National Library of Energy BETA

Sample records for biomass project developer

  1. Advanced Biomass Gasification Projects

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  2. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    SciTech Connect (OSTI)

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  3. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  5. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-12-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  6. EIS-0300: Minnesota Agri-Power Project: Biomass for Rural Development, Granite Falls, Minnesota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE and the Minnesota Environmental Quality Boards' [MEQB, a Minnesota State agency] decision to support a proposal by the Minnesota Valley Alfalfa Producers (MnVAP) to construct and operate a 75–103 megawatt biomass fueled gasifier and electric generating facility, known as the Minnesota Agri-Power Plant (MAPP), and associated transmission lines and alfalfa processing facilities.

  7. Biomass Deconstruction: Catalyst Development and Testing Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make FuelsBioindustryWBSBiomass5- Biomass

  8. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

  9. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  10. DOE and USDA Select Projects for more than $24 Million in Biomass...

    Energy Savers [EERE]

    DOE and USDA Select Projects for more than 24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than 24 Million in Biomass Research and...

  11. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

  12. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

  13. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  14. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  15. USDA and DOE Biomass Research And Development Technical Advisory...

    Energy Savers [EERE]

    Biomass Research And Development Technical Advisory Committee Members USDA and DOE Biomass Research And Development Technical Advisory Committee Members January 15, 2008 - 10:23am...

  16. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Broader source: Energy.gov [DOE]

    The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them. The study found that biomass has the potential to compete well in the jet fuel and gasoline markets, penetration of biomass in markets is likely to be limited by the size of the resource, and that biomass is most cost effectively used for fuels instead of power in mature markets unless carbon capture and sequestration is available and the cost of carbon is around $80/metric ton CO2e.

  17. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    SciTech Connect (OSTI)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  18. High Level Overview of DOE Biomass Logistics II Project Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

  19. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Original article Root biomass and biomass increment in a beech

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

  1. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  2. Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474

    SciTech Connect (OSTI)

    Wilcox, E.

    2014-09-01

    LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

  3. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    New Biofuels by Overcoming Biomass Recalcitrance Henrik Vibeenergy stored in plant biomass. The papers in this volumefeedstocks development and biomass deconstruction. Keywords

  4. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  5. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)ArchiveProject (BBOP) Related Links

  6. Port Graham Community Building Biomass Heating Design Project

    SciTech Connect (OSTI)

    Norman, Patrick; Sink, Charles

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter of intent to negotiate a sale of woody biomass material April 30, 2015. Chugachmiut Forestry

  7. New Developments in Storage and Handling of Biomass 

    E-Print Network [OSTI]

    Bundalli, N.

    1986-01-01

    An extensive research project to derive guidelines for the design of a reliable bin-feeder system for biomass materials has been completed. The new system uses a converging mass flow hopper with a much smaller outlet ...

  8. Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410

    SciTech Connect (OSTI)

    Ding, S. Y.

    2013-06-01

    The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

  9. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  10. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Environmental Management (EM)

    their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology developed by Accelergy, which reforms local Montana...

  11. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  12. The Vermont Biomass Gasifier Project -- Medium heating value gas for electric power applications

    SciTech Connect (OSTI)

    Craig, K.; Overend, R.P. [National Renewable Energy Lab., Golden, CO (United States); Gillette, L. [Dept. of Energy, Washington, DC (United States)

    1998-12-31

    The Vermont Biomass Gasifier Project is part of a major DOE initiative to demonstrate indirect gasification of renewable biomass for electricity production. The Vermont Project has been undertaken to demonstrate the integration of the Battelle Columbus Laboratories (Battelle) indirectly-heated gasifier with a high-efficiency gas turbine. The demonstration and validation of this gasification/gas turbine system is being performed at the existing 50 MW wood-fired McNeil Power Generating Station in Burlington, Vermont, thereby significantly reducing the time scale for deployment and the necessary capital investment for DOE and the Vermont project partnership. The development and commercialization of this technology is important for several reasons: (1) it does not require a hot-gas clean-up for gas turbine operation, thus removing this technical hurdle from the commercialization path; (2) it is the only US biomass gasification system that has successfully powered a gas turbine, supporting its near-term viability for commercial deployment; and (3) it produces a medium-heating-value gas without employing an oxygen plant, thus allowing the use of existing unmodified industrial gas turbines. Gasifier construction was completed in late 1997; commissioning and parametric testing was completed during the spring and summer of 1998. This paper discusses the results of this testing and presents plans for both the next phase of testing and prospects for near-term commercialization.

  13. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

  14. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  15. EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide partial funding for (1) the design and construction of a biomass storage, handling, and conveying system into the boiler at...

  16. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Late-Successional Biomass Development in Northern Hardwood-Conifer Forests of the Northeastern United States

    E-Print Network [OSTI]

    Vermont, University of

    Late-Successional Biomass Development in Northern Hardwood-Conifer Forests of the Northeastern of biomass dynamics in relation to stand development. Our study evaluated competing hypotheses regarding late-successional biomass dynamics in northern hardwood-conifer forests using a data set spanning the north- eastern United

  18. Development and commercialization of a biomass gasification/power generation system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.

    1995-11-01

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities.

  19. Project Management Career Development Program | Department of...

    Office of Environmental Management (EM)

    You are here Home Operational Management Certifications and Professional Development Project Management Career Development Program Project Management Career Development...

  20. Why Cogeneration Development Projects Fail 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1987-01-01

    ENERATION DEVElDHmNT PROJECTS FAIL RALPH w. GRBBtMX>D Regional Manager Bbasco Services Incorporated Houston, Texas ABSTRACT Cogeneration projects that are organized by developers fail to reach fruition for reasons other than the basic economical... here to discuss those additional problems unique to small projects. A developnent project is defined as one where a third party, the developer, provides preliminary econanic options, licensing, business structure, financing, detailed engineering...

  1. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect (OSTI)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  2. Biomass power for rural development. Quarterly report, January 1, 1997--April 1, 1997

    SciTech Connect (OSTI)

    Cooper, J.T.

    1997-05-01

    The following information summarizes the major areas of project activities accomplished during the last quarter. Activities addressing conversion technology have been geared towards gathering information and drawing comparisons to specific project need. Of major benefit was the trip taken to Denmark by Project Manager, Edward Woolsey. The first section of this report provides an overview of his experiences and findings. As a follow up to this trip, representatives from Iowa State University and from IES Utilities will also visit some of these facilities. Their information will be included in the next report. At the supply development level, the RC&D has been working to identify and organize producers of swithgrass. A major accomplishment has been the formation of the Prairie Lands Bio-Products group. This association will explore different business structures that energy crop producers can use to supply biomass and to effectively market their materials to the energy industry. Thus, the group will begin to interact with IES in the next few months to determine how the supplier and the utility must interact to establish a working relationship and to efficiently provide biomass as a boiler fuel. Other major areas of focus for the group will be the development and implementation of risk management strategies to overcome income loss and allow acreage increases during market development. These strategies include the development of niche markets for swithgrass, the use of CRP lands, and outside sources of cost share for establishment.

  3. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

  4. Regulatory Considerations for Developing Generation Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Projects on Federal Lands Regulatory Considerations for Developing Generation Projects on Federal Lands Presentation covers regulatory considerations for developing...

  5. Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations

    SciTech Connect (OSTI)

    Kinchin, C. M.; Bain, R. L.

    2009-05-01

    This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

  6. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  7. Altered Development of Visual Subcortical Projections Following

    E-Print Network [OSTI]

    Finlay, Barbara L.

    Altered Development of Visual Subcortical Projections Following Neonatal Thalamic Ablation increases connectivity by stabilizing an exuberant develop- mental projection, we examined the normal projection zones and show progressive growth within these zones. At no time during development do projections

  8. Biomass power for rural development. Quarterly report, October 3, 1998--January 1, 1999

    SciTech Connect (OSTI)

    Cooper, J.T.

    1999-02-01

    Information and education activities for this quarter include both the monthly progress activities with some copies of materials developed and a copy of the annual report prepared for the Leopold Center for Sustainable Agriculture. The Leopold Center is a project partner and the primary sponsor of the information and education activities. The Leopold annual report references many prepared documents and assorted presentation materials. The Energy and Geological Resources Division of the Iowa Department of Natural Resources sponsors a meeting four times a year in order to bring members of the Iowa biomass energy community together to share information. In this quarter the Stakeholders meeting was held on October 21, 1998, in Des Moines Iowa. The first phase of the Geographic Information System (GIS) efforts have been completed and a final report with a map presentation of materials will be included in the next Quarterly Report. A meeting with Ed Gray of The Antares Group and project staff/cooperators was held October 23, 1998. The authors discussed the Niagara Project and the efforts to value the biomass material and partner contributions. Niagara has identified a value to the grid support capabilities of the dispersed generation.

  9. USDA and DOE Award Biomass Research and Development Grants to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biobased products from a variety of biomass sources. These investments in clean, sustainable transportation fuels will help reduce U.S. oil imports, support economic...

  10. E85 Infrastrucutre Development Project

    Broader source: Energy.gov [DOE]

    Burl Haigwood's presentation on the Flex fuel vehicle awareness campaign from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  11. Economic development through biomass system integration. Volumes 2--4

    SciTech Connect (OSTI)

    DeLong, M.M.

    1995-10-01

    Report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners.

  12. START Renewable Energy Project Development Technical Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START Renewable Energy Project Development Technical Assistance START Renewable Energy Project Development Technical Assistance The U.S. Department of Energy (DOE) Office of Indian...

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  14. DOE Office of Indian Energy Renewable Energy Project Development...

    Broader source: Energy.gov (indexed) [DOE]

    all project costs qualify) Select Qualifying Technologies * Wind * Geothermal * Biomass * Hydro * Solar * Fuel cells * Small wind * Geothermal Depreciation can be taken with either...

  15. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Neuhauser, E.

    1996-02-01

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.

  16. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  17. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  18. Continuous countercurrent chromatographic separator for the purification of sugars from biomass hydrolyzate. Final project report, July 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    Wooley, R.J.

    1997-12-01

    Production of pure sugars is required to enable production of fuels and chemicals from biomass feedstocks. Hydrolysis of cellulose and hemicellulose (principal constituents of biomass) produces sugars that can be utilized in various fermentation process to produce valuable chemicals. Unfortunately, the hydrolysis process also liberates chemicals from the biomass that can be toxic to the fermenting organisms. The two primary toxic components of biomass hydrolyzate are sulfuric acid (catalyst used in the hydrolysis) and acetic acid (a component of the feed biomass). In the standard batch chromatographic separation of these three components, sugar elutes in the middle. Batch chromatographic separations are not practical on a commercial scale, because of excess dilution and high capital costs. Because sugar is the {open_quotes}center product,{close_quotes} a continuous separation would require two costly binary separators. However, a single, slightly larger separator, configured to produce three products, would be more economical. This FIRST project develops a cost-effective method for purifying biomass hydrolyzate into fermentable sugars using a single continuous countercurrent separator to separate this ternary mixture.

  19. Project Development and Finance: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

  20. RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

  1. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options,...

  2. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISŘ and DTU Anne Belinda Thomsen (RISŘ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  3. Tribal Renewable Energy Advanced Course: Project Development...

    Energy Savers [EERE]

    Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project...

  4. Project Development and Finance Course Curriculum Terminology...

    Office of Environmental Management (EM)

    Publications Financing and Investing in Tribal Renewable Energy Projects Tribal Renewable Energy Advanced Course: Commercial Scale Project Development SunShot Vision Study:...

  5. Economic development through biomass system integration: Volume 1

    SciTech Connect (OSTI)

    DeLong, M.M.

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  6. Big Island Demonstration Project – Black Liquor

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  7. Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier A DYNAMICS-AS-USUAL DEVELOPMENT AS BORDERCONDITION

    E-Print Network [OSTI]

    Keeling, Stephen L.

    9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 A DYNAMICS-AS-USUAL DEVELOPMENT AS BORDERCONDITION FOR THE IMPLEMENTATION OF GLOBAL BIOMASS ENERGY STRATEGIES G. AHAMER* , S.Read@massey.ac.nz ABSTRACT Before envisaging global strategies for enhanced use of biomass for energy, the present

  8. Hipikat: A Project Memory for Software Development

    E-Print Network [OSTI]

    van der Hoek, André

    Hipikat: A Project Memory for Software Development Davor CCubranicc, Gail C. Murphy, Member, IEEE's usefulness in software modification tasks. One study evaluated the usefulness of Hipikat's recommendations Terms--Software development teams, project memory, software artifacts, recommender system, user studies

  9. Tribal Energy Project Development Through ESCOs

    Broader source: Energy.gov [DOE]

    Download presentation slides below for the Tribal Energy Project Development through Energy Service Companies (ESCOs) webinar on April 21, 2010.

  10. Obama Administration Announces New Funding for Biomass Research...

    Energy Savers [EERE]

    up to 35 million over three years to support research and development in advanced biofuels, bioenergy and high-value biobased products. The projects funded through the Biomass...

  11. Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

    2008-06-01

    The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

  12. Tribal Renewable Energy Advanced Course: Project Development...

    Office of Environmental Management (EM)

    Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

  13. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect (OSTI)

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  14. Economic development through biomass system integration: Summary report

    SciTech Connect (OSTI)

    DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

    1995-10-01

    Alfalfa is a well-known and widely-planted crop that offers environmental and soil conservation advantages when grown as a 4-year segment in a 7-year rotation with corn and soybeans. Alfalfa fixes nitrogen from the air, thereby enhancing soil nitrogen and decreasing the need for manufactured nitrogen fertilizer. With alfalfa yields of 4 dry tons per acre per year and the alfalfa leaf fraction sold as a high-value animal feed the remaining alfalfa stem fraction can be economically viable fuel feedstock for a gasifier combined cycle power plant. This report is a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power power plant (integrated gasification combined cycle) in a way that benefits the facility owners. The sale of an animal feed co-product and electricity both help cover the production cost of alfalfa and the feedstock processing cost, thereby requiring neither the electricity or leaf meal to carry the total cost. The power plant provides an important continous demand for the feedstock and results in continous supply of leaf product to provide a reliable supply needed for the leaf meal product.

  15. Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    1 Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader 1 Dynamic). At the same time, there will be substantial collaboration between the projects to develop this common research in developing countries Lay 5 Informal risk sharing networks as an strategy to reduce poverty risk Ibanez

  16. Governance Lessons from Two Sumatran Integrated Conservation and Development Projects

    E-Print Network [OSTI]

    Kelman, CandiceCarr

    2013-01-01

    conservation and development projects and beyond. BioScienceconservation and development project for lowland rainforestconservation and development projects. Washington, DC: The

  17. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  18. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    SciTech Connect (OSTI)

    Tomberlin, G.

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  19. Tribal Renewable Energy Advanced Course: Project Development...

    Energy Savers [EERE]

    Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

  20. Renewable Energy Project Development: Advanced Concept Topics

    Broader source: Energy.gov (indexed) [DOE]

    Concept Topics An Introduction to Risk, Tribal Roles, and Support Policies in the Renewable Energy Project Development Process Course Outline What we will cover... About the...

  1. The Dhiban Excavation and Development Project's 2005 Season

    E-Print Network [OSTI]

    2010-01-01

    The Dh?bĺn Excavation and Development Project’s 2005 SeasonThe Dh?bĺn Excavation and Development Project’s 2005 SeasonDh?bĺn Excavation and Development Project (DEDP hereafter)

  2. ESPC Project Developer's Resource Guide

    Energy Savers [EERE]

    Federal Project Executive (FPE) 0 2115 X X 2 FPE initiates renewable screening with NREL 0 212015 X X 3 Golden Field Office (GFO) assigns PF identified by FPE; FPE assigns...

  3. EERC Center for Biomass Utilization 2006

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

    2009-05-27

    The Center for Biomass Utilization (CBU�®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  4. START Renewable Energy Project Development Assistance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects.

  5. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    SciTech Connect (OSTI)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  6. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

  7. Develop NREL Center for Low Temperature Research/Project Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop NREL Center for Low Temperature ResearchProject Data Collection Develop NREL Center for Low Temperature ResearchProject Data Collection Project objective: Low-Temperature...

  8. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  9. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230şC and 270–280şC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  10. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  11. Development projects: Secondary school, Arnold 

    E-Print Network [OSTI]

    Anonymous

    This BULLETIN describes a secondary school at Arnold, Nottinghamshire, designed by the Development Group of the Architects and Building Branch of the Ministry of Education in collaboration with the Local Education Authority. It was the sixth...

  12. National Decentralized Water Resources Capacity Development Project

    E-Print Network [OSTI]

    Gold, Art

    National Decentralized Water Resources Capacity Development Project Mapping Onsite Treatment Needs Onsite Treatment Needs, Pollution Risks, and Management Options Using GIS Submitted by the University. Wastewater Planning Handbook: Mapping Onsite Treatment Needs, Pollution Risks, and Management Options Using

  13. The Python Development Project 5.1 Introduction

    E-Print Network [OSTI]

    Ford, David N.

    Chapter 5 The Python Development Project 5.1 Introduction This chapter describes the calibration of the Product Development Project Model to a specific development project and its use to investigate a project management policy. The project will be referred to as the Python development project and International Chip

  14. USDA, DOE to Invest up to $18.4 million for Biomass Research...

    Energy Savers [EERE]

    More Documents & Publications DOE and USDA Select Projects for more than 24 Million in Biomass Research and Development Grants USDA Biofuels R&D Growing Energy - How Biofuels...

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most Program. The information from this project contributes to Energy Research and Development Division

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM research, development, and demonstration (RD&D) projects to benefit California. The Energy Research of California. The information from this project contributes to Energy Research and Development Energy

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Developing research, development, and demonstration (RD&D) projects to benefit California. The Energy Research from this project contributes to Energy Research and Development Division's Energy

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PROBABILISTIC TRANSMISSION CONGESTION, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Institute. The information from this project contributes to Energy Research and Development Division

  19. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  20. Three Non-Technical Challenges in the Development of Biomass-based Energy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Savage, Steve

    2011-04-25

    Steve Savage from Cirrus Partners on "Three Non-Technical Challenges in the Development of Biomass-based Energy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  1. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  2. Innovation Project Development Jan 2013 1 Attributes of an Innovation Project

    E-Print Network [OSTI]

    Bertini, Robert L.

    Innovation Project Development Jan 2013 1 Attributes of an Innovation Project Good projects and advisors. The story holds the project together. The story is a way for the team to develop and talk about Project Development Jan 2013 2 Developing an Innovation Project Proposal Problems, Opportunities

  3. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  4. EIS-0298: Telephone Flat Geothermal Development Project

    Broader source: Energy.gov [DOE]

    This EIS is for a Plan of Operation (POO) for Development and Production; and for a POO for Utilization and Disposal for a proposed geothermal development project, including: a power plant, geothermal production and injection wellfield, ancillary facilities, and transmission line on the Modoc National Forest in Siskiyou and Modoc Counties, California.

  5. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  6. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ONSITE AEROBIC research, development, and demonstration (RD&D) projects to benefit California. The Energy Research. The information from this project contributes to Energy Research and Development Division's Transportation

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFECYCLE ENERGY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF LARVAL, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT HYBRID SOLAR LIGHTING, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives National Laboratory. The information from this project contributes to Energy Research and Development

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT TECHNICAL BRIEFS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Buildings End

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED EPI TOOLS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Materials Incorporated. The information from this project contributes to Energy Research and Development

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Demonstration, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Institute. The information from this project contributes to Energy Research and Development Division

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Integrated CHP Research, Development, and Demonstration (RD&D) projects to benefit California. The Energy Research. The information from this project contributes to Energy Research and Development Division's Advanced Generation

  16. Catalysis for Mixed Alcohol Synthesis from Biomass Derived Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-08-292

    SciTech Connect (OSTI)

    Hensley, J.

    2013-04-01

    The Dow Chemical Company (Dow) developed and tested catalysts for production of mixed alcohols from synthesis gas (syngas), under research and development (R&D) projects that were discontinued a number of years ago. Dow possesses detailed laboratory notebooks, catalyst samples, and technical expertise related to this past work. The National Renewable Energy Laboratory (NREL) is conducting R&D in support of the United States Department of Energy (DOE) to develop methods for economically producing ethanol from gasified biomass. NREL is currently conducting biomass gasification research at an existing 1/2 ton/day thermochemical test platform. Both Dow and NREL believe that the ability to economically produce ethanol from biomass-derived syngas can be enhanced through collaborative testing, refinement, and development of Dow's mixed-alcohol catalysts at NREL's and/or Dow's bench- and pilot-scale facilities. Dow and NREL further agree that collaboration on improvements in catalysts as well as gasifier operating conditions (e.g., time, temperature, upstream gas treatment) will be necessary to achieve technical and economic goals for production of ethanol and other alcohols.

  17. 2014 Commercial-Scale Renewable Energy Project Development and...

    Energy Savers [EERE]

    2014 Commercial-Scale Renewable Energy Project Development and Finance Workshop Agenda and Presentations 2014 Commercial-Scale Renewable Energy Project Development and Finance...

  18. Evaluating the Impact of Development Projects on Poverty: A Handbook...

    Open Energy Info (EERE)

    the Impact of Development Projects on Poverty: A Handbook for Practitioners Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Evaluating the Impact of Development Projects...

  19. 2013 Commercial-Scale Tribal Renewable Energy Project Development...

    Energy Savers [EERE]

    2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Commercial-Scale Tribal Renewable Energy Project Development...

  20. Community-Scale Project Development and Finance Workshop Agenda...

    Energy Savers [EERE]

    Community-Scale Project Development and Finance Workshop Agenda and Presentations: Oklahoma Community-Scale Project Development and Finance Workshop Agenda and Presentations:...

  1. DOE Funds 21 Research, Development and Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to 78...

  2. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Environmental Management (EM)

    Facility- and Community-Scale Project Development Regional Energy Workshops Alaska Facility- and Community-Scale Project Development Regional Energy Workshops April 13, 2015 -...

  3. CHP Project Development Handbook (U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The...

  4. High Burnup Dry Storage Cask Research and Development Project...

    Energy Savers [EERE]

    High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to...

  5. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  6. Development of Direct-Use Projects: Preprint

    SciTech Connect (OSTI)

    Lund, J.

    2011-01-01

    A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid at elevated temperatures, which is capable of providing heat and/or cooling to buildings, greenhouses, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs of the user and characteristics of the resource in order to development a successful project. Each application is unique; guidelines are provided for the logical steps required to implement a project. Recommended temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture pond heating, and industrial applications. Guidelines are provided for selecting the necessary equipment for successfully implementing a direct-use project, including downhole pumps, piping, heat exchangers, and heat convectors. Additionally, the relationship between temperature, flow rate, and the use of heat exchangers to provide heat to a space with hot water or hot air is provided for a number of applications, with suggested 'rules of thumb'.

  7. Algal Biomass Valorization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review 1.3.4.300 Algal Biomass Valorization BETO Algae Platform - Peer review Alexandria, VA March 24 th , 2015 Lieve Laurens National Renewable Energy...

  8. Renewable Energy Project Development Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  9. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  10. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    deployment  of  renewable projects.   Southern California Edison (SCE) has one such program for biomass 

  11. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  12. EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York

    Broader source: Energy.gov [DOE]

    Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island.

  13. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RESEARCH ROADMAP, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives: California Energy Commission Cathy Turner Contract Manager Guido Franco Project Managers Linda Spiegel Office

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT WIND STORAGE Commission's Public Interest Energy Research (PIER) Program. During the two years of the project research, development, and demonstration (RD&D) projects to benefit California. The Energy Research

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT. The information from this project contributes to Energy Research and Development Division's Renewable for: California Energy Commission Zhiqin Zhang Golam Kibrya Project Managers Linda Spiegel Office

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK this project contributes to Energy Research and Development Division's Renewable Energy Program For more OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives: California Energy Commission Dave Michel Project Manager Mike Gravely Office Manager Energy Efficiency

  19. Why Good Projects Go Bad: Managing Development Projects near Tipping Points Tim Taylor and David Ford

    E-Print Network [OSTI]

    Ford, David N.

    Why Good Projects Go Bad: Managing Development Projects near Tipping Points Tim Taylor and David: The evolution of three projects near the project tipping point. The initial scope was 100 work packages. Degrading project: FRW = 0.8 RES = 3 Improving project: FRW = 0.1 RES = 0.25 Stagnate project: FRW = 0.5 RES

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA AUTONOMOUS UNMANNED AERIAL, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  1. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  2. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  3. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  4. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  5. Project Development and Finance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogistical ChallengesProject Development and

  6. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED CHARACTERIZATION OF WIND from this project contributes to Energy Research and Development Division's Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research and Development Division Robert P

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT. The information from this project contributes to Energy Research and Development Division's Industrial Energy Efficiency Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE this project contributes to Energy Research and Development Division's EnergyRelated Environmental Research Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY AND ENVIRONMENTAL PERFORMANCE this project contributes to Energy Research and Development Division's Renewable Energy Technologies Program Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ADVANCED POWER ELECTRONICS INTERFACE, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Office Manager Energy Systems Research Office Laurie ten Hope Deputy Director Energy Research

  12. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect (OSTI)

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AN ECONOMIC ANALYSIS OF SIX DAIRY, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development by Summers Consulting, LLC. The information from this project contributes to Energy Research and Development

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most this project contributes to Energy Research and Development EnergyRelated Environmental Research Program

  15. TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project

    E-Print Network [OSTI]

    Tufto, Jarle

    1 TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project Norwegian POTENTIALS FOR PROJECT- AND URBAN DEVELOPMENT AT TRANSPORTATION NODES · TO QUICKLY DEVELOP AN ARCHITECTURAL? · DEVELOP AN URBAN AND ARCHITECTURAL CONCEPT AND PROGRAM · DESIGN AND PRESENT THE PROJECT #12;6 PHOENICIAN

  16. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  17. Developing a fundamental understanding of biomass structural features responsible for enzymatic digestibility 

    E-Print Network [OSTI]

    O'Dwyer, Jonathan Patrick

    2006-10-30

    that affect the enzymatic reactivity of biomass. The effects of acetyl content, crystallinity index (CrI), and lignin content on the digestibility of biomass (i.e., poplar wood, bagasse, corn stover, and rice straw) were explored. In this fundamental study...

  18. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  19. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  20. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications.

  1. Renewable Energy Project Development and Financing: Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 7) * Tribedeveloper operates the project * Requires largest equity...

  2. Renewable Energy Project Development: Advanced Process Topics

    Broader source: Energy.gov (indexed) [DOE]

    funding Tribe and Electricity Users Project Primarily for facility- and Community-scale projects The Tribe is the owner in this structure and self-generates its electricity...

  3. FEMP ESPC Project Development Resource Guide

    Broader source: Energy.gov (indexed) [DOE]

    project timeline. FEMP Services Options* Project Facilitation Renewable Energy Assessment Energy Sales Agreement Support Detailed Pricing Analysis Interest Rate Analysis Other SME...

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AN ASSESSMENT, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT. The information from this project contributes to Energy Research and Development Division's Industrial Virginia Lew Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director ENERGY

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BIOENERGETICS, SPACIAL. The information from this project contributes to Energy Research and Development Division's Energy Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RWE SCHOTT SOLAR: California Energy Commission Hassan Mohammed Project Manager Linda Spiegel Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P. Oglesby

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT POLICY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Commission Dave Michel Contract Manager Fernando Pina Office Manager Energy Systems Research Office Laurie

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AIRQUALITY IMPACTS OF HEAT Inc. The information from this project contributes to Energy Research and Development Division Franco Program Area Lead Energy-Related Environmental Research Linda Spiegel Office Manager Energy

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT COMMERCIALIZING ZERO research, development, and demonstration (RD&D) projects to benefit California. The Energy Research Kibrya Contract Manager Linda Spiegel Office Manager Energy Generation Research Office Laurie ten Hope

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SMART GRID INFORMATION ASSURANCE (CSUS). The information from this project contributes to the Energy Research and Development Division Chambers Contract Manager Fernando Pińa Office Manager Energy Systems Research Office Laurie ten Hope

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT A SEASONAL, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Research Linda Spiegel Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT AUTOMATED ROOFTOP. The information from this project contributes to Energy Research and Development Division's Buildings End Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency Research

  14. Wind Energy 101 Webinar Series Part 5: Project Development and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 101 Webinar Series Part 5: Project Development and Siting Wind Energy 101 Webinar Series Part 5: Project Development and Siting August 6, 2015 2:00PM to 3:00PM EDT During...

  15. CIV498 Design Project 2016 Project Title: Business and Operations Development

    E-Print Network [OSTI]

    Toronto, University of

    CIV498 Design Project 2016 Project Title: Business and Operations Development INSTRUCTOR: Paul resolution. Design teams will choose a project and work directly with the local Holcim personnel to develop and provide construction services to many of Canada's largest infrastructure projects. Our business divisions

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's RD&D Program

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives and Sustainability. The information from this project contributes to Energy Research and Development Division

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT IMPACTS OF SHORTTERM, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The The information from this project contributes to Energy Research and Development Division's Energy

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DRILLING AND TESTING, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Energy Associates, Inc. The information from this project contributes to Energy Research and Development

  20. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's RD&D Programs

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT COMMERCIALIZING ZERO ENERGY NEW HOME&D) projects to benefit California. The Energy Research and Development Division strives to conduct the mostPower Corporation. The information from this project contributes to Energy Research and Development Division

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT THE VALUE OF NATURAL GAS STORAGE, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives by ICF International. The information from this project contributes to Energy Research and Development

  3. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    i Energy Research and Development Division FINAL PROJECT REPORT INLET AIR SPRAY COOLING, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF NEW TESTING PROTOCOLS in this report. #12;ACKNOWLEDGEMENTS This Public Interest Energy Research project was funded by the California, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to all of theEnergy Research and Development Division's RD

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT STANDARDS, RULES, AND ISSUES, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Division's Energy

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Production of Substituted Natural&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most this project contributes to Energy Research and Development Division's Transportation Research Program

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT THE ICHTHYOPLANKTON OF KING HARBOR&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most. The information from this project contributes to the Energy Research and Development Division's Energy

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT PILOT PHASE OF A FIELD STUDY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives. The information from this project contributes to Energy Research and Development Buildings End-Use Energy

  10. Position Description Project Manager, Office of Community and Economic Development

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Position Description Project Manager, Office of Community and Economic Development Full will support all aspects of the success of CSU's Office of Community and Economic Development projects from conceptual development and scoping, through tracking and management of projects, including tracking details

  11. Galois: A Theory Development Project \\Lambda Peter Aczel

    E-Print Network [OSTI]

    Aczel, Peter

    Galois: A Theory Development Project \\Lambda Peter Aczel Departments of Computer Science to develop a significant body of machine checked mathematics. The primary aim of the project is to produce on the project. Over Christmas I decided that in the longer term it was necessary to develop first a general

  12. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  13. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  14. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National...

  15. RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2011-01-01

    OF BIOMASS TO SUGARS AND ETHANOL C. R. Wilke, R. D. Yang,of Cellulose Conversion on Ethanol Cost. References Wilke,of Hydrolyzate to Ethanol and Single Cell Protein,"

  16. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect (OSTI)

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  17. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R; Mielenz, Jonathan R; Rodriguez Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NOVEMBER 2010 CEC5002013048 Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research and Development Commission Energy Research and Development Division supports public interest energy research and development

  19. Renewable Energy Project Development and Finance: Advanced Development...

    Broader source: Energy.gov (indexed) [DOE]

    Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 10) * Tribedeveloper operates the project * Requires largest equity...

  20. Department of Energy Announces 18 New Projects to Accelerate...

    Broader source: Energy.gov (indexed) [DOE]

    (CHP) generation, and TERRA projects will accelerate energy crop development for the production of renewable transportation fuels from biomass. "The GENSETS and TERRA programs...

  1. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  2. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  3. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  4. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  5. DOE/SC-ARM-13-014 Biomass Burning Observation Project Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE ProjectREMOTE-HANDLED TRU764 The Arctic63

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT APPENDIX B EFFECT OF WIND SPEED, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strivesFilippo. The information from this project contributes to PIER's EnergyRelated Environmental Research Program

  7. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIFE-CYCLE ASSESSMENT AND URBAN Sustainable Energy Systems Research Roadmap project (Contract Number 500-99-013, Work Authorization BOA-99. The information from this project contributes to Energy Research and Development Division's Transportation Program

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SAIC SOLAR DISH, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives by Science Applications International Corp The information from this project contributes to Energy Research

  9. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT POTENTIAL TARGETS AND BENEFITS&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most for Urban Energy Systems Research project (contract number 500-99-013, work authorization number BOA-99- 207

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT INTEGRATED SYSTEM Manager Anish Gautam, P.E. Project Manager Virginia Lew Office Manager Energy Efficiency Research Office, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives

  11. Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates October 1, 2014 ­ September 30, 2016 Brief Description of Research Project Climate change

  12. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014 ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

  13. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT NEW ENGINE TECHNOLOGY FOR CALIFORNIA California Technology Center. The information from this project contributes to Energy Research Commission Rizaldo Aldas, Ph.D. Contract Manager Linda Spiegel Office Manager Energy Generation Research

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT HUMBOLDT COUNTY: Public Interest Energy Research (PIER) California Energy Commission Michael Sokol Project Manager Linda: California Energy Commission Prepared by: Schatz Energy Research Center #12; Prepared by: Primary

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS University Research Foundation. The information from this project contributes to Energy Research: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary

  16. Renewable Energy Project Development and Financing: Community...

    Broader source: Energy.gov (indexed) [DOE]

    Community Course Outline What we will cover... About the DOE Office of Indian Energy Education Initiative Community-Scale Process: Hypothetical Example - Project...

  17. Countercurrent Saccharification of Biomass 

    E-Print Network [OSTI]

    Derner, John David

    2015-04-21

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  18. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

  20. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

  1. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri...

  2. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    , and field testing of a modular BioMax® biomass gasification system. The BioMax® system used on-site biomass

  3. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications (EIA)

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  4. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA TRANSMISSION CONGESTION, development, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Manager Fernando Pina Office Manager Energy Systems Research Office Laurie ten Hope Deputy Director ENERGY

  5. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT EFFICIENT HEAT AND POWER SYSTEMS. The information from this project contributes to Energy Research and Development Division's Industrial Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P

  6. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT SUMMARY OF RECENT WIND INTEGRATION, Davis. The information from this project contributes to Energy Research and Development Division Generation Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P

  7. CO2 Mitigation Potential of Biomass Energy Plantations in DevelopingRegions

    E-Print Network [OSTI]

    --Latin America and Asia 11 --A Case Study of Biomass Energy Plantations in the Northeast of Brazil 12 5 are modernized. A recent assessment by Johansson et al. [1993] of the potential for renewable energy to global energy supply in a renewables-intensive global energy scenario (RIGES), providing 35% (206 EJ

  8. Soil microbial biomass: an estimator of soil development in reclaimed lignite mine soil 

    E-Print Network [OSTI]

    Swanson, Eric Scott

    1996-01-01

    A two-year study was conducted at the Big Brown lignite mine in Fairfield, Texas, to determine the rate and extent of recovery of the soil microbial biomass (SMB) in mixed overburden. The relationships between SMB carbon (SMBC), basal respiration...

  9. Digging Deeper: Technical Reports from the Dhiban Excavation and Development Project (2004 - 2009)

    E-Print Network [OSTI]

    2011-01-01

    ?bĺn Excavation and Development Project Moser, S. , Glazier,THE DhČbĺn EXCAVATION AND DEVELOPMENT PROJECT (2004-2009) 1Dhiban Excavation and Development Project (hereafter DEDP)

  10. ECO-LOGICAL: AN ECOSYSTEM APPROACH TO DEVELOPING TRANSPORTATION INFRASTRUCTURE PROJECTS IN A CHANGING ENVIRONMENT

    E-Print Network [OSTI]

    Bacher-Gresock, Bethaney; Schwarzer, Julianne Siegel

    2009-01-01

    Office of Project Development and Environmental Review, 1200planning and project development. By creating and usingin the planning and project development processes enhances

  11. DOE and USDA Select Projects for more than $24 Million in Biomass Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE FederalTheofHeyeck,Department ofand Development Grants |

  12. Framework for Project Development in the Renewable Energy Sector

    SciTech Connect (OSTI)

    Springer, R.

    2013-02-01

    The concepts, descriptions, diagrams, and acronyms developed and described herein are meant to provide a contextual framework as well as a systematic, repeatable process to assist a potential project sponsor in understanding and navigating early-stage project development. Professional project developers will recognize these concepts and hold them as intuitive and even obvious, though the fundamentals of this specialized field are rarely written down and defined as they are here.

  13. Project progress report: Development of an Engineering for Sustainable Development MPhil

    E-Print Network [OSTI]

    2009-07-13

    FP9 Six month progress report Project Reference???Project Title?Joint Curriculum Development Effort: Development of an Engineering for Sustainable Development M.Phil for Cambridge University??Project Leader (CU): Dr R.A. Fenner... the horizons for civil engineers: a sustainable development framework” ??Please indicate how this Project is meeting the objectives of CMI. The above serves as evidence that the CMI MPhil in Engineering for Sustainable Development has now...

  14. A survey of state clean energy fund support for biomass

    SciTech Connect (OSTI)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  15. Figure 6. Projected Production for the Low Development Rate of...

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  16. Commercial-Scale Renewable Energy Project Development Workshop...

    Energy Savers [EERE]

    Workshop: Colorado Commercial-Scale Renewable Energy Project Development Workshop: Colorado July 29, 2014 - 9:52am Addthis July 29-31, 2014 Golden, Colorado National Renewable...

  17. FAO Global Inventory of Agricultural Mitigation Projects in Developing...

    Open Energy Info (EERE)

    Agricultural Mitigation Projects in Developing Countries AgencyCompany Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture...

  18. New Mexico Renewable Energy Project Development and Finance Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    New Mexico Renewable Energy Project Development and Finance Workshop AGENDA July 28-29, 2015 Pueblo Cultural Center 2401 12th Street Northwest Albuquerque, NM 87104 Learning...

  19. Project Profile: Development and Performance Evaluation of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of High Temperature Concrete...

  20. DOE Regional Tribal Energy Project Development and Finance Workshops...

    Broader source: Energy.gov (indexed) [DOE]

    for Tribes that includes 17 online courses covering a range of topics from renewable energy basics to advanced project development and finance concepts. The in-person...

  1. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Energy Savers [EERE]

    Presentations The DOE Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Bethel, Dillingham, and Juneau,...

  2. Applications for START Clean Energy Project Development Technical...

    Broader source: Energy.gov (indexed) [DOE]

    for the third round of Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance. Through START, federally recognized tribal...

  3. Commercial-Scale Renewable Energy Project Development and Finance Workshop

    Broader source: Energy.gov [DOE]

    Agenda for the Office of Indian Energy Commercial-Scale Renewable Energy Project Development and Finance Workshop July 9-11.

  4. SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP Biomass Outlook 2014: Is Biomass About To Go Bang?

    E-Print Network [OSTI]

    of resources from wood and pellets through to energy crops and waste streams it offers a diverse and often market for biomass and related products, such as pellets, to securely match supply and demand in various

  5. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect (OSTI)

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  6. November 2011 Competition for biomass among

    E-Print Network [OSTI]

    Noble, James S.

    remain high, limiting the development of national or even regional markets for biomass feedstocks. We

  7. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect (OSTI)

    Fisher, Steve; Knapp, David

    2012-03-31

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a â??biomass-firedâ?ť boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using â??carbon neutralâ?ť fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary â??functions,â?ť however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

  8. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Technology Systems Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P Research Center and funded by the California Energy Commission (Energy Commission), Public Interest Energy

  9. The use of process metrics to evaluate product development projects

    E-Print Network [OSTI]

    Kellam, Benjamin A. (Benjamin Alexander), 1972-

    2004-01-01

    Product development success is an important strategic factor in today's business environment. The ability to accurately predict the outcome of product development projects would be a useful strategic tool. This research ...

  10. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LOW­COST, ENERGY Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director RESEARCH AND DEVELOPMENT, agreement PIR10049. The project team gratefully acknowledges the hard work of the DOE and Energy

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT ENERGY REDUCTION IN MEMBRANE, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives Commission Paul Roggensack Contract Manager Virginia Lew Office Manager Energy Efficiency Research Office

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT DEMONSTRATION OF ADVANCED-08-048) conducted by Electric Power Group, LLC. The information from this project contributes to Energy Research Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P. Oglesby

  13. Energy Research and Development Division DRAFT PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division DRAFT PROJECT REPORT NATURAL GAS ENERGY EFFICIENCY, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives IN BUILDINGS Roadmap for Future Research Prepared for: California Energy Commission Prepared by

  14. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT GREENGUIDE FOR SUSTAINABLE ENERGY Efficiency Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P for this project and technical guidance on many components of this research program. · Brian D. Huff, of GBA

  15. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT REDUCTIONS IN URBAN OUTDOOR WATER USE, and demonstration (RD&D) projects to benefit California. The Energy Research and Development Division strives'Hagan Contract Manager Linda Spiegel Office Manager Energy Generation Research Office Laurie ten Hope Deputy

  16. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT LIGHTING CALIFORNIA'S FUTURE Efficiency Research Office Laurie ten Hope Deputy Director ENERGY RESEARCH AND DEVELOPMENT DIVISION Robert P in this report. #12;ACKNOWLEDGEMENTS The project team acknowledges the support of the California Energy

  17. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT RANKING AND PRIORITIZING&D) projects to benefit California. The Energy Research and Development Division strives to conduct the most Virginia Lew Office Manager Energy Efficiency Research Office Laurie ten Hope Deputy Director ENERGY

  18. Project Title: High Street Precinct Website Content Development

    E-Print Network [OSTI]

    Hickman, Mark

    Project Title: High Street Precinct Website Content Development Bachelor of Arts Internships Organisation Supervisor: Zoe Roland Academic Supervisor: Katie Pickles Project Reference Number: S112/Historic Places Trust is developing a website to commemorate the High Street Precinct. It will be designed around

  19. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemical and

  20. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that...

  1. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmentalAHRI Regulatory Burden

  2. Process development status report for advanced manufacturing projects

    SciTech Connect (OSTI)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  3. Microsoft PowerPoint - Overview of Biomass Energy and Economic Development Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane HydrateUpdateBudgeting Rebecca Office ofBiomass

  4. Project Development Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYSDepartmentWork Progresses1,Project Cost

  5. Northeast regional biomass program. First quarter report, October--December 1993

    SciTech Connect (OSTI)

    NONE

    1994-05-01

    This progress report presents summaries of various projects which were in operation or being planned during this quarter period. Projects included testing the efficiency of using wood chips as fuel in heating systems, barriers to commercial development of wood pellet fuels, studies of more efficient and less polluting wood stoves, work on landfill gas utilization, directories of facilities using biomass fuels, surveys of biomass conversion processes to liquid fuels, for commercial development, etc.

  6. SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP Biomass Outlook 2014: Is Biomass About To Go Bang?

    E-Print Network [OSTI]

    . The share of traditional biomass fuels has remained fairly static over the last decade or two, while modern of the food versus fuel debates of years past­ while others have questioned the sustainability and greenhouse markets. In particular, analysis such as REN-21's latest Global Financial Report (GFR), highlights a range

  7. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  8. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass

    E-Print Network [OSTI]

    Gasification of Wet Biomass Feedstocks Douglas C. Elliott,* Gary G. Neuenschwander, Todd R. Hart, R. Scott catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas of the organic structure of biomass to gases has been achieved in the presence of a ruthenium metal catalyst

  9. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    MARINE BIOMASS A marine energy farm is one of the fewTompkins, A. N. , 1978, "Energy from Marine Biomass Project-1978 "A Review of the Energy from Marine Biomass Program",

  10. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    Energy Research and Development Division FINAL PROJECT REPORT Boiler Burner Energy Systems Technologies · Transportation Boiler Burner Energy System Technology Final Report is the final report for the Boiler Burner Energy System Technology project PIR-09-012 conducted by Altex Technologies, Inc

  12. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    · Renewable Energy Technologies · Transportation Natural Gas-optimized Advanced Heavy-duty Engine is the finalEnergy Research and Development Division FINAL PROJECT REPORT NATURAL GAS OPTIMIZED ADVANCED HEAVY report for Gas Optimized Advanced Heavy Duty Engine Concept project (contract number PIR-08

  13. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  14. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  15. To'Hajilee Economic Development, Inc.- 2012 Project

    Broader source: Energy.gov [DOE]

    The To'Hajiilee Chapter of the Navajo Nation (previously called and occasionally referred to as the Cańoncito Band of Navajos) is engaged in the development of a solar electricity generation facility (solar project).

  16. Commercial-Scale Renewable Energy Project Development and Finance...

    Energy Savers [EERE]

    and Finance Workshop: Colorado Commercial-Scale Renewable Energy Project Development and Finance Workshop: Colorado July 9, 2013 - 5:27pm Addthis July 9-11, 2013 Golden, Colorado...

  17. Product Design Specifications Starting Product Development Projects Right

    E-Print Network [OSTI]

    Salustri, Filippo A.

    Product Design Specifications Starting Product Development Projects Right Filippo A What? How? teams must solve same problem unfettered innovation v.risk management need to created balanced designs a structured control document a thinking tool a collaboration tool promotes innovation

  18. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    efforts are focused on securing stable and economical storage, transportation, and delivery of natural gas-Use Energy Efficiency · Renewable Energy Technologies · Transportation California Natural Gas StorageEnergy Research and Development Division FINAL PROJECT REPORT CALIFORNIA NATURAL GAS STORAGE

  19. Oklahoma Renewable Energy Project Development and Finance Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma Renewable Energy Project Development and Finance Workshop AGENDA June 9-11, 2015 Riverwind Hotel and Casino 1544 State Highway 9 Norman, OK 73072 405-322-6000 Learning...

  20. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    SciTech Connect (OSTI)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  1. Commercial-Scale Project Development and Finance Workshop: Colorado...

    Energy Savers [EERE]

    Energy Laboratory The DOE Office of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop on Sept. 1-3, 2015, at the National...

  2. Community-Scale Project Development and Finance Workshop: New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pueblo Cultural Center The DOE Office of Indian Energy hosted a Community-Scale Renewable Energy Project Development and Finance Workshop on July 28-29, 2015, at the Pueblo...

  3. Community-Scale Project Development and Finance Workshop: Oklahoma...

    Office of Environmental Management (EM)

    Hotel and Casino The DOE Office of Indian Energy hosted a Community-Scale Renewable Energy Project Development and Finance Workshop June 9-11, 2015, at the Riverwind Hotel...

  4. Commercial-Scale Project Development and Finance Workshop Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guest speakers at the DOE Office of Indian Energy's Commercial-Scale Tribal Renewable Energy Project Development and Finance workshop held Sept. 1-3, 2015, at the National...

  5. Community-Scale Project Development and Finance Workshop Agenda...

    Energy Savers [EERE]

    from guest speakers at the DOE Office of Indian Energy's Community-Scale Tribal Renewable Energy Project Development and Finance workshop held July 27-29, 2015, at the Pueblo...

  6. Ninth Annual Native American Economic Development, Diversification & Energy Projects Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 9th Annual Native American Economic Development, Diversification & Energy Projects Conference featuring the Inaugural Leaders of Tomorrow Workshop  will be held June 15th and 16th, 2015 at...

  7. Standardization of product development processes in multi-project organizations

    E-Print Network [OSTI]

    Rupani, Sidharth

    2011-01-01

    An important question for a large company with multiple product development projects is how standard or varied the sets of activities it uses to conceive, design, and commercialize products should be across the organization. ...

  8. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  9. Biomass Boiler | OpenEI Community

    Open Energy Info (EERE)

    Biomass Boiler Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 24 June, 2015 - 07:08 Biomass Boiler Market is Projected to Reach USD 8,907.0 Million by 2022...

  10. Biomass Renewable Energy Opportunities and Strategies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    strategic energy development forums, this Tribal Leader Forum will focus on biomass development opportunities, technology updates, resource assessment, the unique...

  11. Synfuels from biomass grow slowly

    SciTech Connect (OSTI)

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  12. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  13. Project Reports for To'Hajilee Economic Development, Inc.- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The To'Hajiilee Chapter of the Navajo Nation (previously called and occasionally referred to as the Cańoncito Band of Navajos) is engaged in the development of a solar electricity generation facility (solar project).

  14. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  15. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  16. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  17. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  19. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Energy Savers [EERE]

    USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development June 11, 2007 -...

  20. DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9.NewExtremeand NRELDepartment of News

  1. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  2. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  3. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    SciTech Connect (OSTI)

    Hirsch, Brian; Burman, Kari; Davidson, Carolyn; Elchinger, Michael; Hardison, R.; Karsiwulan, D.; Castermans, B.

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  4. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01

    and pyrolysis reactions of biomass, Energy Conversion andthe atmosphere during biomass energy consumption is fixed byThe development of biomass energy industry provides direct

  5. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  6. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  7. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  8. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

  9. Also inside this issue: Bioengineering Better Biomass

    E-Print Network [OSTI]

    Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

  10. To'Hajilee Economic Development, Inc.- 2010 Project

    Broader source: Energy.gov [DOE]

    The goal of Cańoncito Band of Navajos for this project is to successfully complete a feasibility analysis to make informed decisions on technology selection, development, financing, and management of a large solar energy farm planned to be built on trust lands held by our Cańoncito Band.

  11. Flight Projects 2 Technology and Space Program Development 13

    E-Print Network [OSTI]

    are steadily approaching the goal of providing solar cell arrays at a cost com- petitive with other energy#12;Flight Projects 2 Technology and Space Program Development 13 Tracking and Data Acquisition 22, a future in which I feel we will provide unique services to the nation in the exploration of the solar

  12. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies

    Broader source: Energy.gov [DOE]

    This project aims to demonstrate potentially disruptive, novel photovoltaic (PV) absorbers by developing proof-of-concept PV device prototypes composed of defect-tolerant inorganic thin film oxide/nitride absorbers. “Defect tolerance” is the tendency of a semiconductor to maintain good transport and doping properties despite the presence of crystallographic defects and is a key property of promising PV materials.

  13. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  14. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  15. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  16. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect (OSTI)

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  17. Biomass Program 2007 Program Peer Review - Program Summary Section

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  18. Biomass Program 2007 Program Peer Review - Full Report

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  19. Structuring Risk in E-Government Development Projects Using a Causal Model Abdullah Al-Shehab

    E-Print Network [OSTI]

    Winstanley, Graham

    Structuring Risk in E-Government Development Projects Using a Causal Model Abdullah Al-Shehab 1 projects is minimal compared with traditional Information System (IS) development projects. The success projects, and this research uses a similar approach applied in E-Gov development projects. This experiment

  20. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  1. TheWorld Bank and social capital: Lessons from ten rural development projects in the Phillipines and Mexico

    E-Print Network [OSTI]

    Fox, Jonathan A

    2000-01-01

    bank anti-poverty projects,' Development in Practice 7 (2):under which development projects and programs are designedreform communities development project,' Washington: World

  2. NASA Redox Storage System Development Project. Final report

    SciTech Connect (OSTI)

    Hagedorn, N.H.

    1984-10-01

    The Redox Storage System Technology Project was jointly supported by the US Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to prove its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25/sup 0/C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh pre-prototype system. A subsequent change was made in operating mode, going to 65/sup 0/C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/cm/sup 2/ with energy efficiencies greater than 80%. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office. This report covers the full duration of the project.

  3. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  4. Project Reports for To'Hajilee Economic Development, Inc.- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goal of Cańoncito Band of Navajos for this project is to successfully complete a feasibility analysis to make informed decisions on technology selection, development, financing, and management of a large solar energy farm planned to be built on trust lands held by our Cańoncito Band.

  5. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  6. Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

    Broader source: Energy.gov [DOE]

    Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

  7. START Program for Renewable Energy Project Development Assistance – Round Three Application

    Broader source: Energy.gov [DOE]

    Download the application for the START Program for Renewable Energy Project Development Assistance–Round Three.

  8. 2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda

    Broader source: Energy.gov [DOE]

    Presentations from the 2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop

  9. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  10. Energy Efficient Community Development in California: Chula Vista Research Project

    SciTech Connect (OSTI)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

  11. Project Develops Student-Stakeholders | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogistical ChallengesProject Development

  12. Assessing human rights impacts in corporate development projects

    SciTech Connect (OSTI)

    Salcito, Kendyl; University of Basel, P.O. Box, CH-4003 Basel; NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202; NewFields, LLC, Denver, CO 80202 ; Utzinger, Jürg; University of Basel, P.O. Box, CH-4003 Basel ; Weiss, Mitchell G.; Münch, Anna K.; Singer, Burton H.; Krieger, Gary R.; Wielga, Mark; NewFields, LLC, Denver, CO 80202

    2013-09-15

    Human rights impact assessment (HRIA) is a process for systematically identifying, predicting and responding to the potential impact on human rights of a business operation, capital project, government policy or trade agreement. Traditionally, it has been conducted as a desktop exercise to predict the effects of trade agreements and government policies on individuals and communities. In line with a growing call for multinational corporations to ensure they do not violate human rights in their activities, HRIA is increasingly incorporated into the standard suite of corporate development project impact assessments. In this context, the policy world's non-structured, desk-based approaches to HRIA are insufficient. Although a number of corporations have commissioned and conducted HRIA, no broadly accepted and validated assessment tool is currently available. The lack of standardisation has complicated efforts to evaluate the effectiveness of HRIA as a risk mitigation tool, and has caused confusion in the corporate world regarding company duties. Hence, clarification is needed. The objectives of this paper are (i) to describe an HRIA methodology, (ii) to provide a rationale for its components and design, and (iii) to illustrate implementation of HRIA using the methodology in two selected corporate development projects—a uranium mine in Malawi and a tree farm in Tanzania. We found that as a prognostic tool, HRIA could examine potential positive and negative human rights impacts and provide effective recommendations for mitigation. However, longer-term monitoring revealed that recommendations were unevenly implemented, dependent on market conditions and personnel movements. This instability in the approach to human rights suggests a need for on-going monitoring and surveillance. -- Highlights: • We developed a novel methodology for corporate human rights impact assessment. • We piloted the methodology on two corporate projects—a mine and a plantation. • Human rights impact assessment exposed impacts not foreseen in ESIA. • Corporations adopted the majority of findings, but not necessarily immediately. • Methodological advancements are expected for monitoring processes.

  13. Governance in Open Source Software Development Projects: A Comparative Multi Level Analysis

    E-Print Network [OSTI]

    Scacchi, Walt

    Governance in Open Source Software Development Projects: A Comparative Multi Level Analysis 1 Governance in Open Source Software Development Projects: A Comparative Multi- Level Analysis Chris Jensen project work. However, a growing number of OSS projects are developing, delivering, and supporting

  14. Rwanda-Project to Develop a National Strategy on Climate Change...

    Open Energy Info (EERE)

    Rwanda-Project to Develop a National Strategy on Climate Change and Low Carbon Development (Redirected from SSEE-Project to Develop a Rwandan National Strategy on Climate Change...

  15. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  16. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  17. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  18. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  19. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  20. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Male, Jonathan L.

    2012-02-01

    Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

  1. A Guide to Community Solar: Utility, Private and Non-Profit Project Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Guide to Community Solar: Utility, Private and Non-Profit Project Development provides information on various community solar project models, state policies that support community solar projects, and tax policies and incentives.

  2. MHK Projects/Development of Ocean Treader | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHK Projects JumpDevelopment of Ocean Treader

  3. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  4. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  5. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  6. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  7. Overview of the Biomass Scenario Model

    SciTech Connect (OSTI)

    Peterson, Steve

    2015-09-01

    This report describes the structure of the October 2012 version of the Biomass Scenario Model (BSM) in considerable detail, oriented towards readers with a background or interest in the underlying modeling structures. Readers seeking a less-detailed summary of the BSM may refer to Peterson (2013). BSM aims to provide a framework for exploring the potential contribution of biofuel technologies to the transportation energy supply for the United States over the next several decades. The model has evolved significantly from the prototype developed as part of the Role of Biomass in America" tm s Energy Future (RBAEF) project. BSM represents the supply chain surrounding conversion pathways for multiple fuel products, including ethanol, butanol, and infrastructure-compatible biofuels such as diesel, jet fuel, and gasoline.

  8. Project Report on Development of a Safeguards Approach for Pyroprocessing

    SciTech Connect (OSTI)

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  9. Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    1995-07-01

    The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

  10. Desired Competencies of Employees on International Agricultural Development Projects as Indicated by Project Managers: A Qualitative Study 

    E-Print Network [OSTI]

    Sandlin, M'Randa Ruth

    2011-08-08

    International agricultural development institutions previously hired employees based on their technical expertise, and, with little to no formal training in development, were sent to live abroad with one goal: implement the project. Since...

  11. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms September 10, 2015 - 6:21pm...

  12. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  13. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Connie Smith-Holbert; Joseph Petrolino; Bart Watkins; David Irick

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engineâ??s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was designed, manufactured and demonstrated in the GEN2.5B prototype.

  14. Developing Data Management Policy and Guidance Documents for your NARSTO Program or Project

    E-Print Network [OSTI]

    Developing Data Management Policy and Guidance Documents for your NARSTO Program or Project of data management policy and guidance documents for program and project use in developing data management within the NARSTO context. Add additional project-specific guidance as needed. Document Development

  15. DIVERSITY PROJECTS DEVELOPMENT FUND Sponsored by the Office of the Vice Chancellor for Human Resources Management

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    DIVERSITY PROJECTS DEVELOPMENT FUND Sponsored by the Office of the Vice Chancellor for Human The Diversity Projects Development Fund (DPDF) was established by the Office of the Vice Chancellor for Human provides administrative oversight to the Diversity Projects Development Fund. Vice Chancellor Gloriana

  16. SSP: A Simple Software Process for Small-Size Software Development Projects

    E-Print Network [OSTI]

    Guerrero, Luis

    SSP: A Simple Software Process for Small- Size Software Development Projects Sergio F. Ochoa1 number of software development projects in Latin- America countries are small-size, poorly defined development projects in Chile are information systems of small or medium size (1-2 months or 3-6 months) [17

  17. Present Status of the ILC Project and Development

    SciTech Connect (OSTI)

    Ross, M.; /Fermilab; Walker, N.; /DESY; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    The Technical Design of the International Linear Collider (ILC) Project will be finished in late 2012. The Technical Design Report (TDR) will include a description of the updated design, with a cost estimate and a project plan, and the results of research and development (R & D) done in support of the ILC. Results from directed ILC R & D are used to reduce the cost and risk associated with the ILC design. We present a summary of key challenges and show how the global R & D effort has addressed them. The most important activity has been in pursuit of very high gradient superconducting RF linac technology. There has been excellent progress toward the goal of practical industrial production of niobium sheet-metal cavities with gradient performance in excess of 35 MV/m. In addition, three purpose-built beam test facilities have been constructed and used to study and demonstrate high current linac performance, electron-cloud beam dynamics and precision beam control. The report also includes a summary of component design studies and conventional facilities cost optimization design studies.

  18. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    SciTech Connect (OSTI)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristics that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.

  19. Case Study - Pulling the Plug on a Product Development Project

    E-Print Network [OSTI]

    Fogarty, Timothy J.

    2006-05-19

    Project success is traditionally defined as meeting the customer’s expectations by conforming to the triple constraints of time, cost and quality. Since few projects are completed without changes in scope regarding the triple constraints...

  20. Development of a time projection chamber with micro pixel electrodes

    E-Print Network [OSTI]

    H. Kubo; K. Miuchi; T. Nagayoshi; A. Ochi; R. Orito; A. Takada; T. Tanimori; M. Ueno

    2003-01-09

    A time projection chamber (TPC) based on a gaseous chamber with micro pixel electrodes (micro-PIC) has been developed for measuring three-dimensional tracks of charged particles. The micro-PIC with a detection area of 10 cm square consists of a double-sided printing circuit board. Anode pixels are formed with 0.4 mm pitch on strips aligned perpendicular to the cathode strips in order to obtain a two-dimensional position. In the TPC with drift length of 8 cm, 4 mm wide field cage electrodes are aligned at 1mm spaces and a uniform electric field of about 0.4 kV/cm is produced. For encoding of the three-dimensional position a synchronous readout system has been developed using Field Programmable Gate Arrays with 40 MHz clock. This system enables us to reconstruct the three-dimensional track of the particle at successive points like a cloud chamber even at high event rate. The drift velocity of electrons in the TPC was measured with the tracks of cosmic muons for three days, during which the TPC worked stably with the gas gain of 3000. With a radioisotope of gamma-ray source the three-dimensional track of a Compton scattered electron was taken successfully.

  1. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  2. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  3. Pursuing the Millennium Goals at the Grassroots: Selecting Development Projects Serving Rural Women in Sub-Saharan Africa

    E-Print Network [OSTI]

    Dunn, Deborah K.; Chartier, Gary

    2006-01-01

    af- fected by development projects, and ensure the on-the-served by the projects and by development agencies lo- catedF. Grassroots Development Projects and the Millennium

  4. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table(SC)CRADABurning

  5. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  6. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    Contractors' Meeting Biomass Energy Systems Branch Berkeley,The Department of Energy's Biomass Liquefaction Testand energy balances, was not possible. One important question remaining unanswered was whether aqueous biomass

  7. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  8. SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP Achieving Sustainability Goals with Biomass

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP Achieving Sustainability Goals with Biomass May 21, 2015 2:00 pm US/Eastern You are invited to attend our latest Live Webinar sponsored by: Integrated Biomass Supply Systems A&M Agrilife Extension, and 25x'25. Title: Achieving Sustainability Goals with Biomass What will you

  9. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin; Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia; Drs. Clint Williford; Al Mikell; Drs. Robert Moore; Roger Hester .

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  10. Management and Development of the Western Resources Project

    SciTech Connect (OSTI)

    Terry Brown

    2009-03-09

    The purpose of this project was to manage the Western Resources Project, which included a comprehensive, basin-wide set of experiments investigating the impacts of coal bed methane (CBM; a.k.a. coal bed natural gas, CBNG) production on surface and groundwater in the Powder River Basin in Wyoming. This project included a number of participants including Apache Corporation, Conoco Phillips, Marathon, the Ucross Foundation, Stanford University, the University of Wyoming, Montana Bureau of Mines and Geology, and Western Research Institute.

  11. DOE Office of Indian Energy Project Development and Finance Course...

    Broader source: Energy.gov (indexed) [DOE]

    renewable energy based on the electrical output of the project in kilowatt hours 10 PV - photovoltaic. This is a solar resource converter to electricity. R Remaining Life - the...

  12. Oklahoma Renewable Energy Project Development and Finance Workshop...

    Office of Environmental Management (EM)

    LLC Overview of Osage Nation's current energy initiatives and planning efforts for renewable energy projects and discussion of stakeholders, current issues with renewable...

  13. Key Concepts in Project Development and Financing in Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lifetime * Allows the comparison of different technologies (e.g., wind, solar, natural gas) of - Unequal life spans - Project size - Different capital cost - Risk, return, and...

  14. New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    SciTech Connect (OSTI)

    1997-07-01

    This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, are at the end of each subprogram section.

  15. Countercurrent Conversion of Biomass to Sugars 

    E-Print Network [OSTI]

    Brooks, Heather Lauren

    2014-09-26

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  16. Agricultural Biomass Income Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The credit is effective for biomass originating between January 1, 2011, and January 1, 2020. The credit is worth $5 per wet ton. Eligible projects must apply to the Taxation and Revenue...

  17. Agricultural Biomass Income Tax Credit (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The credit is effective for biomass originating between January 1, 2011, and January 1, 2020. The credit is worth $5 per wet ton. Eligible projects must apply to the Taxation and Revenue...

  18. Risks and decision making in development of new power plant projects

    E-Print Network [OSTI]

    Kristinsdottir, Asbjorg

    2012-01-01

    Power plant development projects are typically capital intensive and subject to a complex network of interconnected risks that impact development's performance. Failure to develop a power plant to meet performance constraints ...

  19. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Biomass Research and Development USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development June 11, 2007 - 1:40pm Addthis WASHINGTON - The U.S....

  20. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect (OSTI)

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  1. Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163

    SciTech Connect (OSTI)

    Decker, S. R.

    2011-10-01

    An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

  2. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  3. Biomass 2012 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy.

  4. Transforming Biomass - main page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Biomass to Bioenergy Feedstocks The DOE Biomass Program has shaped the vision of a national, commodity-scale feedstock supply system. Much progress has been made in...

  5. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect (OSTI)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  6. Biomass energy systems program summary. Information current as of September 30, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  7. Distributed Reforming of Biomass Pyrolysis Oils: Cooperative Research and Development Final Report, CRADA number CRD-06-00192

    SciTech Connect (OSTI)

    Czernik, S.

    2010-07-01

    The objective of this project is for Chevron and NREL to collaborate in determining the effect of bio-oil composition variability on autothermal reforming performance including bio-oil volatilization, homogeneous oxidative cracking, and catalytic reforming.

  8. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    Capture and Storage Development Project at West Virginia University Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT COAL - ENVIRONMENTAL PROCESSES COAL - ENVIRONMENTAL PROCESSES The...

  9. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Energy Savers [EERE]

    projects: Advanced Heat Transfer Fluids Research and Development Symyx - Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids (Sunnyvale, Calif.) Symyx will...

  10. Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013.

  11. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  12. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  13. Wind Energy 101 Webinar Series Part 5: Project Development and Siting

    Broader source: Energy.gov [DOE]

    During this webinar, gain a better understanding of the various phases wind projects, the development timeline and siting process.  Session will include:

  14. OGA Project Information Collection via Oracle System Workflow SPA has developed a new way to collect essential project information directly from OHSU

    E-Print Network [OSTI]

    Chapman, Michael S.

    OGA Project Information Collection via Oracle System Workflow SPA has developed a new way to collect essential project information directly from OHSU departments using the Oracle System Workflow, and Project Short Name for a specific OGA Project. Steps of the process: 1. The morning after a Project

  15. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  16. 11 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    11 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 1 Wood Energy Financial App: Is your woody biomass heating project Energy Financial App: Is your woody biomass heating project feasible? What will you learn? Significant

  17. FETC/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    SciTech Connect (OSTI)

    D. TILLMAN; E. HUGHES

    1998-08-01

    This quarter much progress was made in promoting cofiring through the many FETC/EPRI backed projects. During January 1, 1998 to March 31st, 1998 significant contractual agreements were arranged for future testing and analyses of previous testing were conducted. Most notable was the analysis done on the testing run at the Tennessee Valley Authority?s Colbert Fossil Plant that showed no significant impacts to the plant boiler due to cofiring. Northern Indiana Public Service Company also identified Bailly #7 as the site of the next series of tests using their plants. Other work done on these projects primarily focused on continued cofiring development. This report summarizes the activities during the first quarter in 1998 of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing in order to highlight the progress at utilities.

  18. The Alexandria Digital Library Project: Metadata Development and Linda L. Hill and Greg Jane

    E-Print Network [OSTI]

    Janée, Greg

    The Alexandria Digital Library Project: Metadata Development and Use Linda L. Hill and Greg Janée lhill@alexandria.ucsb.edu and gjanee@alexandria.ucsb.edu Alexandria Digital Library Project University of California, Santa Barbara Introduction The Alexandria Digital Library (ADL) Project has the unique advantage

  19. FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development on the Population Biology

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Technology Center, National Renewable Energy Lab, karin_sinclair@nrel.gov, 303-384-6946 DOE Project Team: DOEi FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development reflect the views of the U.S. Department of Energy. Proprietary Data Notice: This project report does

  20. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  1. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

  2. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  3. Biomass Gasifier Facility (BGF). Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

  4. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  5. Developing a total replacement cost index for suburban office projects

    E-Print Network [OSTI]

    Hansen, David John, S.M. Massachusetts Institute of Technology

    2006-01-01

    Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

  6. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  7. US trade and development program. Energy projects data sheets

    SciTech Connect (OSTI)

    Not Available

    1982-08-31

    Economic development of energy sufficiency programs for developing countries are planned cooperatively with the US. Feasibility studies are proposed using each nation's resources. (PSB)

  8. Forest Biomass and Lignocellulosic Materials Forest-derived biopolymers lignin and cellulose

    E-Print Network [OSTI]

    Nair, Sankar

    Forest Biomass and Lignocellulosic Materials Forest-derived biopolymers lignin and cellulose of sustainable products such as nanocellulose and biocomposites from forest biomass; biorefining to develop high

  9. Challenges in the Selective Transformation of Biomass to Useful Chemical Intermediates and Materials

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    highly hydroxylated biomass feedstocks into new chemical intermediates and thermoplastics. New scientific. We have developed new catalytic methods for transforming biomass feedstocks into new monomers

  10. Workshop to develop deep-life continental scientific drilling projects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore »a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  11. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect (OSTI)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.

  12. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  13. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  14. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    SciTech Connect (OSTI)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  15. Waterfront developments in the Middle East case study : the Golden Horn Project, Istanbul, Turkey

    E-Print Network [OSTI]

    Alamuddin, Hana S. (Hana Slieman)

    1987-01-01

    This thesis examines waterfront developments in the Middle East . It concentrates on the Golden Horn project in Istanbul as it raises a number of issues that are central to any such development in that region. In order for ...

  16. The ProjectIT-Studio, an integrated environment for the development of information systems

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    Initiative (DSI) or OMG's Model Driven Architecture (MDA). Keywords: ProjectIT, Software Requirements, MDA;software development life cycle, from requirements specification to the application of generativeThe ProjectIT-Studio, an integrated environment for the development of information systems Alberto

  17. The Center's first project was in 1985 developing of a vegetation sampling

    E-Print Network [OSTI]

    Research The Center's first project was in 1985 developing of a vegetation sampling scheme, technical writers, photographers, and editors develop materials in all media for effective, professional-year projects. Workshops, Short Courses, and Training CEMML provides a wide range of professional training

  18. project information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Biomass Feed and Gasification Archived Projects Agreement Number Project Title Performer Name Technology Area FE0023577 Advanced Gasifier and Water Gas Shift...

  19. Biomass, Condition of Western Lake Erie Dreissenids Primary Investigator: Thomas Nalepa -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    Biomass, Condition of Western Lake Erie Dreissenids Primary Investigator: Thomas Nalepa - NOAA of dreissenid biomass but there are no current, accurate estimates of biomass in this portion of the lake. Biomass is calculated from abundances, size- frequencies, and length-weights. The goal of this project

  20. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  1. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  2. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  3. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  4. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  5. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  6. Biomass for the Dutch Chemical Opportunities for agriculture

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Biomass for the Dutch Chemical Industry Opportunities for agriculture R. Blaauw J. van Haveren E. L International Certification Services EESV according to ISO 9001:2000. Title Biomass for the Dutch Chemical for biomass 18 3.1 General developments 18 3.2 Developments of the Dutch chemical industry towards a bio

  7. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  8. Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

  9. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  10. Regulatory Considerations for Developing Generation Projects on Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmentalAHRI Regulatory BurdenLands | Department of

  11. Federal ESPC Process Phase 3: Project Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartment of5! Federal Building3: Project

  12. Offshore Wind Technology Development Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHighOffice of IndianEnergyFourProjectsResearch

  13. Key Concepts in Project Development and Financing in Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted253.16582104) Kenmore:Key2: Project

  14. To work on three collaborative research projects, the Georg-August-Universitt Gttingen Development Economics Research Group announces positions for

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    in developing countries.' It includes projects for dynamic poverty measurement, the measurement of vulnerability particular expertise in empirical development economics. In this project there are 5 Ph.D. positions and 1 of women. The projects managed by Göttingen will include a project to develop a conceptual framework

  15. University of British Columbia, Faculty of Land and Food Systems FRE 521E: Project Monitoring & Evaluation in International Development

    E-Print Network [OSTI]

    changes in development project outcomes, informing processes for better design of future projects, and, offering informed recommendations for policy change in support of development projects as well of this course, with a special focus on assistance interventions through (aid) development projects and programs

  16. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  17. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  18. USDA, DOE to Invest up to $18.4 million for Biomass Research, Development and Demonstration Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search The jobs listed belowPlanned forSummit

  19. DOE and USCAR Announce $70 Million Project to Accelerate Development...

    Office of Environmental Management (EM)

    automakers, rather the resources are directed to government labs, universities and suppliers to help develop the nation's technology base. Improved manufacturing and use of...

  20. Projects To Develop Novel Monitoring Networks for Advanced Power...

    Broader source: Energy.gov (indexed) [DOE]

    novel approaches in model development and validation; monitoring refractory health; and wireless, self-powered sensors for advanced, next-generation power systems. They will...

  1. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect (OSTI)

    Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

    2011-09-30

    The U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

  2. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect (OSTI)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

  3. Assam Power Project Development Co Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- TransportAspinwall,Power Project

  4. A big leap forward for biomass gasification

    SciTech Connect (OSTI)

    Moon, S.

    1995-12-31

    This article describes the McNeil Generating Station in Vermont, the first industrial scale-up of Battelle Columbus Laboratory`s biomass gasification process. The plant is part of a major US DOE initiative to demonstrate gasification of renewable biomass for electricity production. The project will integrate the Battelle high-through-put gasifier with a high-effiency gas turbine. The history of the project is described, along with an overview of the technology and the interest and resources available in Vermont that will help insure a successful project.

  5. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  6. Project Profile: Commercial Development of an Advanced Linear...

    Broader source: Energy.gov (indexed) [DOE]

    deployment of an innovative CSP system. SkyFuel is developing a detailed conceptual design and analysis of the feasibility of the LPT concept relative to the CSP industry...

  7. Sequential investment planning for complex oil development projects

    E-Print Network [OSTI]

    Ayd?n, Cevat Onur

    2008-01-01

    In this thesis, we consider sequential real investment decisions for the development of discovered oil prospects. Following a decision analysis approach, we propose a methodology to explore the upside of a dynamic drilling ...

  8. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  9. International and Domestic Market Opportunities for Biomass Power: Volumes I and II

    SciTech Connect (OSTI)

    Not Available

    1998-09-01

    This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

  10. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  12. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-Print Network [OSTI]

    A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

    2014-04-14

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  13. Rubric Development for Assessment of Undergraduate Research: Evaluating Multidisciplinary Team Projects

    E-Print Network [OSTI]

    Newell, James A.

    Rubric Development for Assessment of Undergraduate Research: Evaluating Multidisciplinary Team Projects James A. Newell, Heidi L. Newell and Kevin D. Dahm Department of Chemical Engineering Rowan courses involving multidisciplinary student teams working on semester-long or year-long research projects

  14. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-Print Network [OSTI]

    Alemberti, A; Botta, E; De Vita, R; Fanchini, E; Firpo, G

    2014-01-01

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  15. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  16. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  17. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  18. High field superconductor development and understanding project, Final Report

    SciTech Connect (OSTI)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  19. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    None

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  20. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  1. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    PREDICTION FOR SOLAR FORECASTING Prepared for: California Energy Commission Prepared by: California Solar Research and Development Division funding efforts are focused on the following RD&D program areas of Numerical Weather Prediction for Intra-Day Solar Forcasting number 500-08-017 conducted by the University

  2. NETL, USDA design coal-stabilized biomass gasification unit

    SciTech Connect (OSTI)

    2008-09-30

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  3. Process evaluation of the Regional Biomass Energy Program

    SciTech Connect (OSTI)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  4. Assessing Network Applications for Economic Development Sustainable Access in Rural India (SARI) Project

    E-Print Network [OSTI]

    Reif, Rafael

    ) Project Pilot Phase Assessment ­ Madurai District, Tamil Nadu, India Professor Michael Best Director, eDevelopmentAssessing Network Applications for Economic Development Sustainable Access in Rural India (SARI for International Development, Harvard University Submitted to: Prepared By: Sinan Aral Marcela Escobari Randal

  5. The development of a methodology to quantify the impacts of information management strategies on EPC projects 

    E-Print Network [OSTI]

    Moreau, Karen Anne

    1997-01-01

    This research develops and demonstrates a methodology to quantify time and cost impacts on Engineering, Procurement, and Construction (EPC) projects resulting from information management driven process changes in design related activities. Many...

  6. Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project in Bolivia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project a hydroelectric power plant instead of subsidized diesel plants in the Bolivian Pando Province. Simulations show

  7. A Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    2011-01-25

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  8. Larger Teaching and Learning Development Projects Proposal Criteria (3 pages maximum)

    E-Print Network [OSTI]

    . A. Question(s) to be investigated. (Usually will be focused on student Larger Teaching and Learning Development Projects Proposal Criteria (3 learning) B. General Rationale and Description: Why is this question

  9. Conceptual Design Phase of Project on Design and Development of Airships for Transportation of Goods

    E-Print Network [OSTI]

    Ramu, Palaniappan

    Conceptual Design Phase of Project on Design and Development of Airships for Transportation Team 2 Literature Review 3 Requirements Capture 4 Discussions with Airship Manufacturers 5 Identification of Vendors and Resource Agencies 6 Regulations related to airship design, manufacture

  10. Real options : a way to deal with market uncertainty in real estate development projects

    E-Print Network [OSTI]

    Kim, Kyungwon

    2008-01-01

    The practice of applying options theory to real estate investments has only recently begun. In particular, options in real estate are called "real options." Real options add value to real estate development projects by ...

  11. The application of simulation to project evaluation for real estate developers in China

    E-Print Network [OSTI]

    Tian, Yongchun

    2006-01-01

    For developers in China to calculate project financial returns in order to make investment decisions, the traditional Excel model only gives "point estimate" (i.e. a single value) for each input variable, and therefore the ...

  12. Electric and Magnetic Fields (EMF) RAPID Engineering Program, Project 7: Development of Field Exposure Models

    SciTech Connect (OSTI)

    Bracken, T.D.; Rankin, R.F.; Wiley, J.A.

    1999-05-01

    The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.

  13. Developing Standard Logic for a Detailed Engineering Project Schedule in the Process Industry

    E-Print Network [OSTI]

    Miller-Karns, Kara A.

    2009-05-15

    A good schedule is critical to the successful execution of any project. This is especially true in the process industry, where construction schedule overruns can be costly to the client due to lost production capability. Developing a standard...

  14. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  15. Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda

    Broader source: Energy.gov [DOE]

    Downoad the agenda for the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at the...

  16. COMPACTING BIOMASS AND MUNICIPAL SOLID WASTES TO FORM AND UPGRADED FUEL

    SciTech Connect (OSTI)

    Henry Liu; Yadong Li

    2000-11-01

    Biomass waste materials exist in large quantity in every city and in numerous industrial plants such as wood processing plants and waste paper collection centers. Through minimum processing, such waste materials can be turned into a solid fuel for combustion at existing coal-fired power plants. Use of such biomass fuel reduces the amount of coal used, and hence reduces the greenhouse effect and global warming, while at the same time it reduces the use of land for landfill and the associated problems. The carbon-dioxide resulting from burning biomass fuel is recycled through plant growth and hence does not contribute to global warming. Biomass fuel also contains little sulfur and hence does not contribute to acid rain problems. Notwithstanding the environmental desirability of using biomass waste materials, not much of them are used currently due to the need to densify the waste materials and the high cost of conventional methods of densification such as pelletizing and briquetting. The purpose of this project was to test a unique new method of biomass densification developed from recent research in coal log pipeline (CLP). The new method can produce large agglomerates of biomass materials called ''biomass logs'' which are more than 100 times larger and 30% denser than conventional ''pellets'' or ''briquettes''. The Phase I project was to perform extensive laboratory tests and an economic analysis to determine the technical and economic feasibility of the biomass log fuel (BLF). A variety of biomass waste materials, including wood processing residues such as sawdust, mulch and chips of various types of wood, combustibles that are found in municipal solid waste stream such as paper, plastics and textiles, energy crops including willows and switch grass, and yard waste including tree trimmings, fallen leaves, and lawn grass, were tested by using this new compaction technology developed at Capsule Pipeline Research Center (CPRC), University of Missouri-Columbia (MU). The compaction conditions, including compaction pressure, pressure holding time, back pressure, moisture content, particle size and shape, piston and mold geometry and roughness, and binder for the materials were studied and optimized. The properties of the compacted products--biomass logs--were evaluated in terms of physical, mechanical, and combustion characteristics. An economic analysis of this technology for anticipated future commercial operations was performed. It was found that the compaction pressure and the moisture content of the biomass materials are critical for producing high-quality biomass logs. For most biomass materials, dense and strong logs can be produced under room temperature without binder and at a pressure of 70 MPa (10,000 psi), approximately. A few types of the materials tested such as sawdust and grass need a minimum pressure of 100 MPa (15,000 psi) in order to produce good logs. The appropriate moisture range for compacting waste paper into good logs is 5-20%, and the optimum moisture is in the neighborhood of 13%. For the woody materials and yard waste, the appropriate moisture range is narrower: 5-13%, and the optimum is 8-9%. The compacted logs have a dry density of 0.8 to 1.0 g/cm{sup 3}, corresponding to a wet density of 0.9 to 1.1 g/cm{sup 3}, approximately. The logs have high strength and high resistance to impact and abrasion, but are feeble to water and hence need to be protected from water or rain. They also have good long-term performance under normal environmental conditions, and can be stored for a long time without significant deterioration. Such high-density and high-strength logs not only facilitate handling, transportation, and storage, but also increase the energy content of biomass per unit volume. After being transported to power plants and crushed, the biomass logs can be co-fired with coal to generate electricity.

  17. 2009 Biomass Program Peer Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s 2009 peer review meeting, held on July 14–15, 2009, in Arlington, Virginia. The document also includes summary information from the six separate platform reviews conducted between March and April 2009 in the Washington, D.C., and Denver, Colorado, areas. The platform reviews provide evaluations of the program‘s projects in applied research, development, and demonstration as well as analysis and deployment activities. The July program peer review was an evaluation of the program‘s overall strategic planning, management approach, priorities across research areas, and resource allocation.

  18. Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Broader source: Energy.gov [DOE]

    The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities provides best practices and other helpful guidance for federal agencies developing large-scale renewable energy projects.

  19. A comprehensive approach to the formulation of capital projects in developing countries : finance and implementation. Case study, Edendale, Kwazulu (housing)

    E-Print Network [OSTI]

    Davis, Trevor Paul

    1983-01-01

    This Thesis deals with capital project formulation in developing countries. The objective is to provide guidelines for the formulation of housing development projects, their implementation structures and financial plans ...

  20. Community forestry development in Bhutan : new practice or another bandwagon ; a case study of three community forestry pilot projects 

    E-Print Network [OSTI]

    Chophel, Tenzin

    1997-01-01

    to look into the legal perspective of community forest development in Bhutan in conjunction to the three pilot projects. A comparative studies of the three projects and their summary of findings are given with recommendation for future development....

  1. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  2. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  3. Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa

    SciTech Connect (OSTI)

    Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

    2002-06-26

    The United Nations Framework Convention on Climate Change (UNFCCC) aims to reduce emissions of greenhouse gases (GHGs) in order to ''prevent dangerous anthropogenic interference with the climate system'' and promote sustainable development. The Kyoto Protocol, which was adopted in 1997 and appears likely to be ratified by 2002 despite the US withdrawing, aims to provide means to achieve this objective. The Clean Development Mechanism (CDM) is one of three ''flexibility mechanisms'' in the Protocol, the other two being Joint Implementation (JI) and Emissions Trading (ET). These mechanisms allow flexibility for Annex I Parties (industrialized countries) to achieve reductions by extra-territorial as well as domestic activities. The underlying concept is that trade and transfer of credits will allow emissions reductions at least cost. Since the atmosphere is a global, well-mixed system, it does not matter where greenhouse gas emissions are reduced. The CDM allows Annex I Parties to meet part of their emissions reductions targets by investing in developing countries. CDM projects must also meet the sustainable development objectives of the developing country. Further criteria are that Parties must participate voluntarily, that emissions reductions are ''real, measurable and long-term'', and that they are additional to those that would have occurred anyway. The last requirement makes it essential to define an accurate baseline. The remaining parts of section 1 outline the theory of baselines, emphasizing the balance needed between environmental integrity and reducing transaction costs. Section 2 develops an approach to multi-project baseline for the South African electricity sector, comparing primarily to near future capacity, but also considering recent plants. Five potential CDM projects are briefly characterized in section 3, and compared to the baseline in section 4. Section 5 concludes with a discussion of options and choices for South Africa regarding electricity sector baselines.

  4. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  5. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Office of Energy Efficiency and Renewable Energy (EERE)

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  6. Tribal Renewable Energy Webinar: Project Development for Long Term Tribal

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |RecordsDepartment ofEnergy The TopDevelopment | Department ofofEnergy |

  7. China-CCAP Developing Country Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE Jump to:New Energy DevelopmentPVBeatforCCAP

  8. Manager Helps Washington County Develop Energy Efficiency Projects |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED1,400 JobsDepartment5 DOE/IG-0924theDevelopment

  9. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  10. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect (OSTI)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  11. Biomass energy : a real estate investment perspective

    E-Print Network [OSTI]

    Foo, Chester Ren Jie

    2014-01-01

    A central consideration in real estate is how value is created in real estate development and investment deals. A biomass power plant is not only an asset which generates revenues, but from a real estate perspective, it ...

  12. Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf School and managed. In this paper we survey a number of software risk management approaches and identify weaknesses approach to measure and control web and distributed development risks. Keywords-software risk management

  13. Development status of a Laue lens project for gamma-ray astronomy

    E-Print Network [OSTI]

    F. Frontera; G. Loffredo; A. Pisa; L. Milani; F. Nobili; N. Auricchio; V. Carassiti; F. Evangelisti; L. Landi; S. Squerzanti; K. H. Andersen; P. Courtois; L. Amati; E. Caroli; G. Landini; S. Silvestri; J. B. Stephen; J. M. Poulsen; B. Negri; G. Pareschi

    2007-12-07

    We report the status of the HAXTEL project, devoted to perform a design study and the development of a Laue lens prototype. After a summary of the major results of the design study, the approach adopted to develop a Demonstration Model of a Laue lens is discussed, the set up described, and some results presented.

  14. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect (OSTI)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

  15. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  16. Assessment of Biomass Resources in Afghanistan

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  17. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  18. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011...

  19. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  20. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems,...