Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electricity Production from Steam-Exploded Corn Stover Biomass  

Science Journals Connector (OSTI)

19 Samples were centrifuged (Eppendorf centrifuge 5403; 2?750 × g, 20 min) for soluble COD (SCOD) tests and filtered using 0.2 ?m pore-diameter cellulose syringe filters (Corning) to remove bacteria before color measurement. ... Implications for Using Corn Stover as a Source of Renewable Energy. ...

Yi Zuo; Pin-Ching Maness; Bruce E. Logan

2006-05-28T23:59:59.000Z

2

Biochemical Production of Ethanol from Corn Stover: 2007 State...  

Energy Savers [EERE]

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process...

3

Summary of Findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): Corn Stover Pretreatment  

SciTech Connect (OSTI)

The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.

Elander, R. T.; Dale, B. E.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y.; Mitchinson, C.; Saddler, J. N.; Wyman, C. E.

2009-01-01T23:59:59.000Z

4

Advancing Biorefining of Distiller's Grain and Corn Stover Blends...  

Broader source: Energy.gov (indexed) [DOE]

Advancing Biorefining of Distiller's Grain and Corn Stover Blends Advancing Biorefining of Distiller's Grain and Corn Stover Blends This fact sheet summarizes a U.S. Department of...

5

Cellulase Accessibility of Dilute-Acid Pretreated Corn Stover  

SciTech Connect (OSTI)

The conclusions of this presentation are: (1) The dilute-acid pretreatment reduces xylan content in corn stover. This reduction in xylan content appears to render the substrate less recalcitrant. Below {approx}8%, xylan content is no longer the dominant factor in biomass recalcitrance. (2) Decreasing xylan content of corn stover also created more binding sites for Cel7A, but no strong correlation with actual xylan content. (3) We found no correlation between bound Cel7A concentration and lignin content. Maybe lignin is blocking the way for Cel7A? The contribution of lignin to biomass recalcitrance requires further investigation.

Jeoh, T.; Johnson, D. K.; Adney, W. S.; Himmel, M. E.

2005-01-01T23:59:59.000Z

6

Maximizing the enzymic saccharification of corn stover  

E-Print Network [OSTI]

to pH 4. 8. . 10 Sugar yield for various calcium hydroxide loadings. . . Progress of lime recovery by batch extraction of pretreated corn stover. 18 Sugar yields from Tween 80 loading experiment . 24 Conversion of glucan and xylan &om... Sugar yields for different enzyme loadings at 40 "C no Tween, with Tween 80, with Tween 20. 31 Sugar yield (40 'C, 100 h) as a function of enzyme loading 32 Conversions of corn stover glucan, xylan, and total sugars at different hydrolysis...

Kaar, William Edward

2012-06-07T23:59:59.000Z

7

Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass Xiongjun Shao a , Mingjie Jin b,c , Anna Guseva a , Chaogang Liu d , Venkatesh Balan b,c , David Hogsett d , Bruce E. Dale b,c , Lee Lynd a,d,⇑ a Thayer School of Engineering at Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA b Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3900 Collins Road, Lansing, MI 48910, USA c Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA d Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA a r t i c l e i n f o Article history: Received 8 March 2011 Received in revised form 6 May 2011 Accepted

8

Improving Anaerobic Codigestion of Corn Stover Using Sodium Hydroxide Pretreatment  

Science Journals Connector (OSTI)

Lignin of the corn stover was measured according to the Laboratory Analytical Procedures (LAP) established by National Renewable Energy Laboratory (NREL). ... The methane yield per gram of corn stover is an important parameter to estimate the net energy production of the corn stover digestion. ... This means that NaOH pretreatment is an effective way to obtain higher net energy production through anaerobic codigestion of corn stover. ...

Zhaoyang You; Taoyuan Wei; Jay J. Cheng

2013-12-04T23:59:59.000Z

9

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion of Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden National Renewable Energy Laboratory Golden, Colorado P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon Harris Group Inc. Seattle, Washington and Atlanta, Georgia Technical Report NREL/TP-5100-47764 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

10

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network [OSTI]

used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose and animal wastewaters and corn stover hydrolysates. For example, high power densities (810 to 970 mW/m2

11

Compositional Analysis of Water-Soluble Materials in Corn Stover  

SciTech Connect (OSTI)

Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis. Over 30 previously unknown constituents of aqueous extracts were identified and quantified using a variety of chromatographic techniques. Monomeric sugars (primarily glucose and fructose) were found to be the predominant water-soluble components of corn stover, accounting for 30-46% of the dry weight of extractives (4-12% of the dry weight of feedstocks). Additional constituents contributing to the mass balance for extractives included various alditols (3-7%), aliphatic acids (7-21%), inorganic ions (10-18%), oligomeric sugars (4-12%), and a distribution of oligomers tentatively identified as being derived from phenolic glycosides (10-18%).

Chen, S. F.; Mowery, R. A.; Scarlata, C. J.; Chambliss, C. K.

2007-01-01T23:59:59.000Z

12

Biochemical Production of Ethanol from Corn Stover: 2007 State...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

are Adjusted increasing For: rapidly - could * Capital be under- * Labor predicted. * Energy s AEI President' Goal: 2000 real dollars 35 feedstock (corn stover) President's...

13

Analysis of standard sieving method for milled biomass through image processing. Effects of particle shape and size for poplar and corn stover  

Science Journals Connector (OSTI)

Abstract Particle size distribution, obtained under standard sieving method, is usually given as a function of a single characteristic length of the particle. It is fully characterized for spherical particles, but it presents uncertainties when the particle has more complex morphologies as it is the case of biomass powders. The aim of this work is to characterize the standard sieving method in order to determine which particle dimension is being measured, as well as the repercussions of non-spherical shapes on a correct size classification. For this purpose, samples of milled poplar and corn stover have been classified in six size ranges between 0 and 5 mm. Each group of particles has been studied by means of scanned imaging to characterize their real 2D dimensions (width and length) and their shapes according to six different categories: circle, square, rectangle, rectangle fibrous, hook and hook fibrous. Results from image analysis show that sieve size corresponds mostly with particle width (shorter dimension), finding a sieving efficiency around 70%. Most wrongly classified particles showed a high aspect ratio, a hook shape or silhouette irregularities at fracture section, thus proving the importance of particle shape in the classifying process.

Miguel Gil; Enrique Teruel; Inmaculada Arauzo

2014-01-01T23:59:59.000Z

14

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

Broader source: Energy.gov [DOE]

This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

15

Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies  

E-Print Network [OSTI]

explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product...

Capunitan, Jewel Alviar

2013-01-15T23:59:59.000Z

16

Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment  

Science Journals Connector (OSTI)

The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University ... the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were appl...

Richard T. Elander; Bruce E. Dale; Mark Holtzapple; Michael R. Ladisch…

2009-08-01T23:59:59.000Z

17

Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio  

SciTech Connect (OSTI)

Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-01-06T23:59:59.000Z

18

Optimizing Ethanol and Methane Production from Steam-pretreated, Phosphoric Acid-impregnated Corn Stover  

Science Journals Connector (OSTI)

The composition of raw corn stover and the WIS after pretreatment was...27] from the National Renewable Energy Laboratory (NREL). All measurements were performed in duplicate. The starch content of corn stover an...

Pia-Maria Bondesson; Aurélie Dupuy; Mats Galbe…

2014-11-01T23:59:59.000Z

19

Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with Literature  

Science Journals Connector (OSTI)

Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with Literature ... Chemical Reviews (Washington, DC, United States) (2006), 106 (9), 4044-4098 CODEN: CHREAY; ISSN:0009-2665. ... A review of the primary measures for tar elimination in biomass gasification processes Biomass Bioenergy 2003, 24, 125– 140 ...

Daniel L. Carpenter; Richard L. Bain; Ryan E. Davis; Abhijit Dutta; Calvin J. Feik; Katherine R. Gaston; Whitney Jablonski; Steven D. Phillips; Mark R. Nimlos

2010-01-07T23:59:59.000Z

20

Current and potential U.S. Corn Stover Supplies  

SciTech Connect (OSTI)

Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.

Graham, Robin Lambert [ORNL; Nelson, R [Kansas State University; Perlack, Robert D [ORNL; Sheehan, J. [National Renewable Energy Laboratory (NREL); Wright, Lynn L [subcontractor

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measurement of Porosity in Dilute Acid Pretreated Corn Stover  

SciTech Connect (OSTI)

The conclusions of this report are: (1) pretreated corn stover appeared to have more accessible pore volume than raw corn stover; (2) solute exclusion method--differences in the pore volume were not detectable due to the high variability of the measurements; (3) thermoporosimetry--differences in pore volume between pretreated samples were not observed despite the low variability of the measurement and a good correction was found between unfrozen water at 240K and xylan content; and (4) porosity measurements showed no correlation between ethanol yields and the volume accessible to an enzyme size probe, for this sample set.

Ishizawa, C.; Davis, M. F.; Johnson, D. K.

2005-01-01T23:59:59.000Z

22

A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA  

SciTech Connect (OSTI)

Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.

Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

2011-11-01T23:59:59.000Z

23

Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?  

SciTech Connect (OSTI)

It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

2009-01-01T23:59:59.000Z

24

Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality  

SciTech Connect (OSTI)

Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

2014-06-01T23:59:59.000Z

25

Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol (Poster)  

SciTech Connect (OSTI)

A description of methods and results from an experiment designed to assess the impact of process water recycle on corn stover-to-ethanol conversion process performance.

Mohagheghi, A.; Schell, D. J.

2009-11-01T23:59:59.000Z

26

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION  

E-Print Network [OSTI]

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor heat and electric power. To perform this analysis, yield and production potentials were explored

Wisconsin at Madison, University of

27

Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes  

SciTech Connect (OSTI)

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

Selig, M. J.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

28

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy  

Science Journals Connector (OSTI)

Environmental and Economic Trade-Offs in a Watershed When Using Corn Stover for Bioenergy ... Taken together, these are the principal reasons corn stover has been looked upon favorably in the policy dialogue relative to dedicated bioenergy crops. ... Research that considers greenhouse gases, water quality, and farm-gate economics of cellulosic bioenergy crops together in a single integrated analysis is needed given societal concerns about the overall impact of using agricultural land to grow bioenergy crops. ...

Benjamin M. Gramig; Carson J. Reeling; Raj Cibin; Indrajeet Chaubey

2013-01-22T23:59:59.000Z

29

KNIFE MILL COMMINUTION ENERGY ANALYSIS OF SWITCHGRASS, WHEAT STRAW, AND CORN STOVER AND CHARACTERIZATION OF PARTICLE SIZE DISTRIBUTIONS  

SciTech Connect (OSTI)

Biomass preprocessing and pretreatment technologies such as size reduction and chemical preconditioning are aimed at reducing the cost of ethanol production from lignocellulosic biomass. Size reduction is an energy-intensive biomass preprocessing unit operation. In this study, switchgrass, wheat straw, and corn stover were chopped in an instrumented knife mill to evaluate size reduction energy and corresponding particle size distribution as determined with a standard forage sieve analyzer. Direct mechanical power inputs were determined using a dedicated data acquisition system for knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. A speed of 250 rpm gave optimum performance of the mill. Optimum feed rates for 25.4 mm screen and 250 rpm were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively. Total specific energy (MJ/Mg) was defined as the size reduction energy required to operate the knife mill plus that imparted to the biomass. Effective specific energy was defined as the energy imparted to the biomass. For these conditions, total specific energies were 27.3, 37.9, and 31.9 MJ/Mg and effective specific energies were 10.1, 15.5, and 3.2 MJ/Mg for switchgrass, wheat straw, and corn stover, respectively. These results demonstrated that biomass selection affects the size reduction energy, even for biomass with similar features. Second-order polynomial equations for the total specific energy requirement fitted well (R2 > 0.95) as a function of knife mill screen size, mass feed rate, and speed for biomass materials tested. The Rosin-Rammler equation fitted the cumulative undersize mass of switchgrass, wheat straw, and corn stover chop passed through ASABE sieves with high R2 (>0.983). Knife mill chopping of switchgrass, wheat straw, and corn stover resulted in particle size distributions classified as 'well-graded strongly fine-skewed mesokurtic', 'well-graded fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for small knife mill screen sizes (12.7 to 25.4 mm) and distributions classified as 'well-graded fine-skewed mesokurtic', 'well-graded strongly fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for the large screen size (50.8 mm). Total and effective specific energy values per unit size reduction of wheat straw were greater compared to those for switchgrass. Corn stover resulted in reduced total and effective specific energy per unit size reduction compared to wheat straw for the same operating conditions, but higher total specific energy per unit size reduction and lesser effective specific energy per unit size reduction compared to switchgrass. Data on minimized total specific energy with corresponding particle spectra will be useful for preparing feed material with a knife mill for subsequent grinding with finer size reduction devices.

Bitra, V.S.P. [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee, Knoxville (UTK); Sokhansanj, Shahabaddine [ORNL; Igathinathane, C. [North Dakota State University

2010-01-01T23:59:59.000Z

30

Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy  

SciTech Connect (OSTI)

In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

2009-06-15T23:59:59.000Z

31

Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover  

SciTech Connect (OSTI)

There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.

Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.

2009-01-01T23:59:59.000Z

32

Lignocellulosic Biomass to Ethanol Process Design and Economics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to...

33

Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility  

SciTech Connect (OSTI)

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

2009-07-01T23:59:59.000Z

34

Influence of Airflow on Laboratory Storage of High Moisture Corn Stover  

SciTech Connect (OSTI)

Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

2014-04-01T23:59:59.000Z

35

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

36

Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production  

Broader source: Energy.gov [DOE]

Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.

37

Corn Stover Conversion to Biofuels: DOE's Preparation for Readiness in 2012 (Guest Editorial)  

SciTech Connect (OSTI)

Today, the United States Energy Independence and Security Act (EISA) of 2007 focuses on biofuels support research and development (R and D) needed to enable achieving respective volumetric and cost targets. Indeed, the worldwide objective is to bring us closer to independence from transportation fuels derived from fossil resources. This Special Issue highlights key areas of science and technology that impact the rollout of viable corn stover biofuels processes by 2012.

Himmel, M. E.

2009-01-01T23:59:59.000Z

38

Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment  

SciTech Connect (OSTI)

Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was more active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.

Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

2012-05-30T23:59:59.000Z

39

Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities  

SciTech Connect (OSTI)

Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.

Selig, M. J.; Knoshaug E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2007-11-01T23:59:59.000Z

40

Experiences from a Novel Sensor for Fireside Corrosion Monitoring during Grate Combustion of Corn Stover/Wood Chip Blends  

Science Journals Connector (OSTI)

The operation of a pilot-scale online corrosion sensor system was studied at VTT’s 100 kW grate pilot plant. The feedstock composition in tests was varied from 100% wood chips to a blend that also contained 40 en-% d.b. corn stover. The mass flow of ...

Timo J. Leino; Martti J. Aho; S. Juhani Gynther; Tommi A. Ruuskanen; Matti H. Häkkinen

2013-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network [OSTI]

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from mass, xylan, and lignin and increases cellulose digestibility compared to batch operations at otherwise in corn stover at 180 °C. A flow rate of 10 mL/min in a 3.8-mL reactor enhanced xylan removal by about 25

California at Riverside, University of

42

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

southern hardwoods. Biomass Bioenerg. 2006 Oct;30(10):855-of corn stover. Biomass Bioenerg. 2000;18(3):189- 99.and switchgrass. Biomass Bioenerg. 2010 Dec;34(12):1885-95.

Li, Hongjia

2012-01-01T23:59:59.000Z

43

High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions  

SciTech Connect (OSTI)

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave{reg_sign} reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.

Weiss, N. D.; Nagle, N. J.; Tucker, M. P.; Elander, R. T.

2009-01-01T23:59:59.000Z

44

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network [OSTI]

for Corn Stover. National Renewable Energy Laboratory, NREL/for corn stover. National Renewable Energy Laboratory.Corn stover was provided by the National Renewable Energy

Qing, Qing

2010-01-01T23:59:59.000Z

45

Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction  

SciTech Connect (OSTI)

This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

2012-02-01T23:59:59.000Z

46

Analyzing the Effect of Variations in Soil and Management Practices on the Sustainability of Corn Stover-Based Bioethanol Production in Mississippi  

SciTech Connect (OSTI)

The inherent variability in corn stover productivity due to variations in soils and crop management practices might contribute to a variation in corn stover-based bioethanol sustainability. This study was carried out to examine how changes in soil types and crop management options would affect corn stover yield (CSY) and the sustainability of the stover-based ethanol production in the Delta region of Mississippi. Based on potential acreage and geographical representation, three locations were selected. Using CERES-Maize model, stover yields were simulated for several scenarios of soils and crop management options. Based on 'net energy value (NEV)' computed from CSYs, a sustainability indicator for stover-based bioethanol production was established. The effects of soils and crop management options on CSY and NEV were determined using ANOVA tests and regression analyses. Both CSY and NEV were significantly different across sandy loam, silt loam, and silty clay loam soils and also across high-, mid-, and low-yielding cultivars. With an increase in irrigation level, both CSY and NEV increased initially and decreased after reaching a peak. A third-degree polynomial relationship was found between planting date and CSY and NEV each. By moving from the lowest to the highest production scenario, values of CSY and NEV could be increased by 86 to 553%, depending on location and weather condition. The effects of variations in soils and crop management options on NEV were the same as on CSY. The NEV was positive for all scenarios, indicating that corn stover-based ethanol production system in the Delta region is sustainable.

Woli, Prem; Paz, Joel

2011-08-07T23:59:59.000Z

47

A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover  

E-Print Network [OSTI]

significant poten- tial as a feedstock for conversion to liquid fuels such as ethanol and biodiesel (Kadam to be limited. However, dilute sulfuric acid pretreatment has proven to be a very effective in recov- ering most of these pretreatments to corn stover include dilute-sulfuric acid in a high-solids percola- tion reactor (Zhu et al

California at Riverside, University of

48

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass  

E-Print Network [OSTI]

of Corn Stover. National Renewable Energy Laboratory (NREL),corn stover was provided by the National Renewable Energycorn stover was provided by the National Renewable Energy

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

49

Comparison of energy potentials from combined ethanol and methane production using steam-pretreated corn stover impregnated with acetic acid  

Science Journals Connector (OSTI)

Abstract Acetic acid was investigated as a catalyst in steam pretreatment of corn stover. The purpose was to study ethanol production using either baker's yeast or a genetically modified pentose-fermenting version of Saccharomyces cerevisiae, KE6-12. Biogas production was investigated as an alternative for utilization of xylose. The high levels of acetic acid was found to be toxic using KE6-12. Some pentose fermentation was achieved, but the ethanol end concentration was almost the same as using baker's yeast (28 g L?1 compared to 27 g L?1). Using xylose for biogas production resulted in a high total energy recovery. The highest total energy recovery in the products, i.e. ethanol, methane and solids, obtained was 88% compared with the energy in ingoing raw material. This result was achieved when the solids and the liquid was separated after pretreatment.

Pia-Maria Bondesson; Mats Galbe; Guido Zacchi

2014-01-01T23:59:59.000Z

50

Biomass Refining  

Science Journals Connector (OSTI)

...little acetic or lactic acid (2). Corn stover is a promising feedstock for...with real feedstocks (3). With corn stover, inhibitory products slow...Natick workers showed that two-roll wet milling is effective and relatively inexpensive...

Henry R. Bungay

1982-11-12T23:59:59.000Z

51

Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes  

SciTech Connect (OSTI)

Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

Selig, M. J.; Vinzant, T. B.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

52

Influence of Corn Residue Harvest Management on Grain, Stover, and Energy Yields  

Science Journals Connector (OSTI)

Economic, environmental, and energy independence issues are contributing to rising fossil ... a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, ...

Keri B. Cantrell; Jeffrey M. Novak; James R. Frederick…

2014-06-01T23:59:59.000Z

53

EFFECTS OF CHANGES IN U.S. ETHANOL PRODUCTION FROM CORN GRAIN, CORN STOVER, AND SWITCHGRASS ON WORLD AGRICULTURAL MARKETS AND TRADE  

E-Print Network [OSTI]

. The authors do note that assumptions regarding yield growth and the feasibility of expanding corn acres significantly affect the model outcome. Islas, Manzini, and Masera (2007) examined various scenarios of bioenergy use in Mexico based on moderate... and high usage of bioenergy in the electricity and transportation sectors. The authors analyzed three scenarios from 2005 to 2030. Results of their model indicate that ethanol, biodiesel, and electricity produced from biomass could make up 16...

Campiche, Jody L.

2010-07-14T23:59:59.000Z

54

Proximate and Ultimate Compositional Changes in Corn Stover during Torrefaction using Thermogravimetric Analyzer and Microwaves  

SciTech Connect (OSTI)

Abstract The world is currently aiming to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is considered carbon neutral because the carbon dioxide released during its use is already part of the carbon cycle. Increasing the use of biomass for energy can help to reduce the negative CO2 impact on the environment and help meet the targets established in the Kyoto Protocol. Energy from biomass can be produced from different processes, including thermochemical (direct combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation), or chemical (esterification) technologies. There are lot challenges in using biomass for energy applications. To name few low bulk density, high moisture content, irregular size and shape, hydrophilic nature and low calorific value. In commercial scale operation large quantities of biomass are needed and this will create problems associated with storage and transportation. Furthermore, grinding raw biomass with high moisture content is very challenging as there are no specific equipments and can increase the costs and in some cases it becomes highly impossible. All of these drawbacks led to development of some pretreatment techniques to make biomass more suitable for fuel applications. One of the promising techniques is torrefaction. Torrefaction is heating the biomass in an inert environment or reduced environment. During torrefaction biomass losses moisture, becomes more brittle and with increased energy density values. There are different techniques used for torrefaction of biomass. Fixed bed, bubbling sand bed and moving bed are the most common ones used. The use of microwaves for torrefaction purposes has not been explored. In the present study we looked into the torrefaction of biomass using the regular and microwaves and their effect on proximate and ultimate composition. Studies indicated that microwave torrefaction is a good way to torrefy the biomass in short periods of time. A maximum calorific value of 21 MJ/kg is achievable at 6 min residence time compared to 15 min using the dry torrefaction technique. Increasing the residence time increased the carbon content where a maximum carbon content of 52.20 % was achievable at lower residence time. The loss of volatiles is comparatively lower compared to dry torrefaction technique. Moisture content of microwave torrefied samples was in between 2-2.5 % (w.b).

Jaya Shankar Tumuluru

2012-07-01T23:59:59.000Z

55

Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use  

Science Journals Connector (OSTI)

Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus.We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19–48%, 40–62%, 90–103%, 77–97% and 101–115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.

Michael Wang; Jeongwoo Han; Jennifer B Dunn; Hao Cai; Amgad Elgowainy

2012-01-01T23:59:59.000Z

56

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network [OSTI]

Variation in corn stover composition and energy content withi) energy crops grown for fuel production (corn, sugarcane,

Goyal, Garima

2011-01-01T23:59:59.000Z

57

NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

SciTech Connect (OSTI)

For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

2014-04-01T23:59:59.000Z

58

The conversion of corn stover and pig manure to carboxylic acids with the MixAlco process  

E-Print Network [OSTI]

The MixAlco process, developed by Dr. Mark T. Holtzapple, uses anaerobic fermentation to convert waste biomass into carboxylate salts which can then be manipulated into carboxylic acids, ketones and alcohols. This project focuses on the application...

Black, Amanda Spring

2013-02-22T23:59:59.000Z

59

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

60

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

62

Fluidized bed pyrolysis of terrestrial biomass feedstocks  

SciTech Connect (OSTI)

Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

63

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass  

E-Print Network [OSTI]

precursor. 5-HMF is an important platform chemical that can5-HMF, and LA are promising platform chemicals (Werpy andHMF from maple wood and corn stover The primary fractions of lignocellulosic biomass of interest for catalytic conversion to platform chemicals

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

64

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5 kW, 9.2-10.3%, and 49.5-101.1 hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

65

Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485  

SciTech Connect (OSTI)

This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

Dowe, N.

2014-05-01T23:59:59.000Z

66

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network [OSTI]

in pretreated biomass through conversion of xylan and xylo-dioxide makes conversion of cellulosic biomass to ethanol

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

67

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

68

Binder & Raines Supporting Information Simple Chemical Transformation of Lignocellulosic Biomass  

E-Print Network [OSTI]

(which is also a pentose). Energy yield for cellulosic ethanol production Corn stover starting material gal/dry ton stover:3,4 0.237 g/g stover Actual combustion energy attainable from ethanol product: ! 100 g stover "(0.237 g ethanol/g stover)"(mol/46.07 g ethanol)"326.7 kcal/mol =168.1 kcal Combustion-energy

Raines, Ronald T.

69

Corn  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corn Corn Nature Bulletin No. 118 May 31, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation CORN Corn, or maize, has never been found growing wild. Columbus found it being grown by the Carib Indians and called it " Mahiz". The Aztecs told Cortez it was a gift from their gods, but the Mayas and the Incas already had been growing corn for thousands of years. Teosinte, a coarse native Mexican grass, appears to be its closest relative and its origin was probably in Central or South America. Our first colonists planted seed obtained from the Indians and, "corn" being the English word for all grain, called this strange new plant "Indian corn". Without man' s help, corn soon would disappear. Each year the seed must be carefully selected, carefully planted, and the soil kept cultivated to remove competition from other plants. Modern scientific breeding has produced varieties remarkable for their rapid growth, uniform size and heavy yield.

70

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

71

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network [OSTI]

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

72

DOI: 10.1002/cssc.201000181 Synthesis of Furfural from Xylose and Xylan  

E-Print Network [OSTI]

for utilization of impor- tant biomass feedstocks such as bagasse, corn stover, Miscan- thus, switchgrass

Raines, Ronald T.

73

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover  

Broader source: Energy.gov [DOE]

This report is an update of NREL’s ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks.

74

Novel Biomass Conversion Process Results in Commercial Joint Venture, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Biomass Conversion Process Novel Biomass Conversion Process Results in Commercial Joint Venture A novel biomass-to-ethanol process developed, integrated, and demonstrated at pilot scale at the National Renewable Energy Laboratory (NREL) is the basis for one of the world's first cellulosic ethanol demonstration plants. The 74,000-ft 2 plant in Vonore, Tennessee, began production in January 2010. Through a Cooperative Research and Development Agreement (CRADA) with DuPont, NREL and DuPont scientists and engineers developed a unique low-cost pretreatment process that converts raw biomass to ethanol in high yields. The process was developed to facilitate the commercial readiness of lignocellulosic ethanol, which is ethanol produced from nonfood biomass feedstocks such as corn stover, agricultural waste, and energy crops.

75

Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163  

SciTech Connect (OSTI)

An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

Decker, S. R.

2011-10-01T23:59:59.000Z

76

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect (OSTI)

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30T23:59:59.000Z

77

Technology assessment of biomass ethanol : a multi-objective, life cycle approach under uncertainty  

E-Print Network [OSTI]

A methodology is presented for assessing the current and future utilization of agricultural crops as feedstocks for the production of transportation fuels, specifically, the use of corn grain and stover for ethanol production. ...

Johnson, Jeremy C. (Jeremy Clayton)

2006-01-01T23:59:59.000Z

78

Lime pretreatment and enzymatic hydrolysis of corn stover  

E-Print Network [OSTI]

and then distributed to each column by the air-manifold having one input and 10 output fittings. Compressed nitrogen gas (Praxair Co., College Station, TX) was used to make the non-oxidative condition and supplied to each column by the N2-manifold after preheating...

Kim, Se Hoon

2005-08-29T23:59:59.000Z

79

Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels  

Science Journals Connector (OSTI)

Abstract Milling is a required pre-treatment for the use of biomass as a pulverized solid biofuel in some thermochemical technologies such as combustion, gasification and bioethanol production, as well as in densification processes. The particle size plays a key role on these energy conversion technologies. Experimental tests for poplar and corn stover were performed to obtain pulverized material at different physical conditions of the biomass (input particle size and moisture content) and operational parameters (opening sizes of the screen and angular speed of hammers). Fourteen parameters related to size central trends, dispersion and shape of particle size distribution (PSD) were calculated and analyzed by a novel data post-processing methodology, combining Artificial Neural Networks and statistical analysis. Results show that the characteristic size of the product (geometric mean size) is mainly influenced by the classification of the screen with values from five to eight times lower than their openings size. The angular speed of the hammer governs the variability and dispersion of sizes. The higher the angular speed, the lower the dispersion on particle size. Physical conditions of the biomass present a negligible effect on PSD.

Miguel Gil; Inmaculada Arauzo

2014-01-01T23:59:59.000Z

80

Co-firing in coal power plants and its impact on biomass feedstock availability  

Science Journals Connector (OSTI)

Abstract Several states have a renewable portfolio standard (RPS) and allow for biomass co-firing to meet the RPS requirements. In addition, a federal renewable fuel standard (RFS) mandates an increase in cellulosic ethanol production over the next decade. This paper quantifies the effects on local biomass supply and demand of different co-firing policies imposed on 398 existing coal-fired power plants. Our model indicates which counties are most likely to be able to sustain cellulosic ethanol plants in addition to co-firing electric utilities. The simulation incorporates the county-level biomass market of corn stover, wheat straw, switchgrass, and forest residues as well as endogenous crop prices. Our scenarios indicate that there is sufficient feedstock availability in Southern Minnesota, Iowa, and Central Illinois. Significant supply shortages are observed in Eastern Ohio, Western Pennsylvania, and the tri-state area of Illinois, Indiana, and Kentucky which are characterized by a high density of coal-fired power plants with high energy output.

Jerome Dumortier

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

fuel purchases. On an energy basis, corn prices of $4 perEthanol from corn using biomass for process energy exceedssuch as the Midwest Corn Belt. Energy crops may aid in

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

82

Energy Department Announces $7 Million to Develop Advanced Logistics...  

Office of Environmental Management (EM)

Examples of bioenergy feedstocks include corn stover, switchgrass, and woody biomass. By investing in this type of research, development, and demonstration, the Energy...

83

Process Design and Economics for Biochemical Conversion of Lignocellul...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical...

84

Multiple Controls on the Chemical and Physical Structure of Biochars  

Science Journals Connector (OSTI)

We report here the systematic characterization of biochars produced under a variety of highly controlled pyrolysis conditions from two biomass feedstocks (corn stover and apple wood). ...

Hao Sun; William C Hockaday; Caroline A. Masiello; Kyriacos Zygourakis

2012-02-01T23:59:59.000Z

85

June 2002 NREL/TP-510-32438 Lignocellulosic Biomass to  

E-Print Network [OSTI]

and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover A. Aden, M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, and B. Wallace National Renewable Energy Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy

Laughlin, Robert B.

86

The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics from Cradle to Gate of a Biomass Refinery  

Science Journals Connector (OSTI)

With increased concerns on global warming and peak oil, biobased fuels, chemicals, and materials derived from renewable resources have attracted great interest. ... Schematic inputs, outputs, and system boundary of PHA LCA for a mini-biorefinery of corn stover. ... It is assumed that electrical power is generated from coal combustion and purchased from the grid. ...

Jian Yu; Lilian X. L. Chen

2008-08-16T23:59:59.000Z

87

Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition  

SciTech Connect (OSTI)

This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important issues related to bioethanol generation, which will aid the research aimed to solve the topics m

Shih, Chien-Ju

2010-05-16T23:59:59.000Z

88

Owens Corning  

Broader source: Energy.gov (indexed) [DOE]

OWENS CORNING OWENS CORNING GOVERNMENT AND PUBLIC AFFAIRS 900 19 TH STREET N.W. SUITE 250 WASHINGTON, DC 20006 202.639.6900 FAX: 202.639.0247 OWENS CORNING September 20, 2013 By email: expartecommunications@hq.doe.gov Daniel Cohen Assistant General Counsel for Legislation and Regulatory Law Office of General Counsel Department of Energy 1000 Independence Ave., SW Washington DC 20585-0121 RE: Ex Parte Memo Dear Mr. Cohen: On Thursday, August 29, 2013, Julian Francis, VP & Managing Director Residential Insulation, Frank O'Brien Bernini, VP & Chief Sustainability Officer, Paul Smith, VP Building Materials Group Marketing, John Libonati, VP Government and Public Affairs, and I met with David Lee, Jeremy Williams, and Mark Lessans

89

NREL: Energy Analysis - BSM: Biomass Scenario Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the deployment of new technology to convert a wide range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol industry has grown to...

90

Combined Grinding and Drying of Biomass in One Operation Phase I  

SciTech Connect (OSTI)

First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can be transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small production rates, because the labor costs are a much larger fraction of the production cost. The goal for further research and development work is to scale up the KDS technology incorporating findings from Phase I into a machine that has superior performance characteristics.

Sokhansanj, S.

2008-06-26T23:59:59.000Z

91

NREL: Biomass Research - Mary Ann Franden  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mary Ann Franden Mary Ann Franden Photo of Mary Ann Franden Mary Ann Franden is a senior scientist in the Applied Biology group of the National Bioenergy Center (NBC) at the National Renewable Energy Laboratory in Golden, Colorado. Her latest accomplishments include the development of growth assay and fermentation tools to monitor toxicity of Zymomonas by model compounds and hydrolysates. This allowed for the identification of dominant inhibitors to Zymomonas mobilis that are present in corn stover lignocellulosic hydrolysates generated during dilute acid pretreatment. In addition to working toward meeting U.S. Department of Energy Bioenergy Technologies Office target goals for 2012, she has participated in collaboration with DuPont on the Integrated Corn-Based Biorefinery (ICBR)

92

Channel change and ooding, Skokomish River, Washington S.C. Stover*, D.R. Montgomery1  

E-Print Network [OSTI]

-1694(00)00421-2 * Corresponding author. Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA. Tel. Keywords: Land use; Sediment transport; Channel geometry; Floods; Rivers; Olympic Peninsula 1. Introduction.: 11-303- 735-5032; fax: 11-303-492-2606. E-mail addresses: stovers@ucsu.colorado.edu (S.C. Stover

Montgomery, David R.

93

Bt vs. non-Bt corn (Zea mays L.) hybrids: effect on degradation of corn stover in soil  

E-Print Network [OSTI]

4 that came from rice cultivation and field burning of plant residues (USEIA, 2007). Synthetic fertilizer applied to forests and agricultural soils contributed to direct release of N2O, and wildfires and crop residue burning caused the emission...

Salvatore, Herminia T.

2010-07-14T23:59:59.000Z

94

Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst  

Science Journals Connector (OSTI)

Abstract A carbonaceous solid acid was prepared by hydrothermal carbonization of corn stalk followed by sulfonation and was characterized by FT-IR, XRD, SEM and elemental analysis techniques. The as-prepared corn stalk-derived carbonaceous solid acid catalyst contained SO3H, COOH, and phenolic OH groups, and was used for the one-step conversion of intact corn stalk to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl]), where a 5-HMF yield of 44.1% was achieved at 150 °C in 30 min reaction time. The catalytic system was applicable to initial corn stalk concentration of up to ca. 10 wt.% for the production of 5-HMF. The synthesized catalyst and the developed process of using corn stalk-derived carbon catalyst for corn stalk conversion provide a green and efficient strategy for crude biomass utilization.

Lulu Yan; Nian Liu; Yu Wang; Hiroshi Machida; Xinhua Qi

2014-01-01T23:59:59.000Z

95

Sustainability of Systems Producing Ethanol, Power, and Lignosulfonates or Lignin from Corn Stover: A Comparative Assessment  

Science Journals Connector (OSTI)

ACS Sustainable Chem. ... Theoretically, the metrics used for the measurement of sustainability involves the performance in certain domains such as environmental, social, and economic because these are its three pillars. ...

Evangelos C. Petrou; Costas P. Pappis

2014-10-03T23:59:59.000Z

96

Bioethanol Production from Cotton Stalks or Corn Stover? A Comparative Study of Their Sustainability Performance  

Science Journals Connector (OSTI)

ACS Sustainable Chem. ... Theoretically, the metrics used for the measurement of sustainability involves the performance in certain domains, namely, environmental, social, and economic, because these are its three pillars. ...

Evangelos C. Petrou; Costas P. Pappis

2014-06-26T23:59:59.000Z

97

Techno-economic analysis of corn stover fungal fermentation to ethanol  

SciTech Connect (OSTI)

This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi to identify promising opportunities, and the research needed to achieve them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. In addition, filamentous fungi are applied in multi-organism and consolidated process configurations. Organism performance and technology readiness are categorized as near-term (<5 years), mid-term (5-10 years), and long-term (>10 years) process deployment. The results of the analysis suggest that the opportunity for fungal fermentation exists for lignocellulosic ethanol production.

Meyer, Pimphan A.; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.

2013-11-01T23:59:59.000Z

98

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network [OSTI]

e.g. corn stover, wheat straw), herbaceous energy crops (for Corn Stover. Golden, Colorado: National Renewable Energy

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

99

Improved hydrolysis process for the saccharification of biomass  

SciTech Connect (OSTI)

A single-step concentrated H/sub 2/SO/sub 4/ hydrolysis process for the conversion of lignocellulosic material to monomeric sugars was developed. The conversion of corn stover to reducing sugars using 70% H/sub 2/SO/sub 4/ at 60 degrees for 5-10 minutes yields a maximum conversion of 70% when feeding a 10% solids feed. When the hydrolysis is carried out with a 2% stover feed the conversion of stover to monomers was 90% in just over 20 minutes. A modified single-step hydrolysis using a 10% solids feed was also developed using 70% H/sub 2/SO/sub 4/ at 50 degrees for 10-20 minutes, followed by dilution and further reaction. When the initial hydrolysis is followed by a 30-40% H/sub 2/SO/sub 4/ hydrolysis at 100 degrees for 20 minutes total monomeric sugar conversion results. Analysis of the hydrolyzates from both the single-step and the modified single-step process show acceptable levels of both furfural and hydroxymethylfurfural. When using the modified single-step process with equal to or less than 37% H2SO4, the furfural concentration reached only 0.027% and the hydroxymethylfurfural concentration was zero.

Prieto, S.; Clausen, E.C.; Gaddy, J.L.; Scott, C.D. (ed.)

1986-01-01T23:59:59.000Z

100

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan…

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

102

Requirement of the Type II Secretion System for Utilization of Cellulosic Substrates by Cellvibrio japonicus  

Science Journals Connector (OSTI)

...cellulose led us to examine its ability to utilize feedstocks relevant to the bioenergy field. We chose two key biomass feedstocks for these studies: corn stover and switchgrass. Because current approaches to cellulosic biofuels typically involve...

Jeffrey G. Gardner; David H. Keating

2010-06-11T23:59:59.000Z

103

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

104

Potato Corn Chowder Ingredients  

E-Print Network [OSTI]

Potato Corn Chowder Ingredients: 2 potatoes, peeled and diced 15 ounces sweet corn, drained 2 potatoes, cut into bite size pieces. Place in microwave safe bowl with lid. Add 1/4 cup of water and cover to remove sodium. 4. While potatoes are cooking, melt margarine in saucepan over medium heat and add flour

Liskiewicz, Maciej

105

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

106

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

107

Estimating Corn Grain Yields  

E-Print Network [OSTI]

. Background Moisture stress caused by drought will reduce corn grain yields by dis- rupting kernel development, lowering grade, and impeding grain fill. Kernel development of the corn plant is most affected by drought during early vegeta- tive growth stages... stages of development (V8 and V9) also cause the corn plant to develop fewer kernels and to abort developing pollen tubes and kernels. The result is fewer filled rows and fewer developed kernels within each row of an ear, and an overall reduction...

Blumenthal, Jurg M.; Thompson, Wayne

2009-06-12T23:59:59.000Z

108

Corn stalk orientation effect on mechanical cutting  

SciTech Connect (OSTI)

Research efforts that increase the efficiency of size reduction of biomass can lead to a significant energy saving. This paper deals with the determination of the effect of sample orientation with respect to cutting element and quantify the possible cutting energy reduction, utilising dry corn stalks as the test material (15%e20% wet basis). To evaluate the mechanical cutting characteristics of corn stalks, a Warnere Bratzler device was modified by replacing its blunt edged cutting element with one having a 30_ single bevel sharp knife edge. Cutting force-deformation characteristics obtained with a universal testing machine were analysed to evaluate the orientation effects at perpendicular (90o), inclined (45o), and parallel (0o) orientations on internodes and nodes for cutting force, energy, ultimate stress, and specific energy of corn stalks. The corn stalks cutting force-displacement characteristics were found to differ with orientation, and internode and node material difference. Overall, the peak failure force, and the total cutting energy of internodes and nodes varied significantly (P < 0.05) with stalk cross-sectional area. The specific energy values (total energy per unit cut area) of dry corn stalk internodes ranged from 11.3 to 23.5 kN m_1, and nodes from 8.6 to 14.0 kN m_1. The parallel orientation (along grain) compared to perpendicular (across grain) produced a significant reduction of the cutting stress and the specific energy to one tenth or better for internodes, and to about one-fifth for nodes.

Igathinathane, C. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2010-07-01T23:59:59.000Z

109

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

110

FOOD PRESERVATION SERIES CornMichigan-grown corn is available  

E-Print Network [OSTI]

that meat juices do not contaminate it. Keep in the refrigerator, away from raw meat so that meat juices do. Store corn in its husk in the refrigerator. For best flavor, eat soon after picking or buying corn. Use

111

CX-001582: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-001582: Categorical Exclusion Determination Regional Biomass Feedstock Partnership CX(s) Applied: A9 Date: 03/30/2010 Location(s): South Dakota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office As part of the Regional Biomass Feedstock Partnership this activity will support the development of a corn stover residue removal tool. The objective of this research effort is to design a corn stover removal computer model to determine the effects of corn stover removal on plant growth, soil carbon, and sustainability. The research on this portion of the corn stover residue removal tool will focus on integrating the DayCent model into the residue removal tool and testing and interpretation of results. This tool will utilize a nationally disparate set of field trials

112

Redistribution of Lignin Caused by Dilute Acid Pretreatment of Biomass  

SciTech Connect (OSTI)

Research conducted at NREL has shown that lignin undergoes a phase transition during thermochemical pretreatments conducted above its glass transition temperature. The lignin coalesces within the plant cell wall and appears as microscopic droplets on cell surfaces. It is clear that pretreatment causes significant changes in lignin distribution in pretreatments at all scales from small laboratory reactors to pilot scale reactors. A method for selectively extracting lignin droplets from the surfaces of pretreated cell walls has allowed us to characterize the chemical nature and molecular weight distribution of this fraction. The effect of lignin redistribution on the digestibility of pretreated solids has also been tested. It is clear that removal of the droplets increases the digestibility of pretreated corn stover. The improved digestibility could be due to decreased non-specific binding of enzymes to lignin in the droplets, or because the droplets no longer block access to cellulose.

Johnson, D. K.; Donohoe, B. S.; Katahira, R.; Tucker, M. P.; Vinzant, T. B.; Himmel, M. E.

2012-01-01T23:59:59.000Z

113

CORN STEEP LIQUOR IN MICROBIOLOGY  

Science Journals Connector (OSTI)

...is a by-product of the corn wet-milling industry it would be insufficient...invention of much of the modern wet milling process, suggested corn steep liquor as a nutrient...general flowsheet of the corn wet-milling process; and to Dr. L...

R. Winston Liggett; H. Koffler

1948-12-01T23:59:59.000Z

114

Mechanical Harvesting of Corn.  

E-Print Network [OSTI]

or Indian corn is the oldest food crop known in continental I and South America. When Columbus discovered America ;ears ago, he found in Cuba "a sort of grain they call Maiz which was well tosted, bak'd, dry'd and made into flour" (5). Thus... near Brownsville; from the Sabine on the east to El Paso on the west. Only one other crop-cotton- occupies a larger acreage in Texas. The largest acreages of corn are grown in the Blackland Prairie of Central Texas. Of the 254 counties in l...

Sorenson, J. W. (Jerome Wallace); Smith, H. P. (Harris Pearson)

1948-01-01T23:59:59.000Z

115

Corn Hybrids for Texas.  

E-Print Network [OSTI]

Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea....1 in 1941 to 74.5 percent in 1953. Most of the present acreage is devoted to the newer, better-adaptt hybrids-Texas 26, 28 and 30. These new hybrids usually outyield the older Texas hybrids h!. least 10 percent. Corn is one of the most important...

Rogers, J. S.; McAfee, T. E.

1954-01-01T23:59:59.000Z

116

Slagging Behavior of Straw and Corn Stover and the Fate of Potassium under Entrained-Flow Gasification Conditions  

Science Journals Connector (OSTI)

It was observed that, although the major part of the primarily siliceous native ash promptly forms a molten slag, much of the alkalis are evaporated into the syngas. ... Experiments were performed in an electrically heated atmospheric EF reactor [lab-scale combustion and gasification simulator (LCS)] equipped with a multi-stage gas burner that has been applied extensively in previous studies of PF combustion and gasification. ... However, deposition problems could arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. ...

Simon Leiser; Mariusz K. Cieplik; Ruben Smit

2012-12-20T23:59:59.000Z

117

Ammonia and urea treatment of wheat straw and corn stover JP Fontenot E Gallo Llorente, JM Obamahinti, VG Allen  

E-Print Network [OSTI]

by ammoniation directly or by urea treatment, but the improvement appears to be greater for ammonia than urea

Boyer, Edmond

118

The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network [OSTI]

fraction of cellulosics, to glucose followed by fermentation to ethanol is very attractive for producing organisms can readily ferment to ethanol.10,11 Glucose yields from enzymatic digestion of the cellulose in biological conversion of cellulosics to ethanol and other products; therefore, advanced pretreatment

California at Riverside, University of

119

Aspects of Applied Biology 112, 2011 Biomass and Energy Crops IV  

E-Print Network [OSTI]

, biomass yields, bioenergy Introduction The United States'Energy Independence and SecurityAct of 2007 (EISA; Fargione et al., 2008). Producing more corn-based ethanol may increase food prices due to changing market dynamics. Alternative bioenergy options include non-food biomass feedstock from perennial crops and more

Weiblen, George D

120

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

122

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

123

Energy production from corn  

Science Journals Connector (OSTI)

Several physical and chemical factors limit the production of biofuels, such as the complex process required for the conversion of plant biomass into ethanol. For example, fossil energy inputs needed for the prod...

Jessica Zhang; Sarah Palmer; David Pimentel

2012-04-01T23:59:59.000Z

124

Neutral Sugar Contents of Corn Gluten Meal and Corn Gluten Feed  

Science Journals Connector (OSTI)

Neutral Sugar Contents of Corn Gluten Meal and Corn Gluten Feed ... Corn gluten meal and corn gluten feed were supplied by Pekin Energy Company (Pekin, IL). ... It is not practical to determine the neutral carbohydrate composition of corn gluten feed that contains a changing percentage of defatted corn germ, so we used corn gluten feed that does not contain defatted corn germ from Pekin Energy. ...

Y. Victor Wu

1996-01-18T23:59:59.000Z

125

Figure 2. Urban lawns have ~ 2x the microbial biomass of native and/or cultivated areas. Viable microbial biomass  

E-Print Network [OSTI]

Figure 2. Urban lawns have ~ 2x the microbial biomass of native and/or cultivated areas. Viable and fertilized Corn: flood irrigated and fertilized Wheat-Fallow: a dryland winter wheat cropping system C and N mineralization rates (data not shown) than other ecosystems, suggesting that energy

Hall, Sharon J.

126

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

127

Managing Insect and Mite Pests of Texas Corn  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Corn Earworm and Fall Armyworm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Flea Beetles... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fall Armyworm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Southwestern Corn Borer...

Porter, Patrick; Cronholm, Gregory B.; Parker, Roy D.; Troxclair, Noel N.; Patrick, Carl D.; Biles, Stephen; Morrison, William P.

2006-05-24T23:59:59.000Z

128

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

129

The Occurrence and Biological Activity of Ferulate-Phytosterol Esters in Corn Fiber and Corn Fiber Oil  

Science Journals Connector (OSTI)

Corn fiber is a pericarp-rich fraction obtained during the processing of corn via “wetmilling.” Wet milling of corn is used by all companies that produce corn starch and corn sweeteners, and by many companies tha...

Robert A. Moreau; Michael J. Powell…

1997-01-01T23:59:59.000Z

130

Corn Production in Texas.  

E-Print Network [OSTI]

. 25- Apr. 10 High Plains (Irrigated) Apr. 10- May 1 'Shown as pounds per acre of nitrogen (N), phosphoric acid (P20;,) and potash (K-0), respectively. 'Shown as po1111ds pel- acre of 1iitroge11 (N). I DIGEST 1 Corn is one of the more..., the average yield usually fluctuated between 1.0 and 20 bushels per acre. Yields were slightly higher at the beginning of the century as a result of inherent soil fertility. With continued cropping, however, fertility and yields grad- ually declined...

Collier, Jesse W. (Jesse Wilton); Rogers, John S. (John Sinclair)

1952-01-01T23:59:59.000Z

131

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

132

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

133

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

134

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

136

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

137

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

138

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

139

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

140

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Probabilistic Inventory Analysis of Biomass for the State of Texas for Cellulosic Ethanol  

E-Print Network [OSTI]

, bioenergy from second generation cellulosic feedstocks cost more than fossil fuels. Another issue in dealing with corn grain as the feedstock for ethanol is that corn is used for food and livestock feed. The cellulosic process takes cellulosic material... Assessment and Utilization Options for Three Counties in Eastern Oregon? which was prepared by McNeil Technologies (2003); ?Biomass Inventory and Bioenergy Assessment: An evaluation of Organic Material Resources for Bioenergy Production in Washington State...

Gleinser, Matthew A.

2010-01-16T23:59:59.000Z

142

Ethanol extraction of phytosterols from corn fiber  

DOE Patents [OSTI]

The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

2010-11-16T23:59:59.000Z

143

A Process for the Aqueous Enzymatic Extraction of Corn Oil from Dry Milled Corn Germ and Enzymatic Wet Milled Corn Germ (E-Germ)  

Science Journals Connector (OSTI)

A bench-scale aqueous enzymatic method was developed to extract corn oil from corn germ from either a commercial corn dry mill or corn germ from a newly-developed experimental enzymatic wet milling process (E-Ger...

Robert A. Moreau; Leland C. Dickey…

2009-05-01T23:59:59.000Z

144

Staling in corn tortillas prepared from nixtamalized corn flour  

E-Print Network [OSTI]

Effects of forming method and storage on starch and texture of corn tortillas were evaluated. Texture of tortillas was evaluated subjectively using rollability and crinkle methods and objectively using bending and extensibility methods on a texture...

Fernandez de Castro, Deborah Ann

1998-01-01T23:59:59.000Z

145

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

146

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

147

NETL: LabNotes - July 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 2008 July 2008 NETL Researchers Focus on Combining Coal and Biomass in Co-Gasification Todd Gardner is one of the NETL researchers studying co-gasification of various types of coal and biomass. Todd Gardner is one of the NETL researchers studying co-gasification of various types of coal and biomass. He's holding pelletized corn stover. Two other types of biomass are in the containers: poplar dust and switchgrass. Researchers at the Department of Energy's National Energy Technology Laboratory are looking at ways to combine the natural resources of coal and biomass - biomass including such growing things as wheat straw, corn stover, switchgrass, mixed hardwood and distillers' dried grains with corn fiber, and even algae - but avoid the emission of carbon dioxide.

148

Managing R&D Risk in Renewable Energy  

E-Print Network [OSTI]

Renewable Energy Costs, Transportation Fuels ($/MJ) Gasoline Benchmark Biofuels corn ethanol corn stover switchgrass miscanthus sugar cane (Brazil)

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

149

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

150

NREL: Biomass Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

151

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

152

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

153

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

154

Protein-Enriched Spaghetti Fortified with Corn Gluten Meal  

Science Journals Connector (OSTI)

Protein-Enriched Spaghetti Fortified with Corn Gluten Meal ... Corn gluten meal was from Pekin Energy Co. (Pekin, IL). ...

Y. Victor Wu; Gary A. Hareland; Kathleen Warner

2001-07-14T23:59:59.000Z

155

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen über den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

156

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Al Corn Clean Fuel | Open Energy Information  

Open Energy Info (EERE)

search Name Al-Corn Clean Fuel Place Claremont, North Dakota Product Al-Corn is an ethanol plant located in Claremont, North Dakota, which is owned by local farmers and...

158

The future of coproducts from corn processing  

Science Journals Connector (OSTI)

Increased demand for ethanol as a fuel additive has resulted in dramatic growth in ethanol production. Ethanol is produced from corn by either wet milling or dry-grind processing. In wet milling, the corn kernel ...

Kent D. Rausch; Ronald L. Belyea

2006-01-01T23:59:59.000Z

159

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

160

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

162

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

163

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

164

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

165

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

166

Financial determinants of corn market  

Science Journals Connector (OSTI)

This paper studies the effects of the TNX ten-year treasury note, the crude oil light sweet, the denatured fuel ethanol, the S&P 500 Stock Index and the US dollar/yen exchange rate on the conditional mean and variance return of corn futures. It employs daily data from January 1, 2002 to August 31, 2009. Using the GJR-GARCH(1, 1) model, we provide empirical evidence of positive influence of bond, energy and capital market on corn market. There is also evidence that the volatility shocks of the US dollar/yen exchange rate have a positive impact on the conditional volatility of corn futures returns. Finally, the structural analysis of volatility with the GJR-GARCH model has shown that current volatility is more influenced by past volatility rather than by the previous day shocks.

Nikolaos Sariannidis

2013-01-01T23:59:59.000Z

167

Deterioration of High-Moisture Corn  

Science Journals Connector (OSTI)

...Microbial reduction in stored and dry-milled corn infected with Southern Corn LeafBlight. Cereal Chem. 49:346-353...of aflatoxins in commerical supplies of corn and grain sorghum used for wet-milling. Cereal Sci. Today 16:153-155, 163...

Michael E. McMahon; Paul A. Hartman; Robert A. Saul; Lois H. Tiffany

1975-07-01T23:59:59.000Z

168

BNL | Biomass Burns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

169

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

170

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

171

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network [OSTI]

Industrial & Engineering Chemistry Research, 42, 4269- 4276.Stover. Industrial & Engineering Chemistry Research, 42,sawdust. Industrial & Engineering Chemistry Research, 40,

Qing, Qing

2010-01-01T23:59:59.000Z

172

NREL: Biomass Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

173

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

174

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

175

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

renewable energy resources include biomass, solar thermal resources”:  wind,  closed?loop  biomass,  open? loop  biomass,  geothermal  energy,  solar 

Cattolica, Robert

2009-01-01T23:59:59.000Z

176

Downdraft gasification of biomass.  

E-Print Network [OSTI]

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with… (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

177

Biomass: Biogas Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

178

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

179

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

180

Biomass Resource Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

182

NREL: Biomass Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

183

Biomass Indirect Liquefaction Workshop  

Broader source: Energy.gov [DOE]

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

184

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

185

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

186

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

187

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

188

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

189

High Fermentable Corn Hybrids for the Dry-Grind Corn Ethanol Industry  

Science Journals Connector (OSTI)

The biofuel corn ethanol helps provide a sustainable and secure non-petroleum source of energy. The dry-grind ethanol industry is the ... customer for about one-third of US-produced corn grain. Getting the most e...

Joel E. Ream; Ping Feng; Iñigo Ibarra…

2010-01-01T23:59:59.000Z

190

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

191

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

192

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

193

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

194

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

195

Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications  

E-Print Network [OSTI]

enhanced the 72-h glucan digestibility of several promising biomass feedstocks: bagasse (74.0), corn stover (92.0), poplar wood (94.0), sorghum (71.8), and switchgrass (89.0). Highly digestible lignocellulose can also be used as ruminant animal feed. Shock...

Falls, Matthew David

2011-10-21T23:59:59.000Z

196

Extrusion of corn for ethanol fermentation  

Science Journals Connector (OSTI)

Extrusion and conventional cooking of corn for ethanol production were compared. Extrusion processing requires less energy and water than conventional cooking methods. Optimal...

S. R. Korn; J. M. Harper

1982-07-01T23:59:59.000Z

197

Watergrass and Volunteer Sorghum Control in Corn.  

E-Print Network [OSTI]

was evaluated for 2 m, Table 1. In 1970, herbiddes were applied to flat ground and iaaorporcrted with a tandem disk, apt prowutely 1 month beh corn planting. Later, soil wqs bedded, the field preplant irrigated, cold corn planted in mdaturs. Under them... " Wiides applied and corn planted on May 20 %tan+ + 3 + 1.5 75 33 32 bHerbicidee applied and Excel+ E-56 corn planted on Aprz2S. Bladex 4 + 1.6 93 Avadex + 1.5 +1.5 . y Lasso 2+2 &. CGA 18762 1.6 ')lerbickles applied April 17, tandem disked twice...

Wiese, A.F.; Chenault, E.W.; Lavake, D.E.; Hollingsworth, Dale

1979-01-01T23:59:59.000Z

198

Oil recovery from condensed corn distillers solubles.  

E-Print Network [OSTI]

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

199

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

200

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

202

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

203

Developing better biomass feedstock | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

204

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

205

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

206

The influence of moisture content and cooking on the screw pressing and prepressing of corn oil from corn germ  

Science Journals Connector (OSTI)

Samples of corn germ were obtained from a commercial corn wet mill (factory dried to about 3% moisture) and a commerical corn dry mill (undried, produced in the mill with about 13% moisture). The germ ... pressin...

Robert A. Moreau; David B. Johnston…

2005-01-01T23:59:59.000Z

207

Supplementation with xylanase and ?-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

Science Journals Connector (OSTI)

Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent researc...

Qing Qing; Charles E Wyman

2011-06-01T23:59:59.000Z

208

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network [OSTI]

surface available for enzyme adsorption compared with the looser amorphous structure of xylan.xylan removal to enhancement of substrate accessibility to enzymes through exposing more crystal- line cellulose surface.surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

209

LIFE CYCLE ASSESSMENTS (LCAs) OF PYROLYSIS-BASED GASOLINE AND DIESEL FROM DIFFERENT REGIONAL FEEDSTOCKS: CORN STOVER, SWITCHGRASS, SUGAR CANE BAGASSE, WASTE WOOD, GUINEA GRASS, ALGAE, AND ALBIZIA.  

E-Print Network [OSTI]

?? Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse… (more)

Mihalek, Matthew J.

2014-01-01T23:59:59.000Z

210

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

211

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

212

Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy.  

E-Print Network [OSTI]

??FIELD EVALUATION OF THE AVAILABILITY FOR CORN AND SOYBEAN OF PHOSPHORUS RECOVERED AS STRUVITE FROM CORN FIBER PROCESSING FOR BIOENERGY A paper to be submitted… (more)

Thompson, Louis Bernard

2013-01-01T23:59:59.000Z

213

Corn Ethanol -April 2006 11 Cover Story  

E-Print Network [OSTI]

Corn Ethanol - April 2006 11 Cover Story orn ethanol is the fuel du jour. It's domestic. It's not oil. Ethanol's going to help promote "energy independence." Magazines trumpet it as the motor vehicle Midwest fields, waiting to rot or be processed into ethanol. Interestingly, the National Corn Growers

Patzek, Tadeusz W.

214

CORN GERM: A VALUABLE PROTEIN FOOD  

Science Journals Connector (OSTI)

...per cent. of the crop by dry milling and distilling,2 and a yield...value of the proteins of the corn germ has not been studied by...Scientist, 31: 142, 1943. 2 Corn germ made by the wet-milling process, due to leaching with...

H. H. MITCHELL; JESSIE R. BEADLES

1944-02-11T23:59:59.000Z

215

Heartland Corn Products | Open Energy Information  

Open Energy Info (EERE)

Corn Products Corn Products Jump to: navigation, search Name Heartland Corn Products Place Winthrop, Minnesota Zip 55396 Product Heartland Corn Products is farmer-owned cooperative that produces corn-derived ethanol. Coordinates 48.47373°, -120.177559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.47373,"lon":-120.177559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Rockwell Automation - Owens Corning Teaming Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rockwell Automation Owens Corning Rockwell Automation Owens Corning 1201 S. Second Street 247 York Road Milwaukee, WI 53204 Guelph, Ontario N1E 3G4 Business: Industrial Automation Business: Textile / Fiber Nigel Hitchings Frank Peel Marketing Manager Electrical Support Specialist Phone: 508-357-8404 Phone: 519-823-7208 Email: nehitchings@ra.rockwell.com Email: frank.peel@owenscorning.com Owens Corning partners with Rockwell Automation to retrofit fans with VFDs, saving $67,000 annually Project Scope Owens Corning and Rockwell Automation installed Variable Frequency Drives (VFDs) on one 125HP cooling fan and three 40HP recirculation fans at the Owens Corning Guelph Glass Plant. The VFDs were integrated with the existing Rockwell Automation programmable automation controller to collect

217

Biomass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

218

CLC of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

219

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

220

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

222

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

223

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

224

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

225

Impacts of Deacetylation Prior to Dilute Acid Pretreatment on the Bioethanol Process  

SciTech Connect (OSTI)

Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: (1) cleavage of the xylosidic bonds, and (2) cleavage of covalently bonded acetyl ester groups. Results: In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions: Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

Chen, X.; Shekiro, J.; Franden, M. A.; Wang, W.; Johnson, D. K.; Zhang, M.; Kuhn, E.; Tucker, M. P.

2011-12-01T23:59:59.000Z

226

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

227

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

228

Grand Opening for Project LIBERTY: Nation’s First Plant to Use Corn Waste as a Feedstock  

Broader source: Energy.gov [DOE]

POET-DSM’s Project LIBERTY in Emmetsburg, Iowa, will celebrate its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between POET LLC in Sioux Falls, South Dakota, and DSM Royal, a Dutch enzyme manufacturer, the project uses biochemical conversion technologies (yeast and enzymes) to convert cellulosic biomass into transportation fuels.

229

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

SciTech Connect (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

230

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

231

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

232

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network [OSTI]

1 THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY) Hosein Shapouri*, U.S. Department of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol to produce ethanol and byproducts. The results indicate that corn ethanol has a positive energy balance, even

Patzek, Tadeusz W.

233

REGULAR ARTICLE European corn borer injury effects on lignin, carbon  

E-Print Network [OSTI]

REGULAR ARTICLE European corn borer injury effects on lignin, carbon and nitrogen in corn tissues herbivores often stimulate lignin deposition in injured plant tissue, but it is not known whether corn (Zea (Bacillus thuringiensis) genetic modifica- tion is also reported to affect lignin in corn. This study

Beaudoin, Georges

234

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

235

Wet Corn Milling Energy Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

236

Corn Plus | Open Energy Information  

Open Energy Info (EERE)

Plus Plus Jump to: navigation, search Name Corn Plus Place Winnebago, Minnesota Product Farmer Coop which owns an Ethanol plant in Winnebago Mn. Coordinates 42.236095°, -96.472339° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.236095,"lon":-96.472339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

311221," Wet Corn Milling",0,0,"X",0  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 11.3;" 3 Relative Standard Errors for Table 11.3;" " Unit: Percents." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",2.8,1.1,86.8,37.8 3112," Grain and Oilseed Milling",0.7,0.7,"X",0 311221," Wet Corn Milling",0,0,"X",0 31131," Sugar Manufacturing",0,0,"X",0 3114," Fruit and Vegetable Preserving and Specialty Foods ",1.2,1.2,"X",44.1

238

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

239

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

240

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

242

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

243

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

244

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

245

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

246

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

247

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

248

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

249

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

250

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

251

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

252

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

253

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

254

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

255

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

256

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

257

NREL: Climate Neutral Research Campuses - Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

258

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

260

Fixed Bed Biomass Gasifier  

SciTech Connect (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

Quad County Corn Processors Quad County Corn Processors Jump to: navigation, search Name Quad County Corn Processors Place Galva, Iowa Zip 51020 Product Farmer owned corn processing facility management company. Coordinates 38.38422°, -97.537539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.38422,"lon":-97.537539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

2008 National dry mill corn ethanol survey  

Science Journals Connector (OSTI)

Emerging regulations require an examination of corn ethanol’s greenhouse gas emissions on a life cycle basis, including emissions from energy consumed at the plant level. However, ... data, we conducted a survey ...

Steffen Mueller

2010-09-01T23:59:59.000Z

263

Corn Drying: Modelling the Quality Degradation  

Science Journals Connector (OSTI)

Corn is the second largest agricultural produce in ... (primarily towards the EEC). Thus, its wet-milling quality has become an important criterion since ... occurs just after harvesting. To preserve the wet-milling

F. Courtois; A. Lebert; J. C. Lasseran; J. J. Bimbenet

1994-01-01T23:59:59.000Z

264

Enzymatic Saccharification of Defatted Corn Germ*  

Science Journals Connector (OSTI)

Commercial defatted germ from wet milled corn was efficiently saccharified by a crude enzyme...Aureobasidium...sp. with yields of up to 200 mg glucose, 140 mg xylose, and 130 mg arabinose per g germ. These yields...

Timothy D. Leathers

2004-02-01T23:59:59.000Z

265

Logs Wood Chips Straw Corn Switchgrass  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use...

266

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

267

Influence of Climate on Composition of Corn.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENT STATION. BULLETIN NO. 15, INFLUENCE OF CLIMATE ON COMPOSITION OF CORN. Digestibility of Southern Food Stuffs: COTTON SEED HULLS; CORN FODDER. ASH ANALYSES. ROASTED COTTON SEED. AGRICIJJ~TURAL AND MECHANICAL... COLLEGE OF TEXAS. A11 Bulletins of this Station are issued free. Anv one interested in any branch -of agricul- ture may have his name placed on our permanent mailing list, and secure future Gmbcrs, 1~ application to GEO. W. CURTIS DIRECTOR College...

Harrington, H. H. (Henry Hill); Adriance, Duncan

1891-01-01T23:59:59.000Z

268

Corn Wet Milling: Separation Chemistry and Technology  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on the separation chemistry and technology of corn wet milling. The purpose of corn wet milling is to separate the kernel into its constituent chemical components. Wet milling processing begins with steeping whole kernel corn in an aqueous solution of sulfur dioxide and lactic acid (produced by microorganisms) at 50°C for 24–48 hours. The corn is then coarsely ground and the lipid-containing germ and fibrous hull portions are separated. After the remaining components are more finely ground, the starch and protein are separated using hydrocyclones, essentially continuous centrifuges; corn starch is slightly denser than corn protein. Germ is further processed into oil and the protein and fiber components are usually blended and used as animal feeds. The wet starch is either dried, chemically modified to change its functional properties, converted into intermediate-sized glucose polymers, or fully depolymerized into sugars. Starch is also often used as a raw ingredient for adjacent processing facilities that produce ethanol or other alcohols and other industrial chemicals.

David S. Jackson; Donald L. Shandera Jr.

1995-01-01T23:59:59.000Z

269

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

270

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

271

Combustion and \\{NOx\\} emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the \\{NOx\\} emissions from combustion of syngas derived from gasification of three different biomass feedstock (i.e., pine, maple–oak mixture, and seed corn) at different oxygen-enriched-air and steam conditions. Three different oxygen-enriched-air and steam conditions were tested for each feedstock, thus resulting in nine different sets of syngas. The biomass-derived syngas was burned in an industrial burner that was integrated into the gasification system. The gasifier and burner are rated at 800 kW and 879 kW thermal, respectively. For each set of biomass-derived syngas, \\{NOx\\} emissions were measured at different burner operating conditions including various heat rates and equivalence ratios using emission analyzers with chemiluminescence technology. All the combustion test conditions are in the lean mixture ranges in order to avoid the peak temperature limitation of both the burner and combustion chamber. Results show that \\{NOx\\} emissions using syngas obtained from woody feedstock decrease almost linearly as the combustion mixture becomes leaner and the heat rate decreases. When compared to natural gas, syngas from both woody feedstock generates higher \\{NOx\\} emissions even when the heat rates are comparable, indicating that fuel \\{NOx\\} formation is highly important in biomass-derived syngas combustion. In contrast to syngas from woody feedstock, syngas from seed corn results in peak \\{NOx\\} emissions before \\{NOx\\} decreases with leaner conditions. The trend is observed for all fuel flow rates and all oxygen-enriched-air and steam conditions of seed corn-derived syngas. Among the three feedstock, seed corn has the highest nitrogen content which yields the highest ammonia concentration in syngas, which, in turn, results in the highest \\{NOx\\} emissions for all test conditions. Overall, the \\{NOx\\} emissions from seed corn-derived syngas combustion are approximately in the range of 450–900 ppm higher compared to those from wood-derived syngas combustion.

Cuong Van Huynh; Song-Charng Kong

2013-01-01T23:59:59.000Z

272

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

273

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

274

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

275

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

276

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

277

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

278

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

279

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

280

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

282

Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products  

Science Journals Connector (OSTI)

...process net profit pyrolysis for corn stover net profit = F(transportation...pressure) enzymatic hydrolysis for energy crops net profit = F(transportation...hybrid process for a mixture of corn stover, energy crops and forest residue net profit...

2011-01-01T23:59:59.000Z

283

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

284

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

285

Variations in Vitamin A and in Chemical Composition of Corn.  

E-Print Network [OSTI]

such as rickets, scurvy, or beri-beri. Vitamin A was one of the first vitamins discovered. It occurs in large quantity in yellow corn, while little or none is founcl in white corn. For the purpose of this study, samples of corn grown at the various substations... such as rickets, scurvy, or beri-beri. Vitamin A was one of the first vitamins discovered. It occurs in large quantity in yellow corn, while little or none is founcl in white corn. For the purpose of this study, samples of corn grown at the various substations...

Fraps, G. S. (George Stronach)

1931-01-01T23:59:59.000Z

286

Life Cycle Assessment Study of Biopolymers (Polyhydroxyalkanoates) - Derived from No-Tilled Corn (11 pp)  

Science Journals Connector (OSTI)

Corn cultivation data are taken from 14 counties in the Corn Belt states of the United States ? ... Wisconsin. The environmental burdens associated with the corn wet milling process, in which dextrose, corn oil,...

Seungdo Kim; Bruce Dale

2005-05-01T23:59:59.000Z

287

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

288

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

289

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

290

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network [OSTI]

water. Industrial & Engineering Chemistry Research Bonn G,water. Industrial & Engineering Chemistry Research Vila C,stover. Industrial & Engineering Chemistry Research 2004,

Gao, Xiadi

2013-01-01T23:59:59.000Z

291

Biomass: Potato Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

292

The energy relationships of corn production and alcohol fermentation  

Science Journals Connector (OSTI)

The energy relationships of corn production and alcohol fermentation ... The production of alcohol from corn lends itself well to illustrating the practical applications of scientific principles that deal with energy transformations and inefficiencies. ...

Thomas E. Van Koevering; Michael D. Morgan; Thomas J. Younk

1987-01-01T23:59:59.000Z

293

Enriched arabinoxylan in corn fiber for value-added products  

Science Journals Connector (OSTI)

A two-step process is evaluated to separate the hexose component in wet milling corn fibers from the pentose component for production of value-added products. Corn fibers were first pretreated with hot water ... ...

Bin Wang; Biao Cheng; Hao Feng

2008-02-01T23:59:59.000Z

294

Recovery and Characterization of ?-Zein from Corn Fermentation Coproducts  

Science Journals Connector (OSTI)

Recovery and Characterization of ?-Zein from Corn Fermentation Coproducts ... Commercial DDGS was obtained from Lincolnway Energy, Ames, IA. ...

Ilankovan Paraman; Buddhi P. Lamsal

2011-03-09T23:59:59.000Z

295

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Pro Corn LLC | Open Energy Information  

Open Energy Info (EERE)

Pro Corn LLC Pro Corn LLC Jump to: navigation, search Name Pro-Corn LLC Place Preston, Minnesota Zip 55965 Product Minnesotan farmer owned bioethanol production company. Coordinates 47.526531°, -121.936019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.526531,"lon":-121.936019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Corn Belt Power Coop | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Power Coop Corn Belt Power Coop Place Iowa Utility Id 4363 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Corn_Belt_Power_Coop&oldid=41053

299

Bioconversion and Biorefineries of the Future Linda L. Lasure, Pacific Northwest National Laboratory  

E-Print Network [OSTI]

-scale impacts on energy and GHG mitigation a. Example I: Ethanol from corn stover in the USA i. Energy from corn stover ii. Impact on GHG production iii. Life cycle analysis of impacts on energy and GHG mitigation for corn stover derived ethanol iv. Century-scale impacts on GHG mitigation b. Example II: Polylactide from

300

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Analysis of the Corn-Ethanol Biofuel Cycle  

E-Print Network [OSTI]

Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

Patzek, Tadeusz W.

302

THE DEVELOPMENT OF NEW OR IMPROVED SYNTHETIC MATERIALS FROM CORN  

E-Print Network [OSTI]

of materials will diversify the market for corn and for wet- mill biorefineries." Jaffe said that the workTHE DEVELOPMENT OF NEW OR IMPROVED SYNTHETIC MATERIALS FROM CORN DERIVATIVES IS THE GOAL OF A PARTNERSHIP AMONG NJIT RESEARCHERS, THE IOWA CORN PROMOTION BOARD AND THE MID-ATLANTIC TECHNOLOGY, RESEARCH

Bieber, Michael

303

Feeding Corn Milling Byproducts to Feedlot Cattle  

Science Journals Connector (OSTI)

Corn milling byproducts are expected to increase dramatically in supply as the ethanol industry expands. Distillers grains, corn gluten feed, or a combination of both byproducts offer many feeding options when included in feedlot rations. These byproduct feeds may effectively improve cattle performance and operation profitability. When these byproducts are fed in feedlot diets, adjustments to grain processing method and roughage level may improve cattle performance. Innovative storage methods for wet byproducts and the use of dried byproducts offer small operations flexibility when using byproducts. As new byproducts are developed by ethanol plants, they should be evaluated with performance data to determine their product-specific feeding values.

Terry J. Klopfenstein; Galen E. Erickson; Virgil R. Bremer

2007-01-01T23:59:59.000Z

304

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

305

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

306

Biomass 2014: Breakout Speaker Biographies  

Broader source: Energy.gov [DOE]

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29–July 30 in Washington, D.C.

307

Biomass 2009: Fueling Our Future  

Broader source: Energy.gov [DOE]

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

308

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

309

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

310

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

311

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

312

Vaguely Quantified Rough Sets Chris Cornelis1  

E-Print Network [OSTI]

Vaguely Quantified Rough Sets Chris Cornelis1 , Martine De Cock1 , and Anna Maria Radzikowska2 1@mini.pw.edu.pl Abstract. The hybridization of rough sets and fuzzy sets has focused on creating an end product they allow for gradual membership, fuzzy rough sets are still abrupt in a sense that adding or omitting

Gent, Universiteit

313

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

314

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

315

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

316

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

317

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

318

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

319

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

320

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

322

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

323

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Broader source: Energy.gov [DOE]

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

324

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

325

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

326

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

327

Major DOE Biofuels Project Locations  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

328

NREL: Biomass Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

329

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

330

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

331

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

332

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

333

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

334

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

335

Biomass 2014: Additional Speaker Biographies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

336

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

337

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

338

ARM - Biomass Burning Observation Project (BBOP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

339

Biomass Renewable Energy Opportunities and Strategies | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

340

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

342

Biomass Webinar Presentation Slides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

343

Pelleting characteristics of torrefied forest biomass.  

E-Print Network [OSTI]

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 °C) to generate energy dense and hydrophobic biomass suitable for producing pellets.… (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

344

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

345

Heat transfer efficiency of biomass cookstoves.  

E-Print Network [OSTI]

??Nearly half of the world’s human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical… (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

346

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

347

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?  

E-Print Network [OSTI]

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? TAD as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts that burn corn ethanol is halved. The wide- spread use of corn ethanol will cause manifold damage to air

Patzek, Tadeusz W.

348

Characterization of light gluten and light steep water from a corn wet milling plant  

E-Print Network [OSTI]

Characterization of light gluten and light steep water from a corn wet milling plant K.D. Rausch March 2003; accepted 10 March 2003 Abstract The primary commodity of corn wet milling is starch, but two Ltd. All rights reserved. Keywords: Coproducts; Corn gluten meal; Corn gluten feed; Corn wet milling

349

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Lédé

2012-01-01T23:59:59.000Z

350

Corn Plus Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plus Wind Farm Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser N/a Location MN Coordinates 43.760635°, -94.149617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.760635,"lon":-94.149617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Corn Belt Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Energy Corporation Corn Belt Energy Corporation Place Illinois Utility Id 4362 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SUBSTATION RATE ("ISR") Industrial RATE 1 RESIDENTIAL & FARM SERVICE Residential RATE 10 ELECTRIC HEAT FOR RESIDENTIAL & FARM SERVICE Residential RATE 11 RESIDENTIAL & FARM SERVICE - INTERRUPTIBLE Residential RATE 12 RESIDENTIAL ELECTRICALLY HEATED APARTMENTS Residential

352

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

353

Impact of Air Pollution Control Costs on the Cost and Spatial Arrangement of Cellulosic Biofuel Production in the U.S.  

Science Journals Connector (OSTI)

Impact of Air Pollution Control Costs on the Cost and Spatial Arrangement of Cellulosic Biofuel Production in the U.S. ... The difference in truck freight transport between the AQ_On and AQ_Off scenario is approximately 120 million ton-miles, costing approximately $33 million, or one-fifth of the cost difference between the two scenarios. ... gal of fuel produced and combusted in the US, the combined climate change and health costs were $469 million for gasoline, $472-952 million for corn ethanol (depending on bio-refinery heat source [natural gas, corn stover, coal] and technol.), but only $123-208 million for cellulosic ethanol (depending on feedstock [prairie biomass, Miscanthus, corn stover, switchgrass]). ...

Colin W. Murphy; Nathan C. Parker

2014-01-27T23:59:59.000Z

354

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

355

Wheat and corn prices and energy markets: spillover effects  

Science Journals Connector (OSTI)

This paper investigates volatility spillover across crude oil market and wheat and corn markets. The corn commodity is taken here to assess the impact of change in demand for biofuel on wheat market. Results of multivariate GARCH model show evidence of corn price volatility transmission to wheat market. Our results indicate that while shocks (unexpected news) in crude oil market have significant impact on volatility in wheat and corn markets, the effect of crude oil price changes on wheat and corn prices is insignificant. The impulse response analysis also indicates shocks in oil markets have permanent effect on wheat and corn price changes. This reveals the influence of future crude oil markets on global food price volatility. Also indicated that fertilisers markets influenced by own-shocks and shocks in oil markets. Thus, shocks in crude oil markets have direct and indirect effects (via fertilisers markets) on food commodity markets.

Ibrahim A. Onour; Bruno S. Sergi

2012-01-01T23:59:59.000Z

356

STATEMENT OF CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED  

Broader source: Energy.gov (indexed) [DOE]

CONSIDERATION CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-96PC96050-W(A)-96-026, CH-0915 The Petitioner, Dow Corning, was awarded this cooperative agreement in response to an unsolicited proposal for the engineering scale development of a process for the conversion of natural gas to methyl chloride. The Petitioner was selected based on its past experience in identifying an oxyhydrochlorination catalyst and separation process for this conversion. The initial phase of this work was performed under DOE Contract No. DE-AC22- 91PC91030. The Contracting Officer has found that the provisions of the 1992 Energy Policy Act P.L. 102-486 apply to this cooperative agreement and that the cost sharing requirement of

357

Cultivating corn in clumps increases water efficiency, yield  

E-Print Network [OSTI]

-tional rows increases water use efficiency and corn yield. Researchers are Dr. B.A. Stewart and graduate student Mohankumar Kapan-igowda of West Texas A&M University in Canyon, and Drs. Terry Howell, Louis Baumhardt, and Paul Colaizzi of the Conservation... have discovered that corn grown in clumps (left) rather than in traditional rows (right) increases water use efficiency and corn yield. ...

Wythe, Kathy

2008-01-01T23:59:59.000Z

358

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

359

Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes  

SciTech Connect (OSTI)

Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

2007-09-01T23:59:59.000Z

360

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

362

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

363

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

364

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

365

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

366

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

367

Stagewise Dilute-Acid Pretreatment and Enzyme Hydrolysis of Distillers’ Grains and Corn Fiber  

Science Journals Connector (OSTI)

Distillers’ grains and corn fiber are the coproducts of the corn dry grind and wet milling industries, respectively. Availability of distillers’ grains and corn fiber at the ethanol plant and their ... three-stag...

Hossein Noureddini; Jongwon Byun; Ta-Jen Yu

2009-11-01T23:59:59.000Z

368

Optimization of the Extraction and Fractionation of Corn Bran Oil Using Analytical Supercritical Fluid Instrumentation  

Science Journals Connector (OSTI)

......similar cholesterol- lowering activity (6,7). Corn bran and corn fiber are obtained as byproducts from the dry- and wet-milling of corn, respectively--processes that are used in converting......

Scott L. Taylor; Jerry W. King

2000-03-01T23:59:59.000Z

369

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Processors LLC Jump to: navigation, search Name: Pine Lake Corn Processors LLC Place: Steamboat Rock, Iowa Zip: 50672 Product: Farmer owned investment and management team which...

370

Corn fiber hulls as a food additive or animal feed  

DOE Patents [OSTI]

The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IN); Cecava, Michael J. (Decatur, IN); Doane, Perry H. (Decatur, IN)

2010-12-21T23:59:59.000Z

371

Gene Controls Flowering Time in Corn - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gene Controls Flowering Time in Corn Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Plant development is marked by three...

372

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

373

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

374

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

375

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

376

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

377

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

378

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

379

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

380

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery  

Science Journals Connector (OSTI)

Abstract This paper aims to analyse energy related properties, thermal degradation behaviour and devolatilization kinetics of five Cameroonian biomasses namely, Palm Kernel Shells (PKS), Mesocarp Fibres (PMF), Coffee Husk (CH), Corn Cob (CC) and Peanut Shell (PNS). The thermal degradation was performed using thermogravimetric analysis (TG). Different behaviours related to the presence of chemical constituents such as cellulose, hemicellulose and lignin were obtained. Comparison of the thermal characterization shows that PMF is the most interesting feedstock with the highest heating values and reactivity due to higher volatile content. Decomposition of TG data was analysed by applying diffusion and chemical reaction kinetic models. Obtained results show that biomass pyrolysis is represented by two successive steps. The devolatilization stage characterized by high weight loss rate is well described by diffusion reaction models. In contrast, the char formation stage characterized by low weight loss rate is well described by third order chemical reaction models.

M. Jeguirim; J. Bikai; Y. Elmay; L. Limousy; E. Njeugna

2014-01-01T23:59:59.000Z

382

Production of Butyric Acid and Butanol from Biomass  

SciTech Connect (OSTI)

Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased reactor productivity, final product concentration, and product yield. Other advantages of the FBB include efficient and continuous operation without requiring repeated inoculation, elimination of cell lag phase, good long-term stability, self cleaning and easier downstream processing. The excellent reactor performance of the FBB can be attributed to the high viable cell density maintained in the bioreactor as a result of the unique cell immobilization mechanism within the porous fibrous matrix Since Butanol replaces gasoline in any car today - right now, its manufacturing from biomass is the focus of EEI and in the long term production of our transportation fuel from biomass will stabilize the cost of our fuel - the underpinning of all commerce. As a Strategic Chemical Butanol has a ready market as an industrial solvent used primarily as paint thinner which sells for twice the price of gasoline and is one entry point for the Company into an established market. However, butanol has demonstrated it is an excellent replacement for gasoline-gallon for gallon. The EEI process has made the economics of producing butanol from biomass for both uses very compelling. With the current costs for gasoline at $3.00 per gallon various size farmstead turn-key Butanol BioRefineries are proposed for 50-1,000 acre farms, to produce butanol as a fuel locally and sold locally. All butanol supplies worldwide are currently being produced from petroleum for $1.50 per gallon and selling for $3.80 wholesale. With the increasing price of gasoline it becomes feasible to manufacture and sell Butanol as a clean-safe replacement for gasoline. Grown locally - sold locally at gas prices. A 500 acre farm at 120 bushels corn per acre would make $150,000 at $2.50 per bushel for its corn, when turned into 150,000 gallons Butanol per year at 2.5 gallons per bushel the gross income would be $430,000. Butanol-s advantage is the fact that no other agricultural product made can be put directly into your gas tank without modifying your car. The farmer making and selling locally has no overhead for shippi

David E. Ramey; Shang-Tian Yang

2005-08-25T23:59:59.000Z

383

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

384

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

385

Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility  

Science Journals Connector (OSTI)

Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.

Monika Verma; Thomas Hertel; Noah Diffenbaugh

2014-01-01T23:59:59.000Z

386

Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report  

SciTech Connect (OSTI)

The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

NONE

1997-07-01T23:59:59.000Z

387

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

388

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

389

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

390

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

391

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

392

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

393

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

394

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

395

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

396

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

397

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

398

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

399

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

400

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

402

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

403

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

404

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

405

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

406

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

407

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

408

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

409

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

410

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

411

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

412

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

413

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

414

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

415

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

416

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

417

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

418

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

419

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

420

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy,” biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

422

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

423

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

424

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

425

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers [EERE]

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

426

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

427

NREL: Renewable Resource Data Center - Biomass Resource Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

428

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

429

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

430

Consumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber  

E-Print Network [OSTI]

content but varying energy content were detected across the eight corn varieties. Neither the nitrogenConsumption of two Bt and six non-Bt corn varieties by the woodlouse Porcellio scaber Heiri Bacillus thuringiensis corn were limited to date, to a com- parison between one Bt corn variety and its

Richner, Heinz

431

Microfiltration of gluten processing streams from corn wet milling C.I. Thompson a  

E-Print Network [OSTI]

Microfiltration of gluten processing streams from corn wet milling C.I. Thompson a , K.D. Rausch b 2005; accepted 6 February 2005 Available online 12 April 2005 Abstract In corn wet milling, dry matter composition; Corn processing; Membrane filtration; Corn gluten meal; Wet milling 1. Introduction Wet milling

432

96 CEREAL CHEMISTRY Comparison Between Alkali and Conventional Corn Wet-Milling: 100-g Procedures  

E-Print Network [OSTI]

96 CEREAL CHEMISTRY Comparison Between Alkali and Conventional Corn Wet-Milling: 100-g Procedures S ABSTRACT Cereal Chem. 76(1):96-99 A corn wet-milling process in which alkali was used was studied as an alternative to the conventional corn wet-milling procedure. In the alkali wet-milling process, corn was soaked

433

Major Insect Threats; Cotton Insects, Grasshoppers, Corn Borer, And Army Worm Still Maior Threats  

Science Journals Connector (OSTI)

Major Insect Threats; Cotton Insects, Grasshoppers, Corn Borer, And Army Worm Still Maior Threats ...

. U S D A

1954-01-01T23:59:59.000Z

434

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

435

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

436

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

437

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

438

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

439

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

440

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

442

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

443

Biomass Webinar Text Version | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

444

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; André P. C. Faaij

2009-06-01T23:59:59.000Z

445

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

446

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

447

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

448

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

449

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

450

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water† ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

451

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

452

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

453

Biomass Derivatives Competitive with Heating Oil Costs.  

Broader source: Energy.gov [DOE]

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

454

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

455

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network [OSTI]

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

456

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

457

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

458

Simulation of the Process for Producing Butanol from Corn Fermentation  

Science Journals Connector (OSTI)

Energy use for the production process is highlighted and compared to that for the conventional corn ethanol process. ... Energy uses in the fermentation, the downstream processing sections, and the entire production process are compared with those for the conventional corn ethanol production plant. ... Also presented are the mass and energy balances for the complete production process, for which the calculation and assumptions can be found in the work of Wu et al.(17) The mass and energy balances are compared to those of a conventional corn ethanol plant. ...

Jiahong Liu; May Wu; Michael Wang

2009-05-06T23:59:59.000Z

459

Increasing biomass in Amazonian forest plots  

Science Journals Connector (OSTI)

...Malhi and O. L. Phillips Increasing biomass in Amazonian forest plots Timothy R...by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian...Therefore we present a new analysis of biomass change in old-growth Amazonian forest...

2004-01-01T23:59:59.000Z

460

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

462

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

463

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

464

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

465

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

466

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

467

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

468

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

469

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

470

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

471

Researchers at the Biomass Energy Center  

E-Print Network [OSTI]

HARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken from the atmosphere via photosynthesis: turning sunlight into energy. Unlike fossil fuels, however, biomass

Lee, Dongwon

472

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network [OSTI]

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

473

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

474

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

475

Fuzzy Logic-based energy efficiency Life Cycle Assessment with a case study of corn-based fuel ethanol in China  

Science Journals Connector (OSTI)

A fuzzy logic based method of energy efficiency assessment of Biomass-based Fuel Ethanol (BFE) production is introduced in this paper. Energy relevant inventory variables are defined and described by fuzzy sets representing the differences in energy inventory data between the BFE system and its reference. A fuzzy reasoning process is developed to derive the energy efficiency from the fuzzificated inventory data. This method distinguishes itself by simple calculation, lower requirements of data accuracy and capability of processing subjectivity. A case study of corn-based fuel ethanol from Northeast China is conducted to demonstrate the application of the proposed method.

Suiran Yu; Jing Tao

2009-01-01T23:59:59.000Z

476

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

1995). Estimating the Net Energy Balance of Corn Ethanol. Anfood industry. After corn, energy is the second largestManufacturing Processes and Energy Use Corn wet milling is

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

477

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

478

BSEL BioProducts, Sciences, and Engineering Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . To develop and transform abundant and renewable bioresources through targeted research, development, demonstration and commercialization of bioproducts, bioprocesses and bioenergy supported by a wide variety of public and private partnerships. 2. To provide a quality and rigorous education in the sciences and engineering required to conduct an active program of research, discovery and commercialization while integrating the teaching and research missions. You are here Statement from US Department of Energy Current technology: Starch-based ethanol Biomass: Corn, grain, sugar Technology under implementation: Lignocellulose based ethanol Residues and waste: Corn stover, straw, bagasse, wood, garden refuges etc. Cellulose Hemicellulose

479

PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a preliminary survey was performed at the former Sylvania-Corning Nuclear Corporation in Bayside, New York (see Fig. l), on November 29, 1977, to assess the radiological status of those facilities uti 7 Commission (AEC) contract during the 1950s. _ _ ._. __

480

Corn Based Ethanol in Perspective: An Overview of the Possibilities,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corn Based Ethanol in Perspective: An Overview of the Possibilities, Corn Based Ethanol in Perspective: An Overview of the Possibilities, Limitations and Consequences Speaker(s): Michael Carnall Date: August 30, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The use of corn based ethanol as a supplement or replacement of motor fuel gasoline has many champions as well as detractors. In this presentation I attempt to separate hype from facts and wishful thinking from realistic forecasts. The production of corn based ethanol has physical limits based on land required to grow its primary input. It also has economic limits based on the cost of inputs relative to the cost of the fuel it replaces and the value of the environmental and other benefits its use may provide. By exploring these limits and the likely consequences of

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Improvement of the Protein Quality of Corn With Soybean Protein  

Science Journals Connector (OSTI)

In most Central American countries, lime-treated corn provides 31% of the total protein and 45% of the energy intake, and beans 24% of the ... quality and quantity, as well as in energy. To overcome these deficie...

Ricardo Bressani; Luiz G. Elías…

1978-01-01T23:59:59.000Z

482

Effect of ground corn steeping on starch properties  

Science Journals Connector (OSTI)

Pasting and thermal properties, and microstructure of starch from ground corn (GS) steeped at 52 °C in ... were investigated. The isolated starch obtained by wet milling was characterised by determining pasting p...

Monica Haros; Wioletta Blaszczak; Oscar E. Perez…

2006-01-01T23:59:59.000Z

483

Enzymatic corn wet milling: engineering process and cost model  

Science Journals Connector (OSTI)

Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch ... the total starch production in USA by conventional wet milling equaled 23 ...

Edna C Ramírez; David B Johnston; Andrew J McAloon…

2009-01-01T23:59:59.000Z

484

DOE - Office of Legacy Management -- Sylvania Corning Nuclear...  

Office of Legacy Management (LM)

to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 NY.07-2 -...

485

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Use Average Energy Use Average Supply-Chain Corn Stover tothe corn ethanol debate focused on its fossil energy andMiscanthus Energy Use U.S. Average Supply-Chain Corn Grain

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

486

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

488

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

489

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

490

Sweet Corn Tests in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

in habit and character to Silvercross Evergreen. 10 BULLETIN NO. 689, TEXAS AGRICULTURAL EXPERIMENT STATION Table 6. Variety test results with white sweet corn Other varieties of white sweet corn of merit are the Narrowgra Hybrids 5 x 22 and 26 x 15..... ....................... Winnebago ...................... Country Gentlemen 5 x 10. ........ Country Gentlemen 8 x 6. ........ Narrow Grain 17x1 1 .............. Narrow Grain 14x13. ............. Narrow Grain 26x15. ............. Shoeped Hybrid.. ................ Stowell...

Pickett, B. S. (Barzalli Stewart)

1947-01-01T23:59:59.000Z

491

Evaluation of mixing characteristics of corn dry masa flours  

E-Print Network [OSTI]

EVALUATION OF MIXING CHARACTERISTICS OF CORN DRY MASA FLOURS A Thesis by RODRIGO LOBEIRA MASSU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1996 Major Subject: Food Science and Technology EVALUATION OF MIXING CHARACTERISTICS OF CORN DRY MASA FLOURS A Thesis by RODRIGO LOBEIRA MASSU Submitted to Texas A8M University in partial fulfillment of the requirements for the degree...

Lobeira Massu, Rodrigo

2012-06-07T23:59:59.000Z

492

The values and practices associated with high moisture corn  

E-Print Network [OSTI]

THE VALUES AND PRACTICES ASSOCIATED WITH HIGH MOISTURE CORN A Professional Paper by Charles B. Finch Submitted as Partial Fulfillment of the Professional Internship Requirements for the Texas A&M University Degree of Master of Agriculture...THE VALUES AND PRACTICES ASSOCIATED WITH HIGH MOISTURE CORN A Professional Paper by Charles B. Finch Submitted as Partial Fulfillment of the Professional Internship Requirements for the Texas A&M University Degree of Master of Agriculture...

Finch, Charles B

2012-06-07T23:59:59.000Z

493

Characteristics of corn and sorghum for tortilla processing  

E-Print Network [OSTI]

CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Food Science and Technology CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Approved as to style and content by: an o omm t em er em er ea o...

Gonzalez de Palacios, Maria de Jesus

1980-01-01T23:59:59.000Z

494

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

495

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

496

Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Corn-to-Ethanol Corn-to-Ethanol Research Pilot Plant to someone by E-mail Share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Facebook Tweet about Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Twitter Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Google Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Delicious Rank Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Digg Find More places to share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Corn-to-Ethanol Research Pilot Plant The Illinois Ethanol Research Advisory Board manages and operates the

497

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

498

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

499

Degradation of Corn Fiber by Clostridium cellulovorans Cellulases and Hemicellulases and Contribution of Scaffolding Protein CbpA  

Science Journals Connector (OSTI)

...and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J. Agric. Food Chem. 49...and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J. Agric. Food Chem. 46: 2615-2619...

Roger Koukiekolo; Hee-Yeon Cho; Akihiko Kosugi; Masayuki Inui; Hideaki Yukawa; Roy H. Doi

2005-07-01T23:59:59.000Z

500

Biomass Energy in a Carbon Constrained Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,