National Library of Energy BETA

Sample records for biomass combustion systems

  1. Biomass Combustion Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  2. State Grid Biomass Fuel and Combustion Technology Laboratory...

    Open Energy Info (EERE)

    Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China...

  3. NO reduction in decoupling combustion of biomass and biomass-coal blend

    SciTech Connect (OSTI)

    Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

    2009-01-15

    Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

  4. Small Modular Biomass Systems

    SciTech Connect (OSTI)

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  5. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperatures ranged up to 700/sup 0/C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  6. Performance of a direct combustion biomass furnace

    SciTech Connect (OSTI)

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperature ranged up to 700 degrees C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  7. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  8. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  9. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    SciTech Connect (OSTI)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  10. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  11. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  12. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  13. Biomass | Open Energy Information

    Open Energy Info (EERE)

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  14. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect (OSTI)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  15. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  16. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  17. Low-emission vortex combustion of biomass and fossil fuel

    SciTech Connect (OSTI)

    Finker, F.Z.; Kubischkin, I.B.; Akhmedov, D.B.

    1995-11-01

    The article introduces the results of development and industrial experience of low-emission vortex combustion technology (LEVC) of biomass and fossil fuel in industrial and utility boilers in Russian timber and paper industries and Polish power plants. The LEVC technology is based on aerodynamics method of multiple circulation of gases and fuel in the furnaces. LEVC technology accumulates the advantages of conventional and fluidized bed combustion technology. Existing boilers could be easily retrofitted for the application of LEVC technology without requiring major investment. The repowering of boiler with LEVC was the result the reduction NOx emission to the level 170g/GJ without installation additional flue gas cleaning equipment and it gave the opportunity for an injection of sulfur sorbent in the furnace. The authors discussed Russian-Polish experiment on utility boiler retrofitted with the application of LEVC. As the result the efficiency of the boiler increased in 2%. The reduction of the emission is: NOx-40%, SO2-17%.

  18. Tire gassification and combustion system

    SciTech Connect (OSTI)

    Nance, D.; Towne, G.A.

    1992-04-07

    This patent describes a system for disposing of a material such as vehicle tires and similar substantially organic matter and generating useful heat therefrom. It comprises gasification means for holding an amount of the material to be disposed while the material is allowed to partially combust and for containing combustible gas produced thereby, the gasification means comprising a substantially air tight gasification chamber having at least one access way for inserting the material therein; inlet means for receiving a controlled amount of oxygen containing gas into the gasification means, the inlet means comprising a tuyere disposed in the air tight gasification chamber and a blower connected to the tuyere; removal means for removing the combustible gas from the gasification means, the removal means comprising a gas outlet located above the tuyere in the gasification chamber such that substantially amounts of the combustible gases produced by the partially combusted material exits through the gas outlet; primary combustion means for receiving and mixing the combustible gas removed from the gasification means with an oxygen containing gas and burning the combustible gas; and means for directing the combustion products to a heat utilizing device.

  19. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency ... system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent ...

  20. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for ...

  1. Combustion-gas recirculation system

    DOE Patents [OSTI]

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  2. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  3. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  4. Combustion pinhole camera system

    DOE Patents [OSTI]

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  5. Combustion pinhole camera system

    DOE Patents [OSTI]

    Witte, A.B.

    1984-02-21

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.

  6. Premix charge, compression ignition combustion system optimization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_gustafson.pdf (1.47 MB) More Documents & Publications Advanced Combustion Technology to Enable High Efficiency Clean Combustion Heavy-Duty HCCI Development

  7. Fluidized-bed combustion and gasification of biomass

    SciTech Connect (OSTI)

    LePori, W.A.; Anthony, R.G.; Lalk, T.R.; Craig, J.D.

    1981-01-01

    A 0.61 meter (2 ft) diameter fluidized-bed combustion reactor was used for tests on direct combustion of cotton gin trash. Raw gin trash was continuously augered into the unit with fuel and air rates set to maintain bed temperatures of 760/sup 0/ to 816/sup 0/C (1400/sup 0/ to 1500/sup 0/F). Particulate emissions in the hot stack gases were measured and found to be lower than federal standards for incinerators. Mild steel and stainless alloy samples were placed in the hot stack gas stream to study corrosion and erosion of materials. High rates of potassium, calcium, and sodium deposits accumulated on the samples, and high erosion rates were found. A 0.3 meter (13 in) diameter fluidized-bed gasifier was used to convert raw gin trash into a combustible gas with bed temperatures between 683/sup 0/C and 881/sup 0/C (1261/sup 0/F and 1618/sup 0/F). By limiting the amount of oxygen compared to the fuel feed, only partial combustion occurs, producing heat and endothermic gasification chemical reactions. The combustible gas was composed primarily of carbon monoxide and hydrogen. It had a heating value ranging from 3.40 to 4.82 M Joules per standard cubic meter (98 to 142 Btu/scf), and about 50 percent of the heat value of the gin trash was converted into this low energy gas.

  8. Straw pellets as fuel in biomass combustion units

    SciTech Connect (OSTI)

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  9. Combustor nozzle for a fuel-flexible combustion system (Patent...

    Office of Scientific and Technical Information (OSTI)

    The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber ...

  10. Assessment of particulate concentrations from domestic biomass combustion in rural Mexico

    SciTech Connect (OSTI)

    Brauer, M.; Bartlett, K.; Regalado-Pineda, J.; Perez-Padilla, R.

    1996-01-01

    Recent evidence has suggested that woodsmoke exposure in developed countries is associated with acute and chronic health impacts. Particulate concentrations were measured in rural Mexican kitchens using biomass combustion for cooking. To investigate differences in indoor particle concentrations between kitchens using different fuels and stove types, measurements were made in eight kitchens using only biomass, six using only liquefied petroleum gas (LPG), six using a combination of biomass and LPG, and three using biomass in ventilated stoves. Outdoor samples were collected at the same time as the indoor samples. PM{sub 10} and PM{sub 2.5} measurements were made with inertial impactors, and particle light scattering was measured continuously with an integrating nephelometer. PM{sub 10} and PM{sub 2.5} concentrations (mean concentrations of 768 and 555 {mu}g m{sup -3}, respectively) in the kitchens burning only biomass were greater than in all other types (biomass > biomass + LPG > ventilated > LPG > outdoor). A similar trend was evident for the indoor/outdoor concentration ratio. Based on the short-term measurements estimated from the nephelometer data, PM{sub 10} and PM{sub 2.5} cooking period average and 5-min peak concentrations were significantly higher (p < 0.05) in kitchens using only biomass than in those using LPG, a combination of LPG and biomass, or a ventilated biomass stove. 20 refs., 3 figs., 3 tabs.

  11. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  12. Boiler Combustion Control and Monitoring System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What Were the Benefits? boilercombustionchart.jpg The boiler combustion control and monitoring system was installed on a 25 MMBtuhr steam boiler located at the Watervliet ...

  13. Combustor nozzle for a fuel-flexible combustion system

    DOE Patents [OSTI]

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  14. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  15. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  16. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  17. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  18. Systems and methods of storing combustion waste products (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Systems and methods of storing combustion waste products Citation Details In-Document Search Title: Systems and methods of storing combustion waste products In one aspect, ...

  19. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - ...

  20. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Energy Savers [EERE]

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in ...

  1. NETL: Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyses | Gasification Plant Databases Advanced ... efficient, oxygen-fired combustion systems. Oxy-combustion | Chemical Looping Combustion Coal and Coal-Biomass to ...

  2. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect (OSTI)

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  3. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  4. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... HomeBiomass Permalink One-Pot-to-Prep Biomass for Biofuels Biofuels, Biomass, Energy, ...

  5. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect (OSTI)

    French, R.J.; Dayton, D.C.; Milne, T.A.

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  6. Control system for supercharged internal combustion engine

    SciTech Connect (OSTI)

    Kawamura, H.

    1988-05-24

    A control system for controlling an internal combustion engine is described having a supercharge including a rotatable shaft and an exhaust turbine driven by exhaust gas. The control system comprising: a rotary electric machine mounted on the rotatable shaft of the supercharger for imposing a load on the exhaust turbine of the supercharger; setting means for setting an engine brake mode of the internal combustion engine; and operating means for operating the rotary electric machine when the engine brake mode is set by the setting means.

  7. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOE Patents [OSTI]

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  8. Combustion pinhole-camera system

    DOE Patents [OSTI]

    Witte, A.B.

    1982-05-19

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  9. Assessment of Literature Related to Combustion Appliance Venting Systems

    SciTech Connect (OSTI)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  10. Methods and systems for combustion dynamics reduction

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Srinivasan, Shiva; Lynch, John Joseph; Yilmaz, Ertan; Kim, Kwanwoo; Lacy, Benjamin; Crothers, Sarah; Singh, Kapil Kumar

    2009-08-25

    Methods and systems for combustion dynamics reduction are provided. A combustion chamber may include a first premixer and a second premixer. Each premixer may include at least one fuel injector, at least one air inlet duct, and at least one vane pack for at least partially mixing the air from the air inlet duct or ducts and fuel from the fuel injector or injectors. Each vane pack may include a plurality of fuel orifices through which at least a portion of the fuel and at least a portion of the air may pass. The vane pack or packs of the first premixer may be positioned at a first axial position and the vane pack or packs of the second premixer may be positioned at a second axial position axially staggered with respect to the first axial position.

  11. Biomass Crop Assistance Program (BCAP) | Open Energy Information

    Open Energy Info (EERE)

    United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass...

  12. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    SciTech Connect (OSTI)

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  13. Materials performance in advanced combustion systems

    SciTech Connect (OSTI)

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  14. Combustion Turbine CHP System for Food Processing Industry - Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Frito-Lay North America, June 2011 | Department of Energy Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in

  15. Exhaust gas system for internal combustion engines

    SciTech Connect (OSTI)

    Jans, K.; Ohlendorf, R.; Schuster, H.

    1981-09-08

    An exhaust gas system is disclosed for a multi-cylinder internal combustion engine, in which some cylinders are adapted to be effectively disconnected; the exhaust gas system includes in a common exhaust line, an O/sub 2/-probe and two series-connected catalysts while a separate exhaust gas line is coordinated to the cylinders adapted to be effectively disconnected; a control member operable as a function of load opens three separate branch connections from the separate exhaust line to the common exhaust line in such a manner that when all cylinders are firing, the branch connection terminating upstream of the O/sub 2/-probe is opened; the branch terminating in the common exhaust line between the O/sub 2/-probe and the first of the series-connected catalysts is opened when at least one of the cylinders is effectively disconnected and when the internal combustion engine is still relatively cold or warms up to a middle temperature; at temperatures exceeding the middle operating temperature, the branch connection terminating between the two catalysts is opened.

  16. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  17. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  18. Woody biomass production in waste recycling systems

    SciTech Connect (OSTI)

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  19. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  20. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  1. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is designing and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. The final product will be a system...

  2. Partially Premixed Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partially Premixed Combustion Partially Premixed Combustion Published materials on partial premixed combustion (PPC) combined with Volvo's own combustion research provides understanding of how to proceed for future work that enables PPC to reach the market deer11_andersson.pdf (560.85 KB) More Documents & Publications Combustion Model for Engine Concept Development Path to High Efficiency Gasoline Engine Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  3. Handbook of biomass downdraft gasifier engine systems

    SciTech Connect (OSTI)

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  4. Injection system of an internal combustion engine

    SciTech Connect (OSTI)

    Tegtmeier, D.

    1987-06-09

    This patent describes an injection system for an internal-combustion engine. It has separate inlet ports provided for each cylinder of the engine, and an intake pipe encompassing the inlet ports for each cylinder. The intake pipe has a subdividing web wall in the region of the cylinder head having a mixing chamber into which fuel is injected by an injection nozzle. The subdividing web wall subdivides the intake pipe into separate intake pipe sections and includes shot channels for communicating fuel from the mixing chamber to each of the separate intake pipe sections. By this arrangement, a constant, thorough mixing of the fuel/air mixture is achieved even at lower load and upper speed ranges of the engine.

  5. Fuel system for an internal combustion engine

    SciTech Connect (OSTI)

    Davison, M.J.; Mardell, J.E.; Mowbray, D.F.; Seilly, A.H.

    1982-10-26

    A fuel system for an internal combustion engine includes a pump/injector having an actuating winding to which power is supplied by a first electronic means. A first control signal is supplied by a second electronic means to energize the winding and a second control signal is supplied by a third electronic means to de-energize the winding. The third electronic means calculates the time at which the winding should be de-energized to allow the piston in the pump to draw in the required volume of fuel, the second electronic means causing delivery of fuel when the required volume of fuel has been drawn into the pumping chamber of the pump.

  6. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  7. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect (OSTI)

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  8. Biomass Resources and Technology Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Bio-Oil From Pyrolysis Biomass Power Current Commercial Technology * Almost all systems are combustion steam turbine * Most are grate stokers but FBC increasingly used * 1-110 MW ...

  9. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  10. High Tonnage Forest Biomass Production Systems from Southern...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. auburnprojectabstract1.pdf More Documents &...

  11. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This abstract outlinse a project that is designing and demonstrating a...

  12. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  13. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion. Because growing biomass removes carbon dioxide from the atmosphere, the net carbon emissions of this method can be low, especially if coupled with carbon capture, utilization, and

  14. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect (OSTI)

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  15. Development and commercialization of a biomass gasification/power generation system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.

    1995-11-01

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities.

  16. Biomass Power Association (BPA) | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Biomass Power Association (BPA) AgencyCompany Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, -...

  17. Advanced Combustion Systems - Systems Analysis | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidance for NETL's Oxy-combustion R&D Program: Chemical Looping Combustion Reference Plant Designs and Sensitivity Studies An emerging, coal-fired power plant technology, chemical ...

  18. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore

  19. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial,

  20. Increased Engine Efficiency via Advancements in Engine Combustion Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sisken.pdf (978.17 KB) More Documents & Publications High-Efficiency Engine Technologies Session Introduction Demonstrating and Validating a Next Generation Model-Based Controller for

  1. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  2. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  3. Combustion system for hybrid solar fossil fuel receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  4. Practical approaches to field problems of stationary combustion systems

    SciTech Connect (OSTI)

    Lee, S.W.

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  5. System, method, and apparatus for remote measurement of terrestrial biomass

    DOE Patents [OSTI]

    Johnson, Patrick W

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  6. System and method for reducing combustion dynamics in a combustor

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  7. System and method for reducing combustion dynamics in a combustor

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2015-09-01

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.

  8. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect (OSTI)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  9. White Pine Co. Public School System Biomass Conversion Heating Project

    SciTech Connect (OSTI)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  10. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 2012. Properties of Southern Pine from DOE High Tonnage Forest Biomass Production Systems. ... Bioresources 7(3):2996-3007 * Via, B.K., T. McDonald, and J. Fulton. 2012. Nonlinear ...

  11. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  12. DOE Requests Information on Revolutionary Biomass Supply Systems Supporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Billion-Ton Bioeconomy Vision | Department of Energy DOE Requests Information on Revolutionary Biomass Supply Systems Supporting a Billion-Ton Bioeconomy Vision DOE Requests Information on Revolutionary Biomass Supply Systems Supporting a Billion-Ton Bioeconomy Vision June 8, 2016 - 3:19pm Addthis The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy's (EERE's) Bioenergy Technologies Office (BETO) Feedstock Supply and Logistics Program is responsible for

  13. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOE Patents [OSTI]

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  14. Evaluation of industrial combustion control systems. Final report

    SciTech Connect (OSTI)

    Presser, C.; Semerjian, H.G.

    1984-10-01

    This study evaluated O/sub 2/ and CO monitoring systems used for combustion controls to provide reliable data on their performance, operating range and accuracy. The study concentrated on three in-situ O/sub 2/ and two in-situ CO monitoring systems which are applicable to furnace and boiler controls. The project provides technical information for cost/benefit analysis of combustion control systems and to help expedite implementation of combustion control technology by industry. The evaluation of the stack gas monitoring systems was carried out for ranges of furnace operating parameters such as fuel to air mixture ratio, burner firing rate, heat extraction rate, fuel type, combustion air preheat temperature, and cyclic operating conditions, which are based on information gathered from typical operational practices of representative industrial furnaces and boilers. The experiments were performed in the NBS experimental furnace under both natural gas and No. 2 fuel oil fired conditions. An on-line gas sampling/analysis system was used as a reference system for comparative evaluation of the stack gas monitors. The system is set up to determine the level of CO, CO/sub 2/, O/sub 2/, NO/NO/sub x/ and total hydrocarbons in the stack gases.

  15. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    SciTech Connect (OSTI)

    Chirone, R.; Scala, F.; Solimene, R.; Salatino, P.; Urciuolo, M.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size

  16. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  17. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  18. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  19. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  20. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reactivity of lignin residues that remain after biomass is processed and on quantifying the residue's ignition delay and char combustion rates during oxy-fuel combustion of coal. ...

  1. Task 2 Materials for Advanced Boiler and Oxy-combustion Systems...

    Office of Scientific and Technical Information (OSTI)

    Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US) Citation Details In-Document Search Title: Task 2 Materials for Advanced Boiler and Oxy-combustion Systems ...

  2. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters- Fact Sheet 2014

    Broader source: Energy.gov [DOE]

    Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

  3. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    SciTech Connect (OSTI)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  4. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  5. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect (OSTI)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  6. Economic development through biomass system integration: Volume 1

    SciTech Connect (OSTI)

    DeLong, M.M.

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  7. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  8. Staged fluidized-bed combustion and filter system

    DOE Patents [OSTI]

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  9. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect (OSTI)

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  10. Superior cottonwood and eucalyptus clones for biomass production in wastewater biomass production in wastewater bioremediation systems

    SciTech Connect (OSTI)

    Rockwood, D.L.; Pisano, S.M.; McConnell, W.V.

    1996-12-31

    Fast-growing cottonwood and Eucalyptus species have wastewater bioremediation potential. To estimate genetic variation in cottonwood`s response to sewage effluent, 10 clones were planted at Tallahassee in April 1992. Progenies and/or clones of E. Ampligolia (EA). E. Camaldulensis (EC), and E. Grandis (EG) were planted in a dry stormwater retention/bioremediation pond constructed in June 1993 at Tampa. Genetic variability within cottonwood and Eucalyptus species was observed and should be utilized to optimize biomass production and nutrient uptake in wastewater bioremediation applications. On good sites with freeze risk in northern Florida, three cottonwood clones are particularly productive. While as many as four EC and EG clones are promising, one EG clone appears superior for stormwater remediation, systems in central Florida.

  11. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  12. Systems and methods of storing combustion waste products

    DOE Patents [OSTI]

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  13. Building biomass into the utility fuel mix at NYSEG: System conversion and testing results for Greenidge Station

    SciTech Connect (OSTI)

    Benjamin, W.

    1996-12-31

    NYSEG is in the second phase of developing resources and systems for cofiring biomass with coal. In the first phase, stoker boilers were fired with biomass (typically wood waste products). Encouraged by positive results at the older stokers, NYSEG decided to develop the process for its pulverized coal boilers beginning with Greenidge Station, a 108-MW pulverized coal (PC) unit with a General Electric turbine generator and a 665,000-lb Combustion Engineering, tangentially fired boiler. Greenidge Station is in the center of New York, surrounded by farms, forests, vineyards, and orchards. The test bums at Greenidge Station demonstrated that a parallel fuel feed system can effectively provide wood products to a PC unit. Emission results were promising but inconclusive. Additional testing, for longer durations, at varied loads and with different woods needs to be conducted to clarify and establish relationships between the percent wood fired at varying moisture contents. Loads need to be varied to develop continuous emission monitor emission data that can be compared to coal-only data. Economic analysis indicates that it will be beneficial to further refine the equipment and systems. Refinements may include chipping and drying equipment, plus installation of fuel storage and feed systems with permanent boiler penetration. NYSEG will attempt to identify the problems associated with cofiring by direct injection, compared to cofiring a biomass/coal mixture through the existing fuel handling system. Specifically, an examination will be made of fuel size criteria and the system modifications necessary for minimal impacts on coal-fired operation.

  14. Slag monitoring system for combustion chambers of steam boilers

    SciTech Connect (OSTI)

    Taler, J.; Taler, D.

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  15. Exhaust gas recirculation control system for an internal combustion engine

    SciTech Connect (OSTI)

    Nishida, M.; Inoue, N.

    1988-03-01

    An exhaust gas recirculation control system for an internal combustion engine is described which comprises; an exhaust gas recirculation control valve for controlling a recirculation rate for exhaust gas to be mixed with intake air which is supplied to the internal combustion engine, an oxygen sensor disposed in an intake air passage downstream of the control valve to detect the concentration of oxygen in the intake air, a control means which compares the oxygen concentration detected by the oxygen sensor with a desired oxygen concentration previously determined depending on operational conditions of the engine and controls the degree of opening of the exhaust gas recirculation control valve so as to cancel the deviation between the detected oxygen concentration and the desired oxygen concentration, a detecting means for detecting the exhaust gas recirculation rate being zero to supply a signal to the control means on the basis of the detection, and a correcting means for correcting the corresponding relation between the output of the oxygen sensor and the detected oxygen concentration on the basis of the output of the oxygen sensor when the exhaust gas recirculation rate is zero.

  16. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  17. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J.

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  18. Multiple fuel supply system for an internal combustion engine

    DOE Patents [OSTI]

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  19. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Internal Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engines Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Internal Combustion Engines and Potential Role Internal Combustion Engines (ICEs) already offer outstanding drivability and reliability to over 240 million on-road passenger vehicles in the U.S. Over 16 million ICE-powered new passenger and commercial vehicles are sold annually, some replacing older vehicles and the remainder adding to the vehicle population. Currently, on-road

  20. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  1. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector

  2. Low emission U-fired boiler combustion system

    DOE Patents [OSTI]

    Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  3. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    SciTech Connect (OSTI)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.; Yamazaki, Ryouhei; Moi, Shiegkatsu; Fujima, Yukihisa; Hirama, Toshimasa; Hosoda, Hideo

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even in small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.

  4. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  5. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    SciTech Connect (OSTI)

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  6. System and method for optical monitoring of a combustion flame

    DOE Patents [OSTI]

    Brown, Dale M; Sandvik, Peter M; Fedison, Jeffrey B; Matocha, Kevin S; Johnson, Thomas E

    2006-09-26

    An optical spectrometer for combustion flame temperature determination includes at least two photodetectors positioned for receiving light from a combustion flame, each of the at least two photodetectors having a different, overlapping bandwidth for detecting a respective output signal in an ultraviolet emission band; and a computer for subtracting a respective output signal of a first one of the at least two photodetectors from a respective output signal of a second one of the at least two photodetectors to obtain a segment signal, and using the segment signal to determine the combustion flame temperature.

  7. Corrosion assessment in FBC (fluidized-bed combustion) systems

    SciTech Connect (OSTI)

    Natesan, K.

    1990-01-01

    Metallic materials selected for the construction of heat exchangers and tube support structure in fluidized-bed combustion (FBC) systems must withstand the dynamic corrosive conditions prevalent in these systems. Oxidation-sulfidation interactions leading to accelerated metal wastage of components can occur owing to the presence of sorbent deposits on metal surface and/or the low-oxygen partial pressures in the exposure environment. A number of laboratory tests were conducted to examine the influence of deposit chemistry, gas chemistry, and alloy pretreatment on corrosion of high-chromium alloys, such as, Incoloy 800 and Type 310 stainless steel. Detailed chemical and physical analyses of spent-bed materials were made and correlated with the observed corrosion behavior of the alloys. A comparative analysis was made of the influence of bubbling-bed and circulating-bed deposits on corrosion of several candidate alloys. Finally, a comparison was made of the laboratory corrosion test data with the metal wastage information developed over the years in several FBC test facilities. 5 refs., 20 figs., 3 tabs.

  8. New Biomass System Helps Menominee Indian Tribe of Wisconsin Reduce Its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Footprint | Department of Energy Biomass System Helps Menominee Indian Tribe of Wisconsin Reduce Its Carbon Footprint New Biomass System Helps Menominee Indian Tribe of Wisconsin Reduce Its Carbon Footprint April 21, 2016 - 10:42am Addthis On April 20, Office of Indian Energy Director Chris Deschene (second from right) joined other key stakeholders for the official opening of the Menominee Tribal Enterprises biomass combined heat and power district energy plant in Wisconsin. Photo

  9. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  10. Emission control system and method for internal combustion engine

    SciTech Connect (OSTI)

    Owens, L.

    1980-06-03

    Fresh air is introduced into the exhaust pipe leading to the muffler for an internal combustion engine, while the air and exhaust gas mixture is cooled, not only in the muffler but also in a circuitous tube which extends from the muffler to the normal discharge or tail pipe and in which a special cooler may be installed. From the outlet of the special cooling tube, which faces forwardly, a portion of the air and exhaust gas mixture, now cooled, is led from a Y-connection to the intake tube of the air filter, so that the air and exhaust gas mixture will be introduced into the intake system prior to the carburetor. A rearwardly slanting arm of the Y-connection connects the front end of the special cooling pipe with the normal tail pipe. The carburetor has one or more air bleed tubes leading into the mixture passage at or below the butterfly valves, so that at idling speeds, a small amount of fresh air is introduced, irrespective of the position of the butterfly valves, to overcome any tendency for the engine, when idling, to cough or sputter due to the introduction of an air and exhaust gas mixture to the air filter intake.

  11. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect (OSTI)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  12. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  13. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  14. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement

  15. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-31

    molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electrons orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecules time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization

  16. The Development of a Rebust Accelerometer-Based Start of Combustion Sensing System

    SciTech Connect (OSTI)

    Jim Huang; David Mumford

    2009-01-31

    The development of modern combustion systems increasingly relies on detailed knowledge of the combustion event. As the limits of combustion are approached, tight control of combustion leads to improved emissions and higher efficiencies, while retaining and even improving engine reliability and durability. While developing a novel HCCI (Homogeneous Charge Compression Ignition) technology for large natural gas engines, Westport found that there was no reliable cost-effective technology to monitor the combustion event. As a result, Westport began working on developing a solution based on commercially available knock sensors. While initially developed around HCCI, Westport has identified that numerous other forms of combustion (high EGR systems, Homogeneous Charge Direct Injection, etc) will require combustion sensors. This requirement is also reflected in the development of other technologies in this field. However, the potential low system cost and the lack of intrusion into the cylinder head area are significant benefits for the Westport approach. Previous work by Westport has proven the method on two different large compression ignition gas engines. The objective of the current work is to improve the robustness of this technology; particularly, to identify and reduce the sensor-to-sensor and engine-to-engine variations.

  17. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  18. Impact of Extreme Injection Pressure and EGR on the Combustion System of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Single Cylinder Engine | Department of Energy Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Impact of Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. DOE Requests Information on Revolutionary Biomass Supply Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The goal is to develop the components of processing and handling (unit operations) of biomass and demonstrate the viability of an AFSS on-scale in the future. The RFI categories ...

  20. Computational Combustion

    SciTech Connect (OSTI)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  1. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Clifford Smith

    2003-09-01

    Application and testing of the new combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this 12th quarterly report. In this quarter, continued validation and testing of the combustion LES code was performed for the DOE-SimVal combustor. Also, beta testing by six consortium members was performed for various burner and combustor configurations. A list of suggested code improvements by the beta testers was itemized. Work will continue in FY04. A conditional modification to the contract will be granted. The additional work will focus on modeling/analyzing the SimVal experiments.

  2. Compression ignition engine having fuel system for non-sooting combustion and method

    DOE Patents [OSTI]

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  3. Device to lower NOx in a gas turbine engine combustion system

    DOE Patents [OSTI]

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  4. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    DOE Patents [OSTI]

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  5. Assessment of PM[sub 10] concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    SciTech Connect (OSTI)

    Albalak, R.; Haber, M. . Rollins School of Public Health); Keeler, G.J.; Frisancho, A.R. )

    1999-08-01

    PM[sub 10] concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM[sub 10] concentrations were 1830 and 280 [micro]g/m[sup 3] and geometric mean home concentrations were 280 and 440 [micro]g/m[sup 3] for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM[sub 10] concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 [micro]g h[sup [minus]1]m[sup [minus]3] for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries.

  6. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  7. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  8. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Clifford E. Smith; Steven M. Cannon; Virgil Adumitroaie; David L. Black; Karl V. Meredith

    2005-01-01

    In this project, an advanced computational software tool was developed for the design of low emission combustion systems required for Vision 21 clean energy plants. Vision 21 combustion systems, such as combustors for gas turbines, combustors for indirect fired cycles, furnaces and sequestrian-ready combustion systems, will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. The simulation tool will greatly reduce the number of experimental tests; this is especially desirable for gas turbine combustor design since the cost of the high pressure testing is extremely costly. In addition, the software will stimulate new ideas, will provide the capability of assessing and adapting low-emission combustors to alternate fuels, and will greatly reduce the development time cycle of combustion systems. The revolutionary combustion simulation software is able to accurately simulate the highly transient nature of gaseous-fueled (e.g. natural gas, low BTU syngas, hydrogen, biogas etc.) turbulent combustion and assess innovative concepts needed for Vision 21 plants. In addition, the software is capable of analyzing liquid-fueled combustion systems since that capability was developed under a concurrent Air Force Small Business Innovative Research (SBIR) program. The complex physics of the reacting flow field are captured using 3D Large Eddy Simulation (LES) methods, in which large scale transient motion is resolved by time-accurate numerics, while the small scale motion is modeled using advanced subgrid turbulence and chemistry closures. In this way, LES combustion simulations can model many physical aspects that, until now, were impossible to predict with 3D steady-state Reynolds Averaged Navier-Stokes (RANS) analysis, i.e. very low NOx emissions, combustion instability (coupling of unsteady heat and acoustics), lean blowout, flashback, autoignition, etc. LES methods are becoming more and more practical by linking together tens

  9. Solubilities of Toluene, Benzene and TCE in High-Biomass Systems

    SciTech Connect (OSTI)

    Barton, John W.; Vodraska, Christopher D; Flanary, Sandie A.; Davison, Brian H

    2008-01-01

    We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

  10. DOE-Biomass Cookstoves Technical Meeting:Summary Report | Open...

    Open Energy Info (EERE)

    Summary Report AgencyCompany Organization: United States Department of Energy Sector: Energy Focus Area: Biomass, - Biomass Combustion Topics: Co-benefits assessment, - Energy...

  11. Characterization of Dried and Torrefied Arundo Donax Biomass...

    Office of Scientific and Technical Information (OSTI)

    Donax Biomass for Inorganic Species Prior to Combustion Citation Details In-Document Search Title: Characterization of Dried and Torrefied Arundo Donax Biomass for Inorganic ...

  12. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest Service), F. Corley (Corley Land Services), G. Somerville (Tigercat), O. Fasina (Auburn University), J. Fulton (Auburn University), T. McDonald (Auburn University), M. Smidt (Auburn University), T. Gallagher (Auburn University) This project is designing and demonstrating a high productivity system to harvest, process,

  13. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    03.25.2015 Technology Area Review: Terrestrial Feedstocks Principal Investigator: Steve Taylor Organization: Auburn University This presentation does not contain any proprietary, confidential, or otherwise restricted information High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Project Goals * Design and deploy machines and systems that can reduce delivered cost of woody biomass. - Design and

  14. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  15. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexington

    1992-11-01

    This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

  16. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  17. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  19. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  20. Methods and systems to facilitate reducing NO.sub.x emissions in combustion systems

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Varatharajan, Balachandar; Yilmaz, Ertan; Lipinski, John Joseph; Ziminsky, Willy Steve

    2011-02-15

    A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.

  1. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Chemistry/DISI Combustion DISI Combustion admin 2015-10-28T02:44:30+00:00

  2. Novel Solvent System for Post Combustion CO{sub 2} Capture (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Novel Solvent System for Post Combustion CO{sub 2} Capture Citation Details In-Document Search Title: Novel Solvent System for Post Combustion CO{sub 2} Capture The purpose of this project was to evaluate the performance of ION's lead solvent and determine if ION's solvent candidate could potentially meet DOE's target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project,

  3. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this

  4. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  5. Long range Energy Alternatives Planning (LEAP) System | Open...

    Open Energy Info (EERE)

    Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy...

  6. Biomass torrefaction mill

    DOE Patents [OSTI]

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  7. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  8. Utilization of emergent aquatic plants for biomass-energy-systems development

    SciTech Connect (OSTI)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  9. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The sources of unburned hydrocarbons and CO emissions from a PCI-like, early-injection low-temperature combustion system are examined through a combination of homogeneous reactor modeling employing detailed kinetics, multi-dimensional modeling using a reduced kinetic scheme, engine-out emissions measurements, and in-cylinder imaging of the spatial distributions of UHC and CO.

  10. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  11. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  12. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  13. LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Vivek Khanna

    2002-09-30

    Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub

  14. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  15. Overview of Sonex Combustion Systems (SCS) for DI Engines

    Broader source: Energy.gov [DOE]

    The SCS system has undergone computational and experimental verification and allows for controlled auto-ignition of low-cetane fuels.

  16. BioMon: A Google Earth Based Continuous Biomass Monitoring System (Demo Paper)

    SciTech Connect (OSTI)

    Vatsavai, Raju

    2009-01-01

    We demonstrate a Google Earth based novel visualization system for continuous monitoring of biomass at regional and global scales. This system is integrated with a back-end spatiotemporal data mining system that continuously detects changes using high temporal resolution MODIS images. In addition to the visualization, we demonstrate novel query features of the system that provides insights into the current conditions of the landscape.

  17. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent combustion simulations, which provide input to the design of more fuel-efficient ... simulations, which play an important role in designing more efficient combustion systems. ...

  18. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2005-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  20. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Steve Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fifth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. The use of multiple trees and periodic tree dumping was investigated. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry was finished for serial applications. Validation of the model on a backstep reacting case was performed. Initial calculations of the SimVal experiment were performed for various barrel lengths, equivalence ratio, combustor shapes, and turbulence models. The effects of these variables on combustion instability was studied. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. Next quarter, the 2nd consortium meeting will be held at CFDRC. LES software development and testing will continue. Alpha testing of the code will be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for chemical kinetics speed-up in CFD-ACE+, should be accomplished.

  1. Biomass energy systems program summary. Information current as of September 30, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  2. Next Generation Logistics Systems for Delivering Optimal Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Tennessee Next Generation Logistics Systems ... technology platforms. * The conceptual framework of the project recognizes that: - A more extensive forest product mix ...

  3. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  4. System for lubrication of a brake air compressor associated with a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Spencer, J.C.

    1992-10-13

    This patent describes a system for use with a vehicle which includes a turbocharged internal combustion engine having a lubricating system wherein lubricating oil from an engine oil reservoir is circulated within the engine and also to and from an associated brake system air compressor which supplies compressed air for operation of the vehicle air braking system. This patent describes improvement in passing supercharged air to an oil crankcase of the air compressor to cause lubricating oil to drain therefrom and return to the engine oil reservoir.

  5. Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses status of ACES, a cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 - 2010 deer11_tennant.pdf (378.86 KB) More Documents & Publications Advanced Collaborative Emissions Study (ACES) Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Advanced Collaborative Emissions Study

    Reports on Phase 1

  6. Local Option- Solar, Wind & Biomass Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy systems constructed in New York State. As curr...

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  8. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  9. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  10. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect (OSTI)

    Dutta, Anindita; Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 ; Ray, Manas Ranjan; Banerjee, Anirban

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-?) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 ?m (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-? and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ? Effect of chronic biomass smoke exposure on cardiovascular

  11. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    DOE Patents [OSTI]

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  12. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  13. Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels/Spray Combustion Spray Combustion admin 2015-10-28T02:17:06+00:00

  14. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  15. Combustion Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  16. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect (OSTI)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  17. Implementing Systems Engineering in the U.S. Department of Energy Office of the Biomass Program: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Wooley, R.; Sandor, D.

    2007-03-01

    This paper describes how the Systems Integration Office is assisting the Department of Energy's Biomass Program by using systems engineering processes, practices and tools to guide decisions and achieve goals.

  18. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  19. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  20. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are

  1. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Cannon, Steven M.; Adumitroaie, Virgil; McDaniel, Keith S.; Smith, Clifford E.

    2001-11-06

    In this project, an advanced computational software tool will be developed for the design of low emission combustion systems required for Vision 21 clean energy plants. This computational tool will utilize Large Eddy Simulation (LES) methods to predict the highly transient nature of turbulent combustion. The time-accurate software will capture large scale transient motion, while the small scale motion will be modeled using advanced subgrid turbulence and chemistry closures. This three-year project is composed of: Year 1--model development/implementation, Year 2--software alpha validation, and Year 3--technology transfer of software to industry including beta testing. In this first year of the project, subgrid models for turbulence and combustion are being developed through university research (Suresh Menon-Georgia Tech and J.-Y. Chen- UC Berkeley) and implemented into a leading combustion CFD code, CFD-ACE+. The commercially available CFDACE+ software utilizes unstructured , parallel architecture and 2nd-order spatial and temporal numerics. To date, the localized dynamic turbulence model and reduced chemistry models (up to 19 species) for natural gas, propane, hydrogen, syngas, and methanol have been incorporated. The Linear Eddy Model (LEM) for subgrid combustion-turbulence interaction has been developed and implementation into CFD-ACE+ has started. Ways of reducing run-time for complex stiff reactions is being studied, including the use of in situ tabulation and neural nets. Initial validation cases have been performed. CFDRC has also completed the integration of a 64 PC cluster to get highly scalable computing power needed to perform the LES calculations ({approx} 2 million cells) in several days. During the second year, further testing and validation of the LES software will be performed. Researchers at DOE-NETL are working with CFDRC to provide well-characterized high-pressure test data for model validation purposes. To insure practical, usable software is

  2. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  3. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  4. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Steven Cannon; Clifford Smith

    2003-04-01

    Application and testing of the new combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this 10th quarterly report. CFD Research Corporation has developed the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, validation and testing of the combustion LES code was performed for the DOE-Simval combustor. Also, Beta testing by consortium members was performed for various burner and combustor configurations. In the two quarters ahead, CFDRC will validate the code on the new DOE SimVal experiments. Experimental data from DOE should be available in June 2003, though LES calculations are currently being performed. This will ensure a truly predictive test of the software. CFDRC will also provide help to the consortium members on running their cases, and incorporate improvements to the software suggested by the beta testers. The beta testers will compare their predictions with experimental measurements and other numerical calculations. At the end of this project (October, 2003), a final released version of the software will be available for licensing to the general public.

  5. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  6. Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control

    Broader source: Energy.gov [DOE]

    Discusses development of advanced variable valve actuation system to enable high efficiency combustion highlighting advances to improving system packaging while reducing cost

  7. 2015 Gasification Systems and Coal and Coal-Biomass to Liquids Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    netl.doe.gov 5 Gasification Systems and Coal & Coal-Biomass to Liquids Workshop Workshop Summary Additional materials will be added when they are received from the author. Presentations Monday, August 10, 2015 Welcome and Introduction Jenny Tennant, Technology Manager for Gasification and C&CBTL U.S. Department of Energy, National Energy Technology Laboratory Wyoming Coal's Role in the World-Recent Past, Present and Future Don Collins, CEO of the Western Research Institute SESSION I

  8. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  9. US EPA biomass fuel analytical laboratory. Report for January-April 1997

    SciTech Connect (OSTI)

    Baskin, E.; Lee, C.W.; Natschke, D.F.

    1997-01-01

    The paper describes the U.S. EPA`s biomass fuel analytical laboratory at its Environmental Research Center in Research Triangle Park, NC. There is increasing interest in utlizing biomass-based fuels in thermal energy systems as an effective means for global warming remediation. The laboratory is examining biomass fuels and the variation in products of incomplete combustion (PICs) with combustion conditions. The objectives are to evaluate the kinetics of combustion and emission characteristics (e.g., structure and composition) of representative samples of relevant types of biomass fuels by studying (1) the local pyrolysis and combustion processes and products, and (2) the overall degradation rate as influenced by heat transmission. Biomass fuel samples will be examined by thermogravimetric analysis with an on-line Fourier transform infrared spectrometer (TGA-FTIR). EPA has built a prototype TGA, capable of handling a 100 g sample with 1 microgram resolution for this laboratory. This instrument is capable of heating the sample to 1200 C. Samples can be pyrolyzed and combusted sequentially by automated gas switching.

  10. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  11. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  12. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  13. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    SciTech Connect (OSTI)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  14. Boosting Small Engines to High Performance- Boosting Systems and Combustion Development Methodology

    Broader source: Energy.gov [DOE]

    Overview on combustion approaches and challenges for smaller boosted engines to improve vehicle fuel economy, particularly downsizing gasoline engines

  15. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  16. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  17. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  18. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  19. Feasibility of millimeter wave diagnostics for coal conversion and combustion systems

    SciTech Connect (OSTI)

    Gopalsami, N.; Raptis, A.C.

    1986-06-01

    The millimeter wave portion (30-300 GHz) of the electromagnetic spectrum, lying between the microwave and infrared regions, holds great potential for process diagnostics. In this report, the feasibility of millimeter wave (MMW) techniques is discussed for in-situ diagnostics of particulate-laden multiphase streams in coal conversion and combustion reactors/vessels. The techniques investigated include MMW spectroscopy for determination of molecular species and gas-phase temperature, MMW radiometry for particle-temperature measurement, and MMW scattering for particle characterization. each technique is scopes from the standpoint of its applicability to coal utilization systems. Parameters effecting the feasibility of millimeter wave diagnostics are clearly identified, and their ranges of applicability discussed. The assessment of feasibility is based on data obtained from the literature, handbooks, etc., theoretical calculations and estimates made using available theory, or on the development of simple models. The determination of some majority molecular species and gas-phase temperature using MMW spectroscopy appears marginally feasible in atmospheric-pressure combustors. The particle-temperature measurement using MMW radiometry appears very feasible in the reactors of coal conversion and combustion system. In order for the millimeter waves to penetrate the entire thickness of particulates in a reactor vessel, the particle concentration must be somewhat low (10/sup 8/ to 10/sup 9/ particles/m/sup 3/ of 100..mu.. size). Particle characterization - determining particle size, size distribution, and concentration - also appears feasible if the particle concentration is low. 28 refs., 12 figs., 4 tabs.

  20. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Steven Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Clifford Smith

    2002-04-30

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.

  1. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  2. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  3. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect (OSTI)

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  4. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  5. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  6. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect (OSTI)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  8. Improve Your Boiler's Combustion Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system.

  9. Methods and systems to thermally protect fuel nozzles in combustion systems

    DOE Patents [OSTI]

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  10. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect (OSTI)

    Rentizelas, Athanasios A. Tolis, Athanasios I. Tatsiopoulos, Ilias P.

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  11. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  12. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively,more » for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.« less

  13. Hot spot detection system for vanes or blades of a combustion turbine

    DOE Patents [OSTI]

    Twerdochlib, Michael

    1999-01-01

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

  14. Hot spot detection system for vanes or blades of a combustion turbine

    DOE Patents [OSTI]

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  15. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect (OSTI)

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  16. Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US)

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Tylczak, Joseph

    2013-08-28

    Exposures were completed to ~1400 hr. Analysis of kinetics are close to completion. No oxy-combustion gas phase effects were found at 700{degrees}C.

  17. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  18. Commissioning and first operational experience with the biomass fired boiler at Sonderjyllands Hojspaendingsvaerk

    SciTech Connect (OSTI)

    Ramsgaard-Nielsen, C.

    1998-07-01

    The biomass boiler plant at Sonderjyllands Hojspaendingsvaerk consists of a Benson type boiler with a screw stoker/vibration grate combustion system generating 120 t/h of steam at 200 bar and 470 C, which is finally superheated to 542 C in a separate wood chip fired superheater with a spreaderstoker/vibration grate combustion system. The biomass boiler is coupled to the 660 MW coal fired power plant Ensted 3 (EV3) on the water/steam side, and it generates 41 MW at a net electrical efficiency of 40%. Building of the biomass boiler plant at Sonderjyllands Hojspaendingsvaerk was decided by the ELSAM power pool in December 1994, and the erection of the plant was completed in the autumn 1997. Commissioning started in the summer of 1997. This paper describes the plant with focus on the biomass handling and combustion systems and the water/steam coupling to EV3. The plant description is followed by a description of the commissioning phases and the commissioning experience with fuel handling and combustion systems. Finally, the first operational experience is described.

  19. Process Heater for Stoichiometric Combustion Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heater for Stoichiometric Combustion Control Process Heater for Stoichiometric Combustion Control An Enhanced, CO-Based, Low Excess Air Control System Saves Energy While Reducing ...

  20. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect (OSTI)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  1. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect (OSTI)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  2. Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system

    DOE Patents [OSTI]

    Levendis, Yiannis A.; Wise, Donald L.

    1994-05-17

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  3. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  4. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  5. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    SciTech Connect (OSTI)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  6. LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS

    SciTech Connect (OSTI)

    Steve Cannon; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

    2001-05-01

    Further development of a Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this second quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. CFDRC has implemented and tested Smagorinsky and localized dynamic subgrid turbulence models on a 2.1 million cell DOE-NETL combustor case and a 400,000 cell nonreacting backstep case. Both cases showed good agreement between predicted and experimental results. The large DOE-NETL case results provided better agreement with the measured oscillation frequency than previous attempts because massive parallel computing (on a cluster of 24 pcs) allowed the entire computational domain, including the swirler vanes and fuel spokes, to be modeled. Subgrid chemistry models, including the conditional moment closure (CMC) and linear eddy model (LEM), are being tested and implemented. Reduced chemical mechanisms have been developed for emissions, ignition delay, extinction, and flame propagation using a computer automated reduction method (CARM). A 19-species natural gas mechanism, based on GRI2.11 and Miller-NO{sub x}, was shown to predict rich NO{sub x} emissions better than any previously published mechanisms. The ability to handle this mechanism in CFD-ACE+ was demonstrated by implementing operator splitting and a stiff ODE solver (DVODE). Efficient tabulation methods, including in situ adaptation and artificial neural nets, are being studied and will be implemented in the LES code. The LES combustion code development and testing is on schedule. Next quarter, initial results (including the DOE-NETL unstable combustor) with the CMC and LEM subgrid chemistry models will be completed and summarized.

  7. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  8. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  9. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect (OSTI)

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  10. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  11. Simulation of an integrated system for the production of methane and single cell protein from biomass

    SciTech Connect (OSTI)

    Thomas, M.V.

    1989-01-01

    A numerical model was developed to simulate the operation of an integrated system for the production of methane and single-cell algal protein from a variety of biomass energy crops or waste streams. Economic analysis was performed at the end of each simulation. The model was capable of assisting in the determination of design parameters by providing relative economic information for various strategies. Three configurations of anaerobic reactors were simulated. These included fed-bed reactors, conventional stirred tank reactors, and continuously expanding reactors. A generic anaerobic digestion process model, using lumped substrate parameters, was developed for use by type-specific reactor models. The generic anaerobic digestion model provided a tool for the testing of conversion efficiencies and kinetic parameters for a wide range of substrate types and reactor designs. Dynamic growth models were used to model the growth of algae and Eichornia crassipes was modeled as a function of daily incident radiation and temperature. The growth of Eichornia crassipes was modeled for the production of biomass as a substrate for digestion. Computer simulations with the system model indicated that tropical or subtropical locations offered the most promise for a viable system. The availability of large quantities of digestible waste and low land prices were found to be desirable in order to take advantage of the economies of scale. Other simulations indicated that poultry and swine manure produced larger biogas yields than cattle manure. The model was created in a modular fashion to allow for testing of a wide variety of unit operations. Coding was performed in the Pascal language for use on personal computers.

  12. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  13. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  14. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Biomass Feedstocks and Logistics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Feedstocks and Logistics Chapter 7: Technology Assessments Introduction The sustainable supply of quality, cost-effective feedstocks to future biorefineries is fundamental to growing the bioenergy industry. The Department of Energy (DOE) has made significant contributions to ensuring a sustainably supply of biomass. However, the inherently dispersed, highly-variable, aerobically unstable nature of biomass, among other characteristics, are still a challenge. Technologies need to be

  15. Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The chemistry that drives combustion is a highly complicated web of reactions. To describe the combustion of a single fuel compound, say iso-octane, in full chemical detail ...

  16. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOE Patents [OSTI]

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  17. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  18. Advanced systems demonstration for utilization of biomass as an energy source. Volume II. Technical specifications

    SciTech Connect (OSTI)

    1980-10-01

    This volume contains all of the technical specifications relating to materials and construction of the biomass cogeneration facility in the state of Maine. (DMC)

  19. Northeast regional biomass program. Retrospective, 1983--1993

    SciTech Connect (OSTI)

    Savitt, S.; Morgan, S.

    1995-01-01

    Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

  20. Sealed Combustion

    SciTech Connect (OSTI)

    2009-05-12

    This information sheet discusses the benefits of sealed combustion appliance units in order to ensure good indoor air quality.

  1. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect (OSTI)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  2. High-heat transfer low-NO.sub.x combustion system

    DOE Patents [OSTI]

    Abbasi, Hamid A.; Hobson, Jr., William J.; Rue, David M.; Smirnov, Valeriy

    2005-09-06

    A combustion apparatus comprising a pre-combustor stage and a primary combustion stage, the pre-combustor stage having two co-axial cylinders, one for oxidant and one for fuel gas, in which the fuel gas is preheated and the primary combustion stage having rectangular co-axial passages through which fuel and oxidant are admitted into a refractory burner block. Both passages converge in the vertical plane and diverge in the horizontal plane. The passage through the refractory burner block also has a rectangular profile and diverges in the horizontal plane. The outlets to the primary combustion stage are recessed in the refractory burner block at a distance which may be varied.

  3. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  4. Strategies for optimizing algal biology for enhanced biomass production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  5. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect (OSTI)

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  6. Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto

    DOE Patents [OSTI]

    Bals, Bryan; Teymouri, Farzaneh; Campbell, Tim; Dale, Bruce

    2015-02-03

    A method is provided in which pretreated and densified cellulosic biomass particulates can be hydrolyzed at a high solids loading rate as compared with the solids loading rate of loose hydrolysable cellulosic biomass fibers. The resulting high concentration sugar-containing stream can be easily converted to biofuels or an entire suite of other useful bioproducts.

  7. Path planning during combustion mode switch

    DOE Patents [OSTI]

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  8. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Turbulent combustion simulations, which provide input to the design of more fuel-efficient combustion systems, have gotten their own efficiency boost, thanks to researchers from the Computational Research Division (CRD) at Lawrence Berkeley National

  9. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  10. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  11. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOE Patents [OSTI]

    Charbonneau, Mark William

    2015-08-04

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.

  12. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, Februray 1, 1980-April 30, 1980

    SciTech Connect (OSTI)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.

    1980-01-01

    The project will result in two distinct products: (1) a biomass allocation model which will serve as a tool for the energy planner. (2) the experimental data is being generated to help compare and contrast the behavior of a large number of biomass material in thermochemical environments. Based on information in the literature, values have been developed for regional biomass costs and availabilities and for fuel costs and demands. This data is now stored in data banks and may be updated as better data become available. Seventeen biomass materials have been run on the small TGA and the results partially analyzed. Ash analysis has been performed on 60 biomass materials. The Effluent Gas Analyzer with its associated gas chromatographs has been made operational and some runs have been carried out. Using a computerized program for developing product costs, parametric studies on all but 1 of the 14 process configurations being considered have been performed. Background economic data for all the configuration have been developed. Models to simulate biomass gasifications in an entrained and fixed bed have been developed using models previously used for coal gasification. Runs have been carried out in the fluidized and fixed bed reactor modes using a variety of biomass materials in atmospheres of steam, O/sub 2/ and air. Check aout of the system continues using fabricated manufacturing cost and efficiency data. A users manual has been written.

  13. Microsoft PowerPoint - Biomass Resource Assessments and What do you need to know [Compatibility Mode]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Assessments What do you need to know? Marcus Kauffman, Oregon Dept. of Forestry Tribal Leaders Forum Series July 9, 2014 why do we care? * feedstock and raw materials are central to all biomass projects * feedstock costs can be a significant operational expense * securing reliable sources raw materials key to acquiring financing * most combustion systems are optimized to run on a consistent feedstock * smaller bio-energy systems are less robust * larger systems are more robust but

  14. WeBiomass Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: www.webiomass.com Coordinates: 43.58070919775, -72.971301209182...

  15. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  16. Transformations of inorganic coal constituents in combustion systems. Volume 2, Sections 6 and 7: Final report

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  17. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  18. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect (OSTI)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  19. High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems

    SciTech Connect (OSTI)

    Jeff Melzak; Tim Lieuwen; Adel Mansour

    2012-01-31

    The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

  20. NREL: Energy Analysis - Biomass Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Biomass-fired integrated gasification combined-cycle system using a biomass energy crop Pulverized coal boiler representing an average U.S. coal-fired power plant Cofiring biomass ...

  1. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-05

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  2. Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Duty/Spray Combustion Spray Combustion admin 2015-10-28T02:00:56+00:00 Optically accessible high-temperature, high-pressure spray chamber Optically accessible high-temperature, high-pressure spray chamber Fuel spray injection is expected to be one of the key elements for enabling high-efficiency, low-emission engines of the future. Understanding the details of the spray combustion process is therefore now more important than ever. But investigating engine combustion processes is

  3. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  4. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  5. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  6. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  7. Biomass power and conventional fossil systems with and without CO2 sequestration - Comparing the energy balance, greenhouse gas emissions and economics

    SciTech Connect (OSTI)

    Spath, Pamela L.; Mann, Margaret K.

    2004-01-01

    Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

  8. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  9. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  10. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect (OSTI)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  11. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Mini-biomass electric generation

    SciTech Connect (OSTI)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  13. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate

  14. Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H; Caffrey, Kevin R; Barnett, Elliott J; Webb, Erin; Brummette, Mark W; Downing, Mark

    2011-12-01

    As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

  15. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  16. Reducing mode circulating fluid bed combustion

    DOE Patents [OSTI]

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  17. Method and systems for power control of internal combustion engines using individual cycle cut-off

    SciTech Connect (OSTI)

    Fedorenko, Y.; Korzhov, M.; Filippov, A.; Atamanenko, N.

    1996-09-01

    A new method of controlling power has been developed for improving efficiency and emissions performance of internal combustion engines at partial load. The method involves cutting-off some of the work cycles, as the load decreases, to obtain required power. Theoretical and experimental material is presented to illustrate the underlying principle, the implementation means and the results for the 4- and 8-cylinder piston engine and a twin rotor Wankel engine applications.

  18. Energy from biomass and wastes V. Proceedings of the fifth symposium, Lake Buena Vista, FL, January 26-30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Papers are presented in the areas of biomass production and procurement, biomass and waste combustion, gasification processes, liquefaction processes, environmental effects and government programs. Specific topics include a water hyacinth wastewater treatment system with biomass production, the procurement of wood as an industrial fuel, the cofiring of densified refuse-derived fuel and coal, the net energy production in anaerobic digestion, photosynthetic hydrogen production, the steam gasification of manure in a fluidized bed, and biomass hydroconversion to synthetic fuels. Attention is also given to the economics of deriving alcohol for power applications from grain, ethanol fermentation in a yeast-immobilized column fermenter, a solar-fired biomass flash pyrolysis reactor, particulate emissions from controlled-air modular incinerators, and the DOE program for energy recovery from urban wastes.

  19. Modeling the behavior of selenium in Pulverized-Coal Combustion systems

    SciTech Connect (OSTI)

    Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel

    2010-11-15

    The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

  20. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  1. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  2. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  3. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  4. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  5. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  6. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

    SciTech Connect (OSTI)

    Benemann, J.R.; Oswald, W.J.

    1994-01-15

    This report provides an economic analysis and feasibility study for the utilization by microalgal systems of carbon dioxide generated from coal-fired power plants. The resulting biomass could be a fuel substitute for fossil fuels.

  7. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  8. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  9. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  10. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  11. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  12. Fluidized-bed combustion

    SciTech Connect (OSTI)

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  13. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system. STEAM TIP SHEET 4 Improve...

  14. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    SciTech Connect (OSTI)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  15. Transformations of inorganic coal constituents in combustion systems. Volume 3, Appendices: Final report

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

  16. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward; Zuo, Baifang; Stevenson, Christian Xavier

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  17. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  18. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  19. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect (OSTI)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  20. Development & Testing of Industrial Scale, Coal Fired Combustion System, Phase 3

    SciTech Connect (OSTI)

    Bert Zauderer

    1998-01-15

    In the third quarter of calendar year 1997, 10 days of tests on the 20 MMBtu/hr combustor-boiler facility were performed. The total test days on the Philadelphia facility to the end of September 1997 was 93, of which 19 tests were implemented as part of another DOE project. This exceeds the planned 63 test days for this project. Key project objectives have been exceeded, including NO emissions as low as 0.07 lb/MMBtu and SO emissions as low as 0.2 x 2 lb/MMBtu. The tests in the present quarter focussed on further optimizing post-combustion sorbent injection for SO2 and NOx control processes. The results were in the same range as in previous tests. In addition, initial tests of Coal Tech?s post-combustion NOx control process were implemented on a 100 MW and a 37 MW utility boiler, and NOx reductions as high as 40% were measured in the latter boiler.

  1. NETL, USDA design coal-stabilized biomass gasification unit

    SciTech Connect (OSTI)

    2008-09-30

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  2. Application of charge stratification, lean burn combustion systems and anti-knock control devices in small two-stroke cycle gasoline engines

    SciTech Connect (OSTI)

    Kuentscher, V.

    1986-01-01

    For essentially reducing the specific fuel consumption in two-stroke cycle engines and the concentration of hydrocarbons (HC) in the exhaust gas, the normal engine was equipped with a new ram tuned fuel injection system. By the application of charge stratification, lean burn combustion, different ignition systems and a special anti-knock device, considerable fuel consumption and HC emission reductions were obtained.

  3. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 Oxygen-Enriched Combustion (September 2005) (249.42 KB) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  4. A study of the effect of chloride on mercury removal in a fluidized bed combustion (FBC) system

    SciTech Connect (OSTI)

    Liu, K.; Gao, Y.; Li, F.; Pan, W.P.; Riley, J.T.; Mehta, A.K.; Ho, K.K.; Smith, S.R.

    2000-07-01

    Mercury exists in three forms, which are elemental mercury, inorganic mercury compounds, and organic mercury. Each form of mercury has a very different exposure potential. Oxidized mercury is soluble and has a tendency to associate with particles. Nearly all the post-combustion flue gas cleaning systems proposed to remove mercury may be categorized as either scrubbers or adsorbers. Therefore, the mercury sink in the cleaning system will be either the excess water of a wet scrubber or the mercury laden sorbent from an absorber. The major problem for post-combustion mercury capture systems is capturing the practically water-insoluble elemental mercury. Co-firing with high chlorine coal or RDF in utility boiler systems can provide an HCI atmosphere for the oxidation of elemental mercury in flue gas at relatively low temperatures (500--600 C). The objective of this study is to increase the efficiency of mercury emission cleaning methods by using HCl to convert elemental mercury to oxidized mercury species at low monetary costs and lower other toxic air emissions. When high chlorine (0.3--0.5%) coals were burned and a high intensity vortex flow (from secondary air) was used, around 70% of the total mercury in the fuel was condensed and absorbed by the fly ash (including calcium compounds). The remaining 30% of total fuel mercury was emitted in the gas phase in the flue gas. As for the gas phase mercury, about 98% of it exists in an oxidized form with a higher boiling temperature than elemental mercury and can be easily captured by an ESP or FGP apparatus. Only about 0.5% of the total fuel mercury was released to the atmosphere in elemental form.

  5. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  6. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  7. Biofuels combustion*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  8. Biofuels combustion*

    SciTech Connect (OSTI)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  9. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive/DISI Combustion DISI Combustion admin 2015-10-28T02:06:42+00:00 DISI engine in all-metal configuration with lower oil-collection cylinder installed. DISI engine in all-metal configuration with lower oil-collection cylinder installed. In order to reduce our dependence on petroleum and to reduce CO2emissions, it is important to both supplement traditional gasoline with renewable fuels and to improve the fuel efficiency of automotive engines. Under the Energy Independence and Security

  10. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels/DISI Combustion DISI Combustion admin 2015-10-28T02:15:13+00:00 In order to reduce our dependence on petroleum and to reduce CO2emissions, it is important to both supplement traditional gasoline with renewable fuels and to improve the fuel efficiency of automotive engines. Under the Energy Independence and Security Act (EISA) of 2007, the volume of renewable fuel required to be blended into transportation fuel will increase from 9 billion gallons in 2008 to 36 billion gallons by 2022. At

  11. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  12. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels Spray Combustion Spray CombustionAshley Otero2015-10-28T02:17:06+00:00 Fuel...

  13. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive DISI Combustion DISI CombustionAshley Otero2015-10-28T02:06:42+00:00 DISI...

  14. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry DISI Combustion DISI CombustionAshley Otero2015-10-28T02:44:30+00:00...

  15. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive Spray Combustion Spray CombustionAshley Otero2015-10-28T02:10:49+00:00...

  16. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  17. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels DISI Combustion DISI CombustionAshley Otero2015-10-28T02:15:13+00:00 In order to...

  18. Combustion 2000

    SciTech Connect (OSTI)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  19. Combustion Energy Research Fellows - Combustion Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Energy Research Fellows Combustion Energy Research Fellows Enoch Dames Co-sponsored by Professor William H. Green, MIT, Professor Ronald K. Hanson, Stanford University, ...

  20. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  1. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  2. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  3. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  4. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect (OSTI)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was

  5. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  6. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward; Zuo, Baifang; Stevenson, Christian Xavier

    2012-03-27

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  7. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    SciTech Connect (OSTI)

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  8. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  9. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  10. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  11. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET #1 Preheated Combustion Air (November 2007) (232.65 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Load

  12. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    SciTech Connect (OSTI)

    Benemann, J.R.; Oswald, W.J.

    1996-03-21

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with three commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.

  13. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  14. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  15. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  16. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  17. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  18. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  20. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and ...

  2. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the feeding and conversion of biomass and coal-biomass mixtures as essential upstream ... Activities support research for handling and processing of coal-biomass mixtures, ensuring ...

  3. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1993-12-01

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

  4. Putting combustion optimization to work

    SciTech Connect (OSTI)

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  5. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  6. Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

    Broader source: Energy.gov [DOE]

    Results of an investigation into effects of biofuels on engine- and system-out emissions, specifically US 2010 EPA exhaust after-treatment system from Mack Trucks

  7. Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignocellulosic Biomass - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  8. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect (OSTI)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  9. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  10. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect (OSTI)

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  11. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  12. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th ...

  13. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley

  14. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  15. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  18. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the ... Q: What could an advanced combustion power plant look like? A: An oxy-combustion power ...

  19. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    SciTech Connect (OSTI)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  20. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes

    SciTech Connect (OSTI)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2005-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no analytic expression, we first develop an analytic description and then extend that model along a single axis. Extrapolation

  1. Investigation of a rotary valving system with variable valve timing for internal combustion engines: Final technical report

    SciTech Connect (OSTI)

    Cross, P.C.; Hansen, C.N.

    1994-11-18

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multi-fuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this Final Report.

  2. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  3. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  4. Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks to Final Products To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. Advanced biofuels are part of the United States' "all-of-the-above" energy strategy to develop domestic energy resources and win

  5. Modeling energy in an Integrated Pollutant Removal (IPR) system with CO{sub 2} capture integrated with oxy-fuel combustion

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshchyn, Danylo B.; Gerdemann, Stephen J.

    2012-01-01

    Oxy-coal combustion is one of the technical solutions for mitigating CO{sub 2} in thermal power plants. Many processes have been evolved in past the decade to capture CO{sub 2} from process industries. Researchers at the National Energy Technology Laboratory (NETL) have patented a process, integrated pollutant removal (IPR), that uses off the shelf technology to produce a sequestration-ready CO{sub 2} stream from an oxy-combustion power plant. The IPR process as it is realized at the Jupiter Oxygen Burner Test Facility is a spray tower (direct-contact heat exchanger) followed by four stages of compression with intercooling. To study the energy flows of the oxy-combustion process, a 15 MW{sub t}h oxy-combustion pulverized-coal-fired plant integrated with the IPR system was simulated and analyzed using ASPEN Plus and ASPEN energy analyzer. This paper discusses flue-gas recycle, energy flow, recovery, and optimization of IPR systems. ASPEN models of heat- and mass-transfer processes in aflue-gas-condensing heat-exchanger system were developed to predict the heat transferred from flue gas to cooling water. The flue-gas exit temperature, cooling water outlet temperature, and energy flows of IPR streams were computed using ASPEN models. Pinch principles are deployed for targeting design and operation-guiding purposes and balancing the heat and mass transfer in the IPR system. The results are expected to support sophistication of the IPR system design, improving its application in a variety of settings. They open the door for valuable IPR efficiency improvements and generalization of methodology for simultaneous management of energy resources.

  6. Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... However, properly designing new pressurized combustion burners and boilers requires accurate data on coal devolatilization and combustion rates under these conditions. Similarly, ...

  7. Combustion Energy Postdoctoral Research Fellowships - Combustion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier Research Center Application Schedule Sample Projects How to Apply Combustion Energy Research Fellows 2016 Combustion Summer School News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » Combustion Energy Postdoctoral Research Fellowships Program Description Two-year positions as Combustion Energy Research Fellows are available for co-sponsored postdoctoral or more senior research associates to perform joint, high-risk/high-payoff

  8. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  9. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOE Patents [OSTI]

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  10. chemical-looping-combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion Chemical Looping Combustion Advantages: Oxygen is created in-situ... Oxygen production requirement is eliminated ...reduces energy demand and system costs. Uses conventional construction materials and techniques ...decreases capital cost. The combustion of fossil fuels in nearly pure oxygen, rather than air, presents an opportunity to simplify carbon dioxide (CO2) capture in power plant applications. Oxy-combustion power generation provides oxygen to the combustion

  11. Biomass energy: State of the technology present obstacles and future potential

    SciTech Connect (OSTI)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  12. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  13. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  14. System and method for improving performance of a fluid sensor for an internal combustion engine

    SciTech Connect (OSTI)

    Kubinski, David; Zawacki, Garry

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  15. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  16. Evaluating transformational solvent systems for post-combustion CO2 separations

    SciTech Connect (OSTI)

    Heldebrant, David J.; Glezakou, Vassiliki Alexandra; Koech, Phillip K.; Mathias, Paul M.; Cantu Cantu, David; Rousseau, Roger J.; Malhotra, Deepika; Bhakta, Mukund; Bearden, Mark D.; Freeman, Charles J.; Zheng, Feng

    2014-01-06

    Broad research is underway on developing transformational solvents that can capture of CO2 from flue gas with lower energy compared to aqueous amines. Water-lean, or non-aqueous, solvents are being considered as a class of transformational solvents due to the prospect of lower energy duties by not having to heat and condense water. To date, little is known about the real world performance of water-lean solvent systems compared to commercial aqueous amine technologies, and whether or not they can utilize existing or at least similar processing infrastructure. This paper provides the key results from a comprehensive three-year study of the water-lean CO2-Binding Organic Liquids (CO2BOL) solvent platform coupled with Polarity-Swing Assisted Regeneration (PSAR). We present here thermodynamic, kinetic, and bench-scale data, followed by Aspen Plus projections of full-scale process performance for three CO2BOL/PSAR cases. This paper also provides discussions on materials performance and identifies viscosity as a critical property that most greatly limits the viability of water-lean solvent platforms. We provide results from a new effort spanning molecular modeling and synthesis and experimental testing to decipher the critical material properties needed to address this challenge. We conclude with implications for development of other water-lean solvent systems

  17. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  18. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  19. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  20. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  1. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

    2008-08-31

    This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

  2. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    SciTech Connect (OSTI)

    Ramon Gonzalez; J. V. Shanks; K-Y. San .

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  3. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect (OSTI)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  4. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    SciTech Connect (OSTI)

    Nichol, Corrie Ian

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  5. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  6. Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Combustion To develop a more thorough understanding of combustion, scientists and engineers must be able to analyze the interaction of many different chemical species at high temperatures and pressures. Making combustion more efficient requires a holistic view of chemical reactions that integrate theoretical and applied chemistry, physics, and advanced computing. Combustion research at Argonne emphasizes studies of the dynamics and rates of gas-phase chemical reactions and the

  7. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect (OSTI)

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  8. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  9. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  10. Biomass thermochemical conversion program: 1987 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  11. Use of aromatic salts for simultaneously removing SO.sub.2 and NO.sub.x pollutants from exhaust of a combustion system

    DOE Patents [OSTI]

    Levendis, Yiannis A.; Wise, Donald L.

    1994-10-04

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium benzoate. The calcium benzoate is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since calcium benzoate is a water-soluble form of calcium. When the dispersed particles of calcium benzoate are heated to a high temperature, the organic benzoate burns off and fine calcium oxide particles are formed. These particles are cenospheric (hollow) and have thin and highly porous walls, thus, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic benzoate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  12. Advanced Combustion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  13. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  14. DOE 2014 Biomass Conference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 7/28/14 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle Standards * Let Free Markets Work - Mandates and subsidies distort the free market - Must meet consumers' needs - Follow automobile company recommendations as found in owner's manuals - Changes must be compatible with transportation fuel infrastructure * Use Sound Science - Adopt a systems approach, addressing

  15. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  16. Sandia Combustion Research Program: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  17. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  18. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  19. NREL: Biomass Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  20. NREL: Biomass Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  1. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  2. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  3. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL evaluates the biomass resources statistically and spatially using geographic information systems (GIS) and other techniques. This analysis examines the amount of resources ...

  4. Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL)

    1988-01-01

    A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

  5. A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases

    SciTech Connect (OSTI)

    Brent Marquis

    2007-05-31

    Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

  6. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A.

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  7. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  8. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  9. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    SciTech Connect (OSTI)

    Oßwald, Patrick; Köhler, Markus

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  10. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  11. A survey of state clean energy fund support for biomass

    SciTech Connect (OSTI)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  12. Biomass Program Overview

    SciTech Connect (OSTI)

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  13. Biomass Webinar Presentation Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy.

  14. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  15. Low-Temperature Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  17. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOE Patents [OSTI]

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  18. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  19. Feedstock Supply and Logistics:Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    impacts on conversion performance. * Logistics: Systems for harvesting, collecting, ... to improve biomass quality, reduce costs, and increase productivity. 2 BIOENERGY ...

  20. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific

  1. AGCO Biomass Solutions: Biomass 2014 Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGCO Biomass Solutions: Biomass 2014 Presentation AGCO Biomass Solutions: Biomass 2014 Presentation Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation farris_biomass_2014.pdf (2.11 MB) More Documents & Publications High Level Overview of DOE Biomass Logistics II Project Activities 2013 Peer Review Presentations-Feedstock Supply and Logistics Feedstock Supply and

  2. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx

  3. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  4. Proceedings of the 1996 spring technical conference of the ASME Internal Combustion Engine Division. Volume 2: Engine design and engine systems; ICE-Volume 26-2

    SciTech Connect (OSTI)

    Uzkan, T.

    1996-12-31

    Although the cost of the petroleum crude has not increased much within the last decade, the drive to develop internal combustion engines is still continuing. The basic motivation of this drive is to reduce both emissions and costs. Recent developments in computer chip production and information management technology have opened up new applications in engine controls and monitoring. The development of new information is continuing at a rapid pace. Some of these research and development results were presented at the 1996 Spring Technical Conference of the ASME Internal Combustion Engine Division in Youngstown, Ohio, April 21--24, 1996. The papers presented covered various aspects of the design, development, and application of compression ignition and spark ignition engines. The conference was held at the Holiday Inn Metroplex Complex and hosted by Altronic Incorporated of Girard, Ohio. The written papers submitted to the conference have been published in three conference volumes. Volume 2 includes the papers on the topics of engine design, engine systems, and engine user experience.

  5. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  6. Review of the Regional Biomass Energy Program: Technical projects

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-31

    This article summarizes technical projects of the regional Biomass Energy Program. Projects included are as follows: economic impact studies for renewable energy resources; alternative liquid fuels; Wood pellets fuels forum; residential fuel wood consumption; waste to energy decision-makers guide; fuel assessment for cogeneration facilities; municipal solid waste combustion characteristics.

  7. Boiler using combustible fluid

    DOE Patents [OSTI]

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  8. Russell Biomass | Open Energy Information

    Open Energy Info (EERE)

    Place: Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell,...

  9. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  10. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect (OSTI)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  11. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  12. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention ...

  13. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  14. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  15. Biomass Characterization | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extractability, Bioenergy Research (2016) Compositional Analysis of Biomass Reference Materials: Results from an Interlaboratory Study, Bioenergy Research (2015) View all ...

  16. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  17. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  18. Biomass Gas Clean-Up Using a Therminator

    SciTech Connect (OSTI)

    2006-04-01

    Clean-up and conditioning of syngas is a key technical barrier to the commercialization of biomass gasification systems. Current technologies do not meet the necessary performance, cost, and environmental criteria to achieve commercialization of biomass gasification technologies.

  19. FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA APPENDIX C DRAFT FORT YUKON WOODY BIOMASS FUEL IMPLEMENTATION PLAN (RBEGR 2011) C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10...

  20. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  1. Internal combustion engine

    SciTech Connect (OSTI)

    Perrin, G.; Bergmann, H.

    1984-06-12

    An externally auto-ignited four-stroke internal combustion engine which includes a combustion chamber disposed in an upper surface of a piston such that, in an upper dead-center position of the piston, the combustion chamber receives almost all of the fuel-air mixture. The combustion chamber includes a planar bottom portion and has a cross-sectional shape of a truncated cone expanding in a direction of the cylinder head. The internal combustion engine also includes a recess or depression provided in the cylinder head and disposed eccentrically with respect to a longitudinal center axis of the cylinder. The depression or recess in the cylinder head has the shape of a truncated cone expanding in a direction of the piston, with a spark plug projecting or penetrating into the recess or depression in the cylinder head. In order to enable the achievement of good combustion, increased overall engine performance, and the minimum amount of harmful components in the exhaust gases from the engine when different types of fuel are used, predetermined constructional parameters are selected with respect to the combustion chamber and recess or depression disposed above the combustion chamber as well as the disposition of the combustion chamber with respect to a longitudinal center axis of the cylinder.

  2. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  3. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  4. Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... Schematic representation of the experimental set-up. Shown in the figure is the jet-stirre...

  5. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi , Bool, III; Lawrence E.

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  6. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  7. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  8. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon shelf-life. The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  9. Multiple vane rotary internal combustion engine

    SciTech Connect (OSTI)

    Pangman, E.L.

    1994-01-11

    A three-piece housing enclosing a cavity has rotatably mounted therein a rotor having a plurality of slots, each slot supporting a vane. Each vane has a retention end guided in its revolution around the rotor by an internal, non-circular vane retention track. Two adjacent vanes define opposite sides of a combustion chamber, while the housing and the portion of the rotor between the adjacent vanes form the remaining surfaces of the combustion chamber. Each combustion chamber is rotated past an intake port, a diagonal plasma bleed-over groove, and an exhaust port to accomplish the phases of a combustion cycle. Fuel ignition is provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove and being formed into a vortex that ignites and churns the charge in a succeeding combustion chamber. Exhaust gases remaining after primary evacuation are removed by a secondary evacuation system utilizing a venturi creating negative pressure which evacuates the combustion chamber. Lubrication is circulated through the engine without the use of a lubricant pump. The centrifugal force of the rotating rotor causes the lubricant therein to be pressurized thereby drawing additional lubricant into the closed system and forcing lubricant within the engine to be circulated. 9 figs.

  10. Biomass Scenario Model Scenario Library: Definitions, Construction, and

    Office of Scientific and Technical Information (OSTI)

    Description (Technical Report) | SciTech Connect Biomass Scenario Model Scenario Library: Definitions, Construction, and Description Citation Details In-Document Search Title: Biomass Scenario Model Scenario Library: Definitions, Construction, and Description Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to

  11. Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System

    SciTech Connect (OSTI)

    Santosh Gangwal

    2011-06-30

    Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a plug

  12. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  13. 2016 Combustion Summer School - Combustion Energy Frontier Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To provide the next generation of combustion researchers with a comprehensive knowledge in the technical areas of combustion theory, experiment, computation, fundamentals, and ...

  14. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  15. Impact of Extreme Injection Pressure and EGR on the Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  17. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  18. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Literature Related to Combustion Appliance Venting Systems Citation Details ... Country of Publication: United States Language: English Subject: 29 ENERGY PLANNING, ...

  19. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high

  20. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  1. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  2. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  3. 33rd International Symposium on Combustion Hottel Lecture Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Combustion Systems Ronald K. Hanson Department of Mechanical Engineering Stanford University, Stanford CA, 94305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Combustion Science Stanford University Contribution R. K. Hanson and D. F. Davidson Department of Mechanical Engineering Stanford University 1 * Butanol Studies * Ignition Delay Times * Species Time-Histories * Reaction Rate Constants * Methyl Ester Studies * Ignition Delay Times Long-Term Objectives * Generate high-quality fundamental kinetics database using shock tube/laser absorption methods Leading to: * Improved detailed mechanisms for next-generation fuels First Targets: * Isomers of

  4. Plum Combustion | Open Energy Information

    Open Energy Info (EERE)

    Plum Combustion Place: Atlanta, Georgia Product: Combustion technology, which reduces NOx-emissions. Coordinates: 33.748315, -84.391109 Show Map Loading map......

  5. Real-time combustion controls and diagnostics sensors (CCADS)

    DOE Patents [OSTI]

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  6. NREL: Biomass Research - Thermochemical Pilot and Users Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts or reactor conditions for comparative fuel synthesis studies. Bench-Scale Biomass Conversion System This 2-inch-diameter fluidized bed reactor system can be used for...

  7. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Biomass Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzed both statistically and graphically using a geographic information system (GIS). ... For Geographic Information System (GIS) biomass resource data, access the Data Resources ...

  8. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  9. systems-studies | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle inventory of the gasification of coal and biomass. While the inventory is dominated by carbon dioxide emissions from the combustion of the fuel, small changes to the ...

  10. Advanced Combustion Engine R&D and Fuels Technology Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, and fuels research. Annual Progress Report (5.6 MB) More Documents & Publications Heavy Vehicle Systems Optimization Peer Review 2008 Annual Merit Review Results Summary - 7. Combustion Research 2012 Annual Merit Review Results Report - Advanced Combustion

  11. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    SciTech Connect (OSTI)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  12. Commercial Application of Biomass Energy Laurentian Energy Authority

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Biomass Energy Laurentian Energy Authority Date: May 20, 2013 Technology Area Review: Feedstock Supply & Logistics Principal Investigators: Bill Hafdahl, Laurentian Energy Authority Bill Berguson, University of Minnesota, Duluth Organizations: Laurentian Energy Authority - prime contractor University of Minnesota, Duluth - subcontract for biomass source research Commercial Application of Biomass Energy Laurentian Energy Authority, Virginia, MN CHP systems - Virginia and

  13. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How

  14. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  15. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  16. NREL: Biomass Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Biomass Research Home Capabilities Projects Facilities Research Staff Working with Us Data &...

  17. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  18. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  19. Biomass: Wood as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinator USDA Forest Service State & Private Forestry ... habitat and forest health Modern Woody Biomass ... Requires manual fuel delivery & stoking Pellets Meter ...

  20. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.