Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Corn Stover Availability for Biomass Conversion: Situation Analysis  

SciTech Connect

As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, this study of a large, square-bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional-bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting and collection and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.

J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; Robert Perlack; Anthony Turhollow

2009-08-01T23:59:59.000Z

2

Corn stover availability for biomass conversion: situation analysis  

SciTech Connect

As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, analysis of a conventional large square bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting, collection, and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.

Hess, J. Richard [Idaho National Laboratory (INL); Kenney, Kevin L. [Idaho National Laboratory (INL); Wright, Christopher [Idaho National Laboratory (INL); Perlack, Robert D [ORNL; Turhollow, Jr., Anthony [ORNL

2009-08-01T23:59:59.000Z

3

Characterization of the Impact of Process Variables on the Densification of Corn Stover.  

E-Print Network (OSTI)

??The bulk density of corn stover poses a major obstruction to its large scale viability as a biomass feedstock. Corn stover has a low bulk… (more)

Thoreson, Curtis Peder

2011-01-01T23:59:59.000Z

4

Corn Stover for Bioethanol -- Your New Cash Crop?  

SciTech Connect

Biomass ethanol technology is still developing and important questions need to be answered about corn stover removal, but prospects are excellent for you to someday be able to harvest and sell a substantial portion of your stover for fuel production--without hurting your soil or main corn grain operation.

Brown, H.

2001-05-16T23:59:59.000Z

5

Summary of Findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): Corn Stover Pretreatment  

SciTech Connect

The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.

Elander, R. T.; Dale, B. E.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y.; Mitchinson, C.; Saddler, J. N.; Wyman, C. E.

2009-01-01T23:59:59.000Z

6

Maximizing the enzymic saccharification of corn stover  

E-Print Network (OSTI)

Lignocellulosic biomass (e.g. agricultural residues, wood, municipal solid waste, tree and yard t gs, sewage sludge, and waste paper) comprises three major components: cellulose, hemicellulose and lignin. It can contain as much as 75% polysaccharide; thus, biomass has considerable potential as a fermentation feedstock. Corn stover represents an especially important resource because it is the single largest source of agricultural residue in the United States. The best method to obtain fermentable sugars from biomass is by enzymic saccharification. Before biomass can be effectively saccharified, some pretreatment is required. Calcium hydroxide (Eme) is an effective pretreatment agent for corn stover and is less expensive and easier to recover than other alternatives. The reconunended process conditions for treating corn stover are 4 h at 120 'C using 0. 075 g Ca(OH)2/g dry biomass and 5 g H20/g dry biomass. The maximum sugar yield bv enzymic hydrolysis (25 FPU ceflulase/g dry biomass, 50 'C, 7 days) of pretreated corn stover is 88.0% of the glucose and 88.1% of the total sugars. The recommended enzyme loading is IO FPU ceUulase/g dry biomass. Tween 20 and Tween 80 are effective at improving the enzymic saccharification of corn stover. The recommended loading of Tween is 0. 15 g Tween/g dry biomass; the loading, rather than the concentration, is the critical parameter. Adding Tween to the hydrolytic medium increases the maximum sugar yield to I 00% and 94.8% of the glucose and 97.4% and 93.3 % of the total sugars for Tween 20 and Tween 80, respectively. Tween also reduces the recommended enzyme loading to 3 FPU ceflulase/g dry biomass. The action of Tween is three-fold: (1) Time profiles show that enzymes remain active at higher temperatures in the presence of Tween. (2) Kinetic analyses show that, although the theoretical maximum hydrolysis rate is unchanged by Tween, the adsorption and coverage parameters, a and c, in the HCH-1 model are reduced which results in higher effective hydrolysis rates. (3) The maximum enzymic digestion, which is independent of enzyme effects, is higher with Tween. Thus, the action of Tween is a combination of surfactant, enzyme effector, and fignoceflulose matrix disrupter.

Kaar, William Edward

1996-01-01T23:59:59.000Z

7

Biological conversion of biomass to methane corn stover studies. Project report, December 1, 1977-August 1, 1978  

DOE Green Energy (OSTI)

A series of experiments was conducted to determine the performance characteristics of the methane fermentation process using corn stover obtained from the University of Illinois farms and processed through four parallel fermenters each having a capacity of 775 liters. A continuous feed system was employed to determine the conversion efficiency. The dewatering characteristics of the effluents and the quality of the liquid and solid residues were determined. The biodegradability of corn stover is low. Data obtained at a fermentation temperature of 59 +-1/sup 0/C show that only 36 percent of the volatile solids are biodegradable. The first order rate constant for this conversion was found to be 0.25 day/sup -1/. Pretreatment with caustic (NaOH) concentration of 0.30 molar (5 g/100 g dry stover) and a temperature of 115/sup 0/C for one hour increased the biodegradable fraction to 71 percent of the volatile solids. The reactor slurries were easily dewatered by both vacuum filtration and centrifugation. Corn stover does not appear to be attractive economically at the present energy prices. At a chemical cost of $154/tonne ($140/ton), the NaOH pretreatment adds approximately $5.2/tonne to the cost of processing the stover. At a methane yield of 0.25 m/sup 3//kg of solids fed, this adds a total cost of $2/100 m/sup 3/ ($0.57/MCF) for this process alone. Addition of stover acquisition costs ($20/dry tonne of stover), total processing costs without gas cleanup ($21/tonne) and residue disposal ($3/tonne of wet cake), the cost of fuel gas would be in the neighborhood of $9.76/GJ ($10.30/10/sup 6/ Btu).This cost excludes all profit, taxes, etc. associated with private financing. Depending upon financing methods, tax incentives, etc., it may be necessary to add up to an additional $2.00/GJ to the cost of this fuel gas.

Pfeffer, J T; Quindry, G E

1979-06-01T23:59:59.000Z

8

Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover  

Science Conference Proceedings (OSTI)

We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

Wolfrum, E. J.; Sluiter, A. D.

2009-01-01T23:59:59.000Z

9

Cellulase Accessibility of Dilute-Acid Pretreated Corn Stover  

SciTech Connect

The conclusions of this presentation are: (1) The dilute-acid pretreatment reduces xylan content in corn stover. This reduction in xylan content appears to render the substrate less recalcitrant. Below {approx}8%, xylan content is no longer the dominant factor in biomass recalcitrance. (2) Decreasing xylan content of corn stover also created more binding sites for Cel7A, but no strong correlation with actual xylan content. (3) We found no correlation between bound Cel7A concentration and lignin content. Maybe lignin is blocking the way for Cel7A? The contribution of lignin to biomass recalcitrance requires further investigation.

Jeoh, T.; Johnson, D. K.; Adney, W. S.; Himmel, M. E.

2005-01-01T23:59:59.000Z

10

Assessing Corn Stover Composition and Sources of Variability via NIRS  

Science Conference Proceedings (OSTI)

Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.

Templeton, D. W.; Sluiter, A. D.; Hayward, T. K.; Hames, B. R.; Thomas, S. R.

2009-01-01T23:59:59.000Z

11

Flowability parameters for chopped switchgrass, wheat straw and corn stover  

Science Conference Proceedings (OSTI)

A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest for chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.

Chevanan, Nehru [University of Tennessee; Womac, A.R. [University of Tennessee; Bitra, V.S.P. [University of Tennessee; Yoder, D.C. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-02-01T23:59:59.000Z

12

Comparative Detoxification of Vacuum Evaporation/Steam Stripping Combined with Overliming on Corn Stover Prehydrolyzate  

Science Conference Proceedings (OSTI)

Tow kinds of physical methods, vacuum evaporation and steam stripping, combined with overliming (calcium hydroxide) were applied to remove inhibitors which were produced simultaneously during the pretreatment of lignocellulosic biomass. Corn stover was ... Keywords: vacuum evaporation, steam stripping, overliming, corn stover prehydrolyzate, detoxification

Jun-jun Zhu; Qiang Yong; Yong Xu; Shi-yuan Yu

2009-10-01T23:59:59.000Z

13

Environmental Impacts of Stover Removal in the Corn Belt  

Science Conference Proceedings (OSTI)

When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David Muth

2012-08-01T23:59:59.000Z

14

Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

for for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: Insights into microbial conversion of pretreated cellulosic biomass Xiongjun Shao a , Mingjie Jin b,c , Anna Guseva a , Chaogang Liu d , Venkatesh Balan b,c , David Hogsett d , Bruce E. Dale b,c , Lee Lynd a,d,⇑ a Thayer School of Engineering at Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA b Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, MBI Building, 3900 Collins Road, Lansing, MI 48910, USA c Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, USA d Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA a r t i c l e i n f o Article history: Received 8 March 2011 Received in revised form 6 May 2011 Accepted

15

Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting  

DOE Green Energy (OSTI)

Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

Atchison, J. E.; Hettenhaus, J. R.

2003-03-01T23:59:59.000Z

16

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion of Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden National Renewable Energy Laboratory Golden, Colorado P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon Harris Group Inc. Seattle, Washington and Atlanta, Georgia Technical Report NREL/TP-5100-47764 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

17

Compositional Analysis of Water-Soluble Materials in Corn Stover  

SciTech Connect

Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis. Over 30 previously unknown constituents of aqueous extracts were identified and quantified using a variety of chromatographic techniques. Monomeric sugars (primarily glucose and fructose) were found to be the predominant water-soluble components of corn stover, accounting for 30-46% of the dry weight of extractives (4-12% of the dry weight of feedstocks). Additional constituents contributing to the mass balance for extractives included various alditols (3-7%), aliphatic acids (7-21%), inorganic ions (10-18%), oligomeric sugars (4-12%), and a distribution of oligomers tentatively identified as being derived from phenolic glycosides (10-18%).

Chen, S. F.; Mowery, R. A.; Scarlata, C. J.; Chambliss, C. K.

2007-01-01T23:59:59.000Z

18

Costs of Harvesting, Storing in a Large Pile, and Transporting Corn Stover in a Wet Form  

Science Conference Proceedings (OSTI)

Corn stover is potentially an attractive biomass resource, but must be stored if used to supply a biorefinery year-round. Based on experience with successfully storing water-saturated large piles of bagasse for the pulping industry, Atchison and Hettenhaus (2003) proposed that such a system can also be applied to corn stover. Regardless of the technical feasibility of this system, in this article we estimate the cost of harvesting corn stover in a single pass with corn grain, delivering the chopped biomass to a storage pile, storing the stover in a wet form in a large pile at 75% moisture in a 211,700-dry Mg facility within a radius of 24 km from the field, and transporting the stover 64 km to a biorefinery. Field-ground corn stover can be delivered to a biorefinery by rail for $55 to $61/dry Mg. Truck transport is more expensive, $71 to $77/dry Mg. To achieve a minimum cost in the system proposed by Atchison and Hettenhaus, it is necessary to field densify stover to 74 dry kg/m3, without losing combine field efficiency, have a large storage pile to spread fixed costs of storage over enough biomass, and use rail transportation. Compared to storage in an on-farm bunker silo at $60/dry Mg, there are limited circumstances in which large pile storage has a cost advantage.

Turhollow Jr, Anthony F [ORNL; Sokhansanj, Shahabaddine [ORNL

2007-01-01T23:59:59.000Z

19

Lime pretreatment and enzymatic hydrolysis of corn stover  

E-Print Network (OSTI)

Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock to economically produce environmentally friendly biofuels. Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55oC. The optimal condition is 55oC for 4 weeks with aeration, determined by yields of glucan and xylan. The overall yields of glucose (g glucan hydrolyzed/100 g original glucan) and xylose (g xylan hydrolyzed/100 g original xylan) were 91.3 and 51.8 at 15 FPU/g cellulose, respectively. Furthermore, when considering the dissolved fragments of glucan and xylan in the pretreatment liquors, the overall yields of glucose and xylose were 93.2 and 79.5 at 15 FPU/g cellulose, respectively. The pretreatment liquor has no inhibitory effect on ethanol fermentation using Saccharomyces cerevisiae D5A. At the recommended condition, only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Under extensive delignification conditions, 87.5% of the initial lignin was removed. Extensive delignfication required oxidative treatment and additional lime consumption. Deacetylation quickly reached a plateau within 1 week. Delignification highly depended on temperature and the presence of oxygen. Lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (25 ?? 55oC). The delignification kinetic models of corn stover were empirically determined by three simultaneous first-order reactions. The activation energies for the oxidative delignification were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively. Crystallinity slightly increased with delignification because amorphous components (lignin, hemicellulose) were removed. However, the increased crystallinity did not negatively affect the 3-d sugar yield of enzyme hydrolysis. Oxidative lime pretreatment lowered the acetyl and lignin contents to obtain high digestibility, regardless of crystallinity. The enzymatic digestibility of lime-treated biomass was affected by the change of structural features (acetylation, lignification, and crystallization) resulting from the treatment. The non-linear models for 3-d hydrolysis yields of glucan and xylan were empirically established as a function of the residual lignin fraction for the corn stover pretreated with lime and air.

Kim, Se Hoon

2003-05-01T23:59:59.000Z

20

Biochemical Production of Ethanol from Corn Stover: 2008 State...  

NLE Websites -- All DOE Office Websites (Extended Search)

10-46214 August 2009 Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model D. Humbird and A. Aden National Renewable Energy Laboratory 1617 Cole...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover  

Science Conference Proceedings (OSTI)

This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

2011-03-01T23:59:59.000Z

22

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover  

DOE Green Energy (OSTI)

This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.

Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

2002-06-01T23:59:59.000Z

23

HYGROSCOPIC MOISTURE SORPTION KINETICS MODELING OF CORN STOVER AND ITS FRACTIONS  

SciTech Connect

Corn stover, a major crop-based lignocellulosic biomass feedstock, is required to be at an optimum moisture content for efficient bioconversion processes. Environmental conditions surrounding corn stover, as in storage facilities, affect its moisture due to hygroscopic sorption or desorption. The measurement and modeling of sorption characteristics of corn stover and its leaf, husk, and stalk fractions are useful from utilization and storage standpoints, hence investigated in this article. A benchtop low-temperature humidity chamber provided the test environments of 20 C, 30 C, and 40 C at a constant 95% relative humidity. Measured sorption characteristics with three replications for each fraction were obtained from instantaneous sample masses and initial moisture contents. Observed sorption characteristics were fitted using exponential, Page, and Peleg models. Corn stover fractions displayed a rapid initial moisture uptake followed by a slower sorption rates and eventually becoming almost asymptotic after 25 h. Sorption characteristics of all corn stover fractions were significantly different (P < 0.0001) but not the effect of temperature (P > 0.05) on these fractions. The initial 30 min of sorption was found to be critical due to peak rates of sorption from storage, handling, and processing standpoints. The Page and Peleg models had comparable performance fitting the sorption curves (R2 = 0.995), however the exponential model (R2 = 0.91) was not found suitable because of patterned residuals. The Arrhenius type relationship (P < 0.05; R2 = 0.80) explained the temperature variation of the fitted sorption model parameters. The Peleg model fitted constants, among the sorption models studied, had the best fit (R2 = 0.93) with the Arrhenius relationship. A developed method of mass proportion, involving individual corn stover fraction dry matter ratios, predicted the whole corn stover sorption characteristics from that of its individual fractions. Sorption characteristics models of individual corn stover fractions and predicted whole corn stover including a nomogram can be used for direct and quick estimation. Developed sorption characteristics find application in several fields of corn stover biomass processing, handling, and transport

Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-01-01T23:59:59.000Z

24

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network (OSTI)

pretreatment technologies to corn stover. Bioresourcerelationship to features of corn stover solids produced byexplosion treatment of corn stover. Appl Biochem Biotech

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

25

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

26

Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover  

SciTech Connect

Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

Chevanan, Nehru [University of Tennessee; Womac, A.R. [University of Tennessee; Bitra, V.S.P. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Yang, Y.T. [University of Tennessee; Miu, P.I [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-08-01T23:59:59.000Z

27

Characterization of Soil Amended with the By-Product of Corn Stover Fermentation  

SciTech Connect

Corn stover is a potential biofuel; however, removing this stover from the land may increase the risk of erosion and reduce soil organic matter.

Johnson,J.M.F; Reicosky, D; Sharratt, M; Lindstrom,M; Voorhees, W; Carpenter-Boggs,L.

2004-01-01T23:59:59.000Z

28

Bt vs. non-Bt corn (Zea mays L.) hybrids: effect on degradation of corn stover in soil  

E-Print Network (OSTI)

A billion tons per year of genetically modified corn residues are soil incorporated having both direct and indirect effects on the belowground environment, soil carbon (C) sequestration, and nutrient cycling. If Bt genetic modification has non-target effects on corn stover structural/non-structural carbohydrate and nitrogen (N) concentrations, then the degradation rate of Bt-corn stover may be different than that of non-Bt isolines, possibly influencing soil C storage and N mineralization. Thus, this research focused primarily on the comparison of C and N mineralization of corn stover in soil as affected by Bt-trait, plant portion, water-availability and HFC-trait; and secondarily on the existence of Bt-related variations in the chemical structure of corn residues that might affect the degradation rate of stover in soil and consequently the soil C and N dynamics. A laboratory experiment was conducted under non-limiting N conditions with stover of Bt/non-Bt isogenic pairs of two varieties, a ?high fermentable corn? (HFC) line harvested at Snook, Texas and a non-HFC corn line harvested at the irrigated field of Snook and the non-irrigated field of College Station, Texas. The stover was partitioned into three plant portions, incorporated into a Weswood soil and incubated during 223 days. Results showed that the differences observed in the degradation in soil of Bt vs. non-Bt corn stover were dependent on environmental conditions (irrigated vs. non-irrigated settings) and hybrid variety (HFC vs. non-HFC hybrid lines). The structural composition of corn plants was affected by the Bt-trait, HFC-trait, irrigation and their interactions. Variations in the biomass fractions of the initial stover of Bt and non-Bt hybrids had minimum to non-impact on soil C and N concentrations measured at the end of the 223-day incubation period. Lignin concentration was affected by a Bt-trait*variety interaction. There were no significant differences in lignin concentration between non-Bt/Bt-corn derived stovers of the non-HFC variety irrespective of irrigation regime but Bt-hybrids of the HFC variety contained more than twice as much lignin as the non-Bt isogenic plants. The effects of higher lignin concentration on C mineralization rate appeared to be offset by an increased lignin degradability inherent in HFC-trait. Overall, results indicated that the cultivation of Bt-modified maize lines is not likely to have significant effects on soil C or N dynamics compared with the cropping of non-Bt hybrids.

Salvatore, Herminia T.

2009-05-01T23:59:59.000Z

29

Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies  

E-Print Network (OSTI)

Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product yield of 31.4 wt.% were obtained at 400oC while the gas yield was maximum at 600oC (21.2 wt.%). Bio-char characteristics (energy content, proximate and ultimate analyses) indicated its potential as alternative solid fuel. The bio-oil mainly consisted of phenolic compounds, with significant proportions of aromatic and aliphatic compounds. The gas product has energy content ranging from 10.1 to 21.7 MJ m-3, attributed to significant quantities of methane, hydrogen and carbon dioxide. Mass and energy conversion efficiencies indicated that majority of the mass and energy contained in the feedstock was transferred to the bio-char. Fractional distillation of the bio-oil at atmospheric and reduced pressure yielded approximately 40-45 wt.% heavy distillate (180-250oC) with significantly reduced moisture and total acid number (TAN) and greater energy content. Aromatic compounds and oxygenated compounds were distributed in the light and middle fractions while phenolic compounds were concentrated in the heavy fraction. Finally, hydrotreatment of the bio-oil and the heavy distillate using noble metal catalysts such as ruthenium and palladium on carbon support at 100 bar pressure, 4 hours reaction time and 200o or 300oC showed that ruthenium performed better at the higher temperature (300oC) and was more effective than palladium, giving about 25-26% deoxygenation. The hydrotreated product from the heavy distillate with ruthenium as catalyst at 300oC had the lowest oxygen content and exhibited better product properties (lower moisture, TAN, and highest heating value), and can be a potential feedstock for co-processing with crude oils in existing refineries. Major reactions involved were conversion of phenolics to aromatics and hydrogenation of ketones to alcohols. Results showed that pyrolysis of corn stover and product upgrading produced potentially valuable sources of fuel and chemical feedstock.

Capunitan, Jewel Alviar

2013-05-01T23:59:59.000Z

30

Biomechanics of Wheat/Barley Straw and Corn Stover  

DOE Green Energy (OSTI)

The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

2005-03-01T23:59:59.000Z

31

Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio  

Science Conference Proceedings (OSTI)

Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-01-06T23:59:59.000Z

32

Effects of corn stover as carbon supplement on an integrated anaerobic digestion and ethanol fermentation process  

Science Conference Proceedings (OSTI)

An integrated anaerobic digestion (AD) and ethanol fermentation process on a mixed feedstock of dairy manure and corn stover was performed to investigate the influence of corn stover on biogas production

2013-01-01T23:59:59.000Z

33

Measurement of Porosity in Dilute Acid Pretreated Corn Stover  

Science Conference Proceedings (OSTI)

The conclusions of this report are: (1) pretreated corn stover appeared to have more accessible pore volume than raw corn stover; (2) solute exclusion method--differences in the pore volume were not detectable due to the high variability of the measurements; (3) thermoporosimetry--differences in pore volume between pretreated samples were not observed despite the low variability of the measurement and a good correction was found between unfrozen water at 240K and xylan content; and (4) porosity measurements showed no correlation between ethanol yields and the volume accessible to an enzyme size probe, for this sample set.

Ishizawa, C.; Davis, M. F.; Johnson, D. K.

2005-01-01T23:59:59.000Z

34

Current and potential U.S. Corn Stover Supplies  

SciTech Connect

Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.

Graham, Robin Lambert [ORNL; Nelson, R [Kansas State University; Perlack, Robert D [ORNL; Sheehan, J. [National Renewable Energy Laboratory (NREL); Wright, Lynn L [subcontractor

2007-01-01T23:59:59.000Z

35

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics  

Science Conference Proceedings (OSTI)

Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

Sokhansanj, Shahabaddine [ORNL; Mani, Sudhagar [University of Georgia; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-01-01T23:59:59.000Z

36

Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover  

SciTech Connect

Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

Allison E Ray; Amber Hoover; Gary Gresham

2012-07-01T23:59:59.000Z

37

Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?  

Science Conference Proceedings (OSTI)

It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

2009-01-01T23:59:59.000Z

38

A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA  

Science Conference Proceedings (OSTI)

Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.

Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

2011-11-01T23:59:59.000Z

39

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and “syrup ” (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

40

Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol (Poster)  

Science Conference Proceedings (OSTI)

A description of methods and results from an experiment designed to assess the impact of process water recycle on corn stover-to-ethanol conversion process performance.

Mohagheghi, A.; Schell, D. J.

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Influence of Physico-Chemical Changes on Enzymatic Digestibility of Ionic Liquid and AFEX pretreated Corn Stover  

SciTech Connect

Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.

Li, Chenlin [Joint Bioenergy Institute; Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; Ong, Markus [Sandia National Laboratories (SNL); Balan, Venkatesh [Michigan State University, East Lansing; Dale, Bruce E. [Michigan State University, East Lansing; Melnichenko, Yuri B [ORNL; Simmons, Blake [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

42

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network (OSTI)

showed that the transformed T. reesei strains released more reducing sugars compared to the parental be used for -glucosidase production as well as improving the biomass conversion using cellulases. Keywords such as bioethanol. Different microorganisms such as fungi and bacteria primarily initiate the biocon- version

43

Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.  

SciTech Connect

Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (?b), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ?b in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.

Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

2007-01-01T23:59:59.000Z

44

Mathematical model parameters for describing the particle size spectra of knife-milled corn stover  

Science Conference Proceedings (OSTI)

Particle size distributions of Corn stover (Zea mays L.) created by a knife mill were determined using integral classifying screens with sizes from 12.7 to 50.8 mm, operating at speeds from 250 to 500 rpm, and mass input rates ranging from 1 to 9 kg min_1. Particle distributions were classified using American Society of Agricultural and Biological Engineers (ASABE) standardised sieves for forage analysis that incorporated a horizontal sieving motion. The sieves were made from machined-aluminium with their thickness proportional to the sieve opening dimensions. A wide range of analytical descriptors that could be used to mathematically represent the range of particle sizes in the distributions were examined. The correlation coefficients between geometric mean length and screen size, feed rate, and speed were 0.980, 0.612, and _0.027, respectively. Screen size and feed rate directly influenced particle size, whereas operating speed had a weak indirect relation with particle size. The Rosin Rammler equation fitted the chopped corn stover size distribution data with coefficient of determination (R2) > 0.978. This indicated that particle size distribution of corn stover was well-fit by the Rosin Rammler function. This can be attributed to the fact that Rosin Rammler expression was well suited to the skewed distribution of particle sizes. Skewed distributions occurred when significant quantities of particles, either finer or coarser, existed or were removed from region of the predominant size. The mass relative span was slightly greater than 1, which indicated that it was a borderline narrow to wide distribution of particle sizes. The uniformity coefficient was corn stover produced fine-skewed mesokurtic particles with 12.7 50.8 mm screens. Size-related parameters, namely, geometric mean length, Rosin Rammler size parameter, median length, effective length, and size guide number, were well predicted at R2 values of 0.981, 0.982, 0.979, 0.950 and 0.978, respectively as a function of knife mill screen size, feed rate, and speed. Results of this analysis of particle sizes could be applied to the selection of knife mill operating parameters to produce a particular size of corn stover chop, and could serve as a guide for the relationships among various analytic descriptors of biomass particle distributions.

Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Yang, Y.T. [University of Tennessee; Miu, P.I. [University of Tennessee; Igathanathane, C. [Mississippi State University (MSU)

2009-09-01T23:59:59.000Z

45

Ultrastructure and Sugar Yields from Three Different Pretreatments of Corn Stover  

E-Print Network (OSTI)

and the Joint BioEnergy Institute ( JBEI) are collaborating to understand how biomass pretreatments with much different deconstruction patterns impact the chemical and ultrastructural features of biomass and its biological conversion to sugars. Dilute sulfuric acid (DA), ammonia fiber expansion (AFEX), and ionic liquid (IL) pretreatments are applied to the same source of corn stover by the BESC, GLBRC, and JBEI, respectively. Common sources of cellulase and other accessory enzymes are then employed to release sugars from the solids left after each pretreatment. The GLBRC applies material balances to each overall pretreatment-hydrolysis system to determine the fates of key biomass constituents and also optimizes enzyme formulations for each substrate using their microplate saccharification system. The BESC

Genomic Science Awardee; Usda-doe Plant; Feedstock Genomics; Charles E. Wyman; Xiadi Gao; Leonardo Da; Costa Sousa; Shishir P. S. Chundawat; Bruce E. Dale

2011-01-01T23:59:59.000Z

46

EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER  

Science Conference Proceedings (OSTI)

Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

2009-11-01T23:59:59.000Z

47

Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes  

SciTech Connect

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

Selig, M. J.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

48

NREL: Biomass Research - Video Text  

NLE Websites -- All DOE Office Websites (Extended Search)

is to apply heat and acid." (Voiceover) After pretreatment Nancy Dowe: "So this is the corn stover." The video shows various stages of corn stover from biomass to pretreated...

49

KNIFE MILL COMMINUTION ENERGY ANALYSIS OF SWITCHGRASS, WHEAT STRAW, AND CORN STOVER AND CHARACTERIZATION OF PARTICLE SIZE DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

Biomass preprocessing and pretreatment technologies such as size reduction and chemical preconditioning are aimed at reducing the cost of ethanol production from lignocellulosic biomass. Size reduction is an energy-intensive biomass preprocessing unit operation. In this study, switchgrass, wheat straw, and corn stover were chopped in an instrumented knife mill to evaluate size reduction energy and corresponding particle size distribution as determined with a standard forage sieve analyzer. Direct mechanical power inputs were determined using a dedicated data acquisition system for knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. A speed of 250 rpm gave optimum performance of the mill. Optimum feed rates for 25.4 mm screen and 250 rpm were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively. Total specific energy (MJ/Mg) was defined as the size reduction energy required to operate the knife mill plus that imparted to the biomass. Effective specific energy was defined as the energy imparted to the biomass. For these conditions, total specific energies were 27.3, 37.9, and 31.9 MJ/Mg and effective specific energies were 10.1, 15.5, and 3.2 MJ/Mg for switchgrass, wheat straw, and corn stover, respectively. These results demonstrated that biomass selection affects the size reduction energy, even for biomass with similar features. Second-order polynomial equations for the total specific energy requirement fitted well (R2 > 0.95) as a function of knife mill screen size, mass feed rate, and speed for biomass materials tested. The Rosin-Rammler equation fitted the cumulative undersize mass of switchgrass, wheat straw, and corn stover chop passed through ASABE sieves with high R2 (>0.983). Knife mill chopping of switchgrass, wheat straw, and corn stover resulted in particle size distributions classified as 'well-graded strongly fine-skewed mesokurtic', 'well-graded fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for small knife mill screen sizes (12.7 to 25.4 mm) and distributions classified as 'well-graded fine-skewed mesokurtic', 'well-graded strongly fine-skewed mesokurtic', and 'well-graded fine-skewed mesokurtic', respectively, for the large screen size (50.8 mm). Total and effective specific energy values per unit size reduction of wheat straw were greater compared to those for switchgrass. Corn stover resulted in reduced total and effective specific energy per unit size reduction compared to wheat straw for the same operating conditions, but higher total specific energy per unit size reduction and lesser effective specific energy per unit size reduction compared to switchgrass. Data on minimized total specific energy with corresponding particle spectra will be useful for preparing feed material with a knife mill for subsequent grinding with finer size reduction devices.

Bitra, V.S.P. [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee, Knoxville (UTK); Sokhansanj, Shahabaddine [ORNL; Igathinathane, C. [North Dakota State University

2010-01-01T23:59:59.000Z

50

Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment  

Science Conference Proceedings (OSTI)

Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p corn cobs.

Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

2012-05-30T23:59:59.000Z

51

Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy  

Science Conference Proceedings (OSTI)

In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

2009-06-15T23:59:59.000Z

52

Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover  

Science Conference Proceedings (OSTI)

There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.

Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.

2009-01-01T23:59:59.000Z

53

Assessment of Options for the Collection, Handling, and Transport of Corn Stover  

DOE Green Energy (OSTI)

In this report, we discuss the logistics and estimate the delivered costs for collecting, handling, and hauling corn stover to an ethanol conversion facility. We compare costs for two conventional baling systems (large round bales and large rectangular bales), a silage-harvest system, and an unprocessed-pickup system. Our results generally indicate that stover can be collected, stored, and hauled for about $43.60 to $48.80/dry ton ($48.10-$53.80/dry Mg) using conventional baling equipment for conversion facilities ranging in size from 500 to 2000 dry tons/day (450-1810 dry Mg/day). These estimates are inclusive of all costs including farmer payments for the stover. Our results also suggest that costs might be significantly reduced with an unprocessed stover pickup system provided more efficient equipment is developed.

Perlack, R.D.

2002-11-18T23:59:59.000Z

54

BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE  

E-Print Network (OSTI)

BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE E (sugar-, and starch-containing) raw materials represent the major part of the total production cost- linked, rigid lignocellulose complex. This structure severely limits the biological conversion; therefore

55

Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility  

SciTech Connect

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

2009-07-01T23:59:59.000Z

56

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

Science Conference Proceedings (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

57

Changes in long-term no-till corn growth and yield under different rates of stover mulch  

Science Conference Proceedings (OSTI)

Received for publication January 4, 2006. Removal of corn (Zea mays L.) stover for biofuel production may affect crop yields by altering soil properties. A partial stover removal may be feasible, but information on appropriate rates of removal is unavailable. We assessed the short-term impacts of stover management on long-term no-till (NT) continuous corn grown on a Rayne silt loam (fine loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston in Ohio, and predicted corn yield from soil properties using principal component analysis (PCA). The study was conducted in 2005 on the ongoing experiments started in May 2004 under 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200)% of stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal promoted early emergence and rapid seedling growth (P Stover management affected corn yield only at the Coshocton site where average grain and stover yields in the T200, T100, T75, and T50 (10.8 and 10.3 Mg ha-1) were higher than those in the T0 and T25 treatments (8.5 and 6.5 Mg ha-1) (P stover removal at rates as low as 50% (2.5 Mg ha-1) decreased crop yields. Soil properties explained 71% of the variability in grain yield and 33% of the variability in stover yield for the Coshocton site. Seventeen months after the start of the experiment, effects of stover management on corn yield and soil properties were site-specific.

Blanco-Canqui, Dr. Humberto [Ohio State University, The, Columbus; Lal, Dr. Rattan [Ohio State University, The, Columbus; Post, Wilfred M [ORNL; Owens, Lloyd [U.S. Department of Agriculture, Agricultural Research Service

2006-09-01T23:59:59.000Z

58

Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production  

SciTech Connect

Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.

Powers, S. E.

2005-05-01T23:59:59.000Z

59

Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots  

SciTech Connect

Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and LogTS. Stover removal at rates as low as 1.25 Mg haj1 reduced SOC and degraded soil structure even within 1 year, but further monitoring is needed to establish threshold levels of stover removal in relation to changes in soil quality.

Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

2006-06-01T23:59:59.000Z

60

Corn Stover Conversion to Biofuels: DOE's Preparation for Readiness in 2012 (Guest Editorial)  

Science Conference Proceedings (OSTI)

Today, the United States Energy Independence and Security Act (EISA) of 2007 focuses on biofuels support research and development (R and D) needed to enable achieving respective volumetric and cost targets. Indeed, the worldwide objective is to bring us closer to independence from transportation fuels derived from fossil resources. This Special Issue highlights key areas of science and technology that impact the rollout of viable corn stover biofuels processes by 2012.

Himmel, M. E.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Impact of Corn Stover Composition on Hemicellulose Conversion during Dilute Acid Pretreatment and Enzymatic Cellulose Digestibility of the Pretreated Solids  

Science Conference Proceedings (OSTI)

This study assessed the impact of corn stover compositional variability on xylose conversion yields during dilute acid pretreatment and on enzymatic cellulose digestibility of the resulting pretreated solids. Seven compositionally-different stovers obtained from various locations throughout the United States were pretreated at three different conditions in triplicate in a pilot-scale continuous reactor. At the same pretreatment severity, a 2-fold increase in monomeric xylose yield and a 1.5-fold increase in enzymatic cellulose digestibility from their lowest values were found. Similar results were observed at the other pretreatment conditions. It was found that xylose conversion yields decreased with increasing acid neutralization capacity or soil content of the corn stover. Xylose yields also increased with increasing xylan content. No other significant correlations between corn stover's component concentrations and conversion yields were found.

Weiss, N. D.; Farmer, J. D.; Schell, D. J.

2010-01-01T23:59:59.000Z

62

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

63

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

64

Effect of corn stover harvest and winter rye cover crop on corn nitrogen fertilization.  

E-Print Network (OSTI)

??Improvement in N management to optimize corn N fertilization requirement and minimize NO33 – N loss from agricultural fields is an ongoing need for continuous corn… (more)

Pantoja, Jose L.

2013-01-01T23:59:59.000Z

65

Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions  

Science Conference Proceedings (OSTI)

Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 - and 30 -hammers. Overall accuracy of specific energy measurement was calculated as 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 -hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 -hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 -hammers. Rosin Rammler equation fitted the size distribution data with R2 > 0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in well-graded fine-skewed mesokurtic particles. Uniformity coefficient was corn stover, which indicated a moderate assortment of particles. Size-related parameters, namely, geometric mean diameter, Rosin Rammler size parameter, median diameter, and effective size had strong correlation among themselves and good negative correlation with speed. Distribution-related parameters, namely, Rosin Rammler distribution parameter, mass relative span, inclusive graphic skewness, graphic kurtosis, uniformity index, uniformity coefficient, coefficient of gradation and distribution geometric standard deviation had strong correlation among themselves and a weak correlation with mill speed. Results of this extensive analysis of specific energy and particle sizes can be applied to selection of hammer mill operating factors to produce a particular size of switchgrass, wheat straw, and corn stover grind, and will serve as a guide for relations among the energy and various analytic descriptors of biomass particle distributions.

Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Miu, P.I. [University of Tennessee; Smith, D.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

2009-07-01T23:59:59.000Z

66

Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities  

Science Conference Proceedings (OSTI)

Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.

Selig, M. J.; Knoshaug E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2007-11-01T23:59:59.000Z

67

High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions  

SciTech Connect

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave{reg_sign} reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.

Weiss, N. D.; Nagle, N. J.; Tucker, M. P.; Elander, R. T.

2009-01-01T23:59:59.000Z

68

Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction  

SciTech Connect

This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

2012-02-01T23:59:59.000Z

69

Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric...  

NLE Websites -- All DOE Office Websites (Extended Search)

a range of coal types (bituminous, sub-bituminous, and lignite) and biomass types (wood, corn stover, and switchgrass) at biomass loadings from 30 to 50 percent by weight....

70

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network (OSTI)

and enzymatic hydrolysis for corn stover. In BookEnzymatic Hydrolysis for Corn Stover (Editor ed. ^eds. ).acid pretreatment of corn stover followed by enzymatic

Gao, Xiadi

2013-01-01T23:59:59.000Z

71

Characterization of chemical composition, milling properties and carbon dioxide diffusivity resulting from early harvest corn and corn stover.  

E-Print Network (OSTI)

??The increasing demand of corn as food and fuel sources has increased the competition for feedstock between livestock and ethanol industries. Developing an effective corn… (more)

Huang, Haibo

2013-01-01T23:59:59.000Z

72

Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies  

E-Print Network (OSTI)

of the development of biobased products Corn Soy- beans Sugar- cane, sugar beets Cellulosic material (perennial grass the greatest eutrophication impact of the bioproducts surveyed. Conversely, switchgrass-based ethanol offers for Producing Biofuels: Bioethanol and Biodiesel. Biomass Bioenergy 2005, 29, 426­439. (4) Landis, A. E.; Miller

California at Riverside, University of

73

MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials  

DOE Green Energy (OSTI)

The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

None

2006-02-17T23:59:59.000Z

74

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION  

E-Print Network (OSTI)

................................................................................................ 10 1.5b Gasification., 2006). If switchgrass is going to be used for ethanol fermentation or gasification systems modeled. 1.5b Gasification Biomass gasification is the latest generation of biomass energy conversion

Wisconsin at Madison, University of

75

Thermodynamic Data for Biomass Conversion and Waste Incineration  

NLE Websites -- All DOE Office Websites (Extended Search)

l b l l q,(net) 4202 cal g i qv(net) 17580 J g- 83 JENEBE 15 Agricultural Residues CORN STOVER; solid; Material is considered biomass fuel and has proximate analysis values...

76

Assessment of utilization and downtime of a commercial level multi-pass corn stover harvesting systems.  

E-Print Network (OSTI)

??With commercial scale cellulosic ethanol in the formative stages of building large-scale feedstock supply chains there is a requirement for biomass harvesting equipment to be… (more)

Covington, Benjamin Ross

2013-01-01T23:59:59.000Z

77

Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes  

Science Conference Proceedings (OSTI)

Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

Selig, M. J.; Vinzant, T. B.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

78

Proximate and Ultimate Compositional Changes in Corn Stover during Torrefaction using Thermogravimetric Analyzer and Microwaves  

SciTech Connect

Abstract The world is currently aiming to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is considered carbon neutral because the carbon dioxide released during its use is already part of the carbon cycle. Increasing the use of biomass for energy can help to reduce the negative CO2 impact on the environment and help meet the targets established in the Kyoto Protocol. Energy from biomass can be produced from different processes, including thermochemical (direct combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation), or chemical (esterification) technologies. There are lot challenges in using biomass for energy applications. To name few low bulk density, high moisture content, irregular size and shape, hydrophilic nature and low calorific value. In commercial scale operation large quantities of biomass are needed and this will create problems associated with storage and transportation. Furthermore, grinding raw biomass with high moisture content is very challenging as there are no specific equipments and can increase the costs and in some cases it becomes highly impossible. All of these drawbacks led to development of some pretreatment techniques to make biomass more suitable for fuel applications. One of the promising techniques is torrefaction. Torrefaction is heating the biomass in an inert environment or reduced environment. During torrefaction biomass losses moisture, becomes more brittle and with increased energy density values. There are different techniques used for torrefaction of biomass. Fixed bed, bubbling sand bed and moving bed are the most common ones used. The use of microwaves for torrefaction purposes has not been explored. In the present study we looked into the torrefaction of biomass using the regular and microwaves and their effect on proximate and ultimate composition. Studies indicated that microwave torrefaction is a good way to torrefy the biomass in short periods of time. A maximum calorific value of 21 MJ/kg is achievable at 6 min residence time compared to 15 min using the dry torrefaction technique. Increasing the residence time increased the carbon content where a maximum carbon content of 52.20 % was achievable at lower residence time. The loss of volatiles is comparatively lower compared to dry torrefaction technique. Moisture content of microwave torrefied samples was in between 2-2.5 % (w.b).

Jaya Shankar Tumuluru

2012-07-01T23:59:59.000Z

79

Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover  

DOE Green Energy (OSTI)

Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

2008-03-01T23:59:59.000Z

80

Environmental Tradeoffs of Stover Removal and Erosion in Indiana  

Science Conference Proceedings (OSTI)

When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. Although typically considered an internal cost, the implication is important to policy and contracting for biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into a simple profit maximization model to show these tradeoffs explicitly. The results of this work show how different costs for erosion, biomass and conservation managements will affect behavior. If erosion prices are low and no conservation requirement exists, biomass removal will significantly increase erosion, but only in some areas. Alternatively, when erosion prices are high, farmers will parallel socially optimal levels of erosion and conservation management practices can be incentivized through access to a market for stover.

Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David J. Muth, Jr.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

82

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network (OSTI)

or first- generation corn ethanol [1]. However, the inherentof fossil fuels or corn ethanol [3]. Advances in current

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

83

Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover  

E-Print Network (OSTI)

biotech can transform biofuels. Nature Biotechnology 2008,Qing and Wyman Biotechnology for Biofuels 2011, 4:18 http://stover. Biotechnology for Biofuels 2011 4:18. Submit your

Qing, Qing; Wyman, Charles E

2011-01-01T23:59:59.000Z

84

NREL: Biomass Research - Glossary of Biomass Terms  

NLE Websites -- All DOE Office Websites (Extended Search)

not removed from the fields with the primary food or fiber product. Examples include corn stover (stalks, leaves, husks, and cobs); wheat straw; and rice straw. alcohol: An...

85

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

86

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

87

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

leaves, that are not harvested or removed from fields in commercial use. Examples include corn stover (stalks, leaves, husks, and cobs), wheat straw, and rice straw. With...

88

Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging  

E-Print Network (OSTI)

and fractionation of corn stover by ammonia recyclethe enzymic hydrolysis of corn stover. Biomass Bioenergyafter steam pretreatment of corn stover with or without the

Zhang, Mengmeng; Chen, Guojun; Kumar, Rajeev; Xu, Bingqian

2013-01-01T23:59:59.000Z

89

Corn  

NLE Websites -- All DOE Office Websites (Extended Search)

Corn Corn Nature Bulletin No. 118 May 31, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation CORN Corn, or maize, has never been found growing wild. Columbus found it being grown by the Carib Indians and called it " Mahiz". The Aztecs told Cortez it was a gift from their gods, but the Mayas and the Incas already had been growing corn for thousands of years. Teosinte, a coarse native Mexican grass, appears to be its closest relative and its origin was probably in Central or South America. Our first colonists planted seed obtained from the Indians and, "corn" being the English word for all grain, called this strange new plant "Indian corn". Without man' s help, corn soon would disappear. Each year the seed must be carefully selected, carefully planted, and the soil kept cultivated to remove competition from other plants. Modern scientific breeding has produced varieties remarkable for their rapid growth, uniform size and heavy yield.

90

Production of chemical feedstocks from biomass  

Science Conference Proceedings (OSTI)

Glucose and xylose, produced from biomass by hydrolysis with mineral acids can be fermented to produce a variety of chemical feedstocks including ethanol, organic acids, butanol and acetone. Acid rather than enzyme hydrolysis is preferred. In acid hydrolysis reaction temperature and acid concentration were found to be the major variables affecting sugar yield and kinetics. Low reaction temperatures and high acid concentrations are preferred to maximise sugar yields and minimise degradation product formation. Using corn stover residue nearly complete conversion of hemicellulose and cellulose to sugars was obtained. Prehydrolysis of corn stover was found to be faster than paper and peat, and the hydrolysis reaction somewhat slower than prehydrolysis. Acid hydrolyzates using the University of Arkansas process can be fermented to ethanol without pretreatment. Yeast extract is necessary for this process.

Shah, R.B.; Clausen, E.C.; Gaddy, J.L.

1984-01-01T23:59:59.000Z

91

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

92

NREL: Biomass Research - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

data on more than 150 analyzed samples of potential biofuels feedstocks, including corn stover, wheat straw, bagasse, switchgrass and other grasses, and poplars and other...

93

Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model  

E-Print Network (OSTI)

The expanded growth model is developed to describe accumulation of plant biomass (Mg ha 21) and mineral elements (kg ha 21) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

Allen R. Overman; Richard V. Scholtz Iii

2011-01-01T23:59:59.000Z

94

Co-production of decarbonized synfuels and electricity from coal + biomass with CO{sub 2} capture and storage: an Illinois case study  

Science Conference Proceedings (OSTI)

Energy, carbon, and economic performances are estimated for facilities co-producing Fischer-Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO{sub 2}. The estimates include detailed modeling of supply systems for corn stover or mixed prairie grasses (MPG) and of feedstock conversion facilities. Biomass feedstock costs in Illinois (delivered at a rate of one million tonnes per year, dry basis) are $ 3.8/GJ{sub HHV} for corn stover and $ 7.2/GJ{sub HHV} for MPG. Under a strong carbon mitigation policy, the economics of co-producing low-carbon fuels and electricity from a co-feed of biomass and coal in Illinois are promising. An extrapolation to the United States of the results for Illinois suggests that nationally significant amounts of low-carbon fuels and electricity could be produced this way.

Eric D. Larson; Giulia Fiorese; Guangjian Liu; Robert H. Williams; Thomas G. Kreutz; Stefano Consonni

2010-07-01T23:59:59.000Z

95

NREL: Biomass Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Vol. 2(4), 2009; pp. 179-192. NREL Report No. JA-270-46866 (December 2009). Assessing Corn Stover Composition and Sources of Variability via NIRS. Templeton, D. W.; Sluiter, A....

96

NREL: Biomass Research - Mark F. Davis, Ph.D.  

NLE Websites -- All DOE Office Websites (Extended Search)

M. F. (2009). "Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?" Cellulose (16); pp. 677-686. Sykes, R.; Yung, M.; Novaes, E.; Kirst M.;...

97

NREL: Energy Analysis - Biomass Technology Analysis Models and...  

NLE Websites -- All DOE Office Websites (Extended Search)

of more than 150 (as of 1001) samples of potential biofuels feedstocks including corn stover, wheat straw, bagasse, switchgrass and other grasses, and poplars and other...

98

NREL: Biomass Research - James D. McMillan  

NLE Websites -- All DOE Office Websites (Extended Search)

M. (2011). "Comparative Performance of Pre-commercial Cellulases Hydrolyzing Pretreated Corn Stover." Biotechnology for Biofuels, 4: 29. Zhu, Y.; Malten, M.; Torry-Smith, M.;...

99

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network (OSTI)

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

100

Raw materials evaluation and process development studies for conversion of biomass to sugars and ethanol  

DOE Green Energy (OSTI)

A range of cellulosic raw materials in the form of agricultural crop residue was analyzed for chemical composition and assessed for potential yields of sugars through chemical pretreatment and enzymatic hydrolysis of these materials. Corn stover was used as a representative raw material for a preliminary process design and economic assessment of the production of sugars and ethanol. With the process as presently developed, 23 gallons of ethanol can be obtained per ton of corn stover at a processing cost of about $1.80 per gallon exclusive of by-product credits. The analysis shows the cost of ethanol to be highly dependent upon (1) the cost of the biomass, (2) the extent of conversion to glucose, (3) enzyme recovery and production cost and (4) potential utilization of xylose. Significant cost reduction appears possible through further research in these directions.

Wilke, C.R.; Yang, R.D.; Sciamanna, A.S.; Freitas, R.P.

1978-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks  

DOE Green Energy (OSTI)

Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

1977-11-01T23:59:59.000Z

102

NREL: Learning - Biomass Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

In the near future-and with NREL-developed technology-agricultural residues such as corn stover (the stalks, leaves, and husks of the plant) and wheat straw will also be...

103

Biomass to ethanol : potential production and environmental impacts  

E-Print Network (OSTI)

This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

104

Integrated System Dramatically Improves Hydrogen Molar Yield from Biomass via Fermentation (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in fermentative and electrohydrogenic production of hydrogen from corn stover. Work was performed by NREL's Biosciences Center and Pennsylvania State University.

Not Available

2010-11-01T23:59:59.000Z

105

NREL: Biomass Research - Mark R. Nimlos  

NLE Websites -- All DOE Office Websites (Extended Search)

K. R.; Jablonski, W.; Phillips, S. D.; Nimlos, M. R. (2010). "Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with...

106

Biomass Surface Characterization Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

(23); pp. 3810-3817. Donohoe, B.S., et al. (2009). "Detecting Cellulase Penetration into Corn Stover Cell Walls by Immuno-Electron Microscopy." Biotechnol. Bioeng. (103); pp....

107

Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn  

E-Print Network (OSTI)

of biomass to sugars also prepares the cellulose fraction for subsequent conversion by acids or enzymes of cellulose and hemicellulose to produce sugars that organisms can ferment to ethanol and other products. However, advanced low- and no-acid technologies are critical if we are to reduce bioethanol costs

California at Riverside, University of

108

Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks  

SciTech Connect

Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

2009-06-01T23:59:59.000Z

109

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

2001 Net Energy Balance of Corn-Ethanol. ” Proceedings ofevaluations of four corn stover harvest scenarios." Biomass2001 Net Energy Balance of Corn-Ethanol. Corn Utilization

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

110

The effect of drying temperature on the composition of biomass  

DOE Green Energy (OSTI)

The compositional quality of different lignocellulosic feedstocks influences their performance and potential demand at a biorefinery. Many analytical protocols for determining the composition or performance characteristics of biomass involve a drying step, where the drying temperature can vary depending on the specific protocol. To get reliable data, it is important to determine the correct drying temperature to vaporize the water without negatively impacting the compositional quality of the biomass. A comparison of drying temperature between 45 degrees C and 100 degrees C was performed using wheat straw and corn stover. Near-infrared (NIR) spectra were taken of the dried samples and compared using principal component analysis (PCA). Carbohydrates were analyzed using quantitative saccharification to determine sugar degradation. Analysis of variance was used to determine if there was a significant difference between drying at different temperatures. PCA showed an obvious separation in samples dried at different temperatures due to sample water content. However, quantitative saccharification data shows, within a 95% confidence interval, that there is no significant difference in sugar content for drying temperatures up to 100 degrees C for wheat straw and corn stover.

Houghton, T.P.; Stevens, D.N.; Wright, C.T.; Radtke, C.W.

2008-05-01T23:59:59.000Z

111

Economic and kinetic studies of the production of chemicals and farm energy by fermentation of biomass  

DOE Green Energy (OSTI)

The farm energy system has been constructed in Drury, Missouri. The purpose of this unit is to demonstrate the feasibility of producing energy for farms (heat and electricity) from methane produced by anaerobic digestion of crop residues and other crop materials. The acid hydrolysis pre-treatment of corn stover studies utilize a two stage sulfuric acid contact. In the first stage, dilute sulfuric acid is used to hydrolyze the pentosan fraction of ground biomass. The second stage uses concentrated sulfuric acid for hexosan hydrolysis. The use of the two steps give high yields, possible with concentrated acid, without the problems of pentose decomposition.

Gaddy, J.L.

1979-01-01T23:59:59.000Z

112

Novel Biomass Conversion Process Results in Commercial Joint Venture, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Biomass Conversion Process Novel Biomass Conversion Process Results in Commercial Joint Venture A novel biomass-to-ethanol process developed, integrated, and demonstrated at pilot scale at the National Renewable Energy Laboratory (NREL) is the basis for one of the world's first cellulosic ethanol demonstration plants. The 74,000-ft 2 plant in Vonore, Tennessee, began production in January 2010. Through a Cooperative Research and Development Agreement (CRADA) with DuPont, NREL and DuPont scientists and engineers developed a unique low-cost pretreatment process that converts raw biomass to ethanol in high yields. The process was developed to facilitate the commercial readiness of lignocellulosic ethanol, which is ethanol produced from nonfood biomass feedstocks such as corn stover, agricultural waste, and energy crops.

113

Variability of biomass chemical composition and rapid analysis using FT-NIR techniques  

Science Conference Proceedings (OSTI)

A quick method for analyzing the chemical composition of renewable energy biomass feedstock was developed by using Fourier transform near-infrared (FT-NIR) spectroscopy coupled with multivariate analysis. The study presents the broad-based model hypothesis that a single FT-NIR predictive model can be developed to analyze multiple types of biomass feedstock. The two most important biomass feedstocks corn stover and switchgrass were evaluated for the variability in their concentrations of the following components: glucan, xylan, galactan, arabinan, mannan, lignin, and ash. A hypothesis test was developed based upon these two species. Both cross-validation and independent validation results showed that the broad-based model developed is promising for future chemical prediction of both biomass species; in addition, the results also showed the method's prediction potential for wheat straw.

Liu, Lu [University of Tennessee, Knoxville (UTK); Ye, Philip [University of Tennessee, Knoxville (UTK); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2010-04-01T23:59:59.000Z

114

Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)  

DOE Green Energy (OSTI)

The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

2008-06-01T23:59:59.000Z

115

Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163  

SciTech Connect

An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

Decker, S. R.

2011-10-01T23:59:59.000Z

116

Size reduction of high- and low-moisture corn stalks by linear knife grid system  

Science Conference Proceedings (OSTI)

High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

2009-04-01T23:59:59.000Z

117

Biological conversion of biomass to methane. Quarterly progress report, January 21--April 30, 1978  

DOE Green Energy (OSTI)

The results of a series of tests to evaluate the methane yield from the anaerobic digestion of corn stover are reported. The corn stover, consisting of cob, stalks, and leaves, was milled to pass through a 3.2 mm screen. Particle size distributions were determined. Data are tabulated on the gas production. Centrifugation and vacuum filtration were investigated for slurry dewatering. Gas production was low and corn stover does not appear to offer any potential as a methane source. In addition the protein content of the slurry solids was not sufficient for a satisfactory protein animal feed. (JSR)

Pfeffer, J T

1978-05-01T23:59:59.000Z

118

Issue 10, July 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

resources of coal and biomass - biomass including such growing things as wheat straw, corn stover, switchgrass, mixed hardwood and distillers' dried grains with corn fiber, and...

119

Netlog, Volume 10, July 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

resources of coal and biomass - biomass including such growing things as wheat straw, corn stover, switchgrass, mixed hardwood and distillers' dried grains with corn fiber, and...

120

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network (OSTI)

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics was conducted using ArcGIS with the Network Analyst extension and model builder. A square grid methodology was used to determine biomass availability of corn stover and bioenergy sorghum in Texas. The SWAT model was used to quantify soil erosion losses in surface runoff caused by sorghum residue removal for bioenergy production in the Oso Creek Watershed in Nueces County. The model simulated the removal of 25, 50, 75, and 100 percent residue removal. The WEPS model was used to quantify wind erosion soil loss caused by corn stover removal in Dallam County. Nine simulations were run estimating soil loss for corn stover removal rates of 0 percent to 50 percent. The results of the SWAT and WEPS analyses were compared to the NRCS tolerable soil loss limit of 5 tons/acre/year for both study areas. The GIS analysis determined the optimum route distances between mobile unit sites were 2.07 to 58.02 km for corn and 1.95 to 60.36 km for sorghum. The optimum routes from the mobile pyrolysis sites and the closest refineries were 49.50 to 187.18 km for corn and 7.00 to 220.11 km for sorghum. These results were used as input to a separate bioenergy economic model. The SWAT analysis found that maximum soil loss (1.24 tons/acre) occurred during the final year of the simulation where 100 percent of the sorghum residue was removed. The WEPS analysis determined that at 30 percent removal the amount of soil loss starts to increase exponentially with increasing residue removal and exceeds the tolerable soil loss limit. Limited harvesting of biomass for bioenergy production will be required to protect crop and soil productivity ensuring a sustainable biomass source.

Bumguardner, Marisa

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Title: Understanding Factors That Limit Enzymatic Hydrolysis of Biomass: Characterization of Pretreated Corn Stover. Published: January 01, 2005. ...

2005-01-01T23:59:59.000Z

122

Technology assessment of biomass ethanol : a multi-objective, life cycle approach under uncertainty  

E-Print Network (OSTI)

A methodology is presented for assessing the current and future utilization of agricultural crops as feedstocks for the production of transportation fuels, specifically, the use of corn grain and stover for ethanol production. ...

Johnson, Jeremy C. (Jeremy Clayton)

2006-01-01T23:59:59.000Z

123

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

124

MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION  

SciTech Connect

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

2013-08-01T23:59:59.000Z

125

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

126

STATEMENT OF CONSIDERATIONS REQUEST BY CARGILL DOW POLYMER, LLC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

acid producing acid tolerant biocatalyst and hydrolysis processes for corn fiber and corn stover. Cargill Dow is seeking to develop the technology to convert biomass in the...

127

Investigations of Biomass Pretreatment and Submerged Fixed-bed Fermentation  

E-Print Network (OSTI)

To improve the MixAlco process and biomass pretreatment, five studies were conducted. Three studies related to fermentation, whereas the other two investigated the effectiveness of shock tube pretreatment (STP) coupled with oxidative lime pretreatment (OLP). In the first study, the constant-selectivity assumption used in the continuum particle distribution model (CPDM) was determined to be invalid. During a 32-day batch fermentation, selectivity increased from 0.10 to 0.40 g acid/g non-acid volatile solid (NAVS) digested. Future revisions to CPDM should incorporate a non-constant selectivity term. In the second study, a revised procedure was developed to provide a more accurate determination of moisture content. Conventional drying at 105 degrees C allowed product acids to vaporize with water, which introduced errors. Using the revised procedure, calcium hydroxide or sodium hydroxide was added to samples at a concentration of 0.01 g base/g sample, which retained acids in the sample. The mass of additional retained material closely matched that of the additional retained acid. Three related studies involving biomass pretreatment were performed. In the first, recommended parameters for pretreating sugarcane bagasse with OLP and STP were determined. Recommended OLP parameters were 130 degrees C, 6.9-bar O2, and 2-h duration. The effects of solids concentration, liquid fill volume, particle size, type of shotgun shell, number of shocks, and pretreatment order were investigated. Liquid fill volume, particle size, type of shotgun shell, and pretreatment order were significant variables, whereas solids concentration and number of shocks were not. Recommended OLP parameters were used as a basis for an additional experiment. To simulate industrial-scale pile fermentation, fixed-bed batch fermentation of OLP + STP sugarcane bagasse was performed in 1-L PVC fermentors. Rubber mulch was used as a structural support material to prevent filter plugging, which had been reported in previous work. After 42 d, acid concentration reached 8 g/L with yield approximately 0.1 g acid/g NAVS fed. Poor fermentation performance was caused by short solid-liquid contact time and poor pH control. A third biomass pretreatment experiment investigated the potential of pretreated corn stover as a potential ruminant feed. Five samples (raw, OLP, STP, OLP + STP, and STP + OLP) were analyzed for composition and in vitro digestibility. STP followed by OLP increased neutral detergent fiber (NDF) digestibility from 49.3 to 79.0 g NDF digested/100 g NDF fed. On an organic matter basis, STP + OLP corn stover plus water-soluble extractives had a total digestible nutrients (TDN) of 74.9, nearly reaching corn grain at 88.1.

Meysing, Daniel

2011-12-01T23:59:59.000Z

128

The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report  

DOE Green Energy (OSTI)

The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

Grethlein, H.E.; Dill, T.

1993-04-30T23:59:59.000Z

129

Ethanol from corn: analysis of using corn stover to supply heat and power to ethanol plant.  

E-Print Network (OSTI)

??Bioethanol is currently the most important biofuel for automotive transportation and the European Community has set common objectives about the utilization of biofuels for all… (more)

Soldà, Marco

2011-01-01T23:59:59.000Z

130

Practical Considerations of Moisture in Baled Biomass Feedstocks  

SciTech Connect

Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

2013-01-01T23:59:59.000Z

131

Corn Milling  

Science Conference Proceedings (OSTI)

... From this analysis, Product Line Leaders target customers and markets and ... has hired experts from the feed, sugar, fermentation, biofuels, and corn ...

132

Owens Corning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Williams, and Mark Lessans of the Department of Energy's (DOE) Building Technologies Office. Owens Corning requested this meeting to cover a broad set of issues, including: 1....

133

Biological conversion of biomass to methane. Final report, June 1, 1976-January 31, 1980  

DOE Green Energy (OSTI)

An experimental methane fermentation system was constructed for the purpose of evaluating the processng requirements and conversion efficiencies associated with production of methane from various organic feed stocks. The fermentation reactors had an operating volume 0.775 m/sup 3/. This permitted operation with an approximate continuous feed of milled organics including beef feedlot manure, corn stover, wheat straw and alfalfa hay. A thermochemical pretreatment was applied to the corn stover and wheat straw in order to increase the biodegradability of these substrates. Working with these large units provided sufficient volumes of fermented slurry for evaluation of the dewatering properties of these slurries. Kinetic data were obtained by operating four reactors at different retention times. These data were used to calculate a first order rate constant and the percent of substrate volatile solids that were biodegradable. These data were obtained on beef feed lot manure at 40/sup 0/C and 60/sup 0/C nominal fermentation temperatures. Data from the fermentation of corn stover showed that the biodegradability of the stover volatile solids was only 36 percent at the thermophilic fermentation temperature. The first order rate constant was found to be 0.25 day/sup -1/. Thermochemical pretreatment increased the biodegradability of stover volatile solids to 71 percent. The final substrate tested was a green crop that was field dried - alfalfa. Significant foaming problems were encountered with this material. The volatile solids were found to be 74 percent biodegradable at a fermentation temperature of 60/sup 0/C. (MHR)

Pfeffer, J T

1980-02-01T23:59:59.000Z

134

Plant Cell Walls: Basics of Structure, Chemistry, Accessibility...  

NLE Websites -- All DOE Office Websites (Extended Search)

M. et al. (2009) Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose, 16, 649. 7....

135

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at 2Lday. Steven Markovich Digitally signed by Steven...

136

Microsoft Word - MySAB_Final_EA-12-02-2010.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

and other lignocellulosic sugars derived from biomass agricultural residues such as corn stover and sugarcane bagasse, and forest residues such as wood chips. The base...

137

NREL: News - Combining Strategies Speeds the Work of Enzymes  

NLE Websites -- All DOE Office Websites (Extended Search)

of enzyme treatment, a crucial step in turning the biomass - poplar trees, switchgrass, corn stover, and the like - into liquid fuel. Enzymes secreted by microorganisms naturally...

138

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group includes individuals from DOE, the national laboratories, industry, and academia. Corn Stover Harvest Bio-Derived Liquids Reforming Distributed reforming of biomass derived...

139

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

140

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

SciTech Connect

This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Environmental Impacts of Emerging Biomass Feedstock Markets: Energy, Agriculture, and the Farmer  

E-Print Network (OSTI)

to Figure 1. #12;4 be a significant share of biofuel production, RFS2 sets specific and increasing targets with the emergence of corn stover as a second generation biofuel feedstock. The tighter coupling of land use energy system assessment, Environmental impacts, Biofuels. Introduction The recent growth in biofuels

Beresnev, Igor

142

The effect of CO regulations on the cost of corn ethanol production  

E-Print Network (OSTI)

e MJ-1 by co-firing 20% biomass in its boiler system, incurring only a small change in production (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even

Kammen, Daniel M.

143

Corn Syndrome  

E-Print Network (OSTI)

Reports of "floppy " corn were numerous earlier this month. Many causes have been proposed for this problem. Herein lies one more look at this curious phenomenon. Click on image to open a larger version. he curious phenomenon referred to as "floppy corn syndrome" reared (or lowered, as it were) its ugly head in some fields in Indiana and Ohio back in early June. The term "floppy corn " simply describes a young (V5 to V8) plant that has fallen over because of the absence of an established nodal root system at the crown of the plant. Affected plants may survive if the mesocotyl remains intact long enough for subsequent nodes of roots to establish themselves in moist soil. If the mesocotyl breaks before subsequent establishment of additional nodal roots, the plant dies. The causes of the poor nodal root development have been debated for years and, indeed, likely vary from situation to situation. Click on image to open a larger version. My own experience with investigating floppy corn events over the years has primarily been associated with the detrimental effects of excessively dry surface soil at the time of initial nodal root elongation in young (V2 to V4) corn plants (Nielsen, 2001). Young roots that emerge from the crown area of the plant will die if their root tips dessicate prior to successful root establishment in moist soil. The crown of a young corn plant is typically located only 3/4 inch or so below the soil surface and so is particularly vulnerable to dry upper soil conditions. Other causes have been implicated in the development of floppy corn, including excessive

Over-extended Mesocotyls; R. L. (bob Nielsen

2004-01-01T23:59:59.000Z

144

Owens Corning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OWENS CORNING OWENS CORNING GOVERNMENT AND PUBLIC AFFAIRS 900 19 TH STREET N.W. SUITE 250 WASHINGTON, DC 20006 202.639.6900 FAX: 202.639.0247 OWENS CORNING September 20, 2013 By email: expartecommunications@hq.doe.gov Daniel Cohen Assistant General Counsel for Legislation and Regulatory Law Office of General Counsel Department of Energy 1000 Independence Ave., SW Washington DC 20585-0121 RE: Ex Parte Memo Dear Mr. Cohen: On Thursday, August 29, 2013, Julian Francis, VP & Managing Director Residential Insulation, Frank O'Brien Bernini, VP & Chief Sustainability Officer, Paul Smith, VP Building Materials Group Marketing, John Libonati, VP Government and Public Affairs, and I met with David Lee, Jeremy Williams, and Mark Lessans

145

Carbonic Acid Retreatment of Biomass  

DOE Green Energy (OSTI)

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. (6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high ({approx}50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

Baylor university

2003-06-01T23:59:59.000Z

146

Carbonic Acid Pretreatment of Biomass  

SciTech Connect

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

2003-05-31T23:59:59.000Z

147

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

148

Fundamental study of structural features affecting enzymatic hydrolysis of lignocellulosic biomass  

E-Print Network (OSTI)

Lignocellulose is a promising and valuable alternative energy source. Native lignocellulosic biomass has limited accessibility to cellulase enzyme due to structural features; therefore, pretreatment is an essential prerequisite to make biomass accessible and reactive by altering its structural features. The effects of substrate concentration, addition of cellobiase, enzyme loading, and structural features on biomass digestibility were explored. The addition of supplemental cellobiase to the enzyme complex greatly increased the initial rate and ultimate extent of biomass hydrolysis by converting the strong inhibitor, cellobiose, to glucose. A low substrate concentration (10 g/L) was employed to prevent end-product inhibition by cellobiose and glucose. The rate and extent of biomass hydrolysis significantly depend on enzyme loading and structural features resulting from pretreatment, thus the hydrolysis and pretreatment processes are intimately coupled because of structural features. Model lignocelluloses with various structural features were hydrolyzed with a variety of cellulase loadings for 1, 6, and 72 h. Glucan, xylan, and total sugar conversions at 1, 6, and 72 h were linearly proportional to the logarithm of cellulase loadings from approximately 10% to 90% conversion, indicating that the simplified HCH-1 model is valid for predicting lignocellulose digestibility. Carbohydrate conversions at a given time versus the natural logarithm of cellulase loadings were plotted to obtain the slopes and intercepts which were correlated to structural features (lignin content, acetyl content, cellulose crystallinity, and carbohydrate content) by both parametric and nonparametric regression models. The predictive ability of the models was evaluated by a variety of biomass (corn stover, bagasse, and rice straw) treated with lime, dilute acid, ammonia fiber explosion (AFEX), and aqueous ammonia. The measured slopes, intercepts, and carbohydrate conversions at 1, 6, and 72 h were compared to the values predicted by the parametric and nonparametric models. The smaller mean square error (MSE) in the parametric models indicates more satisfactorily predictive ability than the nonparametric models. The agreement between the measured and predicted values shows that lignin content, acetyl content, and cellulose crystallinity are key factors that determine biomass digestibility, and that biomass digestibility can be predicted over a wide range of cellulase loadings using the simplified HCH-1 model.

Zhu, Li

2005-08-01T23:59:59.000Z

149

Project Liberty: Cooperative Research and Development Final Report, CRADA Number CRD-07-00245  

Science Conference Proceedings (OSTI)

NREL hosted two teams of POET Project Liberty analysts for week-long biomass compositional analysis (wet chemical analysis) classes (one in 2008, one in 2009). NREL also performed biomass compositional on over 70 samples of corn stover feedstock and pretreated corn stover provided by POET.

Wolfrum, E. J.

2010-08-01T23:59:59.000Z

150

Biological conversion of biomass to methane. Quarterly progress report, September 1--November 30, 1978  

DOE Green Energy (OSTI)

The viability of wheat straw as a feedstock for methane production by anaerobic digestion was investigated and the results obtained compared with that obtained with corn stover. Poor conversion was obtained with the wheat straw under thermophilic conditions, but better than that obtained with corn. In addition the residue has no value as an animal feed. A mild thermochemical pretreatment of the corn prior to anaerobic digestion improved the conversion efficiency and the value of the residue as an animal feed. It is assumed that similar pretreatment of wheat straw would improve its conversion efficiency. Slurry and pumping characteristics of wheat straw particles were reported. (JSR)

Pfeffer, J T

1978-12-01T23:59:59.000Z

151

Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition  

SciTech Connect

This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important issues related to bioethanol generation, which will aid the research aimed to solve the topics m

Shih, Chien-Ju

2010-05-16T23:59:59.000Z

152

Cargill Corn Milling North America  

Science Conference Proceedings (OSTI)

... Manufacturing. Cargill Corn Milling North America. Cargill employees (Photo courtesy of Cargill Corn Milling North America). ...

2010-11-23T23:59:59.000Z

153

PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL  

E-Print Network (OSTI)

Analysis of Purdue University Corn Stover Approximately10 pounds of corn stover, 1977 crop, grown in Tippecanoeof Purdue University Corn Stover 4

Wilke, C.R.

2011-01-01T23:59:59.000Z

154

DOE Hydrogen and Fuel Cells Program: EERE Releases Well-to-Wheels...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis included gasoline with 10% ethanol blended in (E10), diesel, E85 from corn and corn stover, "drop-in" gasoline from biomass, natural gas, electricity (U.S. grid...

155

Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model  

SciTech Connect

An update to the FY 2005 assessment of the state of technical research progress toward biochemical process goals. This assessment contains research results from 2006 and 2007.

Aden, A.

2008-05-01T23:59:59.000Z

156

Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model  

DOE Green Energy (OSTI)

An update to the FY 2007 assessment of the state of technical research progress toward biochemical process goals, quantified in terms of Minimum Ethanol Selling Price.

Humbird, D.; Aden, A.

2009-08-01T23:59:59.000Z

157

Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery  

E-Print Network (OSTI)

in biological conversion of cellulosics to ethanol and other products; therefore, advanced pretreatment SSF conversion while applying extremely dilute sulfuric acid (0.07 wt %) in a counter- current. (2) Wyman, C. E., Ed. Handbook on Bioethanol: Production and Utilization, Applied Energy Technology

California at Riverside, University of

158

Impact of surfactants on pretreatment of corn stover Qing Qing, Bin Yang 1  

E-Print Network (OSTI)

). The primary obstacle to producing liquid transportation fuels by bio- conversion methods is the release. Nat Biotechnol 25:759­761. 9. Dien BS, et al. (2009) Improved sugar conversion and ethanol yield release. Biotechnol Bioeng 105: 231­238. 19. Wyman C, ed (1996) Handbook on Bioethanol: Production

California at Riverside, University of

159

NREL: Biomass Research - Mary Ann Franden  

NLE Websites -- All DOE Office Websites (Extended Search)

Mary Ann Franden Mary Ann Franden Photo of Mary Ann Franden Mary Ann Franden is a senior scientist in the Applied Biology group of the National Bioenergy Center (NBC) at the National Renewable Energy Laboratory in Golden, Colorado. Her latest accomplishments include the development of growth assay and fermentation tools to monitor toxicity of Zymomonas by model compounds and hydrolysates. This allowed for the identification of dominant inhibitors to Zymomonas mobilis that are present in corn stover lignocellulosic hydrolysates generated during dilute acid pretreatment. In addition to working toward meeting U.S. Department of Energy Bioenergy Technologies Office target goals for 2012, she has participated in collaboration with DuPont on the Integrated Corn-Based Biorefinery (ICBR)

160

Combined Grinding and Drying of Biomass in One Operation Phase I  

DOE Green Energy (OSTI)

First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can be transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small production rates, because the labor costs are a much larger fraction of the production cost. The goal for further research and development work is to scale up the KDS technology incorporating findings from Phase I into a machine that has superior performance characteristics.

Sokhansanj, S.

2008-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: C&CBTL -Laboratory Scale Liquids Production and Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of two liters per day. Altex Coal Biomass to Drop-In...

162

Department of Energy to Invest up to $7.7 Million for Four Biofuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

liquid fuel catalysis process. EEC intends to use a 'high impact' biomass such as corn stover as the high impact biomass for their project. DOE will provide up to 1.7...

163

NREL: News - NREL and Colombian Oil Firm Unlocking Agricultural...  

NLE Websites -- All DOE Office Websites (Extended Search)

lab scale to pilot scale, processing up to one ton per day of biomass - everything from corn stover to switchgrass and poplar trees. Colombia has an abundance of biomass in the...

164

Microsoft Word - 150.03.04_CBTLReport_12272011_kls_eps_tjt-v2...  

NLE Websites -- All DOE Office Websites (Extended Search)

efforts have shown that the use of different biomass types - such as woody biomass or corn stover in the place of switchgrass - would change the performance of the facility,...

165

Design, fabrication and operation of a biomass fermentation facility. Technical progress report No. 2, January 1-March 31, 1979  

DOE Green Energy (OSTI)

The conceptual design for a three oven-dry ton per day biomass fermentation facility is presented. Based on a detailed evaluation of emerging technologies and improved modifications of current technology, a mainstream process and optional unit operation and sub-systems have been selected which offer the greatest probability of success for an economic and technically feasible process for production of ethanol from lignocellulosic biomass (hardwoods, wheat straw, corn stover, etc.). The design is intentionally flexible as stipulated in the contractual objectives. Recommendations of equipment is premised on its versatility for multi-functional application, thus enabling investigation to assess a number of process configurations while adhering to a cost-effective capital investment in the process development unit. A specific criterion in selection has been to facilitate the generation of engineering data based on the application of the results of research contractors of the US Department of Energy. The design for a total system includes the facility for evaluation of three pretreatment options, for isolation of by-product streams, for evaluation of acid and enzymatic hydrolysis, sugar concentration, alternative fermentation technologies and alcohol recovery for production of absolute ethanol. In order to maintain capital costs for the PDU within reasonable limits monitoring of by-product streams will be undertaken and, for unit operation with high potential (such as membrane concentration of ethanol) but which are in early stages of development smaller-scale equipment and/or plumbing taps for late addition of full-scale (i.e., PDU-scale) equipment is recommended. The rationale, and process economics, upon which the recommendations are based is detailed, as is a study of biomass feedstock availability.

O'Neil, D.J.; Colcord, A.R.; Bery, M.K.

1979-04-01T23:59:59.000Z

166

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

167

Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction  

Science Conference Proceedings (OSTI)

The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required to prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.

Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

2012-11-01T23:59:59.000Z

168

Cooking with Corn Syrup  

E-Print Network (OSTI)

This fact sheet describes the nutritional value and safe storage of corn syrup, a commodity food. It also offers food preparation ideas.

Anding, Jenna

2001-09-10T23:59:59.000Z

169

Estimating Corn Grain Yields  

E-Print Network (OSTI)

This publication explains how to estimate the grain yield of a corn crop before harvest. An interactive grain yield calculator is included. 6 pages, 3 tables, 1 figure.

Blumenthal, Jurg M.; Thompson, Wayne

2009-06-12T23:59:59.000Z

170

Membrane Extraction for Detoxification of Biomass Hydrolysates  

Science Conference Proceedings (OSTI)

Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

2012-05-01T23:59:59.000Z

171

Volunteer corn in soybeans  

E-Print Network (OSTI)

Volunteer corn is a highly visible weed in Nebraska soybean fields. Most soybean fields in the state are affected to some degree. The problem generally is worse in fields that receive tillage during the spring. We are concerned that soybean producers are not adequately considering the negative consequences of uncontrolled volunteer corn growth in soybean. Impact of volunteer corn on soybean yield Volunteer corn is an extremely competitive weed in soybean. It grows taller than soybean early in the season, and in addition to shading surrounding soybean plants, it competes for nutrient and water resources. The yield effect of volunteer corn depends on its density. South Dakota State University conducted studies in 2007 and 2008 where they established volunteer corn densities of 0 up to 17,800 plants/A in soybean (Alms et al. 2008). The corn was allowed to compete for the entire growing season and soybean yields were measured. A density of 5,000 volunteers/A reduced soybean yield approximately 20%, or a 12 bu/A yield loss in 60 bu/A soybean. With a density of 5,000 plants/A, there would be a volunteer corn

Mark Bernards; Lowell S; Bob Wright

2010-01-01T23:59:59.000Z

172

Corn Rootworm (Diabrotica spp.) and Bt Corn: Effects on Pest Survival, Emergence and Susceptibility.  

E-Print Network (OSTI)

??Corn rootworms (Diabrotica spp.) are one of the most destructive pests of corn in the United States. Bt corn or corn that has been genetically… (more)

Keweshan, Ryan Scott

2012-01-01T23:59:59.000Z

173

Coal Direct Chemical Looping (CDCL) Process Development  

NLE Websites -- All DOE Office Websites (Extended Search)

increase in cost of electricity Future work * Test other fuels such as woody biomass and corn stover * Work closely with B&W to scale-up to pilot plant (3 MW th ) Accomplishments...

174

pnas201100310 1..6  

NLE Websites -- All DOE Office Websites (Extended Search)

of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535-545. 5. Himmel ME, et al. (2007) Biomass...

175

Understanding Corn Test Weight  

E-Print Network (OSTI)

Corn test weight (TW) is an often discussed topic of conversation among corn growers. The topic moves to the forefront in years when corn has been stressed at some point during the grain filling period or when the growing season is ended by frost before physiological maturity is reached. In many cases, the concept of test weight is misunderstood. Test weight is volumetric measurement. An official bushel measures 1.244 cubic feet. To measure TW, we usually take the weight of some smaller unit of measure and make a conversion. The official minimum allowable TW for U.S. No. 1 yellow corn is 56 lbs. per bushel, while No. 2 corn is 54 lbs. per bushel. It's unknown how this all started hundreds of years ago, but perhaps it was easier and more fair to sell things based on volume (length x width x height), something a person could see, instead of weight. Today, of course, corn is sold by weight and often in 56-pound blocks that we, for some reason, still call a bushel. Because weight is contingent on moisture content, grain buyers base their price on a "standard " moisture of (usually) 15 or 15.5 percent. Test weight and yield... Sometimes high TW is associated with high grain yield and low TW is associated with low grain yield. In fact, there is a poor relationship between TW and yield. The same TW can exist across a

Mike Rankin

2009-01-01T23:59:59.000Z

176

Corn stalk orientation effect on mechanical cutting  

SciTech Connect

Research efforts that increase the efficiency of size reduction of biomass can lead to a significant energy saving. This paper deals with the determination of the effect of sample orientation with respect to cutting element and quantify the possible cutting energy reduction, utilising dry corn stalks as the test material (15%e20% wet basis). To evaluate the mechanical cutting characteristics of corn stalks, a Warnere Bratzler device was modified by replacing its blunt edged cutting element with one having a 30_ single bevel sharp knife edge. Cutting force-deformation characteristics obtained with a universal testing machine were analysed to evaluate the orientation effects at perpendicular (90o), inclined (45o), and parallel (0o) orientations on internodes and nodes for cutting force, energy, ultimate stress, and specific energy of corn stalks. The corn stalks cutting force-displacement characteristics were found to differ with orientation, and internode and node material difference. Overall, the peak failure force, and the total cutting energy of internodes and nodes varied significantly (P < 0.05) with stalk cross-sectional area. The specific energy values (total energy per unit cut area) of dry corn stalk internodes ranged from 11.3 to 23.5 kN m_1, and nodes from 8.6 to 14.0 kN m_1. The parallel orientation (along grain) compared to perpendicular (across grain) produced a significant reduction of the cutting stress and the specific energy to one tenth or better for internodes, and to about one-fifth for nodes.

Igathinathane, C. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2010-07-01T23:59:59.000Z

177

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

178

Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell  

SciTech Connect

A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

Borole, Abhijeet P [ORNL; Hamilton, Choo Yieng [ORNL; Schell, Daniel J [National Renewable Energy Laboratory (NREL)

2012-01-01T23:59:59.000Z

179

Environmental Enhancement Through Corn Stover Utilization: Cooperative Research and Development Final Report, CRADA Number CRD-06-00174  

SciTech Connect

We have developed a rapid bio-oil analysis protocol based on the application of mass spectrometry, infra-red spectrometry, and multivariate statistical analysis. This protocol was successfully applied to characterize bio-oil samples from the Iowa State University (ISU) fast pyrolysis unit and to relate those characteristics to the feedstock and the process conditions.

Czernik, S.

2010-08-01T23:59:59.000Z

180

The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover  

E-Print Network (OSTI)

77843-3122, USA f Universidad de los Andes Chemical Engineering Department Grupo de Conversion de various pretreatment methods, the profiles of sugars and intermediates were determined for differently prom- ising long-term feedstock for production of bioethanol. The recalci- trance of the feedstock

California at Riverside, University of

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System  

DOE Green Energy (OSTI)

Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a plug breaker into the high pressure gasification vessel. A number of runs involving the feeding of coal and biomass mixtures containing 50 to 70 weight % coal into a high pressure gasification vessel simulator have shown that plugs of sufficient density can be formed to provide a seal against pressures up to 450 psig if homogeneity of the mixture can be maintained. However, the in-homogeneity of coal-biomass mixtures can occur during the mixing process because of density, particle size and moisture differences. Also, the much lower compressibility of coal as opposed to biomass can contribute to non-uniform plug formation which can result in weak plugs. Based on present information, the piston plug feeder offered marginal economic advantages over lock-hoppers. The results suggest a modification to the piston feeder that can potentially seal against pressure without the need for forming plugs. This modified design could result in lower power requirements and potentially better economics.

Santosh Gangwal

2011-06-30T23:59:59.000Z

182

EFFECTS OF CHANGES IN U.S. ETHANOL PRODUCTION FROM CORN GRAIN, CORN STOVER, AND SWITCHGRASS ON WORLD AGRICULTURAL MARKETS AND TRADE.  

E-Print Network (OSTI)

??The renewable energy industry continues to expand at a rapid pace. New advances in cellulosic ethanol technologies have the potential to reduce our dependency on… (more)

Campiche, Jody L.

2010-01-01T23:59:59.000Z

183

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomass—organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes—that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

184

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

185

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

186

Corn-O-Copia  

Science Conference Proceedings (OSTI)

This paper describes an ethanol project initiated by Red Trail Energy at its plant near Richardton, ND, with the goal of producing ethanol from corn using coal for energy. Aside from the fact that it does not substantially reduce carbon emissions, the ...

W. Sweet

2007-01-01T23:59:59.000Z

187

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

188

CX-001582: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-001582: Categorical Exclusion Determination Regional Biomass Feedstock Partnership CX(s) Applied: A9 Date: 03/30/2010 Location(s): South Dakota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office As part of the Regional Biomass Feedstock Partnership this activity will support the development of a corn stover residue removal tool. The objective of this research effort is to design a corn stover removal computer model to determine the effects of corn stover removal on plant growth, soil carbon, and sustainability. The research on this portion of the corn stover residue removal tool will focus on integrating the DayCent model into the residue removal tool and testing and interpretation of results. This tool will utilize a nationally disparate set of field trials

189

Redistribution of Lignin Caused by Dilute Acid Pretreatment of Biomass  

Science Conference Proceedings (OSTI)

Research conducted at NREL has shown that lignin undergoes a phase transition during thermochemical pretreatments conducted above its glass transition temperature. The lignin coalesces within the plant cell wall and appears as microscopic droplets on cell surfaces. It is clear that pretreatment causes significant changes in lignin distribution in pretreatments at all scales from small laboratory reactors to pilot scale reactors. A method for selectively extracting lignin droplets from the surfaces of pretreated cell walls has allowed us to characterize the chemical nature and molecular weight distribution of this fraction. The effect of lignin redistribution on the digestibility of pretreated solids has also been tested. It is clear that removal of the droplets increases the digestibility of pretreated corn stover. The improved digestibility could be due to decreased non-specific binding of enzymes to lignin in the droplets, or because the droplets no longer block access to cellulose.

Johnson, D. K.; Donohoe, B. S.; Katahira, R.; Tucker, M. P.; Vinzant, T. B.; Himmel, M. E.

2012-01-01T23:59:59.000Z

190

ECONOMICS OF SUGAR PRODUCTION WITH TRICHODERMA REESEI RUTGERS C-30  

E-Print Network (OSTI)

ml SUB STRATE: ACID TREATED CORN STOVER Tl ME (h rs) XBLSOB-o BY WE I GHT ACID TREATED CORN STOVER en XYLOSE TIME (hrs)U/ml SUBSTRAT : ACID TRE 0 CORN STOVER SU ST C CENTRATION (

Perez, Javier

2013-01-01T23:59:59.000Z

191

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

techno-economic models of corn stover ethanol processes wereprice $0.91/gallon ethanol as using corn stover, which waswaste corn stover (112.7 gallon ethanol/ton). Compared to

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

192

Varo & Owens Corning Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineers, Inc Owens Corning - Newark Plant 2751 Tuller Parkway 400 Case Avenue Dublin, Ohio 43017 Newark, Ohio 43055 Business: Consulting Engineer Business: Insulation Materials...

193

Robbins Corn & Bulk Services | Open Energy Information  

Open Energy Info (EERE)

Robbins Corn & Bulk Services Jump to: navigation, search Name Robbins Corn & Bulk Services Place Sackets Harbor, NY Information About Partnership with NREL Partnership with NREL...

194

Fast Corn Grading System Verification and Modification.  

E-Print Network (OSTI)

??A fast corn grading system can replace the traditional method in unofficial corn grading locations. The initial design of the system proved that it can… (more)

Smith, Leanna Marie

2012-01-01T23:59:59.000Z

195

Delayed Planting Considerations for Corn  

E-Print Network (OSTI)

Quite a bit of Indiana’s corn crop remains to be planted, especially in southern Indiana, due to the current rainy spell that put the brakes on what had been a very rapid planting pace. As of 11 May, 42 % of Indiana’s intended corn acreage was yet to be planted (USDA-NASS,

John Obermeyer; Entomology Dept; Tony Vyn; Agronomy Dept

2003-01-01T23:59:59.000Z

196

Biofuels Research  

Science Conference Proceedings (OSTI)

... Soy 6.2% Wheat straw 6.1% Corn stover 19.9% ... Cellulosic Materials •Poplar •Maize/Corn Stover •Switchgrass •Brachypodium •Sorghum ...

2012-10-04T23:59:59.000Z

197

Chapter 1 Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

years could include developing updated performance data for the enzymatic conversion of corn stover to ethanol; implementing a corn stover-to-ethanol conversion demonstration...

198

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

199

The effects of previous-year corn hybrid and cropping system on current-year corn hybrids in second year corn.  

E-Print Network (OSTI)

??Grain yields decrease when corn (Zea mays L.) follows corn compared to corn grown in rotation with other crops. The factors that decrease grain yield… (more)

Kent, Wade Adam

2010-01-01T23:59:59.000Z

200

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

202

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: • Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. • Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. • Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. • Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). • Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

203

The economic potential of producing energy from agricultural biomass  

E-Print Network (OSTI)

Agricultural biomass is a substitute for fossil fuels, which could provide a sustained energy feedstock and possibly reduce further accumulations of greenhouse gases. However, these feedstocks currently face a market dominated by low cost fossil fuels; hence, are largely unable to be supplied at a competitive price. This study examined how forcing increased biomass energy generation, along with improvements in biomass production technology, will impact agricultural feedstock prices and economically impact the well-being of the agricultural sector. An U.S. agricultural sector model, a dynamic, nonlinear, mathematical program, determined the economic effects of using increased supplies of agricultural biomass for energy. The model incorporated production and use of potential biomass energy feedstocks, such as switchgrass and short rotation poplar. Also, the model introduced future biomass technologies, based on current research involving more productive biomass crops and more efficient conversion activities which produce ethanol and biomass electricity. The forced supply of new biomass crops, along with corn, involves several levels of energy production. This forced supply was based on projected ethanol demands and land capability for biomass production. The model determined the optimal mix of corn and energy crops to meet the biomass feedstock goals for energies. The resultant model appraises the effects of increasing biomass feedstocks for the years 1990, 2000, 2010, and 2020. The results show that initially, fuel prices using biomass feedstocks may be as much as 50 % greater than equivalent fossil fuel supplied energy. But due to technology the price of biomass feedstocks decreases over time. The analysis predicts that the agricultural feedstock price and the price of fossil fuels may equalize between the years 201 0 and 2020. The forced production of agricultural energy crops changes cropping patterns and prices for conventional crops as well. The agricultural energy crops and corn receive a greater allocation of farm land to meet the forced biomass energy supplies. Most conventional crop prices rise and all biomass feedstock prices rise with increasing feedstock production. As a consequence, farmers receive increased profits. Consumers, however, experience a loss in well-being due to the higher cost of energy feedstock and food products. National well-being experiences a net loss.

Jerko, Christine

1996-01-01T23:59:59.000Z

204

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

205

Ethanol extraction of phytosterols from corn fiber  

Science Conference Proceedings (OSTI)

The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

2010-11-16T23:59:59.000Z

206

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

207

Corn Yield Prediction Using Climatology  

Science Conference Proceedings (OSTI)

A method is developed to predict corn yield during the growing season using a plant process model (CERES-Maize), current weather data and climatological data. The procedure is to place the current year's daily weather (temperature and ...

Claude E. Duchon

1986-05-01T23:59:59.000Z

208

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

209

Effects of corn processing and dietary wet corn gluten feed on newly received and growing cattle.  

E-Print Network (OSTI)

??Effects of corn processing with or without the inclusion of wet corn gluten feed (WCGF) on growth and performance were analyzed in two experiments. Treatments… (more)

Siverson, Anna

2012-01-01T23:59:59.000Z

210

Corn Ethanol and Wildlife: How are Policy and Market Driven Increases in Corn Plantings Affecting Habitat and Wildlife.  

E-Print Network (OSTI)

??Since 2005, government incentives have driven massive growth in the corn ethanol industry, increasing demand for corn for ethanol by 200%. Corn prices have risen… (more)

Griffin, Elizabeth; Glaser, Aviva; Fogel, Gregory; Johnson, Kristen

2009-01-01T23:59:59.000Z

211

Corn Fields Shutting Down  

E-Print Network (OSTI)

Fields of corn around Indiana, especially early-planted ones, are in the process of shutting down for the season. While only 3 % of the state’s crop was estimated to be mature (i.e., kernel black layer) as of the week ending 31 Aug, 41 % of the crop was estimated to be at dent stage or beyond (Indiana Ag Stats Service, 2 Sep 2003). The onset of maturity is naturally accompanied by an eventual senescence of the entire solar harvesting “machinery”, but some fields appear to be shutting down prematurely and deserve to be monitored for potential stalk health issues prior to harvest (Nielsen, 2003). The short-term forecast for cool evening temperatures in the mid-50’s or lower throughout much of the state the remainder of this week will further accelerate premature senescence of these stressed fields. Plant stresses contributing to the premature “shutdown ” of some fields include: Root systems compromised by saturated soil conditions caused by early and midseason “monsoon ” events. Drier than normal conditions throughout much of August, accompanied by stressful low to mid-90 F temperatures in the latter part of the month.

R. L. (bob Nielsen

2003-01-01T23:59:59.000Z

212

Corn Replant Decision-Making  

E-Print Network (OSTI)

Crappy stands of corn (aka less than desirable) occur somewhere in Indiana every year. The recent spate of cool, rainy days does not bode well for some corn fields planted during the days immediately preceding the onset of the rainy weather. Stands of corn in river bottoms may be destroyed outright by flood waters. Poorly drained soils where ponding has occurred for four or more days are vulnerable to seedling death. Eventual drying of saturated soils often leads to severe crusting that can restrict corn emergence and result in lower than desirable plant populations. Cool, wet soils are also conducive for seedling infection by certain soil-borne diseases. Unacceptable stand establishment in some of these fields may eventually require growers to make decisions about replanting. Deciding to replant a crappy stand of corn should be based on a number of criteria, but unfortunately the major influencing factor is often the emotion associated with looking out the kitchen window at the damaged field every morning or driving by the field every afternoon taking the kids to baseball practice. Make a wise decision about the merits of replanting a damaged field of corn requires more than emotions. In fact, I would rather that emotions be taken out of the equation entirely. Toward that end, I developed a replant decision-making worksheet that assists growers and farm managers in making that important replant decision. The worksheet allows you to determine the damaged field’s current yield potential (if left untouched), its replant yield potential, and the dollar returns (if any) from replanting the field. The worksheet is included in a larger overall publication on corn replanting titled

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

213

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

214

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

215

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

216

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

across technologies. Corn ethanol is currently about 30%increased the cost of corn ethanol since the reported valueBenchmark Biofuels corn ethanol corn stover switchgrass

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

217

Al Corn Clean Fuel | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Al-Corn Clean Fuel Place Claremont, North Dakota Product Al-Corn is an ethanol plant located in Claremont, North Dakota, which is owned by local...

218

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

219

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

220

Oak Ridge National Laboratory 1 Science & Technology Highlights  

E-Print Network (OSTI)

and transport of corn stover (stalks and leaves) as a source of bioethanol feedstock. In consultation

Pennycook, Steve

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Title: Optimization of the Ammonia Fiber Explosion (AFEX) Treatment Parameters for Enzymatic Hydrolysis of Corn Stover. ...

2005-01-01T23:59:59.000Z

222

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

224

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

225

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

226

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

227

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

228

NETL: LabNotes - July 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2008 July 2008 NETL Researchers Focus on Combining Coal and Biomass in Co-Gasification Todd Gardner is one of the NETL researchers studying co-gasification of various types of coal and biomass. Todd Gardner is one of the NETL researchers studying co-gasification of various types of coal and biomass. He's holding pelletized corn stover. Two other types of biomass are in the containers: poplar dust and switchgrass. Researchers at the Department of Energy's National Energy Technology Laboratory are looking at ways to combine the natural resources of coal and biomass - biomass including such growing things as wheat straw, corn stover, switchgrass, mixed hardwood and distillers' dried grains with corn fiber, and even algae - but avoid the emission of carbon dioxide.

229

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

230

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

231

and Office of Biomass Programs Energy Efficiency and Renewable Energy  

E-Print Network (OSTI)

Subcontract 4000006704The energy balance calculation for corn ethanol has been a controversial and often distorted subject in the political arena. Congress is now in the process of crafting a comprehensive energy bill, and the ongoing debate over policies to increase fuel ethanol use has raised the public’s awareness of the energy balance issue. The Senate version of the energy bill includes a Renewable Fuels Standard (RFS) provision for motor fuels that would increase the amount of fuel derived from biomass sources from 2.3 billion gallons in 2004 to 5 billion gallons by 2012. Last year (2001), the U.S. produced 1.77 billion gallons of ethanol from biomass sources. It is expected that most of the RFS requirement will be met by ethanol, with biodiesel making up the remainder. Almost all the fuel ethanol used in the U.S. today is derived from corn, but a small amount is also produced from other grains such as wheat and sorghum. Corn Ethanol Energy Balances In the early eighties, some studies concluded that the energy inputs for producing corn ethanol were greater than or about equal to the energy contained in the ethanol product. In the last twenty years, significant advances in farming techniques and improvements in ethanol production have occurred, and recent studies have concluded that the energy balances are now

David Andress

2002-01-01T23:59:59.000Z

232

Selection of herbaceous energy crops for the western corn belt  

DOE Green Energy (OSTI)

The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1994-05-01T23:59:59.000Z

233

Greenhouse gas balances of biomass energy systems  

DOE Green Energy (OSTI)

A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues.

Marland, G. [Oak Ridge National Lab., TN (United States); Schlamadinger, B. [Institute for Energy Research, Joanneum Research, Graz, (Austria)

1994-12-31T23:59:59.000Z

234

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

235

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

236

Sequential saccharification and fermentation of corn stover for the production of fuel ethanol using wood-rot fungi, Saccharomyces cerevisiae and Escherichia coli K011.  

E-Print Network (OSTI)

??World oil consumption for energy and transportation applications has increased tremendously over the past decades as the world population grew, and more countries becoming industrialized.… (more)

Vincent, Micky Anak

2010-01-01T23:59:59.000Z

237

tritrophic interactions among larval western corn rootworm, Bt corn and entomopathogens.  

E-Print Network (OSTI)

??The western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a major soil-borne pest of corn Zea mays L. in both the United States… (more)

Rudeen, Melissa Lynn

2010-01-01T23:59:59.000Z

238

Biological conversion of biomass to methane. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in comparative studies of complete-mix and multi-stage reactors for use in the anaerobic fermentation of organic solids for methane production is reported. Results indicate that if a balanced population of organisms can be maintained in the initial stage, multi-stage fermentation is more efficient than a complete-mix system. However, if the system is stressed, failure of the multi-staged system is more rapid. When the first stage is not inhibited due to a short retention time, the waste stabilization in the additional stages is minimal. Further studies on the effect of retention time on reaction rates indicate that the type of reactor design desired will depend upon the objective of the system. If it is desired to maximize the conversion of solids to methane, a staged system will produce more methane per unit volume of reactor for a given quantity of substrate. If the objective is to maximize methane production per unit volume of reactor, a single-stage reactor operating at near the minimum retention is required. Results of studies on the fermentation of manures and corn stover are discussed briefly. (JGB)

Pfeffer, J T

1978-01-01T23:59:59.000Z

239

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

240

2009 Final Corn and Soybean Yield Forecasts  

E-Print Network (OSTI)

The purpose of this brief is to update our previous evaluation of yield potential for corn and soybeans in Illinois, Indiana, and

Scott Irwin; Darrel Good; Mike Tannura

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nitrogen management of corn with sensor technology.  

E-Print Network (OSTI)

??Corn (Zea mays) is an important cereal crop in Kansas primarily used as livestock feed for cattle in the feedlots, and there has been increased… (more)

Tucker, Andrew Neil

2010-01-01T23:59:59.000Z

242

Oil recovery from condensed corn distillers solubles.  

E-Print Network (OSTI)

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

243

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

244

Evaluation of different agricultural biomass for bioethanol production.  

E-Print Network (OSTI)

??In our study, five different bioenergy crops: wheat straw (Triticum aestivum), forage sorghum stover (sorghum bicolor), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus) and sweet sorghum… (more)

Bansal, Sunil

2010-01-01T23:59:59.000Z

245

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

247

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

248

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

249

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200°C to 300°C, where mostly the hemicellulose components of a biomass depolymerise.… (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

250

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricity—for that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

251

Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation  

DOE Green Energy (OSTI)

Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

2011-08-01T23:59:59.000Z

252

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

253

Gourmet and Health-Promoting Specialty OilsChapter 15 Corn Kernel Oil and Corn Fiber Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 15 Corn Kernel Oil and Corn Fiber Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 15 Corn Kerne

254

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

255

Animal Performance and Diet Quality While Grazing Corn Residue.  

E-Print Network (OSTI)

??Grazing cattle on corn residue as a winter feed source has become an integral part of many Nebraska producers’ management plans. Utilizing corn residues extends… (more)

Gigax, Jennifer A

2011-01-01T23:59:59.000Z

256

Optical Imaging and Computer Vision Technology for Corn Quality Measurement.  

E-Print Network (OSTI)

??The official U.S. standards for corn have been available for almost one hundred years. Corn grading system has been gradually updated over the years. In… (more)

Fang, Jian

2011-01-01T23:59:59.000Z

257

Varo & Owens Corning - Newark Teaming Profile | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

implements phased-in lighting system upgrade at Owens Corning plant in Newark, Ohio, saving 270,000 annually in electricity and maintenance. Varo & Owens Corning - Newark...

258

Essays on ethanol-driven corn demand and crop choice.  

E-Print Network (OSTI)

??Two essays are focused on crop choice and the growth of corn production in the Corn Belt and surrounding areas. The first essay develops a… (more)

[No author

2011-01-01T23:59:59.000Z

259

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

260

Data Mining Soil Characteristics Affecting Corn Yield  

E-Print Network (OSTI)

Ten soil characteristic variables and corn yield were measured in a field located in southeastern Boone County, Iowa. Measurements were made on a grid of 215 locations throughout the field. We use graphical and simple numerical methods to obtain an understanding of the relationship between the soil characteristics and corn yield.

William F. Christensen; Di Cook

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MEXICAN CORN: Genetic Variability and Trade Liberalisation  

E-Print Network (OSTI)

It is now a well established fact that corn (Zea mays) originated in Mexico and that a great part of the evolution that may be observed in terms of this plant’s genetic variability took place in this country. 2 As the plant’s history unfolded, early forms of these races were taken by people into a wide variety of environments and ecological niches from which many distinct varieties developed in the relative isolation of these separated regions. Thus, Mexico also became a center of genetic diversity for corn, and its stock of germplasm has contributed in a decisive manner to global production of corn. Even the dented varieties of the U.S. Corn Belt are close descendants of the first Mexican landraces. The germplasm resources that are deposited in Mexico’s corn varieties, as well as in the wild relatives of this crop, are of prime importance for the world’s food production system of the next century. 3 Corn germplasm of Mexican origin has played a critical role in improvements for corn cultivated in tropical regions in relation to yield increments, plague resistance, short growth cycle, drought resistance and increases of protein content of grain. It has also been instrumental in increasing yields in the case of corn produced in temperate regions at high latitudes. Mexican 1

Alejandro Nadal; El Colegio De México; Alejandro Nadal; El Colegio De México

2000-01-01T23:59:59.000Z

262

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

263

Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy.  

E-Print Network (OSTI)

??FIELD EVALUATION OF THE AVAILABILITY FOR CORN AND SOYBEAN OF PHOSPHORUS RECOVERED AS STRUVITE FROM CORN FIBER PROCESSING FOR BIOENERGY A paper to be submitted… (more)

Thompson, Louis Bernard

2013-01-01T23:59:59.000Z

264

Effects of a Corn Root Defense Substance on Western Corn Rootworm Diabrotica virgifera virgifera LeConte Larvae.  

E-Print Network (OSTI)

??The objectives of this research were to evaluate the effects of hydroxamic acids, a group of corn root defense substances on western corn rootworm (Diabrotica… (more)

Zhao, Zixiao

2013-01-01T23:59:59.000Z

265

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

266

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

267

Heartland Corn Products | Open Energy Information  

Open Energy Info (EERE)

Corn Products Corn Products Jump to: navigation, search Name Heartland Corn Products Place Winthrop, Minnesota Zip 55396 Product Heartland Corn Products is farmer-owned cooperative that produces corn-derived ethanol. Coordinates 48.47373°, -120.177559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.47373,"lon":-120.177559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Rockwell Automation - Owens Corning Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Rockwell Automation Owens Corning Rockwell Automation Owens Corning 1201 S. Second Street 247 York Road Milwaukee, WI 53204 Guelph, Ontario N1E 3G4 Business: Industrial Automation Business: Textile / Fiber Nigel Hitchings Frank Peel Marketing Manager Electrical Support Specialist Phone: 508-357-8404 Phone: 519-823-7208 Email: nehitchings@ra.rockwell.com Email: frank.peel@owenscorning.com Owens Corning partners with Rockwell Automation to retrofit fans with VFDs, saving $67,000 annually Project Scope Owens Corning and Rockwell Automation installed Variable Frequency Drives (VFDs) on one 125HP cooling fan and three 40HP recirculation fans at the Owens Corning Guelph Glass Plant. The VFDs were integrated with the existing Rockwell Automation programmable automation controller to collect

269

Corn/coal fuel characterization study  

DOE Green Energy (OSTI)

Laboratory analyses and tests were conducted to determine the suitability of shelled corn as a potential supplemental fuel for pulverized coal fired utility boilers. The analyses and tests used were those routinely used for the characterization of coal. The data indicated very high volatility and very low ash. Corn by itself would not be a suitable fuel for conventional boilers, primarily because of the severe fouling and slagging potential of corn ash. Blends of corn and coal minimized the fouling and slagging problems. The blend samples contained 10% corn by BTU or 14% by weight. Approximately 1.05 pounds of this blend would provide the heat equivalent of one pound of coal. The additional fuel input would place an additional load on fuel handling and preparation equipment, but the decrease in ash quantity would reduce the load on ash handling and particulate-type flue gas clean-up equipment. (JSR)

Cioffi, P. L.

1978-08-01T23:59:59.000Z

270

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of ethanol into a dry grind corn mill process * Processing 842 tonsday of corn fiber, corn stover (cobs and stalks) State of Readiness: * Broin is building a demonstration...

271

Dilute Acid Hydrolysis of Oligomers in Hydrothermal Pretreatment Hydrolyzate into Monomers with High Yields  

E-Print Network (OSTI)

sugar cane or corn starch, making ethanol from cellulosicdesigned to convert corn stover to ethanol by a series of77 NREL biochemical ethanol conversion process of corn

Tsai, Yueh-Du

2012-01-01T23:59:59.000Z

272

Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000  

DOE Green Energy (OSTI)

A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

2000-10-12T23:59:59.000Z

273

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

274

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

275

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

276

Corn Plus | Open Energy Information  

Open Energy Info (EERE)

Plus Plus Jump to: navigation, search Name Corn Plus Place Winnebago, Minnesota Product Farmer Coop which owns an Ethanol plant in Winnebago Mn. Coordinates 42.236095°, -96.472339° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.236095,"lon":-96.472339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

278

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

279

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

280

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

282

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

283

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an… (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

284

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

285

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

286

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

287

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

288

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

289

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

DOE Green Energy (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

290

The Xylan Delignification Process for biomass conversion to ethanol  

DOE Green Energy (OSTI)

An extrusion process melded with alkaline peroxide chemical pretreatements allows the lignin and hemicellulose in biomass to be solublibzed, and the cellulose component to be made available for enzymatic breakdown. This process is called the Xylan Delignification Process (XDP). In this paper, some results of the XDP on promoting enzymatic breakdown and SSF of corn stalks switch grass and straw are reported. It was found that the XDP process allowed quick (6 hour) and reasonably complete (85--88%) hydrolysis of the cellulose fraction of cornstalks, but was less effective in allowing utilization of the switch grass with 76% yeild noted in 24 hours. Solubilization of the lignin and hemicellulose were not acheived on a first set of corn stalk, switch grass, and straw samples, but was noted on a second straw sample.

Dale, M.C.; Zhao, C.; Lei, S. [Purdue Univ., Lafayette, IN (United States); Tyson, G. [Xylan Inc., Madison, WI (United States)

1995-10-01T23:59:59.000Z

291

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

292

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

Quad County Corn Processors Quad County Corn Processors Jump to: navigation, search Name Quad County Corn Processors Place Galva, Iowa Zip 51020 Product Farmer owned corn processing facility management company. Coordinates 38.38422°, -97.537539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.38422,"lon":-97.537539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Impacts of Deacetylation Prior to Dilute Acid Pretreatment on the Bioethanol Process  

Science Conference Proceedings (OSTI)

Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: (1) cleavage of the xylosidic bonds, and (2) cleavage of covalently bonded acetyl ester groups. Results: In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions: Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

Chen, X.; Shekiro, J.; Franden, M. A.; Wang, W.; Johnson, D. K.; Zhang, M.; Kuhn, E.; Tucker, M. P.

2011-12-01T23:59:59.000Z

294

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

in soils cropped to corn with varying N fertilization. Can.as affected by tillage, corn-soybean-alfalfa rotations, andsoil nitrogen mineralization for corn production in eastern

2009-01-01T23:59:59.000Z

295

Economic Restructuring and Rural Subsistence in Mexico: Corn and the Crisis of the 1980s  

E-Print Network (OSTI)

Centro Tepoztláh Seminar on Corn and the Economic Crisis in1990a). Mobilization ot Corn Pjot! uCorn in Southern Veracruz,* 1970-

Hewitt de Alcántara, editor, Cynthia

1994-01-01T23:59:59.000Z

296

YIELD BENEFIT OF CORN EVENT MON 863  

E-Print Network (OSTI)

copies of this document for non-commercial purposes by any means, provide that this Data from field experiments are used to estimate the yield benefit of corn hybrids containing event MON 863 relative to nontransgenic corn hybrids without corn rootworm control and with a soil insecticide for corn rootworm control. Over typical ranges for corn rootworm population pressure, event MON 863 provides a yield benefit of 9-28% relative to no control and of 1.5-4.5 % relative to control with a soil insecticide. For a reasonable range of prices and yields, the value of the event MON 863 yield benefit is $25-$75/ac relative to no control and $4-$12/ac relative to control with a soil insecticide, depending on corn rootworm pressure. Because of the low correlation between yield loss and the root rating difference, a common empirical finding when estimating yield loss with root ratings, the 95% confidence intervals around these averages are quite wide. Though on average, event MON 863 has substantial value, the wide confidence intervals imply that farmers will see a wide variety of actual performance levels in their fields. This uncertainty in the

Paul D. Mitchell; Paul D. Mitchell

2002-01-01T23:59:59.000Z

297

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

298

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

299

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

300

311221," Wet Corn Milling",0,0,"X",0  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 11.3;" 3 Relative Standard Errors for Table 11.3;" " Unit: Percents." " "," ",,,"Renewable Energy" " "," ",,,"(excluding Wood" "NAICS"," ","Total Onsite",,"and" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,,"Total United States" 311,"Food",2.8,1.1,86.8,37.8 3112," Grain and Oilseed Milling",0.7,0.7,"X",0 311221," Wet Corn Milling",0,0,"X",0 31131," Sugar Manufacturing",0,0,"X",0 3114," Fruit and Vegetable Preserving and Specialty Foods ",1.2,1.2,"X",44.1

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share… (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

302

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

303

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

304

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

305

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

306

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

307

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

308

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

309

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

310

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

311

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

312

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

313

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

314

NETL, USDA design coal-stabilized biomass gasification unit  

Science Conference Proceedings (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

315

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

316

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

317

Climate Forecasts for Corn Producer Decision-Making  

Science Conference Proceedings (OSTI)

Corn is the most widely grown crop in the Americas, with annual production in the US of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision-tools for corn producers based on these improved ...

Eugene S. Takle; Christopher J. Anderson; Jeffrey Andresen; James Angel; Roger W. Elmore; Benjamin M. Gramig; Patrick Guinan; Steven Hilberg; Doug Kluck; Raymond Massey; Dev Niyogi; Jeanne M. Schneider; Martha D. Shulski; Dennis Todey; Melissa Widhalm

318

Effectiveness Analysis of Corn Combine Based on DEA Method  

Science Conference Proceedings (OSTI)

This paper used DEA method to analyze the production efficiency of corn combine??pointed out how to find the waste of resources??then put forward the way to optimize resource utilization. Keywords: DEA, Corn combine, Efficiency, Evaluation

Xinjie Liu; Baoling Yang

2012-05-01T23:59:59.000Z

319

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

gas emissions. Increase/reduction (%) Corn ethanol drymill NG Corn ethanol best-casedry mill NG Corn ethanol dry mill coal* Corn ethanol dry

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

320

Pro Corn LLC | Open Energy Information  

Open Energy Info (EERE)

Pro Corn LLC Pro Corn LLC Jump to: navigation, search Name Pro-Corn LLC Place Preston, Minnesota Zip 55965 Product Minnesotan farmer owned bioethanol production company. Coordinates 47.526531°, -121.936019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.526531,"lon":-121.936019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Corn Belt Power Coop | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Power Coop Corn Belt Power Coop Place Iowa Utility Id 4363 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Corn_Belt_Power_Coop&oldid=41053

322

Final Technical Report  

DOE Green Energy (OSTI)

Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest/storage/transportation equipment and the processor would build and operate the plant. Pilot fermentation studies demonstrated dramatic improvements in yields and rates with optimization of batch fermentor parameters. Demonstrated yields and rates are approaching those necessary for profitable commercial operation for production of ethanol or lactic acid. The ability of the biocatalyst to adapt to biomass hydrolysate (both biomass sugars and toxins in the hydrolysate) was demonstrated and points towards ultimate successful commercialization of the technology. However, some of this work will need to be repeated and possibly extended to adapt the final selected biocatalyst for the specific commercial hydrolysate composition. The path from corn stover in the farm field to final products, involves a number of steps. Each of these steps has options, problems, and uncertainties; thus creating a very complex multidimensional obstacle to successful commercial development. Through the tasks of this project, the technical and commercial uncertainties of many of these steps have been addressed; thus providing for a clearer understanding of paths forward and commercial viability of a corn stover-based biorefinery.

Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

2007-10-01T23:59:59.000Z

323

8. Corn Hybrid Options for Replanting 1. Determining Vegetative Growth Stages of Corn  

E-Print Network (OSTI)

Knowing the growth stage of corn is critical to understanding the management practices and potential yield impact from wet weather and/or hail damage. There are a couple methods for determining vegetative growth stages in corn. These different staging methods are used by different disciplines and often occur on different herbicide labels. Knowing the differences between these staging methods will help to reduce confusion when determining corn growth and development. These stages are determined either by the number of visible leaf collars or the number of leaves. Collars and V-Stages The collar is the part of the leaf that wraps

Hail Damage To Corn; Corn Flood Survival; Chad Lee Agronomy

2004-01-01T23:59:59.000Z

324

Well-to-Wheels Greenhouse Gas Emissions and Petroleum Use for...  

NLE Websites -- All DOE Office Websites (Extended Search)

based on GREET. The ethanol component of cellulosic E85 4 is assumed to be produced from corn stover. Emissions from land use change for corn stover are included but estimated to...

325

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

final ADC green With the total project investment, variableProject Investment Corn stover ADC final ADC green OperatingReturn on Investment Corn stover ADC final ADC green Table 6

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

326

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

327

Direct measures of mechanical energy for knife mill size reduction  

Science Conference Proceedings (OSTI)

Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be 0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.

Bitra, V.S.P. [University of Tennessee; Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Miu, P.I [University of Tennessee; Yang, Y.T. [University of Tennessee; Smith, D.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

2009-08-01T23:59:59.000Z

328

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

329

Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration  

DOE Green Energy (OSTI)

Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

1999-08-29T23:59:59.000Z

330

Bioconversion and Biorefineries of the Future Linda L. Lasure, Pacific Northwest National Laboratory  

E-Print Network (OSTI)

of corn stover as a sustainable feedstock for bioethanol production" Bioresource Technology 88, p15-25 Lal

331

State Laboratory Contact Information AZ  

Science Conference Proceedings (OSTI)

... David Pfahler Brad Stover ... Joe Benavides Harvey Fischer Daniel Gibbons Preston Adachi Philip Wright Shauna Pereiro Lisa Corn Pat Sanders ...

2013-01-07T23:59:59.000Z

332

EAR ROT IN THE 2006 CORN CROP  

E-Print Network (OSTI)

Several incidences of ear rot have been noticed across Illinois and Iowa this year. In most cases, these fields were grown to corn the previous year. It is not surprising that ear rots are developing this year, given the late summer rains and high amount of stalk rots. Growers should be alerted to

unknown authors

2006-01-01T23:59:59.000Z

333

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

334

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

335

Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn  

SciTech Connect

On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

Boonserm, P.

1985-01-01T23:59:59.000Z

336

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

337

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

338

Assessing Available Woody Plant Biomass on Rangelands with Lidar and Multispectral Remote Sensing  

E-Print Network (OSTI)

The majority of biofuels are produced from corn and grain. The drawback to these sources of biofuels is the vast amount of cultivated land needed to produce substantial amounts of biofuel, potentially increasing the price of food and livestock products. Mesquite trees, a type of woody plant, are a proven source of bioenergy feedstock found on semi-arid lands. The overall objectives of this study were to develop algorithms for determining woody plant biomass on rangelands in Texas at plot-level using terrestrial lidar and at the local scale by integrating reference biomass and multispectral imagery. Terrestrial lidar offers a more efficient method for estimating biomass than traditional field measurements. Variables from the terrestrial lidar point cloud were compared to ground measurements of biomass to find a best fitting regression model. Two processing methods were investigated for analyzing the lidar point cloud data, namely: 1) percentile height statistics and 2) a height bin approach. Regression models were developed for variables obtained through each processing technique for estimating woody plant, above-ground biomass. Regression models were able to explain 81 percent and 77 percent of the variance associated with the aboveground biomass using percentile height statistics and height bins, respectively. The aboveground biomass map was generated by using the cokriging interpolation method with NDVI and ground biomass data. According to cross-validation, ordinary cokriging estimated biomass accurately (R^2 = 0.99). The results of this study revealed that terrestrial lidar can be used to accurately and efficiently estimate the aboveground biomass of mesquite trees in a semi-arid environment at plot level. Moreover, spatial interpolation techniques proved useful in scaling up biomass estimates to local scale.

Ku, Nian-Wei

2011-05-01T23:59:59.000Z

339

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

340

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

342

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

343

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

344

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

345

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

346

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

347

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

348

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

349

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

350

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

351

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon ...

353

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

354

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

355

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

356

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

357

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

358

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

359

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

360

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

362

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

363

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

364

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

365

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

366

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

367

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

368

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

369

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

370

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

371

U.S. Department of Energy Selects First Round of Small-Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diverse and relevant feedstocks including agricultural residues, such as corn fiber, corn stover, switchgrass and sorghum. ICM, Inc. will integrate biochemical and...

372

Greenhouse Gases Part 1 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Coproducts of the corn-to-ethanol conversion process: conceptual background 37. ... and change the process fuel to 50% natural gas and 50% corn stover, ...

373

Ethanol producers respond to market conditions - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Corn oil recovery is one of several strategies that the ethanol industry is developing to improve ... such as wood waste or corn stover (e.g., leaves, stalks, ...

374

The Brazilian Biofuel Experience: Lessons for the Future DOE/EIA ...  

U.S. Energy Information Administration (EIA)

Corn (million hectares) Soybeans (million ... corn stover, soy bean hulls could be feedstock. • If available at < $.14-$.12/lb. Brazil Electrical Sector

375

DOE Perspectives on Advanced Hydrocarbon-based Biofuels  

U.S. Energy Information Administration (EIA)

production of a range of biofuels and bioproducts. ... –Cellulosic ethanol bolt-on (POET-DSM, ... (corn starch, corn cobs, stover, ...

376

Biofuel News, Spring 1999, Vol. 2 No. 2  

DOE Green Energy (OSTI)

This issue of Biofuels News highlights DOE's ``Bridge to the Corn Ethanol Industry'' program and plans for commercializing corn stover conversion to ethanol.

Poole, L.

1999-05-07T23:59:59.000Z

377

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

378

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

379

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

380

Corn Plus Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plus Wind Farm Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser N/a Location MN Coordinates 43.760635°, -94.149617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.760635,"lon":-94.149617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Corn Belt Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corn Belt Energy Corporation Corn Belt Energy Corporation Place Illinois Utility Id 4362 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SUBSTATION RATE ("ISR") Industrial RATE 1 RESIDENTIAL & FARM SERVICE Residential RATE 10 ELECTRIC HEAT FOR RESIDENTIAL & FARM SERVICE Residential RATE 11 RESIDENTIAL & FARM SERVICE - INTERRUPTIBLE Residential RATE 12 RESIDENTIAL ELECTRICALLY HEATED APARTMENTS Residential

382

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

383

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

384

Take Notes from Corn Hybrid Plots  

E-Print Network (OSTI)

Corn harvest is slow to get going this year, with only 5 % of the state’s crop reported harvested as of 24 Sep (USDA-NASS, 25 Sep 2006). The causes of the slow start to harvest are slower than normal maturation of the grain (Fig 1), cool temperatures (slower grain drying), and muddy field conditions due to the continuing pattern of frequent rains. The slow pace of corn harvest coupled with the poor stalk quality in some fields (Nielsen, 2006) reminds us how spoiled we were with generally good harvest conditions of the past two seasons. But, that is not the point of this article. Fig. 1. Percent of Indiana’s corn crop that is rated “mature and safe from frost”, as of 24 Sep 2006. Data source: USDA-NASS. If rainy weather and soggy field conditions are keeping you from your own harvest, spend some of your down time to walk or re-walk neighborhood on-farm hybrid plots before they are harvested. Many of these trials are still “signed ” so that you can identify © 2006, Purdue UnivRL (Bob) Nielsen Page 2 9/27/2006 the seed company and their hybrid numbers. Record notes on hybrid characteristics such as ear height, ear size, completeness of kernel set, husk coverage, standability, and

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

385

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

386

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

387

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

388

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

389

STATEMENT OF CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSIDERATION CONSIDERATION REQUEST BY DOW CORNING CORPORATION (DOW CORNING) FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-96PC96050-W(A)-96-026, CH-0915 The Petitioner, Dow Corning, was awarded this cooperative agreement in response to an unsolicited proposal for the engineering scale development of a process for the conversion of natural gas to methyl chloride. The Petitioner was selected based on its past experience in identifying an oxyhydrochlorination catalyst and separation process for this conversion. The initial phase of this work was performed under DOE Contract No. DE-AC22- 91PC91030. The Contracting Officer has found that the provisions of the 1992 Energy Policy Act P.L. 102-486 apply to this cooperative agreement and that the cost sharing requirement of

390

Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes  

Science Conference Proceedings (OSTI)

Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

2007-09-01T23:59:59.000Z

391

Prenova & Owens Corning Teaming Presentation- Using Service and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation- Using Service and Product Providers to Leverage Your Energy Efforts: PrenovaOwens Corning Energy Process Optimization Secondary menu About us Press room Contact Us...

392

Modernizing the handling of ear corn. Final technical report  

DOE Green Energy (OSTI)

The goal of the project was to modernize the handling of ear corn. The corn was picked with a three row JD 300 picker pulled by a tractor. Pulled behind the picker was a side dump wagon with a capacity of 150 bushels of ear corn. When the dump wagon was full, a grain truck was driven along side of the wagon and the dump wagon, controlled by the tractor driver, was emptied into the truck. After two dumps of the wagon, the truck was driven to the storage area. The storage area consisted of ten (ten) 2000 bushel corn cribs set in a semi circle so that the elevator that filled the cribs could be moved from one crib to the next without changing the fill point. At the storage area, the truck full of corn was dumped into the platform feeder. By using a platform feeder to feed the elevator, all ten (10) cribs could be filled without moving it. After the harvest was complete, the corn remains in the cribs until needed for feed or until the corn is sold. During the time that the corn remains in the cribs, the turbine ventilator draws air through the corn and dries it.

Kleptz, C.F.

1980-01-01T23:59:59.000Z

393

Prediction of corn tortilla textural quality using stress relaxation methods.  

E-Print Network (OSTI)

??Feasibility of the stress relaxation technique which has a strong potential for texture characterization of dough and food products, was evaluated with both corn masa… (more)

Guo, Zhihong

2012-01-01T23:59:59.000Z

394

Corn fiber hulls as a food additive or animal feed  

DOE Patents (OSTI)

The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IN); Cecava, Michael J. (Decatur, IN); Doane, Perry H. (Decatur, IN)

2010-12-21T23:59:59.000Z

395

Properties of Carbonized Corn Straw as Thermal Insulating ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Properties of Carbonized Corn Straw as Thermal Insulating Agent of Liquid Metal by Nan Wang, Min Chen, Yang Wang, Weiwei Leng, Yulong ...

396

Corn and Palmer amaranth interactions in dryland and irrigated environments.  

E-Print Network (OSTI)

??Palmer amaranth is a competitive weed and has caused variable corn yield losses in diverse environments of Kansas. The objectives of this study were to… (more)

Rule, Dwain Michael

2007-01-01T23:59:59.000Z

397

Alternative 2010 Corn Production Scenarios and Policy Implications  

E-Print Network (OSTI)

The quantity of U.S. corn used for domestic ethanol production has grown rapidly in recent years, driven by mandated production levels of renewable biofuels, tax

Scott Irwin; Darrel Good

2010-01-01T23:59:59.000Z

398

Corn Belt Energy Corporation- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Corn Belt Energy Corporation (CBEC), in association with the Wabash Valley Power Association, provides its customers with the "Power Moves" energy efficiency rebate program. Through this program,...

399

Microsoft PowerPoint - Prenova_OwensCorning_Teaming_Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solution to Owens Corning's North American facilities for: *Energy Supply Management *Energy Price Risk Management *Energy Process Optimization *Bill Payment and Data...

400

DOE - Office of Legacy Management -- Sylvania Corning Nuclear...  

Office of Legacy Management (LM)

Nuclear Corp Inc Sylvania Laboratories - NY 07 FUSRAP Considered Sites Site: SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES (NY.07) Eliminated from consideration under...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

STATEMENT OF CONSIDERATIONS REQUEST BY CORNING INCORPORATED FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is to develop effective, economical technology to enable the removal of mercury from syngas created when coal is gasified. Under the subcontract, Corning will conduct research...

402

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Yield, quality components and nitrogen levels of silage corn fertilized with urea and zeolite  

E-Print Network (OSTI)

and N fertilization affect corn silage yield and quality. Jand the nitrogen status of corn. J Prod Agric. 1991;4:525-and nitrogen effects on corn silage. Agron. J. ___, Kalonge

Bernardi, Alberto C. de Campos; Souza, Gilberto Batista de; Polidoro, José Carlos; Paiva, Paulo Renato Perdigão; Monte, Marisa Bezerra de Melo

2009-01-01T23:59:59.000Z

405

The Market Effect of a Food Scare: The Case of Genetically Modified StarLink Corn  

E-Print Network (OSTI)

outweigh the direct effect on corn prices. In retrospect,76. Gadsby, M.C. “StarLink Corn Containment Program” AventisStarLink: Impacts on the U.S. Corn Market and World Trade. ”

Carter, Colin A.; Smith, Aaron

2004-01-01T23:59:59.000Z

406

Yield and nitrogen levels of silage corn fertilized with urea and zeolite  

E-Print Network (OSTI)

an increase in DM production of corn. Urea has been the mosturea-N is used to fertilized corn, especially on acid soils.levels of nitrogen of silage corn fertilized with urea and

Bernardi, Alberto C. de Campos; Souza, Gilberto Batista de; Polidoro, José Carlos; Paiva, Paulo Renato Perdigão; Monte, Marisa Bezerra de Melo

2009-01-01T23:59:59.000Z

407

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

408

Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment  

DOE Green Energy (OSTI)

Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

Antonopoulos, A A

1980-06-01T23:59:59.000Z

409

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or… (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

410

Corn production with perennial ground covers: evaluation of cover species and their effects on corn growth and development.  

E-Print Network (OSTI)

??The use of perennial ground covers (PGC) in corn production may offer a long term and ecological solution to soil conservation issues while allowing the… (more)

Flynn, Ernest Scott

2011-01-01T23:59:59.000Z

411

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

412

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

413

Formulating N recommendations for corn in the corn belt using recent data  

E-Print Network (OSTI)

Making N rate recommendations for corn has been one of the most economically important goals of publicly funded crop production and soil fertility personnel and programs over the past five decades. Changes in cropping systems, hybrids, tillage, and other management practices, along with opportunities in site-specific inputs and awareness of the need to minimize the amount of N

Emerson D. Nafziger; John E. Sawyer; Robert G. Hoeft

2004-01-01T23:59:59.000Z

414

Alternative Controls for Helicoverpazea on Sweet Corn: Phytotoxicity and Pollination Inhibition from Direct Silk Applications.  

E-Print Network (OSTI)

??Helicoverpa zea, Boddie (corn earworm) is an important pest of sweet corn in New England. Conventional management of this pest is achieved through repeated applications… (more)

Jackson, Tori Lee

2004-01-01T23:59:59.000Z

415

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

416

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

417

Biomass Pretreatment for Integrated Steelmaking  

Science Conference Proceedings (OSTI)

Presentation Title, Biomass Pretreatment for Integrated Steelmaking. Author(s), Shiju Thomas, Paul Cha, Steven J McKnight, Vincent A Bouma, Andrew L Petrik,

418

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

419

Biomass Engineering Prize Competition Announced  

Science Conference Proceedings (OSTI)

Posted on: 7/30/2010 12:00:00 AM... The DownEast 2010 Biomass Engineering Prize Competition is seeking innovative solutions focused on revitalizing an ...

420

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biomass Rapid Analysis Network (BRAN)  

DOE Green Energy (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

422

Biomass to ethanol : potential production and environmental impacts.  

E-Print Network (OSTI)

??This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn… (more)

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

423

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

424

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network (OSTI)

used on farms, such as gasoline, diesel, LP gas (LPG), natural gas, and electricity, for the production of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol in manufacturing and marketing nitrogen fertilizer, (3) improving the quality of estimates for energy used

Patzek, Tadeusz W.

425

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

426

The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative  

DOE Green Energy (OSTI)

The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

2009-03-31T23:59:59.000Z

427

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

428

Biomass Allocation Model - Comparing alternative uses of scarce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Allocation Model - Comparing alternative uses of scarce biomass energy resource through estimations of future biomass use for liquid fuels and electricity. Title Biomass...

429

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

430

OUT Success Stories: Biomass Gasifiers  

DOE Green Energy (OSTI)

The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation.

Jones, J.

2000-08-31T23:59:59.000Z

431

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network (OSTI)

than first generation corn ethanol (Farrell et al. , 2006).or first generation corn ethanol (Farrell, 2006). However,with fossil fuels or corn ethanol (Lynd et al. , 2008).

Qing, Qing

2010-01-01T23:59:59.000Z

432

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

starch. Although corn ethanol is a significant improvementexclusively from corn starch, and ethanol produced fromexclusively from corn starch, and ethanol produced from

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

433

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

434

Mobile Biomass Pelletizing System  

DOE Green Energy (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

435

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

436

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

437

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

438

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

439

NQAATechnical Memorandum NMFS BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES  

E-Print Network (OSTI)

NQAATechnical Memorandum NMFS APRIL BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES FORWASHINGTON corrpletsformalreview,editorialamtrd,ordetailedediting. APRIL 1990 BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES rockfish (S.jordani). A biomass-based delay- difference model with knife-edge recruitment appeared

440

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biomass Electricity in California Elizabeth K. Stoltzfus  

E-Print Network (OSTI)

Biomass Electricity in California Elizabeth K. Stoltzfus Energy and Resources Group University would also like to thank Bryan Jenkins and other members of the California Biomass Collaborative............................................................................................................................. 1 1.1 Biomass Electricity in California Today

Kammen, Daniel M.

442

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

443

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Webinar Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy...

444

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

445

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

with  greater  supply  of  biomass,  such  as  northern areas of  higher supply will enable biomass to be secured supply of feedstock is  key component in developing a viable biomass 

Cattolica, Robert

2009-01-01T23:59:59.000Z

446

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

447

SPI Lincoln Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Lincoln Biomass Facility Jump to: navigation, search Name SPI Lincoln Biomass Facility Facility SPI...

448

Montgomery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Montgomery Biomass Facility Jump to: navigation, search Name Montgomery Biomass Facility Facility...

449

Deblois Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Deblois Biomass Facility Jump to: navigation, search Name Deblois Biomass Facility Facility Deblois...

450

West Enfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon West Enfield Biomass Facility Jump to: navigation, search Name West Enfield Biomass Facility Facility West...

451

MM Nashville Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon MM Nashville Biomass Facility Jump to: navigation, search Name MM Nashville Biomass Facility Facility MM...

452

Olokele Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Olokele Biomass Facility Jump to: navigation, search Name Olokele Biomass Facility Facility Olokele...

453

Pennsbury Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Pennsbury Biomass Facility Jump to: navigation, search Name Pennsbury Biomass Facility Facility...

454

Celanese Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Celanese Biomass Facility Jump to: navigation, search Name Celanese Biomass Facility Facility Celanese...

455

Central LF Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Central LF Biomass Facility Jump to: navigation, search Name Central LF Biomass Facility Facility...

456

US Sugar Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon US Sugar Biomass Facility Jump to: navigation, search Name US Sugar Biomass Facility Facility US Sugar...

457

Rocklin Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Rocklin Biomass Facility Jump to: navigation, search Name Rocklin Biomass Facility Facility Rocklin...

458

Glendale Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Glendale Biomass Facility Jump to: navigation, search Name Glendale Biomass Facility Facility Glendale...

459

SPI Quincy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Quincy Biomass Facility Jump to: navigation, search Name SPI Quincy Biomass Facility Facility SPI...

460

Kettle Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kettle Falls Biomass Facility Jump to: navigation, search Name Kettle Falls Biomass Facility Facility...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DG Whitefield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon DG Whitefield Biomass Facility Jump to: navigation, search Name DG Whitefield Biomass Facility Facility DG...

462

Viking Northumberland Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Viking Northumberland Biomass Facility Jump to: navigation, search Name Viking Northumberland Biomass Facility...

463

Livermore Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Livermore Biomass Facility Jump to: navigation, search Name Livermore Biomass Facility Facility...

464

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca...

465

Oxnard Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Oxnard Biomass Facility Jump to: navigation, search Name Oxnard Biomass Facility Facility Oxnard...

466

Westwood Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Westwood Biomass Facility Jump to: navigation, search Name Westwood Biomass Facility Facility Westwood...

467

Buckeye Florida Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Buckeye Florida Biomass Facility Jump to: navigation, search Name Buckeye Florida Biomass Facility Facility...

468

Wilmarth Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wilmarth Biomass Facility Jump to: navigation, search Name Wilmarth Biomass Facility Facility Wilmarth...

469

El Nido Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon El Nido Biomass Facility Jump to: navigation, search Name El Nido Biomass Facility Facility El Nido...

470

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba...

471

Stratton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Stratton Biomass Facility Jump to: navigation, search Name Stratton Biomass Facility Facility Stratton...

472

Jonesboro Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Jonesboro Biomass Facility Jump to: navigation, search Name Jonesboro Biomass Facility Facility...

473

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

474

Salinas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Salinas Biomass Facility Jump to: navigation, search Name Salinas Biomass Facility Facility Salinas...

475

Coventry LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Coventry LFG Biomass Facility Jump to: navigation, search Name Coventry LFG Biomass Facility Facility...

476

Lanchester Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Lanchester Biomass Facility Jump to: navigation, search Name Lanchester Biomass Facility Facility...

477

Troy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Troy Biomass Facility Jump to: navigation, search Name Troy Biomass Facility Facility Troy Sector...

478

SPI Loyalton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Loyalton Biomass Facility Jump to: navigation, search Name SPI Loyalton Biomass Facility Facility SPI...

479

Sherman Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sherman Biomass Facility Jump to: navigation, search Name Sherman Biomass Facility Facility Sherman...

480

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

Note: This page contains sample records for the topic "biomass corn stover" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Warren Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Warren Biomass Facility Jump to: navigation, search Name Warren Biomass Facility Facility Warren...

482

Collins Pine Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Collins Pine Biomass Facility Jump to: navigation, search Name Collins Pine Biomass Facility Facility...

483

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...