National Library of Energy BETA

Sample records for biomass gases including

  1. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  2. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases

    E-Print Network [OSTI]

    Seager, S; Hu, R

    2013-01-01

    Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

  3. Biomass Potentials from California Forest and Shrublands Including Fuel

    E-Print Network [OSTI]

    Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest

  4. A BIOMASS-BASED MODEL TO ESTIMATE THE PLAUSIBILITY OF EXOPLANET BIOSIGNATURE GASES

    E-Print Network [OSTI]

    Seager, Sara

    Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry ...

  5. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01

    mercury emissions during biomass combustion: Controllingin biomass smoke from residential wood combustion: Emissions1997), Emissions from smoldering combustion of biomass

  6. Effect of Using Inert and Non-Inert Gases on the Thermal Degradation and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region 

    E-Print Network [OSTI]

    Eseltine, Dustin E.

    2012-02-14

    OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS REGION A Thesis by DUSTIN E. ESELTINE Submitted to the Office of Graduate Studies of Texas A&M University... and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region Copyright 2011 Dustin E. Eseltine EFFECT OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS...

  7. BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL

    E-Print Network [OSTI]

    Oxford, University of

    BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL@atm.ox.ac.uk AEROSOL AND GAS PROPERTIESSEASONALITY OF BURNING Biomass burning in the Amazon shows strong seasonal in aerosol optical depth (AOD) and effective radius, linked to biomass burning through detected fires. Use

  8. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O3) formation (?O3/?CO from 10-90%) occurred in all of these plumes. Slower O3 production was observed on a cloudy day with low co-emissions of NOx and the fastest O3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NOx by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. This is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.

  9. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    E-Print Network [OSTI]

    2013-01-01

    Shetter, R. : Emissions from biomass burning in the Yucatan,for open and domestic biomass burning for use in atmosphericC. : Influence of plumes from biomass burning on atmospheric

  10. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    E-Print Network [OSTI]

    2013-01-01

    D. W. T. : Emissions from smoldering combustion of biomassemissions of oxygenated organic species from biomass combustion,

  11. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect (OSTI)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  12. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  13. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  15. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  16. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  17. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  18. A survey of state clean energy fund support for biomass

    E-Print Network [OSTI]

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-01-01

    with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy,” biomass energy sources are included in

  19. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  20. Synfuels from biomass grow slowly

    SciTech Connect (OSTI)

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  1. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  2. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  3. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  4. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  5. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  6. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  7. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  8. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  9. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  10. The Biomass Energy Data Book Center for Transportation Analysis

    E-Print Network [OSTI]

    of biomass feedstocks to their end use, including discussions on sustainability. This work is sponsored

  11. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOE Patents [OSTI]

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  12. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect (OSTI)

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  13. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  14. Conversion of Waste Biomass into Useful Products 

    E-Print Network [OSTI]

    Holtzapple, M.

    1998-01-01

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  15. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  16. Overview of the Biomass Scenario Model

    SciTech Connect (OSTI)

    Peterson, S.; Peck, C.; Stright, D.; Newes, E.; Inman, D.; Vimmerstedt, L.; Hsu, S.; Bush, B.

    2015-02-01

    Biofuels are promoted in the United States through legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting the volumetric targets has prompted an unprecedented increase in funding for biofuels research, much of it focused on producing ethanol and other fuel types from cellulosic feedstocks as well as additional biomass sources (such as oil seeds and algae feedstock). In order to help propel the biofuels industry, the U.S. government has enacted a variety of incentive programs (including subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and corporate average fuel economy standards) -- the short-and long-term ramifications of which are not well understood. Efforts to better understand the impacts of incentive strategies can help policy makers to develop a policy suite which will foster industry development while reducing the financial risk associated with government support of the nascent biofuels industry.

  17. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID) [Idaho Falls, ID; Klingler, Kerry M. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  18. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISŘ and DTU Anne Belinda Thomsen (RISŘ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  19. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  20. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  1. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Control of pollutants in flue gases and fuel gases Ron Zevenhoven Helsinki University of Technology Programme Solid Fuel Committee Ĺs, Norway Helsinki University of Technology Espoo, Finland #12;limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Chapter 2 Flue gases and fuel gases 2.1 Introduction

  2. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  3. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  4. TOC Total organic carbon MBC Microbial biomass carbon

    E-Print Network [OSTI]

    Virginia Tech

    C Carbon TOC Total organic carbon MBC Microbial biomass carbon Active C Pool Indicated by Light, the relationship between carbon dynamics including total organic carbon (TOC) storage, microbial biomass carbon and microbial biomass carbon in subsoil 4 years after rehabilitation · Microbial biomass carbon had a positive

  5. Uniqueness of chemical equilibria in ideal mixtures of ideal gases Joseph M. Powersa

    E-Print Network [OSTI]

    forces between mol- ecules of the same type. Ideal mixtures, which include gases which obey Dalton's law

  6. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass

    E-Print Network [OSTI]

    Gasification of Wet Biomass Feedstocks Douglas C. Elliott,* Gary G. Neuenschwander, Todd R. Hart, R. Scott catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas of the organic structure of biomass to gases has been achieved in the presence of a ruthenium metal catalyst

  7. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  8. Formation of ozone and growth of aerosols in young smoke plumes from biomass burning

    E-Print Network [OSTI]

    Alvarado, Matthew James

    2008-01-01

    The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into ...

  9. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  10. Investigating and Using Biomass Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentationOverview

  11. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  12. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    Contractors' Meeting Biomass Energy Systems Branch Berkeley,The Department of Energy's Biomass Liquefaction Testand energy balances, was not possible. One important question remaining unanswered was whether aqueous biomass

  13. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  14. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  16. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  17. Biomass 2012 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy.

  18. Transforming Biomass - main page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Biomass to Bioenergy Feedstocks The DOE Biomass Program has shaped the vision of a national, commodity-scale feedstock supply system. Much progress has been made in...

  19. Guidance Document CompressedGases

    E-Print Network [OSTI]

    gases are toxic, flammable, pyrophoric, or corrosive. Liquefied compressed gases (cryogenic liquids of exposure may be delayed. Cold "Burns": Rapidly escaping gas from a cylinder can cause destruction freezing

  20. Investigation into the shape selectivity of zeolite catalysts for biomass conversion Jungho Jae a

    E-Print Network [OSTI]

    Auerbach, Scott M.

    of different feedstocks including bio-oils, glycerol, sorbitol, glucose, xylose, and biomass feedstocks

  1. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  2. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  3. Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but

    E-Print Network [OSTI]

    Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but most aren't, and some. It has the essential ingre- dient of the greenhouse effect, but it is missing numerous things, the mixing ratio is currently about 390 ppm, and its pCO2 is about 390 atm. 29 #12;30 CHAPTER 4 Greenhouse

  4. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect (OSTI)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  5. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  6. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

  7. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  8. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  9. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  10. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  11. Traffic Congestion and Greenhouse Gases

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2009-01-01

    TATES IS A source of greenhouse gas emissions, and thereforeis increased emissions of greenhouse gases. Althoughthat driving contributes to greenhouse gas emis- sions, the

  12. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  13. Radio-frequency spectroscopy of ultracold atomic Fermi gases

    E-Print Network [OSTI]

    Schirotzek, Andre

    2010-01-01

    This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle ...

  14. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  15. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  16. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  17. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  18. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  19. Original article Root biomass and biomass increment in a beech

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

  20. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  1. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  2. Integration of alternative feedstreams for biomass treatment and utilization

    DOE Patents [OSTI]

    Hennessey, Susan Marie (Avondale, PA); Friend, Julie (Claymont, DE); Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hames, Bonnie (Westminster, CO)

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  3. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  4. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  5. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  6. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    electricity by a direct chemical process.   4.  Small Wind Turbines ? small electricity?producing, wind?driven small  power  production  facilities that use biomass, waste, or renewable resources (including wind, 

  7. Tax Credit for Forest Derived Biomass

    Broader source: Energy.gov [DOE]

    Forest-derived biomass includes tree tops, limbs, needles, leaves, and other woody debris leftover from activities such as timber harvesting, forest thinning, fire suppression, or forest health m...

  8. Biomass Sales and Use Tax Exemption

    Office of Energy Efficiency and Renewable Energy (EERE)

    To qualify for the exemption, the biomass material must be utilized in the production of energy, including the production of electricity, steam, or both electricity and steam. Pellets and fuels...

  9. Cryogenic method for measuring nuclides and fission gases

    DOE Patents [OSTI]

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  10. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  11. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  12. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  13. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  14. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  15. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  16. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  17. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  18. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  19. Advanced Biomass Gasification Projects

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  20. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  1. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011...

  2. Algal Biomass Valorization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review 1.3.4.300 Algal Biomass Valorization BETO Algae Platform - Peer review Alexandria, VA March 24 th , 2015 Lieve Laurens National Renewable Energy...

  3. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems,...

  4. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  5. Gasification-based biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  6. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  8. Airflow resistance of selected biomass materials

    SciTech Connect (OSTI)

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  9. Chapter 22 Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EPA 2010b). The GHGs present in the earth's atmosphere include water vapor (H 2 O), ozone (O 3 ), CO 2 , methane (CH 4 ), nitrous oxide (N 2 O), and trace amounts of...

  10. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to:Biola,Biomass Facility Jump to:

  11. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

  12. Module Handbook Specialisation Biomass Energy

    E-Print Network [OSTI]

    Damm, Werner

    Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

  13. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  14. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

  15. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

  16. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

  17. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  18. Mapping Biomass Distribution Potential

    E-Print Network [OSTI]

    Schaetzel, Michael

    2010-11-18

    stream_size 1487 stream_content_type text/plain stream_name ku_gis_day_2010_schaetzel.pdf.txt stream_source_info ku_gis_day_2010_schaetzel.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Mapping Biomass... Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of the nation’s power o Currently 1% of...

  19. Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to:Biola,BiomassBiomass Jump to:

  20. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  1. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  2. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options,...

  3. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  4. Feedstock System to Deliver Biomass

    E-Print Network [OSTI]

    Lin, Xi

    Feedstock System to Deliver Biomass Into a Solid Oxide Membrane Electrolyzer Chloë Cullen | Teresa with steam and biomass as inputs. Professor Goldfarb is seeking to control the rate of biomass: The Solution: The Problem: Currently, Professor Goldfarb's lab technicians can only feed about 10 mL of biomass

  5. The ultimate biomass refinery

    SciTech Connect (OSTI)

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  6. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  7. Countercurrent Saccharification of Biomass 

    E-Print Network [OSTI]

    Derner, John David

    2015-04-21

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  8. DOE 2014 Biomass Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  9. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  10. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  11. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  12. Biomass 2014 Poster Session

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  13. LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)

    E-Print Network [OSTI]

    Figueroa, Carlos

    2012-01-01

    LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERINGLBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERINGLBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING

  14. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  15. Lieb-Thirring Bounds for Interacting Bose Gases

    E-Print Network [OSTI]

    Douglas Lundholm; Fabian Portmann; Jan Philip Solovej

    2015-02-02

    We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied to various types of interactions, including hard sphere (in 3D) and hard disk (in 2D) as well as a general class of homogeneous potentials.

  16. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  17. Issues Impacting Refractory Service Life in Biomass/Waste Gasification

    SciTech Connect (OSTI)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

    2007-03-01

    Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

  18. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  19. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  20. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700testing inBiomass

  1. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NRELBiochemical ConversionBiomass

  2. Gasification Characteristics of Coal/Biomass Mixed Fuels

    SciTech Connect (OSTI)

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO{sub 2} was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO{sub 2}. In contrast, mixed char reactivity to H{sub 2}O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H{sub 2}O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times a

  3. Biomass Cookstoves Technical Meeting: Summary Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Cookstoves Technical Meeting: Summary Report Biomass Cookstoves Technical Meeting: Summary Report In regions where biomass is a traditional fuel for cooking, improved...

  4. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power 1: West Biofuels Biomass Gasification to Power Process unlikely  that  a  biomass  gasification  power  plant 

  5. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Office of Environmental Management (EM)

    Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

  6. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power involved  in  gasification  of  biomass  to  produce  fuel 1: West Biofuels Biomass Gasification to Power Process 

  7. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the...

  8. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

  9. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  10. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  11. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  12. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  15. Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains in the Rockies

    E-Print Network [OSTI]

    1 Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains and removing beetle- killed trees, produce a byproduct called woody biomass. Also known as "slash, woody biomass can be collected, processed and transported SUMMARY Woody biomass could be used

  16. Process for decomposing lignin in biomass

    DOE Patents [OSTI]

    Rector, Kirk Davin; Lucas, Marcel; Wagner, Gregory Lawrence; Kimball, David Bryan; Hanson, Susan Kloek

    2014-10-28

    A mild inexpensive process for treating lignocellulosic biomass involves oxidative delignification of wood using an aqueous solution prepared by dissolving a catalytic amount of manganese (III) acetate into water and adding hydrogen peroxide. Within 4 days and without agitation, the solution was used to convert poplar wood sections into a fine powder-like delignified, cellulose rich materials that included individual wood cells.

  17. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  18. IEA/H2/TR-02/001 Hydrogen from Biomass

    E-Print Network [OSTI]

    Miscellaneous Gasification Processes.................................................... 11 Biomass-0246, Oslo, Norway. Included in this report are references to the thermal gasification of biomassIEA/H2/TR-02/001 Hydrogen from Biomass State of the Art and Research Challenges Thomas A. Milne

  19. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions

    E-Print Network [OSTI]

    Barnosky, Anthony D.

    Megafauna biomass tradeoff as a driver of Quaternary and future extinctions Anthony D. Barnosky,000 and 3,000 years ago. Estimates of megafauna biomass (including hu- mans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched

  20. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect (OSTI)

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  1. Ethanol from biomass: A status report

    SciTech Connect (OSTI)

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  2. SERI biomass program annual technical report: 1982

    SciTech Connect (OSTI)

    Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  3. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  4. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  5. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

  6. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

  7. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

  8. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

  9. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

  10. 7, 1733917366, 2007 Biomass burning

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

  11. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

  12. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

  13. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    plant fuel. We examine potential biomass energy demand in the 5-county area, and then review cropBiomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy is thought to have significantly more potential than forest biomass energy (Perlack, Wright et al. 2005). One

  14. 13, 3226932289, 2013 Biomass burning

    E-Print Network [OSTI]

    Dong, Xiquan

    ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

  15. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  16. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  17. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  19. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  20. A survey of state clean energy fund support for biomass

    SciTech Connect (OSTI)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  1. Method of concurrently filtering particles and collecting gases

    DOE Patents [OSTI]

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  2. Thermalization of Gases: A First Principles Approach

    E-Print Network [OSTI]

    Clifford Chafin

    2015-06-20

    Previous approaches of emergent thermalization for condensed matter based on typical wavefunctions are extended to generate an intrinsically quantum theory of gases. Gases are fundamentally quantum objects at all temperatures, by virtue of rapid delocalization of their constituents. When there is a sufficiently broad spread in the energy of eigenstates, a well-defined temperature is shown to arise by photon production when the samples are optically thick. This produces a highly accurate approximation to the Planck distribution so that thermalization arises from the initial data as a consequence of purely quantum and unitary dynamics. These results are used as a foil for some common hydrodynamic theory of ultracold gases. It is suggested here that strong history dependence typically remains in these gases and so limits the validity of thermodynamics in their description. These problems are even more profound in the extension of hydrodynamics to such gases when they are optically thin, even when their internal energy is not low. We investigate rotation of elliptically trapped gases and consistency problems with deriving a local hydrodynamic approach. The presence of vorticity that is "hidden" from order parameter approaches is discussed along with some buoyancy intrinsically associated with vorticity that gives essential quantum corrections to gases in the regimes where standard perturbation approaches to the Boltzmann equations are known to fail to converge. These results suggest that studying of trapped gases in the far from ultracold regions may yield interesting results not described by classical hydrodynamics.

  3. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01

    derived from biomass, including biogas, biodiesel, ethanol,in the absence of oxygen environment to produce biogas.The biogas generated from anaerobic digestion of biosolids

  4. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01

    such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

  5. Remotely sensed heat anomalies linked with Amazonian forest biomass declines

    E-Print Network [OSTI]

    Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

    2011-01-01

    with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

  6. Scientific Achievement Networks of highly photoresponsive crystalline GaSe

    E-Print Network [OSTI]

    Geohegan, David B.

    Scientific Achievement Networks of highly photoresponsive crystalline GaSe nanosheets a crystalline GaSe target was adjusted to directly grow networks of interconnected triangular GaSe crystalline nanosheets of ~ 200 nm size (inset shows atomic

  7. Electricity from biomass: An environmental review and strategy

    SciTech Connect (OSTI)

    1993-06-01

    This report presents an environmental assessment and strategy for the US Department of Energy Biomass Power Program. The regulatory context and the environmental impact of biomass power technologies are described, and an environmental plan for the program is suggested. The plan suggest a proactive, synergistic approach, involving multiple parties with a stake in the successful commercialization of a biomass power industry. These parties include feedstock growers, state regulators. Forest Service and agricultural agents, utilities and independent power producers, rural electric cooperatives, and environmental activists.

  8. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  9. Biomass 2013: Breakout Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document outlines the biographies of the breakout speakers for Biomass 2013, held July 31-August 1 in Washington, D.C.

  10. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri...

  11. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.HelpReport) |Biomass andBIOGAS

  12. Biomass: Potato Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.HelpReport) |Biomass andBIOGASPOTATO

  13. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make FuelsBioindustryWBS 1.2.3.3 Biomass -

  14. Sandia Energy - Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI ProgramPhysical SocietylasersPondBiomass Home

  15. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatric CancerSchedulesItemActivities in Biomass

  16. Sandia Energy - Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificAppliedBiofuels Home AnalysisBiomass Home

  17. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    Welcome to Greenhouse Gases: Science and Technology510) 486-7419 Welcome to Greenhouse Gases: Science andand interviews on greenhouse gas emissions science and

  18. The Greenhouse Gases, Regulated Emissions, and Energy Use in...

    Open Energy Info (EERE)

    The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gases, Regulated...

  19. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as deemed appropriate for LM operations...

  20. Revised and Updated Thermochemical Properties of the Gases Mercapto ,,HS..., Disulfur Monoxide ,,S2O..., Thiazyl ,,NS...,

    E-Print Network [OSTI]

    Fegley Jr., Bruce

    in the 4th edition of the NIST-JANAF Thermochemical Tables. Updated enthalpies of formation were includedRevised and Updated Thermochemical Properties of the Gases Mercapto ,,HS..., Disulfur Monoxide ,,S2 to compute the thermochemical tables for four ideal gases: mercapto HS , disulfur monox- ide (S2O), thiazyl

  1. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  2. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  3. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  4. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  5. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect (OSTI)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

  6. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    SciTech Connect (OSTI)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical properties of the raw materials on the packed bed design 3) Design of packed bed torrefier of different capacities. 4) Development of an excel sheet for calculation of length and diameter of the packed bed column based on the design considerations.

  7. The extreme nonlinear optics of gases and femtosecond optical filamentation

    SciTech Connect (OSTI)

    Milchberg, H. M.; Chen, Y.-H.; Cheng, Y.-H.; Jhajj, N.; Palastro, J. P.; Rosenthal, E. W.; Varma, S.; Wahlstrand, J. K.; Zahedpour, S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2014-10-15

    Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high power laser propagation in the atmosphere. Understanding in detail the microscopic processes leading to filamentation requires ultrafast measurements of the strong field nonlinear response of gas phase atoms and molecules, including absolute measurements of nonlinear laser-induced polarization and high field ionization. Such measurements enable the assessment of filamentation models and make possible the design of experiments pursuing applications. In this paper, we review filamentation in gases and some applications, and discuss results from diagnostics developed at Maryland for ultrafast measurements of laser-gas interactions.

  8. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  9. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  10. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  11. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  12. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  13. BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES

    E-Print Network [OSTI]

    Ergun, Sabri

    2012-01-01

    icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

  14. OUT Success Stories: Biomass Gasifiers

    SciTech Connect (OSTI)

    Jones, J.

    2000-08-31

    The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation.

  15. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  16. A review on biomass classification and composition, cofiring issues and pretreatment methods

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  17. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  18. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    likely take precedence over biomass for hydrogen production. Thus, the price of biomass feedstocks for hydrogen, in the absence of major federal policy changes, will presumably...

  19. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  20. Biomass 2013: Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Presentations Biomass 2013: Presentations This page displays the links to available presentations from Day One and Day Two of the Bioenergy Technologies Office's (BETO) Biomass...

  1. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  2. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

  3. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  4. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  5. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is the...

  6. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect (OSTI)

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  7. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  8. Overview of the Biomass Scenario Model

    SciTech Connect (OSTI)

    Peterson, Steve

    2015-09-01

    This report describes the structure of the October 2012 version of the Biomass Scenario Model (BSM) in considerable detail, oriented towards readers with a background or interest in the underlying modeling structures. Readers seeking a less-detailed summary of the BSM may refer to Peterson (2013). BSM aims to provide a framework for exploring the potential contribution of biofuel technologies to the transportation energy supply for the United States over the next several decades. The model has evolved significantly from the prototype developed as part of the Role of Biomass in America" tm s Energy Future (RBAEF) project. BSM represents the supply chain surrounding conversion pathways for multiple fuel products, including ethanol, butanol, and infrastructure-compatible biofuels such as diesel, jet fuel, and gasoline.

  9. System, method, and apparatus for remote measurement of terrestrial biomass

    DOE Patents [OSTI]

    Johnson, Patrick W (Jefferson, MD)

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  10. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  11. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  12. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

  13. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect (OSTI)

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  14. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  15. Biomass for energy and materials Local technologies -

    E-Print Network [OSTI]

    - holds Industry Agricult. Pretreatment of biomass and waste CO2 Gasification Combustion MicrobialBiomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risř National Laboratory Denmark #12;Biomass - a local resource

  16. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  17. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    deployment  of  renewable projects.   Southern California Edison (SCE) has one such program for biomass 

  18. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  19. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Direct Costs Utilities Labor:    Labor  costs  constitute  the  largest  Consumables annual  operating  costs  excluding  biomass  Disposal

  20. Global (International) Energy Policy and Biomass

    SciTech Connect (OSTI)

    Overend, R. P.

    2004-01-01

    Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

  1. Cadmium Biosorption Rate in Protonated Sargassum Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

  2. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  3. November 2011 Competition for biomass among

    E-Print Network [OSTI]

    Noble, James S.

    remain high, limiting the development of national or even regional markets for biomass feedstocks. We

  4. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  5. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  6. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  7. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  8. Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities

    E-Print Network [OSTI]

    Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

  9. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  10. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  11. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  12. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  13. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  14. Cmo simular flujo de gases reactivos con

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    żCómo simular flujo de gases reactivos con RetrasoCodeBright? Maarten W. Saaltink #12;Procesos Difusión de especies gaseosas Flujo de gas reactivo Se forma/consume especies gaseosas por reacciones dispersión #12;Tipos de fenómenos Descomposición de materia orgánica CH2O + O2(g) CO2(g) + H2O CH2O + 0.8NO3

  15. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  16. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOE Patents [OSTI]

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  17. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  18. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    SciTech Connect (OSTI)

    DeLuchi, M.A. [California Univ., Davis, CA (United States)

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  19. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  20. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  1. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility Jump to:Biola,Biomass Facility Jump

  2. August 2012 Biomass Program Monthly News Blast | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

  3. Biomass Program Monthly News Blast: August | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

  4. Biomass Program Monthly News Blast: May | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Monthly News Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents &...

  5. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cbiomass. Figure 1: Biomass Gasification to Power Process

  6. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01

    Report "A survey of Biomass Gasification," Department offor a continuous biomass gasification unit. The selectiona combination biomass liquefaction and gasification process

  7. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01

    the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

  8. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

  9. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01

    context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

  10. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01

    less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

  11. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  12. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01

    on the Steam Gasification of Biomass," Department of EnergyCatalytic Steam Gasification of Biomass, 11 April 28, 1978.Report "A survey of Biomass Gasification," Department of

  13. Economic Analysis of a 3MW Biomass Gasification Power Plant

    E-Print Network [OSTI]

    Cattolica, Robert; Lin, Kathy

    2009-01-01

    Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cinvolved in the gasification of biomass to produce gas are

  14. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Biomass Production Systems from Southern Pine Energy Plantations Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity...

  15. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  16. LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)

    E-Print Network [OSTI]

    Figueroa, Carlos

    2012-01-01

    0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

  17. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  18. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

  19. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01

    Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

  20. Methods for producing and using densified biomass products containing...

    Office of Scientific and Technical Information (OSTI)

    producing and using densified biomass products containing pretreated biomass fibers Citation Details In-Document Search Title: Methods for producing and using densified biomass...

  1. Detectability of biosignature gases in the atmospheres of terrestrial exoplanets

    E-Print Network [OSTI]

    Messenger, Stephen Joseph

    2013-01-01

    Biosignature gases in the atmosphere of an exoplanet provide a means by which we can deduce the possible existence of life on that planet. As the list of possible biosignature gases is ever growing, the need to determine ...

  2. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  3. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  4. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    SciTech Connect (OSTI)

    Brown, S.; Gaston, G.; Daniels, R.C.

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  5. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  8. A CASE STUDY FOR A BIOMASS LOGGING OPERATION [ Print | Close

    E-Print Network [OSTI]

    of oil and gas having increased substantially, biomass from forests has generated substantial interest investment is necessary. The machines needed for this project include a feller buncher, grapple skidder550 4x4 300 $70,000 Service Truck Ford F250 4x4 362 $30,000 Total Capital Investment $755,000 Assuming

  9. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  11. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  12. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    SciTech Connect (OSTI)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  13. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  14. Scale-invariant nonlinear optics in gases

    E-Print Network [OSTI]

    Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L

    2015-01-01

    Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.

  15. Biomass 2013: Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

  16. Biomass Webinar Text Version | Department of Energy

    Office of Environmental Management (EM)

    Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

  17. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  18. Biomass Oil Analysis: Research Needs and Recommendations

    SciTech Connect (OSTI)

    2004-06-01

    Report analyzing the use of biomass oils to help meet Office of the Biomass Program goals of establishing a commercial biorefinery by 2010 and commercilizing at least four biobased products.

  19. Biomass Boiler | OpenEI Community

    Open Energy Info (EERE)

    Biomass Boiler Home Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 24 June, 2015 - 07:08 Biomass Boiler Market is Projected to Reach USD 8,907.0 Million by 2022...

  20. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  1. A Review on Biomass Torrefaction Process and Product Properties

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  2. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  3. EA-1957: Cabin Creek Biomass Facility, Placer County, California

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

  4. Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States

    E-Print Network [OSTI]

    Gray, Matthew

    Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

  5. Agricultural Biomass and Landfill Diversion Incentive (Texas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Landfill Diversion Incentive (Texas) Agricultural Biomass and Landfill Diversion Incentive (Texas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor...

  6. Dairy Biomass as a Renewable Fuel Source 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  7. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  8. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  9. Biomass Renewable Energy Opportunities and Strategies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    strategic energy development forums, this Tribal Leader Forum will focus on biomass development opportunities, technology updates, resource assessment, the unique...

  10. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  11. Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy

    E-Print Network [OSTI]

    : combustion and thermal gasification. Thermal conversion Combustion and co-combustion biomass conversionRisř Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables

  12. A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality

    E-Print Network [OSTI]

    A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality CHANG IK, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its performance in estimating total stock biomass and fishing mortality (F) for a population in equilibrium. We

  13. Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL

    E-Print Network [OSTI]

    Keeling, Stephen L.

    9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

  14. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  15. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    None

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  16. Biomass energies: resources, links, constraints

    SciTech Connect (OSTI)

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  17. 4, 51355200, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

  18. Fermentable sugars by chemical hydrolysis of biomass

    E-Print Network [OSTI]

    Raines, Ronald T.

    Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

  19. Also inside this issue: Bioengineering Better Biomass

    E-Print Network [OSTI]

    Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

  20. 5, 1045510516, 2005 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

  1. 4, 707745, 2007 Proxies of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

  2. 4, 52015260, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

  3. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE dollars. Costs for a pioneer plant [a 1st plant with a capacity of 500 dry ton per day (dtpd) biomass

  4. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  5. Integrated assessment of the sustainability of biomass

    E-Print Network [OSTI]

    Pennycook, Steve

    Integrated assessment of the sustainability of biomass supply chains Dr. Floor van der Hilst · Previous work on sustainable biomass supply chains: ­ Land use change modeling ­ Dynamic Cost supply chains ­ Future work and potential collaboration #12;Rationale · The total demand for biomass for energy

  6. Energie-Cits 2001 BIOMASS -WOOD

    E-Print Network [OSTI]

    Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

  7. Biomass Gasification at The Evergreen State College

    E-Print Network [OSTI]

    Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

  8. Eulachon (Thaleichthys pacificus) Spawning Stock Biomass (SSB)

    E-Print Network [OSTI]

    Eulachon (Thaleichthys pacificus) Spawning Stock Biomass (SSB) for the Cowlitz River, 2014; in particular the Cowlitz River #12;Technique: Spawning Stock Biomass (SSB): Calculation of SSB for eulachon in the Cowlitz River was accomplished via the following equation: B = P/(F*R) Eq. 1 where: B = Biomass: total

  9. Biomass for Bioenergy: an overview of

    E-Print Network [OSTI]

    Pennycook, Steve

    Biomass for Bioenergy: an overview of research at ORNL Environmental Science Division Climate. Kline (presenter) Virginia Dale, Laurence Eaton, Matt Langholtz, and others, ORNL #12;Biomass&TChemical and molecular science Plasma and fusion energy science Biomass #12;Lighter weight vehicles Bioenergy research

  10. Biomass from Logging Residue and Mill Residue

    E-Print Network [OSTI]

    Biomass from Logging Residue and Mill Residue in East Texas, 2008 by Curtis L. VanderSchaaf, Forest Resource Analyst October 2009 #12;N Introduction The abundance of woody biomass from East Texas forests. This report represents the most current data on the availability of woody biomass in the form of logging

  11. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01

    hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

  12. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries...

    Office of Environmental Management (EM)

    2011 Biomass Program Platform Peer Review: Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the...

  13. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  14. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-12-31

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  15. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  16. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  17. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  18. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  19. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  20. The potential impact of externalities considerations on the market for biomass power technologies

    SciTech Connect (OSTI)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1994-02-01

    This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

  1. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  2. Finite-size energy of non-interacting Fermi gases

    E-Print Network [OSTI]

    Martin Gebert

    2014-06-14

    We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

  3. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect (OSTI)

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  4. Russell Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,Rush County, Indiana:Ruskin, Florida:Biomass

  5. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid,EnergybyBiomass Jump to: navigation,

  6. Biomass Program News Blast: September

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand FuelBiomass

  7. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  8. Catalytic process for removing toxic gases from gas streams

    SciTech Connect (OSTI)

    Baglio, J.A.; Gaudet, G.G.; Palilla, F.C.

    1983-02-22

    A multi-stage process for reducing the content of sulfurcontaining gases-notably hydrogen sulfide, sulfur dioxide, carbonyl sulfide and carbon disulfide-in waste gas streams is provided. In the first stage, the gas stream is passed through a reaction zone at a temperature between about 150 and 350/sup 0/C in the presence of a pretreated novel catalyst of the formula xLn/sub 2/O/sub 3/ in which Ln is yttrium or a rare earth element and T is cobalt, iron or nickel, and each of x and y is independently a number from 0 to 3, said catalyst being substantially non-crystalline and having a surface area of from about 10 m/sup 2//g to about 40 m/sup 2//g. The preferred catalyst is one in which Ln is lanthanum, T is cobalt, and x and y range from 1 to 3, including non-integers. The first stage yields a product stream having a reduced content of sulfur-containing gases, including specifically, substantial reduction of carbonyl sulfide and virtual elimination of carbon disulfide. An intermediate stage is a claus reaction, which may take place in one or more reaction zones, at temperatures less than about 130/sup 0/ C, in the presence of known catalysts such as bauxite, alumina or cobalt molybdates. The final stage is the air oxidation of hydrogen sulfide at a temperature between about 150 and 300/sup 0/ C in the presence of a catalyst usable in first stage.

  9. USDOE/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    SciTech Connect (OSTI)

    D. Tillman; E. Hughes

    1999-01-01

    During the period of October 1, 1998 through December 31, 1998, significant work was done in direct preparation for several cofiring tests. Major progress was made on several projects including cofiring at Seward (GPU Genco), Allen (TVA), and Bailly (NIPSCO). Most of the work was focused on construction activities at the Seward and Bailly Generating Stations. The conceptual design and feasibility study for gasification-based cofiring at the Allen Fossil Plant was completed. The feasibility study for cofiring at the Pirkey and Northeastern Generating Stations of Central and South West Utilities (C&SW) also was completed. This report summarizes the activities during the fourth calendar quarter in 1998--of the USDOE/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of construction activities and related events.

  10. 2009 Biomass Program Peer Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s 2009 peer review meeting, held on July 14–15, 2009, in Arlington, Virginia. The document also includes summary information from the six separate platform reviews conducted between March and April 2009 in the Washington, D.C., and Denver, Colorado, areas. The platform reviews provide evaluations of the program‘s projects in applied research, development, and demonstration as well as analysis and deployment activities. The July program peer review was an evaluation of the program‘s overall strategic planning, management approach, priorities across research areas, and resource allocation.

  11. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  12. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  13. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  14. Deviation from the Knudsen law on quantum gases

    SciTech Connect (OSTI)

    Babac, Gulru

    2014-12-09

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.

  15. Test Results For Physical Separation Of Tritium From Noble Gases...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Test Results For Physical Separation...

  16. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

  17. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point,Massachusetts:Kansas: EnergyLLC Biomass

  18. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  19. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01

    Biomass feedstocks .Materials and Methods Biomass feedstocks Two kinds ofthe screening of biomass feedstocks. In this study, a one-

  20. Issues in Value-Added Products from Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2001-11-01

    While biomass conversion to energy products has been the primary focus of most development efforts over the past 30 years, process development for chemical products is an area of increasing effort more recently. Although the fuels market is likely to allow the largest impact for renewable resources in the world economy, chemical products can also be more than just niche market applications. However, the specific chemical processing required for refined chemical products requires improved chemical handling methods for separations and purifications, as well as improved catalyst systems. Development of these unit operations has lagged behind the process research focused on the finished products. This paper will describe some of the critical processing issues that need to be addressed to allow biomass feedstocks to make a real impact in the chemicals market. The paper will also describe some of the process research which has been performed or is now underway in our laboratory and others'. Areas to be discussed include biomass component separation, catalyst development for aqueous processing, and trace component effects in catalytic processing of biomass feedstocks.

  1. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  2. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  3. Biomass power and state renewable energy policies under electric industry restructuring

    E-Print Network [OSTI]

    Porter, Kevin; Wiser, Ryan

    2000-01-01

    solar, geothermal, and biomass energy resources in Nevadamay make it difficult for biomass energy companies to accessmay be an opportunity for biomass energy crops and biomass

  4. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    E-Print Network [OSTI]

    Vincent, Warwick F.

    Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay 2008. [1] The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic, J. Geophys

  5. NEW EDITION! The most comprehensive review of international trade in wood fiber, for the pulp, MDF and biomass industries.

    E-Print Network [OSTI]

    in the business of international trade of woodchips, pulplogs and biomass fiber. This annual report examines in more than 35 countries. This study also includes data on specialized woodchip carriers, examines the international market for biomass wood fiber and provides projections for the Asian woodchip markets in 2010

  6. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01

    Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

  7. November 2011 Model documentation for biomass,

    E-Print Network [OSTI]

    Noble, James S.

    and conventional electricity, natural gas and coal markets FAPRIMU Report #1211 Providing of Education, Office of Civil Rights. #12;3 Contents Biomass .....................................................................................................................15 Electricity market

  8. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  9. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

  10. Biomass 2014: Additional Speaker Biographies | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July 30 in Washington, D.C. additionalspeakerbiographiesbiomass2014 More Documents &...

  11. EERC Center for Biomass Utilization 2006

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

    2009-05-27

    The Center for Biomass Utilization (CBU�®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  12. Biomass IBR Fact Sheet: Haldor Topsoe, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Haldor Topsoe, Inc. will integrate the Carbona Gasification and the Haldor Topsoe TIGAS (Topsoe Integrated Gasoline Synthesis) proprietary processes to produce renewable gasoline from woody biomass.

  13. Biomass Indirect Liquefaction Strategy Workshop: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

  14. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

  15. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  16. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  17. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  18. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of theSolar SponsorsBiomass

  19. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a com

  20. Enzyme and methodology for the treatment of a biomass

    DOE Patents [OSTI]

    Thompson, Vicki S.; Thompson, David N.; Schaller, Kastli D.; Apel, William A.

    2010-06-01

    An enzyme isolated from an extremophilic microbe, and a method for utilizing same is described, and wherein the enzyme displays optimum enzymatic activity at a temperature of greater than about 80.degree. C., and a pH of less than about 2, and further may be useful in methodology including pretreatment of a biomass so as to facilitate the production of an end product.

  1. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  2. AMIII Termodinamica dos Gases Ideais 17 de Janeiro de 2002

    E-Print Network [OSTI]

    Natário, José

    AMIII ­ Termodinâ??amica dos Gases Ideais 17 de Janeiro de 2002 N moles de um gâ??as ideal em equil dos gases ideais). A Primeira Lei da Termodinâ??amica afirma que existe uma funâ?şcâ?ťao E : M # R, dita pela Segunda Lei da Termodinâ??amica. 2 #12;

  3. Climate change and trace gases BY JAMES HANSEN

    E-Print Network [OSTI]

    Ford, Andrew

    Climate change and trace gases BY JAMES HANSEN 1,*, MAKIKO SATO 1 , PUSHKER KHARECHA 1 , GARY climate change that could run out of our control, with great dangers for humans and other creatures and the global environment. Keywords: climate change; trace gases; climate feedbacks; black carbon; sea level

  4. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  5. Northeast regional biomass program. First quarter report, October--December 1993

    SciTech Connect (OSTI)

    NONE

    1994-05-01

    This progress report presents summaries of various projects which were in operation or being planned during this quarter period. Projects included testing the efficiency of using wood chips as fuel in heating systems, barriers to commercial development of wood pellet fuels, studies of more efficient and less polluting wood stoves, work on landfill gas utilization, directories of facilities using biomass fuels, surveys of biomass conversion processes to liquid fuels, for commercial development, etc.

  6. Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip

    E-Print Network [OSTI]

    Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

  7. The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment

    E-Print Network [OSTI]

    Bae, Jin-Woo

    The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

  8. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  9. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.

  10. Emissions of greenhouse gases from the use of transportation...

    Office of Scientific and Technical Information (OSTI)

    maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The...

  11. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOE Patents [OSTI]

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  12. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  13. A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright

    2010-06-01

    It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 40–60 kg/m3 for lignocellulosic and 200–400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

  14. Original article Biomass, litterfall and nutrient content in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass, litterfall and nutrient content in Castanea sativa coppice stands November 1995) Summary - Aboveground biomass and nutrient content, litterfall and nutrient return) and Catania (Italy). Best regression equations for the aboveground biomass were obtained by applying the allo

  15. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    MARINE BIOMASS A marine energy farm is one of the fewTompkins, A. N. , 1978, "Energy from Marine Biomass Project-1978 "A Review of the Energy from Marine Biomass Program",

  16. High Biomass Low Export Regimes in the Southern Ocean

    E-Print Network [OSTI]

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-01

    of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

  17. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01

    2.3. Effects of low pH on biomass solids……………………………. ………………of effects of low pH on biomass……………………………. ….25 2.4. Low pHof low pH biomass reactions………………………. ……………..46

  18. Hydrogen from Biomass Catalytic Reforming of Pyrolysis Vapors

    E-Print Network [OSTI]

    kg H2/day) with catalyst attrition rates Biomass Feedstocks 6 CO2 +6 H2O C6 waste Issues: Biomass Availability and Costs Georgia Biomass Feedstock Supply 0 3 6 9 12 2000 2010 2020

  19. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  20. Biomass Program 2007 Accomplishments - Report Introduction

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  1. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  2. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  3. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    fuels from coal and biomass have potential to supply 2-3 MBPD of oil equivalent fuels with significantly and a carbon price, and on accelerated federal investment in essential technologies #12;BIOMASS SUPPLY by Milbrandt (2005) and Perlack et al. (2005). · Hay and wheat straws--Yield increase over time = historic

  4. Processes for pretreating lignocellulosic biomass: A review

    SciTech Connect (OSTI)

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  5. Biomass Program 2007 Accomplishments - Full Report

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  6. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  7. On flame kernel formation and propagation in premixed gases

    SciTech Connect (OSTI)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  8. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  9. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  10. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect (OSTI)

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  11. Crow Nation Students Participate in Algae Biomass Research Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

  12. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy...

  13. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals. ibrarraamyris.pdf More Documents &...

  14. Biomass Program Perspectives on Anaerobic Digestion and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at...

  15. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

  16. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01

    Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

  17. Quarterly Biomass Program/Clean Cities State Web Conference:...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation from May 6, 2010 Biomass ProgramClean Cities State Web Conference. stateconference05062010feraci.pdf More Documents & Publications Quarterly Biomass ProgramClean...

  18. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01

    Harvesting biomass causes emissions through the combustionEmission factors Diesel combustion Electricity use Fertilizer use a Table 5 Optimal biomass

  19. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  20. EERC Center for Biomass Utilization 2006 (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 09 BIOMASS FUELS biomass, biodiesel, carbon dioxide, feedstocks Word Cloud More Like This Full Text preview image File size N...

  1. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    Open Energy Info (EERE)

    State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering...

  2. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  3. Feedstock Supply and Logistics: Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology. Photos: AGCO, Auburn University (top); INL (bottom) Feedstock Supply and Logistics: Biomass as a Commodity Providing biomass for conversion into high-quality biofuels,...

  4. Biomass Power Generation Market - Global & U.S. Industry Analysis...

    Open Energy Info (EERE)

    biomass fuels for transportation can provide a low-carbon and sustainable alternative to fossil fuels. According to current estimates, woody biomass is the single largest...

  5. Quarterly Biomass Program/Clean Cities States Web Conference...

    Office of Environmental Management (EM)

    Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Presentation from the...

  6. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01

    and lignin in biomass. NREL Laboratory Analytical Procedure.2008;NREL/TP-510-42618. DeMartini JD, Wyman CE. Changes inof Lignocellulosic Biomass. NREL Laboratory Analytical

  7. U.S. DEPARTMENT OF ENERGY BIOMASS PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop 10 | Biomass Program eere.energy.gov * The Biomass Program uses a baseline algal production scenario with model-based quantitative metrics to inform strategic planning *...

  8. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

  9. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that...

  10. USDA and DOE Biomass Research And Development Technical Advisory...

    Energy Savers [EERE]

    Biomass Research And Development Technical Advisory Committee Members USDA and DOE Biomass Research And Development Technical Advisory Committee Members January 15, 2008 - 10:23am...

  11. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by...

  12. Ionic Liquid Pretreatment Process for Biomass Is Successfully...

    Energy Savers [EERE]

    Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale...

  13. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Energy Savers [EERE]

    USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development June 11, 2007 -...

  14. Biomass Resources Overview and Perspectives on Best Fits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and perspectives...

  15. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...

    Office of Environmental Management (EM)

    Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 -...

  16. Survey of Biomass Resource Assessments and Assessment Capabilities...

    Open Energy Info (EERE)

    Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment...

  17. Biomass Econ 101: Measuring the Technological Improvements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Econ 101: Measuring the Technological Improvements on Feedstocks Costs Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Breakout Session 1A: Biomass...

  18. Los Alamos improves biomass-to-fuel process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

  19. Evaluate Feasibility of Sustainable and Economical Utilization of Biomass

    E-Print Network [OSTI]

    Chen, Deming

    Evaluate Feasibility of Sustainable and Economical Utilization of Biomass Gasification Byproducts.istc.illinois.edu #12;TR-057 Evaluate Feasibility of Sustainable and Economical Utilization of Biomass Gasification

  20. Improvements of biomass deconstruction enzymes

    SciTech Connect (OSTI)

    Sale, K. L.

    2012-03-01

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  1. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  2. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  3. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect (OSTI)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  4. COMPACTING BIOMASS AND MUNICIPAL SOLID WASTES TO FORM AND UPGRADED FUEL

    SciTech Connect (OSTI)

    Henry Liu; Yadong Li

    2000-11-01

    Biomass waste materials exist in large quantity in every city and in numerous industrial plants such as wood processing plants and waste paper collection centers. Through minimum processing, such waste materials can be turned into a solid fuel for combustion at existing coal-fired power plants. Use of such biomass fuel reduces the amount of coal used, and hence reduces the greenhouse effect and global warming, while at the same time it reduces the use of land for landfill and the associated problems. The carbon-dioxide resulting from burning biomass fuel is recycled through plant growth and hence does not contribute to global warming. Biomass fuel also contains little sulfur and hence does not contribute to acid rain problems. Notwithstanding the environmental desirability of using biomass waste materials, not much of them are used currently due to the need to densify the waste materials and the high cost of conventional methods of densification such as pelletizing and briquetting. The purpose of this project was to test a unique new method of biomass densification developed from recent research in coal log pipeline (CLP). The new method can produce large agglomerates of biomass materials called ''biomass logs'' which are more than 100 times larger and 30% denser than conventional ''pellets'' or ''briquettes''. The Phase I project was to perform extensive laboratory tests and an economic analysis to determine the technical and economic feasibility of the biomass log fuel (BLF). A variety of biomass waste materials, including wood processing residues such as sawdust, mulch and chips of various types of wood, combustibles that are found in municipal solid waste stream such as paper, plastics and textiles, energy crops including willows and switch grass, and yard waste including tree trimmings, fallen leaves, and lawn grass, were tested by using this new compaction technology developed at Capsule Pipeline Research Center (CPRC), University of Missouri-Columbia (MU). The compaction conditions, including compaction pressure, pressure holding time, back pressure, moisture content, particle size and shape, piston and mold geometry and roughness, and binder for the materials were studied and optimized. The properties of the compacted products--biomass logs--were evaluated in terms of physical, mechanical, and combustion characteristics. An economic analysis of this technology for anticipated future commercial operations was performed. It was found that the compaction pressure and the moisture content of the biomass materials are critical for producing high-quality biomass logs. For most biomass materials, dense and strong logs can be produced under room temperature without binder and at a pressure of 70 MPa (10,000 psi), approximately. A few types of the materials tested such as sawdust and grass need a minimum pressure of 100 MPa (15,000 psi) in order to produce good logs. The appropriate moisture range for compacting waste paper into good logs is 5-20%, and the optimum moisture is in the neighborhood of 13%. For the woody materials and yard waste, the appropriate moisture range is narrower: 5-13%, and the optimum is 8-9%. The compacted logs have a dry density of 0.8 to 1.0 g/cm{sup 3}, corresponding to a wet density of 0.9 to 1.1 g/cm{sup 3}, approximately. The logs have high strength and high resistance to impact and abrasion, but are feeble to water and hence need to be protected from water or rain. They also have good long-term performance under normal environmental conditions, and can be stored for a long time without significant deterioration. Such high-density and high-strength logs not only facilitate handling, transportation, and storage, but also increase the energy content of biomass per unit volume. After being transported to power plants and crushed, the biomass logs can be co-fired with coal to generate electricity.

  5. Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases

    E-Print Network [OSTI]

    2008-01-01

    households in reducing greenhouse gases. Energy Policy (Tradable Permits for Greenhouse Gas Emissions: a Primer WithEIA, 2006a. Emissions of Greenhouse Gases in the United

  6. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  7. Port Graham Community Building Biomass Heating Design Project

    SciTech Connect (OSTI)

    Norman, Patrick; Sink, Charles

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter of intent to negotiate a sale of woody biomass material April 30, 2015. Chugachmiut Forestry

  8. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  9. The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole

    E-Print Network [OSTI]

    .) · Ancillary flight information, field catalogs, data quality reports, software, and documentation · Pole products and user documentation. Files are in ASCII text format. Products include: · A comprehensive merged structure data: 1) greenhouse gases and carbon cycle gases, 2) ozone and water vapor, 3) black carbon

  10. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  11. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOE Patents [OSTI]

    Agblevor, Foster A. (Blacksburg, VA); Besler-Guran, Serpil (Flemington, NJ)

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  12. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect (OSTI)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

  13. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect (OSTI)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  14. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  15. Travelling waves in a mixture of gases with bimolecular reversible reactions

    E-Print Network [OSTI]

    A. Rossani; A. M. Scarfone

    2003-12-01

    Starting from the kinetic approach for a mixture of reacting gases whose particles interact through elastic scattering and a bimolecular reversible chemical reaction, the equations that govern the dynamics of the system are obtained by means of the relevant Boltzmann-like equation. Conservation laws are considered. Fluid dynamic approximations are used at the Euler level to obtain a close set of PDEs for six unknown macroscopic fields. The dispersion relation of the mixture of reacting gases is explicitly derived in the homogeneous equilibrium state. A set of ODE that governs the propagation of a plane travelling wave is obtained using the Galilei invariance. After numerical integration some solutions, including the well-known Maxwellian and the hard spheres cases, are found for various meaningful interaction laws. The main macroscopic observables for the gas mixture such as the drift velocity, temperature, total density, pressure and its chemical composition are shown.

  16. Non-equilibrium electron transport in gases: Influence of magnetic fields on temporal and spatial relaxation

    SciTech Connect (OSTI)

    White, R. D.; Dujko, S.; Ness, K. F. [School of Mathematics, Physics and IT, James Cook University, Townsville, QLD (Australia); Li, B. [School of Physics, University of Sydney, NSW 2006 (Australia); Robson, R. E. [Research School of Physical Sciences, Australian National University, ACT 2600 (Australia); School of Mathematics, Physics and IT, James Cook University, Townsville, QLD (Australia)

    2006-12-01

    The ability to control the temporal and spatial relaxation of electron swarms in gases through application of an orthogonal magnetic field is examined via solutions of Boltzmann's equation. Multi-term solutions of Boltzmann's equation are presented for two specific applications: temporal relaxation in the time-dependent hydrodynamic regime, and spatial relaxation in the steady state non-hydrodynamic regime. We highlight the commonality of methods and techniques for handling the velocity dependence of the phase-space distribution function as well as their point of departure for treating the spatial dependence. We present results for model and real gases highlighting the explicit influence of the magnetic field on spatial and temporal relaxation characteristics, including the existence of transiently negative diffusion coefficients.

  17. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  18. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  19. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  20. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    SciTech Connect (OSTI)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  1. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  2. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  3. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  4. Modeling shows that alternative soil management can decrease greenhouse gases

    E-Print Network [OSTI]

    De Gryze, Steven; Albarracin, Maria Victoria; Catala-Luque, Rosa; Howitt, Richard E; Six, Johan

    2009-01-01

    warmer temperatures. Reducing greenhouse gases A (SacramentoMan. Yes Agricultural greenhouse-gas emis- sions can beWhether the decrease in greenhouse-gas emissions comes from

  5. Measuring the Isotopic Composition of Solar Wind Noble Gases

    E-Print Network [OSTI]

    Floss, Christine

    in meteorites are depleted by many orders of magnitude compared with the solar nebula and, although lunar soils the various components, these gases were extracted using stepped pyrolysis and analyzed in sensitive mass

  6. BIOSIGNATURE GASES IN H?-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    E-Print Network [OSTI]

    Seager, Sara

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface ...

  7. Low-Value Waste Gases as an Energy Source 

    E-Print Network [OSTI]

    Waibel, R. T.

    1996-01-01

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  8. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  9. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  10. Viscosities of natural gases at high pressures and high temperatures 

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  11. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  12. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  13. Non-hydrodynamic transport in trapped unitary Fermi gases

    E-Print Network [OSTI]

    Jasmine Brewer; Paul Romatschke

    2015-08-05

    Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of non-hydrodynamic modes. We review non-hydrodynamic modes in kinetic theory and gauge/gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data, we find hints of non-hydrodynamic modes in cold Fermi gases in two and three dimensions.

  14. Non-hydrodynamic transport in trapped unitary Fermi gases

    E-Print Network [OSTI]

    Brewer, Jasmine

    2015-01-01

    Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of non-hydrodynamic modes. We review non-hydrodynamic modes in kinetic theory and gauge/gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data, we find hints of non-hydrodynamic modes in cold Fermi gases in two and three dimensions.

  15. DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES

    SciTech Connect (OSTI)

    Kamshad, Kourosh

    2013-12-31

    This report is the final reporting installment of the DOE project titled DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES. This rerport includes a summary of the work completed to date including the experimental methods used to acheive the results, discussions, conclusions and implications of the final product delivered by the project.

  16. Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents

    DOE Patents [OSTI]

    Dumesic, James A.; Ribeiro Gallo, Jean Marcel; Alonso, David

    2014-07-08

    Described is a process to produce hydroxymethyl furfural (HMF) from biomass-derived sugars. The process includes the steps of reacting a C5 and/or C6 sugar-containing reactant derived from biomass in a monophasic or biphasic reaction solution comprising water and a co-solvent. The co-solvent can be beta-, gamma-, and/or delta-lactones derived from biomass, tetrahydrofuran (THF) derived from biomass, and/or methyltetrahydrofuran (MTHF) derived from biomass. The reaction takes place in the presence of an acid catalyst and a dehydration catalyst for a time and under conditions such that at least a portion of glucose or fructose present in the reactant is converted to HMF.

  17. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect (OSTI)

    None

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  18. Harvesting Chaparral Biomass for Energy--An Environmental Assessment1

    E-Print Network [OSTI]

    Harvesting Chaparral Biomass for Energy--An Environmental Assessment1 Philip J. Riggan and Paul H and could provide a locally important alternative source of energy. CHAPARRAL BIOMASS Considerable amounts of potential energy are present in the biomass of some chaparral communi- ties. Biomass in mature Adenostoma

  19. Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation

    E-Print Network [OSTI]

    Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation Huub H. J. Cox, Marc A as a means of biomass control. Wet biomass for- mation in 23.6-L reactors over a 77-day period was reduced in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addi- tion

  20. A landscape design approach for sustainability of woody biomass

    E-Print Network [OSTI]

    Pennycook, Steve

    A landscape design approach for sustainability of woody biomass production Center for Bio Why consider biomass for energy? Emissions are partitioned between the atmosphere, land, and ocean.S. Department of Energy Factors to consider: woody biomass for pellets is at end of value chain Biomass

  1. Biosorption of Trivalent Chromium on the Brown Seaweed Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Trivalent Chromium on the Brown Seaweed Biomass Y E O U N G - S A N G Y U N , D O N brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains that various biosorbents are able to effectively remove chromium (4-11). Some of the biomass types have

  2. Biomass Basics: The Facts About Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels A number of renewable resources like solar, wind, hydropower, geothermal, and biomass have the potential to transform the U.S. energy supply for the better. These energy...

  3. Countercurrent Conversion of Biomass to Sugars 

    E-Print Network [OSTI]

    Brooks, Heather Lauren

    2014-09-26

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  4. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect (OSTI)

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  5. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect (OSTI)

    None

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  6. Assessment of Biomass Resources in Afghanistan

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  7. Biomass reforming processes in hydrothermal media

    E-Print Network [OSTI]

    Peterson, Andrew A

    2009-01-01

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  8. Biomass Basics: The Facts About Bioenergy

    Broader source: Energy.gov [DOE]

    DOE is focusing on new and better ways to make liquid transportation fuels, or “biofuels,” like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass.

  9. 2011 Biomass Program Platform Peer Review: Analysis

    SciTech Connect (OSTI)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Analysis Platform Review meeting.

  10. 2011 Biomass Program Platform Peer Review: Sustainability

    SciTech Connect (OSTI)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.

  11. Biomass energy : a real estate investment perspective

    E-Print Network [OSTI]

    Foo, Chester Ren Jie

    2014-01-01

    A central consideration in real estate is how value is created in real estate development and investment deals. A biomass power plant is not only an asset which generates revenues, but from a real estate perspective, it ...

  12. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  13. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    A separate law (Minn. Stat. § 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  14. Biomass 2014: Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register for Biomass 2014 today and don’t miss your chance to take part in this important event that will help move the nation to a more secure, sustainable, and economically sound future.

  15. Agricultural Biomass Income Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The credit is effective for biomass originating between January 1, 2011, and January 1, 2020. The credit is worth $5 per wet ton. Eligible projects must apply to the Taxation and Revenue...

  16. Biomass Energy and Competition for Land

    E-Print Network [OSTI]

    Reilly, John

    We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

  17. Agricultural Biomass Income Tax Credit (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The credit is effective for biomass originating between January 1, 2011, and January 1, 2020. The credit is worth $5 per wet ton. Eligible projects must apply to the Taxation and Revenue...

  18. 2011 Biomass Program Platform Peer Review: Feedstock

    SciTech Connect (OSTI)

    McCann, Laura

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  19. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  20. Appendix B - GPRA06 biomass program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This appendix discusses the assumptions and methods employed in the biomass benefits analysis that is part of the fiscal year 2006 GPRA benefits analysis for all of the Department of Energy’s Energy Efficiency and Renewable Energy (EERE) research and deployment programs. The biomass benefits analysis focuses on the benefits of future achievements by the program and excludes retrospective benefits and benefits resulting from industry’s own initiative and funding.