National Library of Energy BETA

Sample records for biomass ethanol plants

  1. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOE Patents [OSTI]

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  2. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOE Patents [OSTI]

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  3. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect (OSTI)

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  4. Bioconversion of plant biomass to ethanol. Final report, December 1, 1979-December 31, 1980

    SciTech Connect (OSTI)

    Su, T.M.; Lamed, R.J.; Lobos, J.; Brennan, M. Jr.; Smith, J.F.; Tabor, D.; Brooks, R.

    1980-01-01

    This final report describes research performed on a process for the direct fermentation of pretreated hardwood and corn stover to ethanol. Experimental investigations were conducted on the technical problem areas that limit the utilization of lignocellulose for ethanol production, i.e., wood pretreatment, culture development, and fermentation. Considerable technical progress has been demonstrated in each area. The experimental findings have led to process design improvements that can reduce the capital cost for ethanol production. Studies on wood pretreatment to enhance carbohydrate recovery and susceptibility to enzymatic hydrolysis continued to show progress. Rapid decompression of treated fibers to atmospheric pressure was found to make little or no contribution to enhancing the rate of enzymatic hydrolysis. Acid extraction of the hemicellulose component prior to sulfur dioxide augmented wood steaming increased the overall fermentable carbohydrate recovery and, therefore, the attainable yield of ethanol. Only modest improvements in fiber digestibility are now required to meet the pretreatment goals. A new and highly cellulolytic strain of C. thermocellum, designated as strain YS, was isolated from hot springs soil samples and tested. A previously unreported effect of stirring and hydrogen on the fermentation product pattern of several strains of C. thermocellum was discovered. Mono- and co-culture fermentations were performed to understand the factors that affect the yield of ethanol. Co-culturing C. thermocellum strain YS with efficient ethanol-producing non-cellulolytic strains resulted in higher ethanol yields than that observed in strain YS mono-culture cellulose fermentation. The feasibility of ethanol production at high substrate concentrations was investigated in serum bottle experiments. The amount of ethanol produced declined as the substrate concentration increased.

  5. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  6. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current ... Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current ...

  7. Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  8. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications (EIA)

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  9. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  10. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  11. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to Ethanol Process Design ...

  12. Ethanol from biomass: A status report

    SciTech Connect (OSTI)

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  13. New Guinea schedules ethanol plants

    SciTech Connect (OSTI)

    Not Available

    1981-01-28

    It is reported that the Government of Papua New Guinea plans to build nine ethanol plants based on cassava to meet half the nation's transport fuel needs by 1990.

  14. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  15. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect (OSTI)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  16. Conesul Sugar and Ethanol Plant | Open Energy Information

    Open Energy Info (EERE)

    Conesul Sugar and Ethanol Plant Jump to: navigation, search Name: Conesul Sugar and Ethanol Plant Place: Brazil Product: Brazilian ethanol producer References: Conesul Sugar and...

  17. Genetic manipulation of lignin reduces recalcitrance and improves biomass ethanol production from switchgrass

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng; Fu, Chunxiang; Xiao, Xirong; Ge, Yaxin; Chen, Fang; Bouton, Joseph; Foston, Marcus; Dixon, Richard A; Wang, Zeng-Yu; Mielenz, Jonathan R

    2011-01-01

    Switchgrass is a leading dedicated bioenergy feedstock because it is a native, high yielding, perennial prairie grass with broad cultivation range and low agronomic input requirements. Biomass conversion research has developed pilot scale processes for production of ethanol and other alcohols but they remain costly primarily due to the intrinsic recalcitrance of biomass. We show here that switchgrass genetic modification can produce normal plants that have reduced thermochemical and enzymatic recalcitrance. Downregulation of the switchgrass caffeic O-methyltransferase gene decreases lignin content modestly, reduces the syringyl to guaiacyl lignin monomer ratio and increases the ethanol yield by up to a third using conventional biomass fermentation processes. The downregulated lines have wild-type biomass yields but require reduced pretreatment severity and 300-400% lower cellulase dosages for equivalent product yields significantly lowering processing costs. Alternately, our modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

  18. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  19. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs,

    Office of Scientific and Technical Information (OSTI)

    Nevada. Volume 1. Process and plant design (Technical Report) | SciTech Connect -MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design Citation Details In-Document Search Title: Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant

  20. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    SciTech Connect (OSTI)

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  1. Bieber Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBieberPlantBiomassFacility&oldid397188" Feedback Contact needs updating Image needs updating...

  2. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect (OSTI)

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  3. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  4. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  5. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  6. Sauder Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  7. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...

  8. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  9. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  10. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  11. Use of co-cultures in the production of ethanol by the fermentation of biomass

    SciTech Connect (OSTI)

    Zeikus, J.G.; Ben-Bassat, A.; Lamed, R.J.; Ng, T.K.

    1983-08-23

    Production of ethanol and enzymes is disclosed by fermentation of biomass with co-cultures of C. thermocellum and C. thermohydrosulfuricum.

  12. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    Office of Energy Efficiency and Renewable Energy (EERE)

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  13. Southside Water Reclamation Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Water Reclamation Plant Biomass Facility Jump to: navigation, search Name Southside Water Reclamation Plant Biomass Facility Facility Southside Water Reclamation Plant Sector...

  14. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  15. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  16. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  17. Economic contribution of lignins to ethanol production from biomass

    SciTech Connect (OSTI)

    Chum, H.L.; Parker, S.K.; Feinberg, D.A.; Wright, J.D.; Rice, P.A.; Sinclair, S.A.; Glasser, W.G.

    1985-05-01

    Lignin, one of the three major polymeric components of biomass (16% to 33% by weight in wood), has the highest specific heat content. Therefore, it can be burned for process fuel. Compared to coal, its fuel value is 2.2 cents/lb. This report investigates markets for lignin utilization of higher value. After lignin isolation from the process, purchase of replacement fuel (coal was analyzed), lignin sale for the manufacture of solid materials or higher value octane enhancers was evaluated. Polymeric applications evaluated were: surfactants, asphalt, carbon black, adhesives, and lignin plastics; agricultural applications were briefly reviewed. These lignins would generate coproduct credits of 25 cents to 150 cents/gallon of ethanol respectively for 7.5 cents to 60 cents/lb lignin value (isolation and eventual modification costs were taken into account). Overall markets for these polymeric applications were projected at 11 billion lb/year by the year 2000. These projections are intensities of demand and not actual shipments of lignins. In addition, this report investigates the possibility of converting lignins into mixtures of methyls aryl ethers and methyl substituted-aryl ethers which are high value octane enhancers, fully compatible with gasoline. The report intends to show that if fuel ethanol production in the billions of gallons scale occurs lignin markets would not be saturated. 10 refs., 14 figs., 36 tabs.

  18. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect (OSTI)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  19. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  20. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect (OSTI)

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  1. National Bio Energy Gongzhuling Biomass Power Plant | Open Energy...

    Open Energy Info (EERE)

    Gongzhuling Biomass Power Plant Jump to: navigation, search Name: National Bio Energy Gongzhuling Biomass Power Plant Place: China Product: A subsidiary company of National Bio...

  2. Marsh Road Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  3. Largest Cellulosic Ethanol Plant in the World Opened in October

    Broader source: Energy.gov [DOE]

    TheDuPont cellulosic ethanol facility openedin Nevada, Iowa, last month and isthe largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office...

  4. Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Dutta, A.; Phillips, S. D.

    2009-07-01

    This report evaluates process design and technoeconomic criteria for a direct gasification process for conversion of biomass to ethanol. Follow-up to NREL/TP-510-41168.

  5. Thermochemical Design Report: Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot-unit level by 2012.

  6. Plant No 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    No 2 Biomass Facility Jump to: navigation, search Name Plant No 2 Biomass Facility Facility Plant No 2 Sector Biomass Facility Type Non-Fossil Waste Location Orange County,...

  7. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    SciTech Connect (OSTI)

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  8. Extraction of solubles from plant biomass for use as microbial...

    Office of Scientific and Technical Information (OSTI)

    from plant biomass for use as microbial growth stimulant and methods related thereto Citation Details In-Document Search Title: Extraction of solubles from plant biomass for use as ...

  9. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    SciTech Connect (OSTI)

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  10. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOE Patents [OSTI]

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  11. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  12. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  13. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  14. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 29, ... This is the sixth release of the U.S. Energy Information Administration data on fuel ...

  15. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  16. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect (OSTI)

    Shih, Chien-Ju

    2010-05-16

    bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important

  17. Plants in Your Gas Tank: From Photosynthesis to Ethanol

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  18. Technoeconomic Analysis of a Lignocellulosic Biomass Indirect Gasification Process to Make Ethanol via Mixed Alcohols Synthesis

    SciTech Connect (OSTI)

    Phillips, S. D.

    2007-01-01

    A technoeconomic analysis of a 2000 tonne/day lignocellulosic biomass conversion process to make mixed alcohols via gasification and catalytic synthesis was completed. The process, modeled using ASPEN Plus process modeling software for mass and energy calculations, included all major process steps to convert biomass into liquid fuels, including gasification, gas cleanup and conditioning, synthesis conversion to mixed alcohols, and product separation. The gas cleanup area features a catalytic fluidized-bed steam reformer to convert tars and hydrocarbons into syngas. Conversions for both the reformer and the synthesis catalysts were based on research targets expected to be achieved by 2012 through ongoing research. The mass and energy calculations were used to estimate capital and operating costs that were used in a discounted cash flow rate of return analysis for the process to calculate a minimum ethanol selling price of $0.267/L ($1.01/gal) ethanol (U.S.$2005).

  19. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process, and Integrated Biorefineries can maximize their power efficiency by

  20. Blue Lake Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleBlueLakePlantBiomassFacility&oldid397215" Feedback Contact needs updating Image needs updating...

  1. Guadalupe Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Database Retrieved from "http:en.openei.orgwindex.php?titleGuadalupePowerPlantBiomassFacility&oldid397533" Feedback Contact needs updating Image needs updating...

  2. Nove Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleNovePowerPlantBiomassFacility&oldid397862" Feedback Contact needs updating Image needs updating...

  3. West Point Treatment Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339, -121.9836029 Show Map Loading map......

  4. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  5. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect (OSTI)

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  6. Bimodal and multimodal plant biomass particle mixtures

    DOE Patents [OSTI]

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  7. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  8. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs October 19, 2015 - 12:38pm Addthis ICM Inc. announced ...

  9. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol...

    Broader source: Energy.gov (indexed) [DOE]

    pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum. ICM's pilot plant is ...

  10. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Mani, Sudhagar; Togore, Sam; Turhollow Jr, Anthony F

    2010-01-01

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

  11. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    SciTech Connect (OSTI)

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  12. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect (OSTI)

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  13. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    SciTech Connect (OSTI)

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  14. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    SciTech Connect (OSTI)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-03-15

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  15. Novel Biomass Conversion Process Results in Commercial Joint Venture; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing DuPont/NREL cooperative research and development agreement that resulted in biomass-to-ethanol conversion process used as a basis for DuPont Danisco Cellulosic Ethanol, LLC and cellulosic ethanol demonstration plant.

  16. Savannah River's Biomass Steam Plant Success with Clean and Renewable...

    Office of Environmental Management (EM)

    two energy efficient 30,000 lbshr steam boilers to replace a 1950s vintage coal-fired steam plant with a wood-burning (biomass) unit - a "renewable energy source" providing an ...

  17. Biomass IBR Fact Sheet: POET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET Biomass IBR Fact Sheet: POET Design, construct, build, and operate a commercial processing plant as part of an integrated biorefinery to produce lignocellulosic ethanol ...

  18. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  19. Largest Cellulosic Ethanol Plant in the World Opens October 30 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Largest Cellulosic Ethanol Plant in the World Opens October 30 Largest Cellulosic Ethanol Plant in the World Opens October 30 October 26, 2015 - 2:52pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic

  20. EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in October | Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year.

  1. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanolmore » (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  2. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  3. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Wallace, Robert; Ibsen, Kelly; McAloon, Andrew; Yee, Winnie

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  4. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  5. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... HomeBiomass Permalink One-Pot-to-Prep Biomass for Biofuels Biofuels, Biomass, Energy, ...

  6. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  7. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    SciTech Connect (OSTI)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  8. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

  9. Biomass Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  10. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    SciTech Connect (OSTI)

    1995-08-01

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  11. Largest Cellulosic Ethanol Plant in the World Opened in October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  12. U.S. Fuel Ethanol Plant Production Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Note: In previous ethanol capacity reports, EIA included data on maximum sustainable ... The collection and publication efforts for the maximum sustainable data value were ...

  13. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  14. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S.; Jennings, Edward W.

    2016-01-19

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  15. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    SciTech Connect (OSTI)

    Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

    2002-06-01

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and

  16. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs,

    Office of Scientific and Technical Information (OSTI)

    Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability (Technical Report) | SciTech Connect MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability Citation Details In-Document Search Title: Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability The issues

  17. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  18. Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  19. Feasibility of converting a sugar beet plant to fuel ethanol production

    SciTech Connect (OSTI)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  20. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  1. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less

  2. BAAD: a Biomass And Allometry Database for woody plants

    SciTech Connect (OSTI)

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O'Grady, Anthony; O'Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  3. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect (OSTI)

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  4. Engineered plant biomass particles coated with biological agents

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.

    2014-06-24

    Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  5. Engineered plant biomass particles coated with bioactive agents

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Plant biomass particles coated with a bioactive agent such as a fertilizer or pesticide, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces.

  6. Genome Sequence of Amycolatopsis sp Strain ATCC 39116, a Plant Biomass-Degrading Actinomycete

    SciTech Connect (OSTI)

    Davis, Jennifer R.; Goodwin, Lynne A.; Woyke, Tanja; Teshima, Hazuki; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Shunsheng; Han, James; Pitluck, Sam; Nolan, Matt; Mikhailova, Natalia; Land, Miriam L; Sello, Jason K.

    2012-01-01

    We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.

  7. Preliminary energy balance and economic of a farm-scale ethanol plant

    SciTech Connect (OSTI)

    Jantzen, D.; McKinnon, T.

    1980-05-01

    A small-scale ethanol plant was designed, built, tested, and modified over the past 18 months. The plant currently operating is the second design. A third, and probably final, design will be installed and operating within a few months. The current plant produces approximately 30 gal/hr of 190-proof alcohol on a continuous basis. The new plant will produce 50 gal/hr of 200-proof alcohol. A key feature is the relatively low process heat requirement, which is achieved by extensive use of waste-heat recovery heat exchangers. This is manifested in the low temperatures of the process output streams. Acting on the request of the Office of Alcohol Fuels, US Department of Energy, and at the invitation of the owners, representatives from the Solar Energy Research Institute evaluated the energy balance on the plant. The objective was to help clear up the controversy surrounding the net energy benefit of ethanol production. Although the study was site-specific to the plant and limited in scope, it is indicative of the potential performance of grain-to-ethanol plants in general.

  8. Dow and NREL Partner to Convert Biomass to Ethanol and Other...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a corn plant or wood wastes, and convert the bio-based material through a gasification process to synthesis gas. ... energy and energy efficiency research and development. ...

  9. Cardinal Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Cardinal Ethanol LLC Place: Winchester, Indiana Zip: 47394 Product: Cardinal Ethanol is in the process of building an ethanol plant in...

  10. Extraction of solubles from plant biomass for use as microbial...

    Office of Scientific and Technical Information (OSTI)

    biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence ... Research Org: Chicago Operations Office, Argonne, IL (United States) Sponsoring Org: USDOE ...

  11. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  12. Diversified Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Diversified Ethanol Place: Northbrook, Illinois Zip: 60062 Product: A division of OTCBB-traded ONYI that is building an ethanol plant in...

  13. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  14. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  15. Process Design Report for Wood Feedstock: Lignocellulosic Biomass to Ethanol Process Desing and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    SciTech Connect (OSTI)

    Wooley, Robert; Ruth, Mark; Sheehan, John; Ibsen, Kelly; Majdeski, Henry; Galves, Adrian

    1999-07-01

    The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol process based on co-current dilute acid prehydrolysis, along with simultaneous saccharification (enzymatic) and co-fermentation. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production.

  16. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden National Renewable Energy Laboratory Golden, Colorado P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon Harris Group Inc. Seattle, Washington and Atlanta, Georgia Technical Report NREL/TP-5100-47764 May 2011 NREL is a national laboratory of the U.S. Department

  17. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  18. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy Biomass is any organic material that has stored sunlight in the form of chemical energy, such as plants, agricultural crops or residues, municipal wastes, and algae. DOE is focusing on new and better ways to make liquid transportation fuels, or "biofuels," like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass. Biomass

  19. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc. Corporate HQ: Sacramento, CA Proposed Facility Location: Boardman, OR Description: The team will design and build a demonstration cellulosic ethanol plant in ...

  20. Tampa Bay Area Ethanol Consortium | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  1. Mississippi Ethanol Gasification Project

    SciTech Connect (OSTI)

    2006-08-01

    This is a Congressionally-mandated effort to develop and demonstrate technologies for the conversion of biomass to ethanol in the State of Mississippi.

  2. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    SciTech Connect (OSTI)

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  3. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    SciTech Connect (OSTI)

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  4. Imperial Valley Resource Recovery Plant Biomass Facility | Open...

    Open Energy Info (EERE)

    15,000 kW 15,000,000 W 15,000,000,000 mW 0.015 GW References Biomass Power Association (BPA) Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TER...

  5. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    SciTech Connect (OSTI)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  6. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  7. Fuel cell power plants using hydrogen from biomass

    SciTech Connect (OSTI)

    Knight, R.A.; Onischak, M.; Lau, F.S.

    1998-12-31

    This paper discusses a power generation system that offers high energy efficiency, ultra-clean environmental performance, and near-zero greenhouse gas emissions. Biomass from agricultural and forestry wastes or dedicated energy farms can be used efficiently for power generation in integrated biomass gasification-fuel cell (IBGFC) systems. The energy efficiency of these systems has been projected to approach 55% or even higher if cogeneration opportunities can be utilized. Such systems, in addition to being ultra-efficient, can boast very low emissions of SO{sub 2}, NO{sub x}, and particulates, and are essentially CO{sub 2}-neutral. With the mounting concern about greenhouse gas emissions, this approach to renewable energy is very attractive for small distributed generation markets in the US and worldwide. Biomass wastes alone, by current estimates, have the potential to provide as much as 338 GW of electrical power worldwide if utilized in this fashion, and offer the best near- to mid-term market entry opportunities for this technology. Power demand in the US will be driven by the opening of niche markets as a result of deregulation and environmental concerns, and markets in other regions will be driven by economic growth as well. In this paper, the integration of a pressurized fluidized-bed gasifier with a molten carbonate fuel cell and expansion turbine bottoming cycle will be presented. Two cycles are suggested: one using conventional technology for biomass drying, feeding, and gasification, and a second, more advanced cycle using wet feeding direct to the gasifier and in-bed steam reforming to boost cycle efficiency and reduce capital costs. Both cycles use state-of-the-art molten carbonate fuel cells with an expansion turbine bottoming cycle. These options are presented along with recommended technical development activities and targets.

  8. Feasibility study of a corn-to-ethanol plant in Sardis, Mississippi

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    A feasibility study for a corn-to-ethanol plant in Panola County, Mississippi was carried out. This area is well suited for the production of ethanol from corn, as it has a mild climate, a plentiful supply of wood fuel, and a well-developed agricultural infrastructure. The project was designed for 5 million gallons per year, using the ACR Process, a process proven in 6 plants now operating. It was determined to be technically feasible for this size. However, without a state financial incentive such as a gasoline excise tax or sales tax exemption, the plant is not economically feasible in Mississippi. Even though a 4 cents per gallon federal excise tax exemption will likely remain, the economics without any other incentive are not strong enough to obtain financing or equity funds. While the Mississippi legislature decided not to consider a financial incentive in their 1982 session, an attempt will be made to introduce a proposal for a suitable exemption during the 1983 legislative session. Until then, the project is on hold.

  9. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  10. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot...

    Office of Scientific and Technical Information (OSTI)

    ... -- Alcohol Fuels-- Preparation from Wastes or Biomass-- (1976-1989); 140504 -- Solar Energy Conversion-- Biomass Production & Conversion-- (-1989); 151000 -- Geothermal ...

  11. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

    SciTech Connect (OSTI)

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-03

    Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  12. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-03

    Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbonmore » pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.« less

  13. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    SciTech Connect (OSTI)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  14. Utilization of emergent aquatic plants for biomass-energy-systems development

    SciTech Connect (OSTI)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  15. Marysville Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Marysville Ethanol LLC Jump to: navigation, search Name: Marysville Ethanol LLC Place: Marysville, Michigan Zip: 48040 Product: Developing a 50m gallon ethanol plant in Marysville,...

  16. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  17. Central Indiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in Marion,...

  18. Kansas Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Kansas Ethanol LLC Place: Lyons, Kansas Zip: 67554 Product: Constructing a 55m gallon ethanol plant in Rice County, Kansas...

  19. Standard Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...

  20. Ethanol Capital Funding | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Funding Jump to: navigation, search Name: Ethanol Capital Funding Place: Atlanta, Georgia Zip: 30328 Product: Provides funding for ethanol and biodiesel plants....

  1. Siouxland Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Siouxland Ethanol LLC Place: Jackson, Nebraska Zip: 68743 Product: Startup hoping to build a USD 80m ethanol manufacturing plant near...

  2. Platinum Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  3. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc Pacific Ethanol, Inc Design and build a demonstration cellulosic ethanol plant in Boardman. pacificethanolfactsheet040308.pdf (10.79 KB) More Documents & ...

  4. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  5. Densified biomass as an alternative Army heating and power plant fuel. Final report

    SciTech Connect (OSTI)

    Hathaway, S.A.; Magrino, T.; Lin, J.S.; Duster, K.; Mahon, D.

    1980-03-01

    This investigation evaluated the technical and economic potential of using densified biomass (principally wood pellets) as a coal substitute in Army heating and power plants. The report reviews Department of Defense (DOD) experience with and tests of wood pellets; production of wood pellets (excluding silvicultural aspects); handling, storing, and feeding; combustion; major environental considerations; and economics of use.

  6. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  7. Regional biomass fired power plant siting Wisconsin project

    SciTech Connect (OSTI)

    Smith, M.L.

    1996-12-31

    The use of alternative fuels such as wood chips, wood products industry residues, refuse derived fuel, tire derived fuel and processed manufacturing paper waste fuel pellets has been practiced for a number of years in the state of Wisconsin. At present a relatively small quantity of the non-forestry urban wood waste is reclaimed for a variety of uses such as architectural mulch, animal bedding, nature trails in parks and recreational areas. Most is disposed of by landfills. This wood waste has low bulky density, depletes valuable landfill space, and in the Milwaukee area, currently costs $35-$50 per ton for hauling and disposal. This paper reviews the technical and economic feasibility of processing urban wood wastes using existing scrap processing facilities and transporting and supplying the wood fuel to existing stream and power generating facilities at state of Wisconsin institutions. The paper is based on a recent study funded by The Great Lakes Regional Biomass Energy Program. The capability of a large midwest auto shredding/scrap processing facility, one of 200 such facilities in the US, to serve as a central urban waste fuels processor is reviewed.

  8. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    SciTech Connect (OSTI)

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  9. Economic Assessment of a Conceptual Biomass to Liquids Bio-Syntrolysis Plant

    SciTech Connect (OSTI)

    M. M. Plum; G. L. Hawkes

    2010-06-01

    A series of assessments evaluated the economic efficiency of integrating a nuclear electric power plant with a biomass to SynFuel plant under three market scenarios. Results strongly suggest that a nuclear assisted-BioSyntrolysis Process would be as cost competitive as other carbon feedstock to liquid fuels concepts while having significant advantages regarding CO2 greenhouse gas production. This concept may also be competitive for those energy markets where energy dense, fossil fuels are scarce while wind, hydroelectric, or other renewable energy sources can be produced at a relatively low cost. At this time, a realistic vision of this technology’s deployment of a biomass to synfuel plants powered by a nuclear 1100 MWe reactor. Accompanying an area of 25 miles by 25 miles, this integrated Enterprise could produce 24,000 BBLs of SynFuel daily; or 0.2% of the U.S.’s imported oil.

  10. Biomass IBR Fact Sheet: Abengoa Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass to Ethanol, Power, and Heat Abengoa Bioenergy's efforts involve the construction of a 1,200-tons-per- day commercial biorefinery, producing cellulosic ethanol and also ...

  11. High Starch in Plant Leaves at Senescence - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Starch in Plant Leaves at Senescence Inventors: Thomas Sharkey, Sean Weise Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryCurrently, there is a great interest in using plant biomass, instead of grain, to produce ethanol. Starch can easily be used to make ethanol and would improve ethanol production from cellulose. In most plants, though, starch accumulated during the day is usually broken down each night, resulting in very little starch

  12. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  13. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 5 and 6, October 1, 1998 through March 30, 1999

    SciTech Connect (OSTI)

    Dale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  14. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 7, 8 and Final report

    SciTech Connect (OSTI)

    Cale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast stran, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  15. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect (OSTI)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  16. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    SciTech Connect (OSTI)

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  17. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect (OSTI)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  18. Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destined for Biofuels | U.S. DOE Office of Science (SC) Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants Destined for Biofuels Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence

  19. Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destined for Biofuels | U.S. DOE Office of Science (SC) Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants Destined for Biofuels Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S.

  20. Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2104B (Engineered Microbe Tolerance) Marketing Summary_2.pdf (194 KB) Technology Marketing Summary Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of

  1. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation: Subcortical insects in hardwood plantations

    SciTech Connect (OSTI)

    Coyle, David R.; Brissey, Courtney L.; Gandhi, Kamal J. K.

    2015-01-02

    1. We characterized subcortical insect assemblages in economically important eastern cottonwood (Populus deltoides Bartr.), sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations in the southeastern U.S.A. Furthermore, we compared insect responses between freshly-cut plant material by placing traps directly over cut hardwood logs (trap-logs), traps baited with ethanol lures and unbaited (control) traps. 2. We captured a total of 15 506 insects representing 127 species in four families in 2011 and 2013. Approximately 9% and 62% of total species and individuals, respectively, and 23% and 79% of total Scolytinae species and individuals, respectively, were non-native to North America. 3. We captured more Scolytinae using cottonwood trap-logs compared with control traps in both years, although this was the case with sycamore and sweetgum only in 2013. More woodborers were captured using cottonwood and sweetgum trap-logs compared with control traps in both years, although only with sycamore in 2013. 4. Ethanol was an effective lure for capturing non-native Scolytinae; however, not all non-native species were captured using ethanol lures. Ambrosiophilus atratus (Eichhoff) and Hypothenemus crudiae (Panzer) were captured with both trap-logs and control traps, whereas Coccotrypes distinctus (Motschulsky) and Xyleborus glabratus Eichhoff were only captured on trap-logs. 5. Indicator species analysis revealed that certain scolytines [e.g. Cnestus mutilates (Blandford) and Xylosandrus crassiusculus (Motschulsky)] showed significant associations with trap-logs or ethanol baits in poplar or sweetgum trap-logs. In general, the species composition of subcortical insects, especially woodboring insects, was distinct among the three tree species and between those associated with trap-logs and control traps.

  2. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; Mosher, Jennifer J.; Palumbo, Anthony V.; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  3. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  4. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...

  5. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect (OSTI)

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  6. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot...

    Office of Scientific and Technical Information (OSTI)

    Legacy 151000* -- Geothermal Energy-- Direct Energy Utilization; 140504 -- Solar Energy Conversion-- Biomass Production & Conversion-- (-1989); 090222 -- Alcohol Fuels-- ...

  7. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect (OSTI)

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided. (Refs. 46).

  8. Develop and Demonstrate the Cellulose to Ethanol Process: Executive Summary of the Final Technical Report, 17 September 1980 - 17 March 1982

    SciTech Connect (OSTI)

    Emert, George H.; Becker, Dana K.; Bevernitz, Kurt J.; Gracheck, Stephen J.; Kienholz, Eldon W.; Rivers, Dougals B.; Zoldak, Bernadette R.; Woodford, Lindley C.

    1982-01-01

    The Biomass Research Center at the University of Arkansas was contracted by the Solar Energy Research Institute to 'Develop and Demonstrate the Cellulose to Ethanol Process.' The purpose of the contract was to accelerate site selection, site specific engineering, and research and development leading to the determination of the feasibility of economically operating a cellulose to ethanol commercial scale plant.

  9. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    SciTech Connect (OSTI)

    Ramon Gonzalez; J. V. Shanks; K-Y. San .

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  10. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  11. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  12. Researchers find potential key for unlocking biomass energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unlocking biomass energy Researchers find potential key for unlocking biomass energy Potential pretreatment method that can make plant cellulose five times more digestible by enzymes that convert it into ethanol, a useful biofuel. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  13. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  14. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  15. Evaluation of High Throughput Screening Methods in Picking up Differences between Cultivars of Lignocellulosic Biomass for Ethanol Production

    SciTech Connect (OSTI)

    Lindedam, Jane; Bruun, Sander; Jorgensen, Henning; Decker, Stephen R.; Turner, Geoffrey B.; DeMartini, Jaclyn D.; Wyman, Charles E.; Felby, Claus

    2014-07-01

    Here, we present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. We found the best correlation of glucose yields between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). The three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.

  16. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  17. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thusmore » provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new and

  18. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    SciTech Connect (OSTI)

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new

  19. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  20. Ethanol Capital Management | Open Energy Information

    Open Energy Info (EERE)

    Management Jump to: navigation, search Name: Ethanol Capital Management Place: Tucson, Arizona Zip: 85711 Product: Manages funds investing in Ethanol plants in the US Coordinates:...

  1. Frontier Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Frontier Ethanol LLC Place: Gowrie, Iowa Product: Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates: 42.28227,...

  2. DOE/RA/50354 Volume II FEAS)IBILITY STUDY FOR A 10 MM GPY FUEL ETHANOL PLANT

    Office of Scientific and Technical Information (OSTI)

    DOE/RA/50354 Volume II FEAS)IBILITY STUDY FOR A 10 MM GPY FUEL ETHANOL PLANT BRADY HOT SPRINGS, NEVADA . Volume II - Geothermal Resource, Agricultural Feedstock, Markets and E c o q h i c Viability 8 *e _. - - * 7 , - - - September 1980 i Prepared by Geothermal Food Processors, Inc. Fernley, Nevada and The Andersen Group DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof,

  3. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  4. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    SciTech Connect (OSTI)

    2002-06-01

    This report is an update of NREL’s ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks.

  5. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an update of NREL’s ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks.

  6. Tharaldson Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson Ethanol LLC Place: Casselton, North Dakota Zip: 58012 Product: Owner of a USD 200m 120m-gallon ethanol plant in...

  7. United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    United Ethanol LLC Place: Wisconsin Product: Developed a 43m gallon ethanol plant in Milton, Wisconsin. References: United Ethanol LLC1 This article is a stub. You can help...

  8. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  9. Ozark Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ozark Ethanol Place: Missouri Zip: 64762 Product: Missouri-based bioethanol producer planning to develop a 204m-litre per year ethanol plant in Vernon County. References: Ozark...

  10. Micro-Spectroscopic Imaging of Lignin-Carbohydrate Complexes in Plant Cell Walls and Their Migration During Biomass Pretreatment

    SciTech Connect (OSTI)

    Zeng, Yining; Zhao, Shuai; Wei, Hui; Tucker, Melvin P.; Johnson, David K.; Himmel, Michael E.; Mosier, Nathan S.; Meilan, Richard; Ding, Shi-You

    2015-04-27

    In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation of LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.

  11. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    SciTech Connect (OSTI)

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portions of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  12. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2015-06-02

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  13. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2012-04-24

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  14. NREL: Biomass Research - Biochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL researchers are working to improve the efficiency and economics of the biochemical ... that can coferment all the sugars in biomass to improve ethanol production economics. ...

  15. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect (OSTI)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  16. A pilot plant scale reactor/separator for ethanol from cellulosics. Quarterly report No. 1 & 2, October 1, 1997--March 30, 1998

    SciTech Connect (OSTI)

    Dale, M.C.

    1998-06-01

    The basic objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive saccharification/fermentation of cellulose (glucans) followed by hemi-cellulose (glucans) in a multi-stage continuous stirred reactor separator (CSRS). During year 1, pretreatment and bench scale fermentation trials will be performed to demonstrate and develop the process, and during year 2, a 130 L or larger process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation, Xylan Inc as a possible provider of pretreated biomass.

  17. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts Hua Song Lingzhi Zhang Umit S. Ozkan* November 6 th , 2007 Heterogeneous Catalysis Research Group Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, OH 43210 *Ozkan.1@osu.edu Biomass to Hydrogen (Environmentally Friendly) Plant cultivation Plant cultivation Saccharification Saccharification / /

  18. State-level workshops on ethanol for transportaton

    SciTech Connect (OSTI)

    Graf, Angela

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  19. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Togore, Sam; Turhollow Jr, Anthony F

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  20. Autothermal Partial Oxidation of Ethanol and Alcohols - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Autothermal Partial Oxidation of Ethanol and Alcohols Syngas from Autothermal Reforming of Ethanol DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology Technology Marketing Summary Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon

  1. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy

  2. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  3. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM -pre-treated biomass

    SciTech Connect (OSTI)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.

  4. EM Celebrates Ribbon Cutting for New Biomass Plant at Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – Senior Advisor for Environmental Management David Huizenga and Under Secretary for Nuclear Security Thomas D’Agostino were among the officials who marked the operational startup of the Savannah River Site (SRS) Biomass Cogeneration Facility recently.

  5. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  6. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang -Jun

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less

  7. Ethanol as a fuel: design and construction of an ethanol production facility for a farm

    SciTech Connect (OSTI)

    Pelger, E.C. III

    1981-01-01

    This dissertation describes the production of ethanol from biomass. It includes descriptions of photosynthesis, feedstock preparation, fermentation, distillation and end use. Technical problems and limitations as well as social, political, and economic aspects of producing ethanol are addressed. The potential of small-scale ethanol production and specific case studies are reviewed. A low-cost efficient design for a single farm ethanol facility is included. (DMC)

  8. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  9. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to ...

  10. Biomass | Open Energy Information

    Open Energy Info (EERE)

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  11. Biomass Feasibility Analysis Report

    SciTech Connect (OSTI)

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  12. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    DOE Patents [OSTI]

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  13. Process Design Report for Stover Feedstock: Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    SciTech Connect (OSTI)

    Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

    2002-06-01

    The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

  14. Elkhorn Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Elkhorn Valley Ethanol LLC Place: Norfolk, Nebraska Zip: 68701 Product: Operates a 40m gallon ethanol plant in Norfolk, Nebraska. Coordinates: 36.846825, -76.285069 Show Map...

  15. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect (OSTI)

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  16. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  17. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel M.; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; et al

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plantmore » biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.« less

  18. Biomass Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  19. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect (OSTI)

    Tarud, J.; Phillips, S.

    2011-08-01

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  20. Ethanol production using engineered mutant E. coli

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  1. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  2. Addressing Biomass Supply Chain Challenges With AFEX’ Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drying Pelletizing Treated biomass AFEX pellets AFEX Pilot Reactor Operations Corn stover ... of Cellulosic Ethanol From AFEX Pellets * 20-25% solids loading of AFEX pellets * ...

  3. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  4. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  5. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    SciTech Connect (OSTI)

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.

  6. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose bindingmore » of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.« less

  7. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  8. Methods for producing and using densified biomass products containing...

    Office of Scientific and Technical Information (OSTI)

    A process is provided comprising subjecting a quantity of plant biomass fibers to a ... wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying ...

  9. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    SciTech Connect (OSTI)

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  10. Evolved strains of Scheffersomyces stipitis achieving high ethanol

    Office of Scientific and Technical Information (OSTI)

    productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading (Journal Article) | SciTech Connect Journal Article: Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading Citation Details In-Document Search Title: Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

  11. NREL: Energy Analysis - Biomass Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Biomass-fired integrated gasification combined-cycle system using a biomass energy crop Pulverized coal boiler representing an average U.S. coal-fired power plant Cofiring biomass ...

  12. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibr_commercial_abengoa.pdf (227.38 KB) More Documents & Publications Abengoa Bioenergy Biomass of Kansas, LLC ABENGOA BIOENERGY 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review

  13. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  14. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  15. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect (OSTI)

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  16. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  17. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  18. Ethanol Plant Production of Fuel Ethanol

    Gasoline and Diesel Fuel Update (EIA)

    Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 998 1,004 1,018 1,029 1,028 1,023 2010-2016 PADD 1 W W W W W W 2010-2016 PADD 2 911 916 931 947 939 934 2010-2016 PADD 3 W W W W W W 2010-2016 PADD 4 W W W W W W 2010-2016 PADD 5 W W W W W W

  19. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  20. DOE/EA-1517: Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana (April 2005)

    SciTech Connect (OSTI)

    N /A

    2005-04-29

    Based on action by the U.S. Congress, the U.S. Department of Energy (DOE) has funding available to support a proposal by the Iroquois Bio-energy Company (IBEC), an Indiana limited liability company, to construct a fuel ethanol plant in Jasper County, Indiana (the proposed plant). Congress has acknowledged the merit of this project by providing specific funding through DOE. Consequently, DOE proposes to provide partial funding to IBEC to subsidize the design and construction of the proposed plant (the Proposed Action). In accordance with DOE and National Environmental Policy Act (NEPA) implementing regulations, DOE is required to evaluate the potential environmental impacts of DOE facilities, operations, and related funding decisions. The proposal to use Federal funds to support the project requires DOE to address NEPA requirements and related environmental documentation and permitting requirements. In compliance with NEPA (42 U.S.C. {section} 4321 et seq.) and DOE's NEPA implementing regulations (10 CFR section 1021.330) and procedures, this environmental assessment (EA) examines the potential environmental impacts of DOE's Proposed Action and a No Action Alternative.

  1. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  2. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema (OSTI)

    None

    2013-05-29

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

  3. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  4. Hydrogen Production: Biomass-Derived Liquid Reforming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass-Derived Liquid Reforming Hydrogen Production: Biomass-Derived Liquid Reforming Photo of cylindrical reactor vessel and associated piping and equipment in the Thermochemical Process Development Unit at NREL Liquids derived from biomass resources-including ethanol and bio-oils-can be reformed to produce hydrogen in a process similar to natural gas reforming. Biomass-derived liquids can be transported more easily than their biomass feedstocks, allowing for semi-central

  5. Methods for producing and using densified biomass products containing pretreated biomass fibers

    DOE Patents [OSTI]

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  6. Mid-Level Ethanol Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOE/EERE Vehicle Technologies Program Annual Merit Review and Peer Evaluation meeting May 19, 2009 Kevin Stork Vehicle Technologies Program Shab Fardanesh and Joan Glickman Office of the Biomass Program This presentation does not contain any proprietary or classified information Project ID: ft_05_knoll Collaborators Kevin Stork DOE OVT Shab Fardanesh DOE OBP Joan Glickman DOE OBP Wendy Clark

  7. Ethanol annual report FY 1990

    SciTech Connect (OSTI)

    Texeira, R.H.; Goodman, B.J.

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  8. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  9. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    Open Energy Info (EERE)

    CVEC Jump to: navigation, search Name: Chippewa Valley Ethanol Company (CVEC) Place: NW Benson, Minnesota Zip: 56215 Product: Owns 57.0m litres a year dry mill ethanol plant....

  10. Biomass IBR Fact Sheet: Archer Daniels Midland

    Office of Energy Efficiency and Renewable Energy (EERE)

    Archer Daniels Midland will develop a pilot plant to demonstrate the continuous production of cellulosic ethanol and butyl acrylate from densified corn stover.