from Biomass  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production of Butyric Acid and Butanol from Biomass Production of Butyric Acid and Butanol from Biomass Final Report Work Performed Under: Contract No.: DE-F-G02-00ER86106 For: U.S. Department of Energy Morgantown, WV By David Ramey Environmental Energy Inc. 1253 N. Waggoner Road P.O. Box 15 Blacklick, Ohio 43004 And Shang-Tian Yang Department of Chemical and Biomolecular Engineering The Ohio State University 140 West 19 th Avenue Columbus, Ohio 43210 - 2004 - Table of Contents Page Proposal Face Page ..........................................................................................................................1 Table of Contents.............................................................................................................................2 Executive Summary

242

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

243

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

244

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

245

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

246

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

247

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

248

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

249

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

250

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

251

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

252

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

253

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

254

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

255

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

256

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

257

Mobile Biomass Pelletizing System  

SciTech Connect

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

258

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

259

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

260

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

262

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

263

Biomass 2014: Additional Speaker Biographies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

264

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

265

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

266

ARM - Biomass Burning Observation Project (BBOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

267

Biomass Renewable Energy Opportunities and Strategies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

268

Molecular Characterization of Biomass Burning Aerosols Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

269

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

NLE Websites -- All DOE Office Websites (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

270

Biomass Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

271

Pelleting characteristics of torrefied forest biomass.  

E-Print Network (OSTI)

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 °C) to generate energy dense and hydrophobic biomass suitable for producing pellets.… (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

272

High temperature, optically transparent plastics from biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

273

Heat transfer efficiency of biomass cookstoves.  

E-Print Network (OSTI)

??Nearly half of the world’s human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical… (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

274

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

275

Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163  

SciTech Connect

An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

Decker, S. R.

2011-10-01T23:59:59.000Z

276

Smallscale and automatable highthroughput compositional analysis of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Small-Scale and Automatable High-Throughput Compositional Analysis of Biomass Jaclyn D. DeMartini, Michael H. Studer, Charles E. Wyman Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, California 92507; telephone: 951-781-5703; fax: 951-781-5790; e-mail: charles.wyman@ucr.edu Received 26 May 2010; revision received 26 August 2010; accepted 3 September 2010 Published online 9 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22937 ABSTRACT: Conventional wet chemistry methods to deter- mine biomass composition are labor- and time-intensive and require larger amounts of biomass (300 mg) than is often available. To overcome these limitations and to sup- port a high-throughput pretreatment and hydrolysis (HTPH) screening system,

277

Centre for Environment Engineering Research and Education (CEERE) Schulich School of Engineering  

E-Print Network (OSTI)

, and transformations of fossil fuels; physics and engineering of nuclear power; renewable energy sources: biomassCentre for Environment Engineering Research and Education (CEERE) Schulich School of Engineering University of Calgary The Centre for Environment Engineering Research and Education (CEERE), Schulich School

Calgary, University of

278

Fermentation of Glycerol to Succinate by Metabolically Engineered Strains of Escherichia coli  

Science Journals Connector (OSTI)

...ed.). 2004. Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf . 32 Yazdani, S., and R. Gonzalez. 2008. Engineering Escherichia coli for...

Xueli Zhang; K. T. Shanmugam; Lonnie O. Ingram

2010-02-12T23:59:59.000Z

279

Driving on Biomass  

Science Journals Connector (OSTI)

...ethanol. Since the introduction of the DOE billionton...burning carbon-based fuels is only 30 to 40...The increased fuel efficiency of diesel...tax incentives and fuel cost recoveries...Increasing supplies of biodiesel is one priority...Targets might include engineering crops to retain...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

280

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for  

E-Print Network (OSTI)

HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

Kunst, Ljerka

282

Biothermal gasification of biomass  

SciTech Connect

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

283

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

284

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

285

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

286

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

287

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

288

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

289

Global (International) Energy Policy and Biomass  

SciTech Connect

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

290

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network (OSTI)

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

291

Vanadium catalysts break down biomass for fuels  

E-Print Network (OSTI)

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

292

Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions  

Science Journals Connector (OSTI)

Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal–coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.

Magín Lapuerta; Juan J. Hernández; Amparo Pazo; Julio López

2008-01-01T23:59:59.000Z

293

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

294

Evaluation of Microbial Communities from Extreme Environments as Inocula in a Carboxylate Platform for Biofuel Production from Cellulosic Biomass  

E-Print Network (OSTI)

The carboxylate biofuels platform (CBP) involves the conversion of cellulosic biomass into carboxylate salts by a mixed microbial community. Chemical engineering approaches to convert these salts to a variety of fuels (diesel, gasoline, jet fuel...

Cope, Julia Lee

2013-08-06T23:59:59.000Z

295

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

296

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network (OSTI)

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

297

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

298

Photo of the Week: Biomass Research at Oak Ridge National Laboratory |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Research at Oak Ridge National Biomass Research at Oak Ridge National Laboratory Photo of the Week: Biomass Research at Oak Ridge National Laboratory November 30, 2012 - 11:43am Addthis Scientists and engineers at the Energy Department and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel and jet fuel. At Oak Ridge National Laboratory's Environmental Science Division, graduate students and researchers use transplanted trees in a number of studies, including those involving biomass conversion to biofuels. In this photo, graduate student Alina Campbell is removing damaged leaves from Eastern Cottonwood trees, which helps stimulate the trees' growth.| Photo courtesy of Jason Richards.

299

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network (OSTI)

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

300

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels December 16, 2011 - 10:27am Addthis Washington, D.C. - On Friday, December 16th, the Energy Department (@energy) will be hosting a live Twitter Q&A on biofuels with Dr. Valerie Reed, Acting Manager of the Biomass Program. Dr. Reed holds a Ph. D. in Biochemistry from Georgetown University. In addition to her programmatic activities, Valerie is a founding member of the Metabolic Engineering Working Group, which is an interagency effort to advance metabolic engineering technologies for industrial, agricultural and human needs. She also co-chairs the Interagency Working Group on Conversion

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermo-chemical conversion of dairy waste based biomass through direct firing  

E-Print Network (OSTI)

i THERMO-CHEMICAL CONVERSION OF DAIRY WASTE BASED BIOMASS THROUGH DIRECT FIRING A Thesis by NICHOLAS THOMAS CARLIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2005 Major Subject: Mechanical Engineering ii THERMO-CHEMICAL CONVERSION OF DAIRY WASTE BASED BIOMASS THROUGH DIRECT FIRING A Thesis by NICHOLAS THOMAS CARLIN...

Carlin, Nicholas Thomas

2007-04-25T23:59:59.000Z

302

Progress in Metabolic Engineering of Saccharomyces cerevisiae  

Science Journals Connector (OSTI)

...increased efficiency in industrial cellulases and greatly reduced costs for cellulose hydrolysis in past years ( http://www1.eere.energy.gov/biomass/cellulase_enzyme.html ). The following examples of yeast metabolic engineering address the challenges...

Elke Nevoigt

2008-09-01T23:59:59.000Z

303

Fischer?Tropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield  

Science Journals Connector (OSTI)

This paper collects yield and efficiency estimates for FT synfuel production from biomass feedstocks. ... In comparison to other biofuels, advantages include (i) flexible use of all kinds of biomass feedstocks (including waste materials) and, therefore, no competition with the production of food, (ii) relatively high yields per arable land (100?180 GJ ha?1 year?1), and (iii) high fuel qualities to be used in present distribution infrastructures and high-efficiency engine technologies. ... Flow scheme for the conversion of biomass feedstocks to liquid hydrocarbon fuels (BTL) and formal chemical reactions. ...

Dominik Unruh; Kyra Pabst; Georg Schaub

2010-03-30T23:59:59.000Z

304

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

305

Rheological study of comingled biomass and coal slurries with hydrothermal pretreatment  

SciTech Connect

Gasification of comingled biomass and coal feedstock is an effective means of reducing the net life cycle greenhouse gas emissions in the coal gasification process while maintaining its inherent benefits of abundance and high-energy density. However, feeding a comingled biomass and coal feedstock into a pressurized gasification reactor poses a technical problem. Conventional dry feeding systems, such as lock hoppers and pressurized pneumatic transport, are complex and operationally expensive. A slurry formation of comingled biomass and coal feedstock can be easily fed into the gasification reactor but, in normal conditions, only allows for a small portion of biomass in the mixture. This is a consequence of the hydroscopic and hydrophilic nature of the biomass. The College of Engineering Center for Environmental Research and Technology (CE-CERT) at the University of California, Riverside, has developed a process producing high solid content biomass-water slurry using a hydrothermal pretreatment process. In this paper, the systematic investigation of the rheological properties (e.g., shear rate, shear stress, and viscosity) of coal-water slurries, biomass-water slurries, and comingled biomass and coal-water slurries is reported. The solid particle size distribution in the slurry and the initial solid/water ratio were investigated to determine the impact on shear rate and viscosity. This was determined using a rotational rheometer. The experimental results show that larger particle size offers better pumpability. The presence of a high percentage of biomass in solid form significantly decreases slurry pumpability. It is also shown that the solid loading of the biomass-water slurry can be increased to approximately 35 wt % with viscosity of less than 0.7 Pa.s after the pretreatment process. The solid loading increased to approximately 45 wt % when the biomass is comingled with coal. 18 refs., 7 figs., 3 tabs.

Wei He; Chan S. Park; Joseph M. Norbeck [University of California, Riverside, CA (United States). Bourns College of Engineering Center for Environmental Research and Technology

2009-09-15T23:59:59.000Z

306

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

307

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

308

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network (OSTI)

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

309

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network (OSTI)

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

310

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

311

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

312

August 2012 Biomass Program Monthly News Blast | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

313

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

314

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

315

Biomass Program Monthly News Blast: October | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

316

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

317

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

318

Biomass Program Monthly News Blast: July | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

319

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

320

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

322

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

323

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

324

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

325

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

326

Biomass Program Monthly News Blast: August | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

327

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

328

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

329

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

330

Biomass Program Monthly News Blast: June | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

331

April 2012 Biomass Program News Blast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

332

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

333

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

334

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

335

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

336

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

337

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

338

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy,” biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

339

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network (OSTI)

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

340

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

342

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

343

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers (EERE)

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

344

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

345

NREL: Renewable Resource Data Center - Biomass Resource Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

346

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

347

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

348

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

349

Technical and economic analysis of different cogeneration systems for energy production from biomass  

Science Journals Connector (OSTI)

This paper compares the results of a techno-economic performance analysis of seven plants for energy production from biomass with the aim of identifying the most effective solution. Small (?250 KWe) and micro (?100 KWe) size plants were investigated: 50 kWe diesel internal combustion engine coupled with a gasifier and 35 kWe Stirling engine coupled with a gasifier with an overall efficiency of 41.1% and 87.5% respectively, two biomass cogenerators, one of 25 kWe and the other of 100 kWe, 250 kWe Otto internal combustion engine coupled with a gasifier and 250 kWe diesel internal combustion engine coupled with a gasifier and 238 kWe biomass ORC plant. The technical analysis provided calculations for specific biomass consumption, electricity generation, heat produced and overall system efficiency. The economic evaluation was carried on through a discounted cash flow analysis. Data were provided by literature, analysis of case study at Italian and European level, and directly by the manufacturers of cogeneration systems. The results showed that a combined heat and power (CHP) generator is the best solution because it is economically viable with a high NPV and a PBP of five years and also technically performing with a global efficiency of 78.2% and a low biomass consumption.

Giancarlo Giacchetta; Mariella Leporini; Barbara Marchetti

2014-01-01T23:59:59.000Z

350

Engineering Engineering Education  

E-Print Network (OSTI)

E School of Engineering Engineering Education in a University Setting 292 Degree Programs in Engineering 294 Special Programs 296 Honors 298 Academic Regulations 300 Courses of Study 305 Engineering of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering

Simaan, Nabil

351

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network (OSTI)

Ethanol-production from cellobiose, amorphous cellulose, andsugars into ethanol. hemicellulose and cellulose by hydro-ethanol has been improving the technology for hydro- lysis of recalcitrant cellulose,

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

352

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

353

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

354

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

355

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network (OSTI)

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

356

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

357

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

358

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

359

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

360

Treatment of biomass to obtain ethanol  

DOE Patents (OSTI)

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

362

Biomass Sales and Use Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

363

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

364

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; André P. C. Faaij

2009-06-01T23:59:59.000Z

365

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

366

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

367

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

368

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

369

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

370

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water† ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

371

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

372

Dairy Biomass as a Renewable Fuel Source  

E-Print Network (OSTI)

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

373

Biomass Derivatives Competitive with Heating Oil Costs.  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

374

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network (OSTI)

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

375

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network (OSTI)

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

376

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

377

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

378

Increasing biomass in Amazonian forest plots  

Science Journals Connector (OSTI)

...Malhi and O. L. Phillips Increasing biomass in Amazonian forest plots Timothy R...by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian...Therefore we present a new analysis of biomass change in old-growth Amazonian forest...

2004-01-01T23:59:59.000Z

379

4, 52015260, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

380

4, 707745, 2007 Proxies of biomass  

E-Print Network (OSTI)

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Biomass Gasification at The Evergreen State College  

E-Print Network (OSTI)

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

382

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

383

Thermodynamics of Energy Production from Biomass  

E-Print Network (OSTI)

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

384

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network (OSTI)

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

385

Also inside this issue: Bioengineering Better Biomass  

E-Print Network (OSTI)

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

386

Woody Biomass Logistics Robert Keefe1  

E-Print Network (OSTI)

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

387

5, 1045510516, 2005 A review of biomass  

E-Print Network (OSTI)

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

388

4, 51355200, 2004 A review of biomass  

E-Print Network (OSTI)

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

389

Researchers at the Biomass Energy Center  

E-Print Network (OSTI)

HARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken from the atmosphere via photosynthesis: turning sunlight into energy. Unlike fossil fuels, however, biomass

Lee, Dongwon

390

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network (OSTI)

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

391

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

392

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network (OSTI)

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

393

Comparison of concepts for thermal biomass utilization, with the example of the Netherlands  

SciTech Connect

Biomass and waste, which are the focus of the activities at the Thermal Power Engineering section of the TU Delft, are the most important renewable energies today. They will maintain their role in the future. There are different ways to convert biomass and waste to power and heat. The combustion of biomass can be considered state-of-the-art technology and plants ranging in capacity from a few kW up to several MW are available on the market. The selection of the combustion technology is dependent on the scale and the kind of biomass. Power can be produced by means of a steam turbine, which is attractive in units above 1 MW. Gasification, in contrast, is a technology that has yet to find a wide use. But, in combination with gas engines, gas turbines or fuel cells, gasification has the advantage of a high electrical efficiency. Direct co-combustion of biomass in coal-fired steam power plants is the most economic choice and it is widely applied in the Netherlands. By an additional pyrolysis or gasification step, it is possible to separately remove and utilize the ashes of coal and biomass, and expected operational problems, such as corrosion, can possibly be avoided. 3 refs., 4 figs., 2 tabs.

Spliethoff, H. [Technical University, Delft (Netherlands). Thermal Power Engineering Section

2004-07-01T23:59:59.000Z

394

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

395

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

397

Biomass Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

398

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

399

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

400

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

402

Novel Biomass Conversion Process Results in Commercial Joint Venture, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Biomass Conversion Process Novel Biomass Conversion Process Results in Commercial Joint Venture A novel biomass-to-ethanol process developed, integrated, and demonstrated at pilot scale at the National Renewable Energy Laboratory (NREL) is the basis for one of the world's first cellulosic ethanol demonstration plants. The 74,000-ft 2 plant in Vonore, Tennessee, began production in January 2010. Through a Cooperative Research and Development Agreement (CRADA) with DuPont, NREL and DuPont scientists and engineers developed a unique low-cost pretreatment process that converts raw biomass to ethanol in high yields. The process was developed to facilitate the commercial readiness of lignocellulosic ethanol, which is ethanol produced from nonfood biomass feedstocks such as corn stover, agricultural waste, and energy crops.

403

Electrical, Engineering  

E-Print Network (OSTI)

Sustainable Engineering ­ advance theory and practice of sustainable engineering; provide access to clean Engineering (Ron Askin) Computer Science Computer Systems Engineering Industrial Engineering Informatics and identification Engineering of Matter, Transport, and Energy (Kyle Squires) Aerospace Engineering Chemical

Zhang, Junshan

404

Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose  

Science Journals Connector (OSTI)

...depolymerization and conversion: A review of thermochemical methods . Chem Eng...in ionic liquids . Biomass Bioenergy 33 : 1122 – 1130 . 40 Abdel-Magid AF Carson...profiling was supported by the BioEnergy Science Center administered...information, and related literature citations. Table S2. Raw...

Aaron M. Socha; Ramakrishnan Parthasarathi; Jian Shi; Sivakumar Pattathil; Dorian Whyte; Maxime Bergeron; Anthe George; Kim Tran; Vitalie Stavila; Sivasankari Venkatachalam; Michael G. Hahn; Blake A. Simmons; Seema Singh

2014-01-01T23:59:59.000Z

405

Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

DOE Patents (OSTI)

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

2013-07-02T23:59:59.000Z

406

Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

DOE Patents (OSTI)

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

2013-10-29T23:59:59.000Z

407

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

408

Special Seminar Department of Civil and Environmental Engineering  

E-Print Network (OSTI)

of reducing CO2 emissions, and improved sustainability when compared to fossil fuel combustion. Biomass reuse applications for high carbon content coal and biomass combustion products. These waste materials of Civil and Environmental Engineering Georgia Institute of Technology Characterizing Combustion Products

Kamat, Vineet R.

409

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

410

Biomass Energy Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Program Biomass Energy Program Biomass Energy Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Savings Category Bioenergy Maximum Rebate $75,000 Program Info State Alabama Program Type State Grant Program Rebate Amount Varies by project and interest rate Provider Alabama Department of Economic and Community Affairs The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on loans to install approved biomass projects. Technical assistance is also available through the program. Industrial, commercial and institutional facilities; agricultural property owners; and city, county, and state government entities are eligible.

411

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products  

Science Journals Connector (OSTI)

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products ... One of the most promising options to produce transportation fuels from biomass is the so-called biomass-to-liquids (BtL) route, in which biomass is converted to syngas from which high-quality Fischer?Tropsch (FT) fuels are synthesized. ... Alternatively to converting biomass into liquids or coal-like material, new and dedicated feeding systems for biomass can be developed. ...

Robin W. R. Zwart; Harold Boerrigter; Abraham van der Drift

2006-08-29T23:59:59.000Z

412

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

413

Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions  

Science Journals Connector (OSTI)

Cellulosic biomass essentially consists of cellulose, hemicellulose, and lignin. To obtain energy from cellulosic biomass with minimum given energy, following three steps are required, namely...3, 4...]. Since or...

Mitsuru Abe; Hiroyuki Ohno

2014-01-01T23:59:59.000Z

414

Strategic Biomass Solutions (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Industry Recruitment/Support Training/Technical Assistance Provider Mississippi Technology Alliance The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors and economic developers in the renewable energy sector. It offers companies strategic guidance for making their technology investor ready and connects companies to early stage private capital and available tax incentives. SBS assists

415

Biomass Energy Program Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

416

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

Cattolica, Robert

2009-01-01T23:59:59.000Z

417

Mediterranean land abandonment and associated biomass variation.  

E-Print Network (OSTI)

??Biomass is an important factor in environmental processes, such as erosion, carbon storage, climate change and land degradation. Human-induced changes in plant community systems and… (more)

Hoogeveen, S.S.

2011-01-01T23:59:59.000Z

418

Biomass Program Monthly News Blast - May 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012; Travis Tempel; Atlanta, Georgia U.S. Environmental Protection Agency's Biogas Technology Market Summit, May 14, 2012, Brian Duff; Washington, D.C. Biomass R&D...

419

April 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chain & Logistics Conference, May 10-11, 2012, Travis Tempel, Atlanta, Georgia EPA Biogas Technology Market Summit, May 14, 2012, Brian Duff, Washington, DC Biomass R&D...

420

Biomass Program Monthly News Blast: August  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The updated report and its supporting data improve our understanding of future biomass markets and will be a critical resource for landowners, businesses, and other potential...

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

422

Biomass Renewable Energy Opportunities and Strategies Forum  

Energy.gov (U.S. Department of Energy (DOE))

The forum will give tribal leaders and staff an opportunity to interact with other Tribes, federal agencies, and industry to learn more about biomass energy development.

423

Decentralised energy systems based on biomass.  

E-Print Network (OSTI)

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation… (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

424

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

Cattolica, Robert

2009-01-01T23:59:59.000Z

425

Determination of Extractives in Biomass: Laboratory Analytical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

426

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

427

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan....

428

NREL: Biomass Research - Thermochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

429

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

430

NREL: Biomass Research - Courtney E. Payne  

NLE Websites -- All DOE Office Websites (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

431

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

432

Biomass Indirect Liquefaction Strategy Workshop: Summary Report  

Energy.gov (U.S. Department of Energy (DOE))

This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

433

Biomass Program Peer Review Sustainability Platform | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between...

434

NREL: Biomass Research - Justin B. Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

435

Abengoa Bioenergy Biomass of Kansas, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

436

NREL: Biomass Research - Capabilities in Integrated Biorefinery...  

NLE Websites -- All DOE Office Websites (Extended Search)

pilot plant, researchers study biochemical processes for converting lignocellulosic biomass to ethanol. At NREL, teams of researchers focus on developing an integrated...

437

NREL: Biomass Research - Mark R. Nimlos  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

438

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

439

NREL: Biomass Research - Working With Us  

NLE Websites -- All DOE Office Websites (Extended Search)

research expertise. Working with outside organizations is the key to moving advanced biomass conversion technology and processes for the production of bio-based products-i.e.,...

440

Utility Promoters for Biomass Feedstock Biotechnology - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy...

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Biomass Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. April 26, 2013 Combining Strategies Speeds the Work...

442

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network (OSTI)

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in… (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

443

Utilization of durian biomass for biorenewable applications.  

E-Print Network (OSTI)

??The utilization of tropical fruit biomass as feedstock for biorenewable resources is an attractive proposition due to its abundance and potential to reduce reliance on… (more)

Bin Bujang, Ahmad Safuan

2014-01-01T23:59:59.000Z

444

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network (OSTI)

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case… (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

445

NREL: Learning - Student Resources on Biomass Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy...

446

Developing Functionalized Graphene Materials for Biomass Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

447

Characterization of Catalysts for Aftertreatment and Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

448

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

449

Alternative Fuels Data Center: Biomass Research and Development Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass Research and Biomass Research and Development Initiative to someone by E-mail Share Alternative Fuels Data Center: Biomass Research and Development Initiative on Facebook Tweet about Alternative Fuels Data Center: Biomass Research and Development Initiative on Twitter Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Google Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Delicious Rank Alternative Fuels Data Center: Biomass Research and Development Initiative on Digg Find More places to share Alternative Fuels Data Center: Biomass Research and Development Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass Research and Development Initiative

450

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

451

33engineering EnginEEring and  

E-Print Network (OSTI)

33engineering EnginEEring and ThE builT EnvironmEnT www.wits.ac.za/ebe #12;34 guide for applicants 2015 The study of Engineering Career opportunities for engineers are limitless and extend beyond the formal engineering sector. A career in engineering requires special talents ­ engineers need

Wagner, Stephan

452

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

SciTech Connect

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

453

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network (OSTI)

to Ethanol. Enzymatic Conversion of Biomass for Fuelsto Ethanol. Enzymatic Conversion of Biomass for FuelsBiomass. Enzymatic Conversion of Biomass for Fuels

Qing, Qing

2010-01-01T23:59:59.000Z

454

U.S. Department of Energy Biomass Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Biomass Program U.S. Department of Energy Biomass Program Biomass Program Acting Director Valerie Reed's presentation on the Biomass Program at the September...

455

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

solar, geothermal, and biomass energy resources in Nevadamay make it difficult for biomass energy companies to accessmay be an opportunity for biomass energy crops and biomass

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

456

Genetic Engineering of Algae for Enhanced Biofuel Production  

Science Journals Connector (OSTI)

...impacts on improved solar energy to biomass conversion...2009. The promise and challenges of microalgal-derived...Int. J. Hydrogen Energy 27 :1257-1264. 142...Milking diatoms for sustainable energy: biochemical engineering...

Randor Radakovits; Robert E. Jinkerson; Al Darzins; Matthew C. Posewitz

2010-02-05T23:59:59.000Z

457

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network (OSTI)

, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its compared two LCA methods--(1) a numbers-based LCA that relies on catch numbers at length as input data and (2) a new biomass-based LCA that relies on catch biomass at length--by applying both to simulated

458

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large Wildfires  

E-Print Network (OSTI)

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large: Global Biomass Burning & Carbon Emissions Standard Emissions Inventories: Burned Area & GFED recently daily. Fire occurrenceoccurrence Roy et al.Roy et al. Carbon emissions (C) = burned area . fuel

459

Deconst of lignocell biomass to fuels and chems, 2011.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

CH02CH06-Chundawat CH02CH06-Chundawat ARI 27 January 2011 20:20 R E V I E W S I N A D V A N C E Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals Shishir P. S. Chundawat, 1,2,∗ Gregg T. Beckham, 3,4,6,7,∗ Michael E. Himmel, 5,8 and Bruce E. Dale 1,2 1 Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824; email: chundawa@msu.edu 2 Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 3 National Bioenergy Center, 4 National Advanced Biofuels Consortium, and 5 Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401; email: gregg.beckham@nrel.gov 6 Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401 7 Renewable and Sustainable Energy Institute, Boulder, Colorado 80309 8 Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee

460

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions  

E-Print Network (OSTI)

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions Liquid Hydrogen. Note: Black carbon does not deplete ozone. What happens is the black carbon emissions from the rocket. Other black carbon emissions: The number one contributor to black carbon is burning biomass. Also

Toohey, Darin W.

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network (OSTI)

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

462

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment  

E-Print Network (OSTI)

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

Bae, Jin-Woo

463

College of Engineering ENGINEERING  

E-Print Network (OSTI)

College of Engineering CYCLONE ENGINEERING RESEARCH `SENSING SKIN' MAKES WIND ENERGY MORE COST of Science and Technology. All rights reserved. Sarah A. Rajala Dean of Engineering James and Katherine Melsa: The College of Engineering is dedicated to advancing alternative energy, including wind energy. Researchers

Mayfield, John

464

Civil Engineering Environmental Engineering  

E-Print Network (OSTI)

our environment) #12;33 Engineering challenges :structures Sydney Opera House Roof stress testing done

Anderson, Jim

465

Engineering Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing,...

466

Commercialization of biomass energy projects: Outline for maximizing use of valuable tax credits and incentives  

SciTech Connect

The Federal Government offers a number of incentives designed specifically to promote biomass energy. These incentives include various tax credits, deductions and exemptions, as well as direct subsidy payments and grants. Additionally, equipment manufacturers and project developers may find several other tax provisions useful, including tax incentives for exporting U.S. good and engineering services, as well as incentives for the development of new technologies. This paper outlines the available incentives, and also addresses ways to coordinate the use of tax breaks with government grants and tax-free bond financing in order to maximize benefits for biomass energy projects.

Sanderson, G.A. [Gomel and Davis, Atlanta, GA (United States)

1994-12-31T23:59:59.000Z

467

Microsoft Word - Biomass Energy Center Final EA 5.4.10.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 PROPOSED DEVELOPMENT AND DEMONSTRATION OF A BIOMASS ENERGY CENTER FOR FOOD PROCESSING APPLICATIONS TOPEKA, KANSAS FINAL ENVIRONMENTAL ASSESSMENT U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory APRIL 2010 THIS PAGE INTENTIONALLY LEFT BLANK National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The United States Department of Energy (DOE) proposes through a cooperative agreement with Burns & McDonnell Engineering, to partially fund project activities to design, install, and demonstrate an innovative biomass boiler pilot project that would offset a significant percentage of the natural gas consumption used for steam generation at the Frito-Lay

468

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network (OSTI)

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

469

Lessons learned from existing biomass power plants  

SciTech Connect

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

470

Processes for pretreating lignocellulosic biomass: A review  

SciTech Connect

This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

McMillan, J.D.

1992-11-01T23:59:59.000Z

471

Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks  

SciTech Connect

The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

2014-06-30T23:59:59.000Z

472

Biomass Crop Assistance Program (BCAP) | Open Energy Information  

Open Energy Info (EERE)

Biomass Crop Assistance Program (BCAP) Biomass Crop Assistance Program (BCAP) Jump to: navigation, search Tool Summary Name: Biomass Crop Assistance Program (BCAP) Agency/Company /Organization: United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Develop Finance and Implement Projects Resource Type: Guide/manual User Interface: Website Website: www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap Cost: Free The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. Overview The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. The Biomass Crop

473

Do plants modulate biomass allocation in response to petroleum pollution?  

Science Journals Connector (OSTI)

...biology 1001 69 60 Do plants modulate biomass allocation in response to petroleum pollution...330031, People's Republic of China Biomass allocation is an important plant trait...study, we investigated the response of biomass allocation of Phragmites australis to...

2010-01-01T23:59:59.000Z

474

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network (OSTI)

southern hardwoods. Biomass Bioenerg. 2006 Oct;30(10):855-of corn stover. Biomass Bioenerg. 2000;18(3):189- 99.and switchgrass. Biomass Bioenerg. 2010 Dec;34(12):1885-95.

Li, Hongjia

2012-01-01T23:59:59.000Z

475

Biomass recycling and the origin of phenotype in fungal mycelia  

Science Journals Connector (OSTI)

...resource in each cell, the biomass conversion efficiency (gamma0.2...genotype In modelled systems where biomass conversion efficiency, gamma, is low...at each time step due to the biomass conversion efficiency parameter, but...

2005-01-01T23:59:59.000Z

476

Original article Belowground biomass seasonal variation in two  

E-Print Network (OSTI)

Original article Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian March 2001) Abstract ­ The belowground biomass of two types of ecosystems, frequently burned open by flotation and sieving. Belowground biomass showed significant seasonal variation, values being higher during

Paris-Sud XI, Université de

477

Feedstock Supply and Logistics:Biomass as a Commodity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feedstock Supply and Logistics:Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

478

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network (OSTI)

2.3. Effects of low pH on biomass solids……………………………. ………………of effects of low pH on biomass……………………………. ….25 2.4. Low pHof low pH biomass reactions………………………. ……………..46

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

479

High Biomass Low Export Regimes in the Southern Ocean  

E-Print Network (OSTI)

of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

Lam, Phoebe J.; Bishop, James K.B.

2006-01-01T23:59:59.000Z

480

Original article Biomass, litterfall and nutrient content in  

E-Print Network (OSTI)

Original article Biomass, litterfall and nutrient content in Castanea sativa coppice stands November 1995) Summary - Aboveground biomass and nutrient content, litterfall and nutrient return) and Catania (Italy). Best regression equations for the aboveground biomass were obtained by applying the allo

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "biomass recalcitrance engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2012-01-01T23:59:59.000Z

482

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2013-01-01T23:59:59.000Z

483

Synthetic biology and biomass conversion: a match made in heaven?  

Science Journals Connector (OSTI)

...Y. 2007 Harnessing energy from plant biomass. Curr. Opin. Chem...processes for conversion of biomass to useful products...Biodegradation, Environmental Biomass Biotechnology methods...Biology methods Ecology Energy-Generating Resources...

2009-01-01T23:59:59.000Z

484

Methods for Determination of Biomass Energy Pellet Quality  

Science Journals Connector (OSTI)

Methods for Determination of Biomass Energy Pellet Quality ... Europe set a target of reaching 20% of renewable energies by 2020, and biomass can play an important role. ... Karagöz, S.Energy production from the pyrolysis of waste biomasses Int. ...

Slavica Prvulovic; Zorica Gluvakov; Jasna Tolmac; Dragiša Tolmac; Marija Matic; Miladin Brkic

2014-02-05T23:59:59.000Z

485

DOE Hydrogen Analysis Repository: Biomass Integrated Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Integrated Gasification Combined-Cycle Power Systems Biomass Integrated Gasification Combined-Cycle Power Systems Project Summary Full Title: Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems Project ID: 106 Principal Investigator: Margaret Mann Brief Description: This project examines the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems--high-pressure air blown, low-pressure air blown, and low-pressure indirectly heated. Purpose Examine the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems - a high pressure air-blown, a low pressure indirectly heated, and a low pressure air-blown. Performer Principal Investigator: Margaret Mann

486

Eccleshall Biomass Ltd | Open Energy Information  

Open Energy Info (EERE)

Eccleshall Biomass Ltd Eccleshall Biomass Ltd Jump to: navigation, search Name Eccleshall Biomass Ltd Place Eccleshall, United Kingdom Zip ST21 6JL Sector Biomass Product Developing a 2.2MW biomass plant. Coordinates 52.857769°, -2.24958° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.857769,"lon":-2.24958,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

488

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

489

Engineering yeast consortia for surface-display of complex cellulosome structures  

SciTech Connect

As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach was to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the yeast surface and a significant improvement in cellulosic ethanol production. Although this adaptive strategy is ideal for assembling more complex cellulosome for large-scale production of cellulosic ethanol, a substantially larger number of enzymes (up to 10 to 12) is needed to better mimic the natural cellulosome structures for practical usage of the technology.

Chen, Wilfred [University of Delaware

2014-03-31T23:59:59.000Z

490

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Biomass Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Biomass Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Biomass Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Biomass Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Biomass Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

491

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network (OSTI)

Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

Figueroa, C.

2012-01-01T23:59:59.000Z

492

DOE Announces Webinars on Natural Gas for Biomass Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

493

The role of biomass in California's hydrogen economy  

E-Print Network (OSTI)

economic analysis of hydrogen production by gasi?cation of2005. Biomass to hydrogen production detailed design andof using biomass for hydrogen production, particularly with

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

494

An evaluation of ATP estimations of bacterial biomass in the ...  

Science Journals Connector (OSTI)

Sep 18, 1974 ... terial biomass from total ATP levels and phy- ... which total microbial biomass is partitioned between ... ple, if any of the conversion factors used.

2000-01-04T23:59:59.000Z

495

Understanding the product distribution from biomass fast pyrolysis.  

E-Print Network (OSTI)

??Fast pyrolysis of biomass is an attractive route to transform solid biomass into a liquid bio-oil, which has been envisioned as a renewable substitute for… (more)

Patwardhan, Pushkaraj Ramchandra

2010-01-01T23:59:59.000Z

496

Biomass Program Monthly News Blast, October 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast, October 2012 Biomass Program Monthly News Blast, October 2012 Copy of the Biomass Program Monthly News Blast from October 2012. october2012newsblast.pdf More Documents &...

497

Biomass 2013: Breakout Speaker Biographies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Breakout Speaker Biographies Biomass 2013: Breakout Speaker Biographies This document outlines the biographies of the breakout speakers for Biomass 2013, held July 31-August 1...

498

2011 Biomass Program Peer Review Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2011 Biomass Program Peer Review Report 2011 Biomass Program Peer Review Report This document summarizes the recommendations and evaluations resulting from the U.S. Department of...

499

Biomass Program December Monthly News Blast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December Monthly News Blast Biomass Program December Monthly News Blast The December News Blast from the Biomass Program's monthly newsletter contains important past and upcoming...

500

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...