Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Combustion Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Combustion Systems Inc Combustion Systems Inc Jump to: navigation, search Name Biomass Combustion Systems Inc Address 67 Millbrook St Place Worcester, Massachusetts Zip 01606 Sector Biomass Product Combustion systems for wood fuel Website http://www.biomasscombustion.c Coordinates 42.290195°, -71.799627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.290195,"lon":-71.799627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

3

Energy and mass flow computation in biomass computation in biomass combustion systems  

SciTech Connect (OSTI)

A computational technique which utilizes biomass ultimate analysis, gross heat of combustion from a bomb calorimeter, and moisture content was developed for balancing an empirical chemical equation and calculating the combustion temperature and exhaust composition. A single equation for relating the net heat of combustion of a biomass to moisture content was developed. A sample calculation is presented. 7 references.

Payne, F.A.

1984-09-01T23:59:59.000Z

4

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

5

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

6

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

7

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

8

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

9

Volatile Organic Compounds Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.510 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

10

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China Sector: Biomass...

11

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network [OSTI]

emissions during biomass combustion: Controlling factors andfrom smoldering combustion of biomass measured by open-pathduring the open combustion of biomass in the laboratory

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

12

Characteristics of biomass in flameless combustion: A review  

Science Journals Connector (OSTI)

Abstract The demands of energy and pollutant emissions reduction have motivated the combustion researchers to work on combustion improvement. Flameless combustion or high temperature air combustion has many features such as flame stability, low pollutant emission and uniform profiles of temperature compared to the other modes of combustion. Combustion of solid fuels likes biomass and wastes in flameless combustion conditions has not been investigated as comprehensive as combustion of gaseous fuels. The aim of using biomass in combustion is to reduce the pollutant emissions and to decrease the rate of fossil fuel consumption. In this review, combustion characteristics of biomass in flameless combustion are explained. The paper summarizes the research on the mass loss, ignition time, and \\{NOx\\} emissions during biomass flameless combustion. These summaries show that biomass under flameless combustion gives low pollutant emissions, low mass loss and it decreases the ignition time.

A.A.A. Abuelnuor; M.A. Wahid; Seyed Ehsan Hosseini; A. Saat; Khalid M. Saqr; Hani H. Sait; M. Osman

2014-01-01T23:59:59.000Z

13

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

14

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

15

Thermogravimetric analysis of co-combustion of biomass and biochar  

Science Journals Connector (OSTI)

The co-combustion of biomass and biochar was investigated by thermogravimetric analysis....R M...) for different blends were used to evaluate co-combustion features. As the biomass content increas...

Qiguo Yi; Fangjie Qi; Gong Cheng

2013-06-01T23:59:59.000Z

16

The Inorganic Chemistry of Biomass Combustion: Problems and Solutions  

Science Journals Connector (OSTI)

High temperature molten products of the combustion of biomass present special problems related to fouling and ... performed calculations of the total inorganic chemistry of biomass combustion using a free energy ...

M. Blander

1997-01-01T23:59:59.000Z

17

Advanced Control Methodology for Biomass Combustion.  

E-Print Network [OSTI]

??This thesis presents a feasibility study for a low cost sensor-based combustion control system using a predictive chemical kinetic model that captures efficiencies and pollution (more)

Bjornsson, Stefan

2014-01-01T23:59:59.000Z

18

Department of Mechanical and Nuclear Engineering Spring 2013 Project Name Large Scale Biomass Combustion Verification and Analysis  

E-Print Network [OSTI]

Biomass Combustion Verification and Analysis Overview Team PSU PENNTAP 2 was tasked with determining was to produce a user-friendly analytical model of the Challenger 400 series biomass combustion system of experts in the field of biomass combustion and its analysis. These experts were Fred Fries of Dillon

Demirel, Melik C.

19

Diesel Engine Combustion of Biomass Pyrolysis Oils  

Science Journals Connector (OSTI)

Biomass pyrolysis oils are manufactured through a moderate-temperature process (?500 C) in which the biomass feedstock is subjected to rapid heating in the absence of air, where it vaporizes, cracks, and is condensed after a short residence time (?500 ms) into a dark brown liquid composed of a complex mixture of oxygenated hydrocarbons whose heating value is approximately half that of No. 2 diesel fuel. ... The combustion air inlet temperature can be preheated up to 130 C through the use of an in-line electric heater, which allows engine operation with fuels that have long ignition delay, without relying on any ignition additives. ... Their data showed that in addition to reducing the peak heat release magnitude, slower chemical kinetics resulted in reduced rate of instantaneous heat release (the slope of the instantaneous heat release curve) in the early combustion phase, resulting in delayed peak heat release timing relative to SOC. ...

Alan Shihadeh; Simone Hochgreb

2000-02-15T23:59:59.000Z

20

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Combustion of Low-Calorific Waste Biomass Syngas  

Science Journals Connector (OSTI)

The industrial combustion chamber designed for burning low-calorific syngas from gasification of waste biomass is presented. ... chips and turkey feathers the non-premixed turbulent combustion in the chamber is s...

Kamil Kwiatkowski; Marek Dudy?ski; Konrad Bajer

2013-12-01T23:59:59.000Z

22

Fluidized Bed Combustion of Low Grade Coals and Biomass  

Science Journals Connector (OSTI)

This technology is being used all over the world for biomass as well as for coal combustion. Nevertheless, there are no results available...

L. Armesto; A. Cabanillas; A. Bahillo

1997-01-01T23:59:59.000Z

23

Investigation of biomass combustion systems using CFD techniques: a parametric study of packed-bed burning characteristics  

Science Journals Connector (OSTI)

In this paper, mathematical equations governing the fluid flow, heat and mass transfer and heterogeneous reactions in packed-bed combustion systems are described and sub-models for individual processes are presented. A model estimating the mixing rate between the under-grate air and the released volatile gases is described. Parametric study was carried out to assess the effects of fuel moisture content, kinetic rate of devolatilisation, primary air flow rate and particle mixing levels caused by grate movement. Useful conclusions were drawn in terms of flame temperature, reaction zone thickness, mass loss rate, combustion staging and residual carbon in ash.

Yao Bin Yang; Jim Goodfellow; Vida N. Sharifi; Jim Swithenbank

2006-01-01T23:59:59.000Z

24

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler  

E-Print Network [OSTI]

Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate, the noncontinuous biomass feeding and grate movement, the combustion instabilities inside the fuel bed used to fire biomass for heat and power production. However, grate-firing systems are often reported

Rosendahl, Lasse

25

The Impact of Biomass Fuels on Flame Structure and Pollutant Formation during Biomass Cofiring Combustion.  

E-Print Network [OSTI]

??Cofiring of biomass in pulverized coal boilers for large-scale power generation requires that current combustion standards of stability, reliability, emission and fuel conversion efficiency are (more)

Holtmeyer, Melissa Lauren

2012-01-01T23:59:59.000Z

26

A fundamental study of biomass oxy-fuel combustion and co-combustion.  

E-Print Network [OSTI]

??While oxy-fuel combustion research is developing and large scale projects are proceeding, little information is available on oxy-biomass combustion and cocombustion with coal. To address (more)

Farrow, Timipere Salome

2013-01-01T23:59:59.000Z

27

9 - Large-scale biomass combustion plants: an overview  

Science Journals Connector (OSTI)

Abstract: For a long time biomass was combusted mostly on a small scale. Now the largest biomass boilers are over 500 MWth. This chapter tries to outline the main methods for large-scale biomass combustion. The main boiler types are the grate and bubbling-fluidised bed boilers although circulating-fluidised bed and pulverised firing do play a role. Particular emphasis has been placed on emissions, the effect of fuel quality and operating issues.

S. Caillat; E. Vakkilainen

2013-01-01T23:59:59.000Z

28

1 - Biomass combustion for power generation: an introduction  

Science Journals Connector (OSTI)

Abstract: The chapter gives an introduction to the main combustion techniques used for turning biomass into power and briefly discusses their relative strengths and weaknesses. The chapter also provides definitions of the main biomass types and discusses recent developments in the application of biomass for power production.

J.P. Wolf; Dong

2013-01-01T23:59:59.000Z

29

Understanding pulverised coal, biomass and waste combustion A brief overview  

Science Journals Connector (OSTI)

Abstract Pulverised coal (PC) firing has been the dominant technology for generating power in utility boilers for almost a century. During this period, boiler designs have evolved through an accumulating collection of knowledge that has led to many empirical relationships that still guide current and future design directions to some degree. In the late 1940s the developed nations began to undertake coal research based on scientific principles to ensure the most efficient use of the primary energy resource represented by coal. As the body of scientific knowledge on the physics and chemistry of coal combustion grew, it was used to direct the improvements to efficiency required and, later, the control of pollutants produced during the combustion of coal. This involves not only the control of emissions of particulates, \\{SOx\\} and oxides of nitrogen but also of trace elements, polycyclic aromatic hydrocarbons and, importantly, CO2. There have been a number of significant developments in the coal-fired power generation sector including cofiring with secondary fuels, particularly biomass and waste, and the development of radically different combustion systems (for example, oxyfuel) to meet carbon capture and storage requirements. Each of these developments has impacted upon the way in which PC-fired boilers are configured and operated and further complicated an already complex combustion environment. This paper outlines the developments in PC combustion and the new techniques that have been developed to enhance our understanding of the processes involved. The paper is based on a comprehensive IEA Clean Coal Centre study Understanding pulverised coal, biomass and waste combustion. Ian Barnes, CCC/205 ISBN 978-92-9029-525-9, September 2012.

D. Ian Barnes

2014-01-01T23:59:59.000Z

30

Research on an Approach to High Temperature Flameless Combustion Technology of Biomass  

Science Journals Connector (OSTI)

In this paper the situation of biomass (straw) utilization technology is depicted. Besides, the present questions of biomass gasification, liquefaction along with direct combustion are analyzed. Biomass gasificat...

Peiyong Ma; Zhiguo Tang; Qizhao Lin; Abuliti

2007-01-01T23:59:59.000Z

31

Thermal characteristics of the combustion process of biomass and sewage sludge  

Science Journals Connector (OSTI)

The combustion of two kinds of biomass and sewage sludge was studied. The biomass fuels were wood biomass (pellets) and agriculture biomass (oat). The sewage sludge came from waste water treatment plant. The biomass

Aneta Magdziarz; Ma?gorzata Wilk

2013-11-01T23:59:59.000Z

32

The Agglomeration in the Fluidized Bed Boiler During the Co-Combustion of Biomass with Peat  

Science Journals Connector (OSTI)

The formation of bed material coatings during the co-combustion of peat and biomass is caused by iron, calcium, aluminum ... Thus the bed material agglomeration during peat and biomass co-combustion is due to the...

Ritva E. A. Heikkinen; Mika E. Virtanen

1999-01-01T23:59:59.000Z

33

Thermodynamic Performances and Cost Analysis of Advanced Biomass Combustion Power Plants  

Science Journals Connector (OSTI)

In this paper, plant configurations with different options for drying the biomass before combustion have been discussed. Conventional indirect processes,...

Roberto Carapellucci

2002-01-01T23:59:59.000Z

34

Ash Transformation Chemistry during Combustion of Biomass  

Science Journals Connector (OSTI)

The financial support from the Botnia-Atlantica program, the Enhanced Forest Biomass Production, the Swedish Farmers Foundation for Agricultural Research (SLF), the Thermal Engineering Research Foundation (Vrmeforsk), the Swedish Energy Agency (STEM), the Swedish Research Council and the National (Swedish) Strategic Research Program Bio4Energy are gratefully acknowledged. ...

Dan Bostrm; Nils Skoglund; Alejandro Grimm; Christoffer Boman; Marcus hman; Markus Brostrm; Rainer Backman

2011-11-21T23:59:59.000Z

35

Coalbiomass co-combustion: An overview  

Science Journals Connector (OSTI)

Abstract The energy sector in the global scenario faces a major challenge of providing energy at an affordable cost and simultaneously protecting the environment. The energy mix globally is primarily dominated by fossil fuels, coal being the major contributor. Increasing concerns on the adverse effect of the emissions arising from coal conversion technologies on the environment and the gradual depletion of the fossil fuel reserves had led to global initiatives on using renewables and other opportunity resources to meet the future energy demands in a sustainable manner. Use of coal with biomass as a supplementary fuel in the combustion or gasification based processes is a viable technological option for reducing the harmful emissions. Co-combustion of coal with biomass for electricity generation is gradually gaining ground in spite of the fact that their combustion behavior differ widely due to wide variations in their physical and chemical properties. This article deals with the technical aspects of co-combustion with emphasis on the fundamentals of devolatilization, ignition, burnout and ash deposition behavior along with the constraints and uncertainties associated with the use of different types of biomass of diverse characteristics and the likely impact of partial replacement of coal by biomass on the emission of CO2, SOx, NOx. Other issues of no less importance like sustained availability of biomass, transportation and storage, effect on biodiversity, etc., are left out in the study. The investigations reported in the study reflect the potential of biomass as co-fuel, and the scope of maximizing its proportion in the blend in the coal based power plants and the derived benefits.

S.G. Sahu; N. Chakraborty; P. Sarkar

2014-01-01T23:59:59.000Z

36

JV 58-Effects of Biomass Combustion on SCR Catalyst  

SciTech Connect (OSTI)

A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

2006-08-31T23:59:59.000Z

37

Emission of nanoparticles during combustion of waste biomass in fireplace  

Science Journals Connector (OSTI)

Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs As Cd Zn Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

2014-01-01T23:59:59.000Z

38

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

39

Combustion Characteristics of Coal and Biomass Blends and Thermal Dynamic Analysis  

Science Journals Connector (OSTI)

By using TGA technology, the combustion characteristics under different conditions of hard coal and biomass blends has been discussed. The combustion curves of blends exhibited the characteristics with two peaks. Results also exhibited that there was ... Keywords: coal, biomass, thermal analysis, combustion characteristics

Haizhen Huang; Haibo Chen; Guohua Wang; Jun Liu

2009-10-01T23:59:59.000Z

40

Characterisation and model fitting kinetic analysis of coal/biomass co-combustion  

Science Journals Connector (OSTI)

Abstract The combustion behaviors of biomass, coal and their blends were studied by thermogravimetric analysis. Combustion parameters such as ignition, burnout, peak rate, ignition index, and combustibility index were analyzed. The kinetic parameters were optimized based on experimental results by a double parallel reactions random pore model (DRPM) proposed in this paper. The results show that the combustion characteristic temperature of the biomass is lower and maximum rate of combustion is higher than that of anthracite coal. With the increase of biomass content, ignition temperature and burnout temperature of blends tended to decrease, while the ignition index and combustibility index increased. Compared with the original RPM model, the DRPM model could not only describe the combustion process with a single peak rate, but also the combustion of biomass-coal blends with two rate peaks. The combustion activation energies of blends were extracted by DRPM model in the present study.

Guangwei Wang; Jianliang Zhang; Jiugang Shao; Shan Ren

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

42

An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types  

Science Journals Connector (OSTI)

Abstract An extended overview of the phasemineral transformations of organic and inorganic matter during biomass combustion was conducted in Part I of the present work. The ash fusion and ash formation mechanisms of biomass types and sub-types during combustion are described in the present Part II. For that purpose the identified systematic associations based on the occurrence, content and origin of elements and phases in the biomass ash (BA) system, namely (1) SiAlFeNaTi (mostly glass, silicates and oxyhydroxides); (2) CaMgMn (commonly carbonates, oxyhydroxides, glass, silicates and some phosphates and sulphates); and (3) KPSCl (normally phosphates, sulphates, chlorides, glass and some silicates and carbonates); were used as classification of \\{BAs\\} into four types (S, C, K and CK) and six sub-types with high, medium and low acid tendencies and their description was given. Then, topics related to ash fusion behaviour such as: some general considerations and observations about ash melting; ash fusion temperatures (AFTs) of biomass and their comparisons with coal; relationships between \\{AFTs\\} and inorganic composition of biomass and coal; and ash fusion mechanisms of biomass and coal are characterized. Further, issues connected with the ash formation mechanisms of BA types and sub-types are discussed. Subsequently, aspects related to potential applications of ash formation mechanisms for BA types and sub-types, namely some key technological problems (fusion, slagging and fouling predictions, low ash fusion temperatures, co-combustion and application of BA) and environmental risks (volatilization, capture and water leaching of hazardous elements) are described. Finally, it is emphasized that the application of this new classification approach based on combined phasemineral and chemical composition of biomass and BA has not only fundamental importance, but also has potential applications in prediction of behaviour and properties connected with the innovative and sustainable utilization of biomass and BA. It is also demonstrated that the definitive utilization, technological and environmental advantages and challenges related to biomass and BA associate preferentially with their specific types and sub-types and they could be predictable to some extent by using the above or similar combined chemical and phasemineral classification approaches.

Stanislav V. Vassilev; David Baxter; Christina G. Vassileva

2014-01-01T23:59:59.000Z

43

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

44

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

45

Potentials of Biomass Co-Combustion in Coal-Fired Boilers  

Science Journals Connector (OSTI)

The present work provides a survey on the potentials of co-combustion of biomass and biogenic wastes in large-scale coal- ... which is not obtainable in small-scale dedicated biomass combustors. Co-firing at low ...

J. Werther

2010-01-01T23:59:59.000Z

46

Experimental Investigation of Combustion of Biomass Slurry in an Oil Fired Furnace  

Science Journals Connector (OSTI)

An experimental investigation of combustion of biomass slurry in an oil fired furnace was ... are presented. The calorific value of the biomass slurry increases with equivalence ratio initially, attains ... obser...

S. V. Prakash; S. R. Shankapal

2009-01-01T23:59:59.000Z

47

Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste  

Science Journals Connector (OSTI)

Biomass and municipal solid waste offer sustainable sources ... form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil ... an integrated, sustainable waste managemen...

Ren Laryea-Goldsmith; John Oakey; Nigel J Simms

2011-02-01T23:59:59.000Z

48

Deposit Formation during the Co-Combustion of Coal-Biomass Blends  

Science Journals Connector (OSTI)

During recent years, there has been extensive research as well as demonstrations concerning combustion of biomass as a single fuel or combined with ... project it was shown that the utilisation of biomass may lea...

K. R. G. Hein; T. Heinzel; A. Kicherer

1996-01-01T23:59:59.000Z

49

Fluidized Bed Combustion of Solid Biomass for Electricity and/or Heat Generation  

Science Journals Connector (OSTI)

Fluidised bed combustion (FBC) technology was developed in the ... . The FBC technology was soon expanded for biomass and other low-grade fuels, which have ... a definite trend to widen the range of biomass fuels...

Panagiotis Grammelis; Emmanouil Karampinis

2011-01-01T23:59:59.000Z

50

Circulating Fluidized Bed Combustion of Brown Coal during Mixing Up Biomass  

Science Journals Connector (OSTI)

Especially for large CFBC units it is possible to employ only the co-firing of biomass because of logistic problems. So it is ... as well as best working parameters to use biomass as co-combustion fuel in already...

W. Neidel; M. Gohla; R. Borghardt; H. Reimer

1997-01-01T23:59:59.000Z

51

Biomass Plantation Inergy Systems and Sustainable DevelD~ment  

E-Print Network [OSTI]

.m Biomass Plantation Inergy Systems and Sustainable DevelD~ment ERIC D. LARSON AND ROBERT H poor manSOl ecause f'itSdirect useby combustion := :-Iuclear for domestic cooking and. Hydro hearing ranks ir ar the bor- rom of the ladderofPreferred Biomass DEV'ELOPING COUNTRIES energ

52

Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue  

Science Journals Connector (OSTI)

Abstract The thermochemical behaviors during co-combustion of coal gangue (CG), soybean stalk (SS), sawdust (SD) and their blends prepared at different ratios have been determined via thermogravimetric analysis. The simulate experiments in a fixed bed reactor were performed to investigate the partition behaviors of trace elements during co-combustion. The combustion profiles of biomass was more complicated than that of coal gangue. Ignition property and thermal reactivity of coal gangue could be enhanced by the addition of biomass. No interactions were observed between coal gangue and biomass during co-combustion. The volatilization ratios of trace elements decrease with the increasing proportions of biomass in the blends during co-combustion. Based on the results of heating value, activation energy, base/acid ratio and gaseous pollutant emissions, the blending ratio of 2030% biomass content is regarded as optimum composition for blending and could be applied directly at current combustion application with few modifications.

Chuncai Zhou; Guijian Liu; Ting Fang; Paul Kwan Sing Lam

2015-01-01T23:59:59.000Z

53

Producer Gas Composition and NOx Emissions from a Pilot-Scale Biomass Gasification and Combustion System Using Feedstock with Controlled Nitrogen Content  

Science Journals Connector (OSTI)

(2) Additionally, the biomass prices are generally high, as the biomass feedstocks are seasonal and there is lack of a large feed storage capability to control the price. ... Five different biomass feedstocks with varying nitrogen contents were tested. ... Five different biomass feedstocks were used in this study. ...

Sharan Sethuraman; Cuong Van Huynh; Song-Charng Kong

2011-01-25T23:59:59.000Z

54

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

55

Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions.  

E-Print Network [OSTI]

??Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions. (more)

Ruscio, Amanda

2013-01-01T23:59:59.000Z

56

Modern Technologies of Biomass Combustion and Pre-treatment for more Efficient Electricity Production: Review and Case Analysis  

Science Journals Connector (OSTI)

Biomass combustion and biomasscoal cofiring represents a near-term, low...2 emissions, reduction in SOx and NOx emissions. However, untreated, woody biomass has a relatively low energy density, low ... a matter ...

Wlodzimierz Blasiak

2013-01-01T23:59:59.000Z

57

Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences  

SciTech Connect (OSTI)

Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

Mutanen, K.I. [A. Ahlstrom Corporation, Varkaus (Finland)

1995-11-01T23:59:59.000Z

58

Study of biomass combustion characteristics for the development of a catalytic combustor/gasifier.  

E-Print Network [OSTI]

??The research reported here explored, a "new" approach to biomass energy conversion for small-scale process heat-applications. The conversion process uses close-coupled catalytic. combustion to burn (more)

Dody, Joseph W.

2012-01-01T23:59:59.000Z

59

Pressurised Combustion of Biomass-Derived, Low Calorific Value, Fuel Gas  

Science Journals Connector (OSTI)

During a 3 year (1996 1998) project, partly funded by the EU as part of their JOULE 3 programme, experimental and theoretical research will be done on the pressurised combustion of biomass-derived, LCV, fuel ga...

J. Andries; P. D. J. Hoppesteyn

1997-01-01T23:59:59.000Z

60

Impact of Biomass Combustion on Urban Fine Particulate Matter in Central and Northern Europe  

Science Journals Connector (OSTI)

The impact of biomass combustion on atmospheric particulate matter was investigated at...2.5...) and size-segregated samples were collected with a virtual impactor and a ten-stage Berner low-pressure impactor, re...

Sanna K. Saarikoski; Markus K. Sillanp

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Study on Combustion Characteristics and Kinetics of Coal and Biomass  

Science Journals Connector (OSTI)

The combustion characteristics of Qilianta-coal and rice straw ... ignition temperature and time decreases after adding the biomass to the coal; When the sample mixed ... the chemical reaction kinetic parameters ...

Hongbo Lu; Chunxia Jia; Lei Zhang; Guiqiu Su

2007-01-01T23:59:59.000Z

62

Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds  

Science Journals Connector (OSTI)

Abstract Experiments were conducted in a thermogravimetric analyzer to investigate thermal behavior of different organic calcium compounds (OCCs) and its blended fuels with three kinds of biomass. The effectiveness of synthesized method for OCC was assessed by the pyrolysis test. Effect of the mole ratio of calcium to sulfur on co-combustion characteristics was studied. Results indicated that preparation method of modified calcium acetate (MCA) had high precision and accuracy. Co-combustion characteristic of \\{OCCs\\} blended with biomass was controlled by OCCs additive amount and the content of volatile matter which is mainly composed of small hydrocarbon molecules. Combustion performance indexes for peanut shell and wheat straw impregnated by \\{OCCs\\} were improved, however, an inverse trend was found for rice husk because of lower additive amount of OCCs. The blended fuel show higher combustion performance indexes compared with combustion of individual biomass, and these indexes decrease with increases of Ca/S ratio.

Lihui Zhang; Feng Duan; Yaji Huang

2015-01-01T23:59:59.000Z

63

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

64

Combustion and \\{NOx\\} emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam  

Science Journals Connector (OSTI)

The purpose of this study is to investigate the \\{NOx\\} emissions from combustion of syngas derived from gasification of three different biomass feedstock (i.e., pine, mapleoak mixture, and seed corn) at different oxygen-enriched-air and steam conditions. Three different oxygen-enriched-air and steam conditions were tested for each feedstock, thus resulting in nine different sets of syngas. The biomass-derived syngas was burned in an industrial burner that was integrated into the gasification system. The gasifier and burner are rated at 800kW and 879kW thermal, respectively. For each set of biomass-derived syngas, \\{NOx\\} emissions were measured at different burner operating conditions including various heat rates and equivalence ratios using emission analyzers with chemiluminescence technology. All the combustion test conditions are in the lean mixture ranges in order to avoid the peak temperature limitation of both the burner and combustion chamber. Results show that \\{NOx\\} emissions using syngas obtained from woody feedstock decrease almost linearly as the combustion mixture becomes leaner and the heat rate decreases. When compared to natural gas, syngas from both woody feedstock generates higher \\{NOx\\} emissions even when the heat rates are comparable, indicating that fuel \\{NOx\\} formation is highly important in biomass-derived syngas combustion. In contrast to syngas from woody feedstock, syngas from seed corn results in peak \\{NOx\\} emissions before \\{NOx\\} decreases with leaner conditions. The trend is observed for all fuel flow rates and all oxygen-enriched-air and steam conditions of seed corn-derived syngas. Among the three feedstock, seed corn has the highest nitrogen content which yields the highest ammonia concentration in syngas, which, in turn, results in the highest \\{NOx\\} emissions for all test conditions. Overall, the \\{NOx\\} emissions from seed corn-derived syngas combustion are approximately in the range of 450900ppm higher compared to those from wood-derived syngas combustion.

Cuong Van Huynh; Song-Charng Kong

2013-01-01T23:59:59.000Z

65

Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and  

E-Print Network [OSTI]

combustion, biomass burning and soil emissions Lyatt Jaegle´ ,a Linda Steinberger,a Randall V. Martinbc anthropogenic emissions, mostly resulting from fossil fuel combustion and biomass burning, are superimposed-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel

Lyatt Jaeglé

66

Combustion of single biomass particles in air and in oxy-fuel conditions  

Science Journals Connector (OSTI)

Abstract The combustion behaviors of four different pulverized biomasses were evaluated in the laboratory. Single particles of sugarcane bagasse, pine sawdust, torrefied pine sawdust and olive residue were burned in a drop-tube furnace, set at 1400K, in both air and O2/CO2 atmospheres containing 21, 30, 35, and 50% oxygen mole fractions. High-speed and high-resolution images of single particles were recorded cinematographically and temperaturetime histories were obtained pyrometrically. Combustion of these particles took place in two phases. Initially, volatiles evolved and burned in spherical envelope flames of low-luminosity; then, upon extinction of these flames, char residues ignited and burned in brief periods of time. This behavior was shared by all four biomasses of this study, and only small differences among them were evident based on their origin, type and pre-treatment. Volatile flames of biomass particles were much less sooty than those of previously burned coal particles of analogous size and char combustion durations were briefer. Replacing the background N2 gas with CO2, i.e., changing from air to an oxy-fuel atmosphere, at 21% O2 impaired the intensity of combustion; reduced the combustion temperatures and lengthened the burnout times of the biomass particles. Increasing the oxygen mole fraction in CO2 to 2835% restored the combustion intensity of the single biomass particles to that in air.

Juan Riaza; Reza Khatami; Yiannis A. Levendis; Luca lvarez; Mara V. Gil; Covadonga Pevida; Fernando Rubiera; Jos J. Pis

2014-01-01T23:59:59.000Z

67

Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU)  

Science Journals Connector (OSTI)

Abstract Economic benefits can be expected in the future if CO2 capture and storage are implemented in energy generation from biomass combustion. The aim of this work is to investigate the combustion of biomass in a chemical looping with oxygen uncoupling (CLOU) process with inherent CO2 separation. The performance of biomass combustion in a continuously operated 1.5kWth CLOU unit is presented. Particles prepared by spray drying containing 60wt.% CuO were used as an oxygen carrier. Milled pine wood chips were used as fuel. The work focused on the effect of fuel reactor temperature on the CO2 capture and the combustion efficiency of the CLOU process with biomass. Under CLOU operation, biomass combustion was complete to CO2 and H2O without the presence of any unburnt material, including tars. Moreover, high carbon capture efficiencies were achieved using very low oxygen carrier inventories and without a carbon separation unit. This is the first time that the CLOU concept has been demonstrated in a continuous CLC unit using biomass as fuel.

I. Adnez-Rubio; A. Abad; P. Gayn; L.F. de Diego; F. Garca-Labiano; J. Adnez

2014-01-01T23:59:59.000Z

68

Experimental Study on the Combustion Characteristics of Stalk Biomass Fuel  

Science Journals Connector (OSTI)

China is an agriculture country. Biomass resource will be up to 65 hundred ... average heating value is 15000kJ/kg, those biomass resources are equivalent to 33 hundred million ... double annual total energy cons...

Jian-xing Ren; Fang-qin Li; Qi-fen Li

2007-01-01T23:59:59.000Z

69

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

2010-01-01T23:59:59.000Z

70

Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor  

Science Journals Connector (OSTI)

Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 ... and king grass, which are typical herbaceous biomass in China, were chosen for this study ....

S. Y. Li; H. P. Teng; W. H. Jiao

2010-01-01T23:59:59.000Z

71

An analysis of ilmenite particles used as bed material for combustion of biomass in a CFB boiler.  

E-Print Network [OSTI]

??Combustion of biomass in a fluidized bed boiler with silica sand as bed material is related to problems such as agglomeration of bed material and (more)

Corcoran, Angelica

2013-01-01T23:59:59.000Z

72

biomasse et stockage gologique, un couplage tourn vers l'avenir Centrale de co-combustion charbon/bois  

E-Print Network [OSTI]

biomasse et stockage géologique, un couplage tourné vers l'avenir 94 Centrale de co-combustion charbon/bois (copeaux de bois au premier plan). Biomass co-firing boilers using coal and wood (wood chips in the foreground). © Alstom.com Qu'appelle-t-on biomasse ? L eterme«biomasse

Paris-Sud XI, Université de

73

Combustion characteristics of steam-exploded biomass pellets.  

E-Print Network [OSTI]

?? Currently pelletized woody biomass is widely used as a fuel in thermal applications toaccelerate the global transition to renewable energy. Fuel upgrade is one (more)

Ponce Valle, Maria Gabriela

2011-01-01T23:59:59.000Z

74

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion  

Science Journals Connector (OSTI)

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion ... In this investigation, electrostatic precipitator fractional collection efficiency and trace metal emissions were determined experimentally at a 66 MW biomass-fueled bubbling fluidized-bed combustion plant. ... The solid fuel combustion-generated particle emissions typically consist of two types of particles:? fine particles approximately 0.1?1 ?m in diameter that are formed from the ash-forming species that are volatilized during combustion and residual ash particles larger than 1 ?m in diameter that are formed from mineral impurities in the fuels (4). ...

Terttaliisa Lind; Jouni Hokkinen; Jorma K. Jokiniemi; Sanna Saarikoski; Risto Hillamo

2003-05-08T23:59:59.000Z

75

Biomass Energy Heat Provision in Modern Large-Scale Systems  

Science Journals Connector (OSTI)

Biomass is the most important renewable energy source in the European Union. In the field of energetic utilization of solid biomass, combustion is the most advanced and market-proven application. Consequently...

Dr. Ingwald Obernberger

2012-01-01T23:59:59.000Z

76

Biomass Energy Heat Provision in Modern Large-Scale Systems  

Science Journals Connector (OSTI)

Biomass is the most important renewable energy source in the European Union. In the field of energetic utilization of solid biomass, combustion is the most advanced and market-proven application. Consequently...

Dr. Ingwald Obernberger; Dr. Friedrich Biedermann

2013-01-01T23:59:59.000Z

77

Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor  

Science Journals Connector (OSTI)

Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor ... Chemical looping combustion (CLC) is a new innovative technology with inherent separation of CO2 without energy penalty. ... Experiments on chemical looping combustion of biomass/coal were conducted in a 1 kWth continuous reactor, and an Australia iron ore was selected as oxygen carrier. ...

Haiming Gu; Laihong Shen; Jun Xiao; Siwen Zhang; Tao Song

2010-12-21T23:59:59.000Z

78

Physical and chemical characterisation of potassium deactivation of a SCR catalyst for biomass combustion  

Science Journals Connector (OSTI)

The deactivation of a commercial Selective Catalytic Reduction (SCR) catalyst, of V2O5?WO3/TiO2...type, has been studied through comparisons with results from a full-scale biomass combustion plant to that with la...

Ann-Charlotte Larsson; Jessica Einvall; Arne Andersson; Mehri Sanati

2007-08-01T23:59:59.000Z

79

Combustion of biomass as a global carbon sink  

E-Print Network [OSTI]

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

80

Biomass combustion beyond reasonable limits? The European woodworking industry (WWI) stands for well over 42,000 companies,  

E-Print Network [OSTI]

Biomass combustion beyond reasonable limits? The European woodworking industry (WWI) stands in the use of biomass. It is essential for all stakeholders to understand that, through extensive application. Consequently, it is the WWIs that can best determine the extent and ratio to which woody-biomass should

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers  

Science Journals Connector (OSTI)

Abstract Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800C. A reaction temperature of 950C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

H.B. Huang; L. Aisyah; P.J. Ashman; Y.C. Leung; C.W. Kwong

2013-01-01T23:59:59.000Z

82

Analysis on investment strategies in China: the case of biomass direct combustion power generation sector  

Science Journals Connector (OSTI)

Abstract To adjust the energy structure, protect the environment and deal with climate change, China has proposed that non-fossil energy would constitute 15 percent of the total energy consumption at the end of the 13th Five-Year Plan period (20162020), and the use of biomass would account for 4 percent of primary energy consumption. Firstly, the current situation, the internal environment and the external environment of the biomass direct combustion power generation are analyzed. Then, the financial model of biomass direct combustion power generation project is established, and contrasts with other major new energy projects are carried out in terms of operation models, opportunities and risks so as to explore the investment features of this project in depth. Finally, appropriate investment strategies are proposed with respect of the investors, and policy recommendations for the development of the industry are attempted as well.

Zhao Xin-Gang; Feng Tian-Tian; Ma Yu; Yang Yi-Sheng; Pan Xue-Fu

2015-01-01T23:59:59.000Z

83

Emissions and Heat Transfer in Combustion Systems  

Science Journals Connector (OSTI)

A variety of combustion systems that employ turbulent diffusion combustion have been major sources of air pollutants such as NOx, particulates and hydrocarbons in spite of their high thermal efficiency compare...

Y. Daisho

1993-01-01T23:59:59.000Z

84

Effect of co-combustion of coal and biomass on combustion performance and pollutant emissions.  

E-Print Network [OSTI]

??Biomass has been regarded as a major form of renewable energy due to its neutral position in the emission of green house gases such as (more)

Kwong, Chi Wai

2005-01-01T23:59:59.000Z

85

ANALYSIS OF BIOMASS HARVEST, HANDLING, AND COMPUTER MODELING.  

E-Print Network [OSTI]

??Biomass materials are currently considered for use in direct combustion systems, and for value added products. The major roadblock associated with implementation of biomass into (more)

Brownell, Douglas

2009-01-01T23:59:59.000Z

86

Experimental determination of agglomeration tendency in fluidized bed combustion of biomass by measuring slip resistance  

Science Journals Connector (OSTI)

Abstract A method by measuring the slip resistance between particles was used to determine the agglomeration tendency in fluidized bed combustion of biomass. Solid particles were taken from different stages of biomass combustion in a fluidized bed and loaded into a bench-scale test apparatus with two concentric cylinders. A precision variable frequency motor and a torque sensor were employed to measure the torque driven by the inner cylinder at a constant speed, which is directly related to the slip resistance of the solid particles. The measurement results showed significant difference in the slip resistance of the bed solids taken from different stages of biomass combustion at different operating temperatures. A strong correlation was found between the onset of agglomeration and increase in the slip resistance, especially near the onset of agglomeration, due to the build-up of molten biomass ashes, presence of liquid bridges between particles and formation of incipient agglomerates. With further validation, the method developed in the present study can potentially be used to quantify agglomeration tendency in a fluidized bed reactor and characterize the dynamic process of agglomeration.

Chunjiang Yu; Zifeng Tang; Leiyun Zeng; Chen Chen; Bin Gong

2014-01-01T23:59:59.000Z

87

A study on the dynamic combustion behavior of a biomass fuel bed  

Science Journals Connector (OSTI)

Abstract The main objective of this research was to study fuel bed combustion dynamics of a BioGrate boiler with a mechanistic model. First, the fuel specific pyrolysis reaction rates were experimentally determined for the model. Second, the model was validated and finally, it was used to investigate the effects of the primary air flows on drying, pyrolysis and char consumption rates occurring inside the fuel bed. The research results are presented and the role of the dynamic behavior of the reactions on the biomass combustion process discussed.

Alexandre Boriouchkine; Vida Sharifi; Jim Swithenbank; Sirkka-Liisa Jms-Jounela

2014-01-01T23:59:59.000Z

88

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

190 190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-46190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase Prepared under Task No. IGST.9034 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

89

Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion  

Science Journals Connector (OSTI)

Abstract The thermal decomposition behavior of coal gangue, peanut shell, wheat straw and their blends during combustion were determined via thermogravimetric analysis. The coal gangue/agricultural biomass blends were prepared in four weight ratios and oxidized under dynamic conditions from room temperature to 1000C by various heating rates. Kinetic models were carried out to evaluate the thermal reactivity. The overall mass balance was performed to assess the partition behavior of coal gangue, peanut shell and their blends during combustion in a fixed bed reactor. The decomposition processes of agricultural biomass included evaporation, release of volatile matter and combustion as well as char oxidation. The thermal reactivity of coal gangue could be improved through the addition of agricultural biomass in suitable proportion and subsequent appropriate heating rate during combustion. In combination with the heating value and base/acid ratio limitations, a blending ratio of 30% agricultural biomass is conservatively selected as optimum blending.

Chuncai Zhou; Guijian Liu; Siwei Cheng; Ting Fang; Paul Kwan Sing Lam

2014-01-01T23:59:59.000Z

90

Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols  

Science Journals Connector (OSTI)

Widespread biomass burning in the tropics has been identi fied as a major source of trace gases and particulate matter to the atmosphere (1?3). ... Corpus?Christi ... The largest primary source contributors to fine particle mass concns. in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions form food cooking and wood smoke, with smaller contributions from tire dust, plant fragments, a natural gas combustion aerosol, and cigarette smoke. ...

Matthew P. Fraser; Kalyan Lakshmanan

2000-09-22T23:59:59.000Z

91

Influence of chimneys on combustion characteristics of buoyantly driven biomass stoves  

Science Journals Connector (OSTI)

Abstract This work examines whether a chimney has influence over the combustion characteristics of biomass within a stove. Experimental work as well as a simplified chemical kinetic model suggests that a chimney plays an active role in the performance of a stove by influencing the overall air-to-fuel ratio and subsequently the production of carbon monoxide. Two different stoves, operated at multiple wood consumption rates, were shown to run with steady state excess air of 300 % ? 1250 %. The wood consumption rate was found to be independent of the chimney draft for both stoves. Increasing draft was shown to increase excess air. Draft served to cool combustion gases through dilution with makeup air. Increasing excess air decreased modified combustion efficiency in experiments and kinetic modeling. Increasing the frictional loss coefficient of a chimney by decreasing the diameter was shown to reduce CO production through a reduction of excess air.

J. Prapas; M.E. Baumgardner; A.J. Marchese; B. Willson; M. DeFoort

2014-01-01T23:59:59.000Z

92

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

Fuel efficiency as key market driver Stringent emission requirements System cost of advanced combustion Targets 30% fuel efficiency improvement SULEV emissions...

93

Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications  

Science Journals Connector (OSTI)

Abstract Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O 2 and CO 2 -enrichment. Application of the CoatsRedfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [ O 2 ] increased combustion reactivity. A lesser effect was observed when substituting N 2 for CO 2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O 2 -enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O 2 , 70% CO 2 ) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments.

S. Pickard; S.S. Daood; M. Pourkashanian; W. Nimmo

2014-01-01T23:59:59.000Z

94

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

95

Emissions of trace gases and aerosols during the open combustion of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions of trace gases and aerosols during the open combustion of biomass Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Title Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Publication Type Journal Article Year of Publication 2009 Authors McMeeking, Gavin R., Sonia M. Kreidenweis, Stephen Baker, Christian M. Carrico, Judith C. Chow, Jeffrey Collett L. Jr., Wei Min Hao, Amanda S. Holden, Thomas W. Kirchstetter, William C. Malm, Hans Moosmuller, Amy P. Sullivan, and Cyle E. Wold Journal Journal of Geophysical Research Volume 114 Abstract We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO4 2, NO3, Cl, Na+, K+, and NH4 + generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

96

Risk analysis of a biomass combustion process using MOSAR and FMEA methods  

Science Journals Connector (OSTI)

Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADSMOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityנProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode.

P.-X. Thivel; Y. Bultel; F. Delpech

2008-01-01T23:59:59.000Z

97

Overview of Sonex Combustion Systems (SCS) for DI Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sonex Combustion Systems (SCS) for DI Engines Overview of Sonex Combustion Systems (SCS) for DI Engines The SCS system has undergone computational and experimental verification and...

98

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

99

Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

100

Fine Particle Emissions from Combustion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fine Particle Emissions from Combustion Systems Fine Particle Emissions from Combustion Systems Speaker(s): Allen Robinson Date: November 11, 2005 - 12:00pm Location: 90-3122 Combustion systems such as motor vehicles and power plants are major sources of fine particulate matter. This talk describes some of the changes in fine particle emissions that occur as exhaust from combustion systems mix with background air. This mixing cools and dilutes the exhaust which influences gas-particle partitioning of semi-volatile species, the aerosol size distribution, and the fine particle mass. Dilution sampling is used to characterize fine particle emissions from combustion systems because it simulates the rapid cooling and dilution that occur as exhaust mixes with the atmosphere. Results from dilution sampler

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Tonnage Forest Biomass Production Systems from Southern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This...

102

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

103

Biomass combustion with in situ CO2 capture by CaO in a 300kWth circulating fluidized bed facility  

Science Journals Connector (OSTI)

Abstract This paper reports experimental results from a new 300kWth calcium looping pilot plant designed to capture CO2 in situ during the combustion of biomass in a fluidized bed. This novel concept relies on the high reactivity of biomass as a fuel, which allows for effective combustion around 700C in air at atmospheric pressure. In these conditions, CaO particles fed into the fluidized bed combustor react with the CO2 generated during biomass combustion, allowing for an effective CO2 capture. A subsequent step of regeneration of CaCO3 in an oxy-fired calciner is also needed to release a concentrated stream of CO2. This regeneration step is assumed to be integrated in a large scale oxyfired power plant and/or a larger scale post-combustion calcium looping system. The combustor-carbonator is the key reactor in this novel concept, and this work presents experimental results from a 300kWth pilot to test such a reactor. The pilot involves two 12m height interconnected circulating fluidized bed reactors. Several series of experiments to investigate the combustor-carbonator reactor have been carried out achieving combustion efficiencies close to 100% and CO2 capture efficiencies between 70 and 95% in dynamic and stationary state conditions, using wood pellets as a fuel. Different superficial gas velocities, excess air ratios above stoichiometric requirements, and solid circulating rates between combustor-carbonator and combustor-calciner have been tested during the experiments. Closure of the carbon and oxygen balances during the combustion and carbonation trials has been successful. A simple reactor model for combustion and CO2 capture in the combustor-carbonator has been applied to aid in the interpretation of results, which should facilitate the future scaling up of this process concept.

M. Alonso; M.E. Diego; C. Prez; J.R. Chamberlain; J.C. Abanades

2014-01-01T23:59:59.000Z

104

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

105

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

106

Method and system for controlled combustion engines  

DOE Patents [OSTI]

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

107

EMERY BIOMASS GASIFICATION POWER SYSTEM  

SciTech Connect (OSTI)

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

108

Modelling, simulation and validation of the solid biomass combustion in different plants  

Science Journals Connector (OSTI)

For the combustion of biomass, mathematical models have been developed at the LUAT on the basis of models for waste incineration. These models were proven by comparison to experimental date under the same conditions. The optimisation was done for the MARS-plant and for a big biomass fired steam generator. The main focus for the optimisation of the MARS-plant is the air distribution. For the operational plant, the results from the computer simulations have been confirmed by measurements. Based on these results, the plant operation could be improved. From the point of view of the manufacturers, these tools and techniques can also be applied to the basic design of new plants.

K. Goerner; Th. Klasen

2006-01-01T23:59:59.000Z

109

Influence of Combustion Conditions on Yields of Solvent-Extractable Anhydrosugars and Lignin Phenols in Chars: Implications for Characterizations of Biomass Combustion Residues  

SciTech Connect (OSTI)

Anhydrosugars, such as levoglucosan and its isomers (mannosan, galactosan), as well as the solvent-extractable lignin phenols (methoxylated phenols) are thermal degradation products of cellulose/hemicellulos and lignin, respectively. These two groups of biomarkers are often used as unique tracers of combusted biomass inputs in diverse environmental media. However, detail characterization of the relative proportion and signatures of these compounds in highly heterogeneous plant-derived chars/charcoals are still scarce. Here we conducted a systematic study to investigate the yields of solvent-extractable anhydrosugars and lignin phenols in twenty-five lab-made chars produced from different plant materials under different combustion conditions. Solvent extractable anhydrosugars and lignin phenols were only observed in chars formed below 350 C and yields were variable across different combustion temperatures. The yields mannosan (M) and galactosan (G) decreased more rapidly than those of levoglucosan (L) under increasing combustion severity (temp. and duration), resulting in variable L/M and L/(M+G) ratios, two diagnostic ratios often used for identification of combustion sources (e.g. hardwoods vs. softwoods vs. grasses). On the other hand, the results of this study suggest that the ratios of the major solvent-extractable lignin phenols (vanillyls (V), syringyls (S), cinnamyls (C)) provide additional source reconstruction potential despite observed variations with combustion temperature. We thus propose using a property property plot (L/M vs. S/V) as an improved means for source characterization of biomass combustion residues. The L/M-S/V plot has shown to be effective in environmental samples (soil organic matter, atmospheric aerosols) receiving substantial inputs of biomass combustion residues.

Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce

2011-10-01T23:59:59.000Z

110

High Tonnage Forest Biomass Production Systems from Southern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

111

High Tonnage Forest Biomass Production Systems from Southern...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

112

Low NOx combustion system for heavy oil  

SciTech Connect (OSTI)

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

113

Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems  

Science Journals Connector (OSTI)

Through gasification, carbonaceous feedstock such as coal, petroleum coke (petcoke), and biomass is converted into synthesis...1218] through, e.g., combustion or electrochemical conversion in fuel cells. Syngas ...

S. Sridhar; P. Rozzelle; B. Morreale

2011-04-01T23:59:59.000Z

114

Study on ash deposition under oxyfuel combustion of coal/biomass blends  

Science Journals Connector (OSTI)

Combustion in an O2/CO2 mixture (oxyfuel) has been recognized as a promising technology for CO2 capture as it produces a high CO2 concentration flue gas. Furthermore, biofuels in general contribute to CO2 reduction in comparison with fossil fuels as they are considered CO2 neutral. Ash formation and deposition (surface fouling) behavior of coal/biomass blends under O2/CO2 combustion conditions is still not extensively studied. Aim of this work is the comparative study of ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions in a lab scale pulverized coal combustor (drop tube). The fuels used were Russian and South African coals and their blends with Shea meal (cocoa). A horizontal deposition probe, equipped with thermocouples and heat transfer sensors for on line data acquisition, was placed at a fixed distance from the burner in order to simulate the ash deposition on heat transfer surfaces (e.g. water or steam tubes). Furthermore, a cascade impactor (staged filter) was used to obtain size distributed ash samples including the submicron range at the reactor exit. The deposition ratio and propensity measured for the various experimental conditions were higher in all oxyfuel cases. The SEM/EDS and ICP analyses of the deposit and cascade impactor ash samples indicate K interactions with the alumina silicates and to a smaller extend with Cl, which was all released in the gas phase, in both the oxyfuel and air combustion samples. Sulfur was depleted in both the air or oxyfuel ash deposits. S and K enrichment was detected in the fine ash stages, slightly increased under air combustion conditions. Chemical equilibrium calculations were carried out to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compounds and ash composition rather than the combustion environment, which seems to affect the fine ash (submicron) ash composition, and the ash deposition mechanisms.

L. Fryda; C. Sobrino; M. Cieplik; W.L. van de Kamp

2010-01-01T23:59:59.000Z

115

The direct observation of alkali vapor species in biomass combustion and gasification  

SciTech Connect (OSTI)

This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

French, R.J.; Dayton, D.C.; Milne, T.A.

1994-01-01T23:59:59.000Z

116

Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow  

Science Journals Connector (OSTI)

Abstract Combustion experiments on cylindrical bio-coke (BIC), a highly densified biomass briquette, have been conducted to observe whether quasi-one-dimensional steady combustion can be attained in room temperature air flow. In the experiments, the air flow velocity was the main test condition and the fuel consumption rate when the bottom surface of the BIC sample burned was evaluated as the regression rate of the combustion zone at the bottom surface. In addition, one-dimensional calculations based on an energy equation at the combustion zone were conducted to understand the mechanism that results in steady combustion and predict the effect of water and volatile matter content in BIC on the extinction limit. The results showed that steady combustion of the BIC sample could be attained in 4.67m/s or more, and, in contrast, extinction was observed in 3.82m/s or less. The critical regression rate explained by the combustion zone temperature was shown, and the reason combustion becomes unsteady could be explained by the energy balance at the combustion zone. Though the main reason for extinction was radiation heat loss, the heat loss by water and volatile matter was not negligible. Therefore, the effect of water and volatile matter content on steady combustion must be considered.

Takero Nakahara; Hui Yan; Hiroyuki Ito; Osamu Fujita

2014-01-01T23:59:59.000Z

117

Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization  

Science Journals Connector (OSTI)

Abstract Lignocellulosic biomass has the potential to produce sustainable clean-green energy and other bio-based materials. However, due to the inferior physicochemical properties compared to coal, biomass is not regarded as an ideal feedstock for industrial applications. The work presented in this study evaluates the feasibility of two different thermal pre-treatments, torrefaction and hydrothermal carbonization (HTC), followed by densification. The densified and pretreated samples obtained from miscanthus feedstock were characterized in terms of the strength, storage, and combustion properties for energy applications. The results showed that both the thermal pre-treatments are promising methods for upgrading biomass. However, the HTC pellets showed considerably superior physicochemical properties when compared to the raw and torrefied pellets. The mass density (mass per unit volume) and volumetric energy density (HHV per unit volume) of the pellets produced via HTC at 260C was significantly higher (1036kg/m3, 26.9GJ/m3) compared to raw pellets (834kg/m3, 15.7GJ/m3) and torrefied pellets (820kg/m3, 16.7GJ/m3). Moreover, the HTC pellets showed improved hydrophobicity, reduction in ash content, reduction in alkali and alkaline earth metal content, and a considerable increase in the carbon content. Based on these results, the HTC pellets have potential for the heat and power applications, including replacing coal in the existing coal-fired power plants without any significant modifications.

Harpreet Singh Kambo; Animesh Dutta

2014-01-01T23:59:59.000Z

118

Biomass combustion for electric power: Allocation and plant siting using non-linear modeling and mixed integer optimization  

Science Journals Connector (OSTI)

Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This study uses non-linear programming to provide policymakers with scenarios of possible sources of biomass for power generation as well as locations and types of electricity generation facilities utilizing biomass. The scenarios are obtained by combining the output from existing agricultural optimization models with a non-linear mathematical program that calculates the least-cost ways of meeting an assumed biomass electricity standard. The non-linear program considers region-specific cultivation and transportation costs of biomass fuels as well as the costs of building and operating both coal plants capable of co-firing biomass and new dedicated biomass combustion power plants. The results of the model provide geographically detailed power plant allocation patterns that minimize the total cost of meeting the generation requirements which are varying proportions of total U.S. electric power generation under the assumptions made. The amount of each cost component comprising the objective functions of the various requirements are discussed and the results show that approximately two-thirds of the total cost of meeting a biomass electricity standard occurs on the farms and forests that produce the biomass. Plant capital costs and biomass transportation costs comprise the largest share of the remaining costs. The most important policy conclusion is that biomass use in power plants will require significant subsidies perhaps as much as half of their cost if they are to achieve significant penetrations in U.S. electricity markets.

2013-01-01T23:59:59.000Z

119

Oil shale retorting and combustion system  

DOE Patents [OSTI]

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

120

Technical and economic analysis of different cogeneration systems for energy production from biomass  

Science Journals Connector (OSTI)

This paper compares the results of a techno-economic performance analysis of seven plants for energy production from biomass with the aim of identifying the most effective solution. Small (?250 KWe) and micro (?100 KWe) size plants were investigated: 50 kWe diesel internal combustion engine coupled with a gasifier and 35 kWe Stirling engine coupled with a gasifier with an overall efficiency of 41.1% and 87.5% respectively, two biomass cogenerators, one of 25 kWe and the other of 100 kWe, 250 kWe Otto internal combustion engine coupled with a gasifier and 250 kWe diesel internal combustion engine coupled with a gasifier and 238 kWe biomass ORC plant. The technical analysis provided calculations for specific biomass consumption, electricity generation, heat produced and overall system efficiency. The economic evaluation was carried on through a discounted cash flow analysis. Data were provided by literature, analysis of case study at Italian and European level, and directly by the manufacturers of cogeneration systems. The results showed that a combined heat and power (CHP) generator is the best solution because it is economically viable with a high NPV and a PBP of five years and also technically performing with a global efficiency of 78.2% and a low biomass consumption.

Giancarlo Giacchetta; Mariella Leporini; Barbara Marchetti

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions  

Science Journals Connector (OSTI)

Abstract This work presents a study on the combustion of palm kernel shell (PKS) in a conical fluidized-bed combustor (FBC) using alumina sand as the bed material to prevent bed agglomeration. Prior to combustion experiments, a thermogravimetric analysis was performed in nitrogen and dry air to investigate the effects of biomass particle size on thermal and combustion reactivity of PKS. During the combustion tests, the biomass with different mean particle sizes (1.5mm, 4.5mm, 7.5mm, and 10.5mm) was burned at a 45kg/h feed rate, while excess air was varied from 20% to 80%. Temperature and gas concentrations (O2, CO, CxHy as CH4, and NO) were recorded along the axial direction in the reactor as well as at stack. The experimental results indicated that the biomass particle size and excess air had substantial effects on the behavior of gaseous pollutants (CO, CxHy, and NO) in different regions inside the reactor, as well as on combustion efficiency and emissions of the conical FBC. The CO and CxHy emissions can be effectively controlled by decreasing the feedstock particle size and/or increasing excess air, whereas the NO emission can be mitigated using coarser biomass particles and/or lower excess air. A cost-based approach was applied to determine the optimal values of biomass particle size and excess air, ensuring minimum emission costs of burning the biomass in the proposed combustor. From the optimization analysis, the best combustion and emission performance of the conical FBC is achievable when burning PKS with a mean particle size of about 5mm at excess air of 4050%. Under these conditions, the combustor can be operated with high (99.499.7%) combustion efficiency, while controlling the gaseous emissions at acceptable levels. No evidence of bed agglomeration was found in this conical FBC using alumina as the bed material for the entire time period of experimental tests.

Pichet Ninduangdee; Vladimir I. Kuprianov

2014-01-01T23:59:59.000Z

122

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

DOE Patents [OSTI]

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

123

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a bubbling fluidized bed. The used combustor allows a novel jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jet-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The findings of the experiments confirm that smooth combustion of natural gas with rice straw can be performed in the novel jetting-fountain fluidized bed. This avoids acoustic effects and explosions of burning bubbles that occurs in the conventional operation. Natural gas contribution had a major impact on combustion characteristics and the performance of the combustor has been found to be much better when applying the jetting-fountain configuration. There are considerable reductions (up to 64%, 28% and 34%) in CO, \\{NOx\\} and SO2 emissions, respectively. The fixed carbon loss reduces (up to 65%) as well. Combustion efficiency records generally higher values with the jetting-fountain configuration. Combustion efficiency steadily improves with increasing natural gas contribution (up to 99.8%). Increasing bed temperature (up to 900C) is beneficial for reducing CO, decreasing fixed carbon loss and improving combustion efficiency. The existence of an optimum bed temperature for sulfur retention has been confirmed. As normal, \\{NOx\\} increases with bed temperature.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

124

Models of National Energy Systems -focusing on biomass energy  

E-Print Network [OSTI]

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

125

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Broader source: Energy.gov (indexed) [DOE]

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

126

Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles  

Science Journals Connector (OSTI)

Abstract In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range.

Giovanni Manente; Andrea Lazzaretto

2014-01-01T23:59:59.000Z

127

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Broader source: Energy.gov (indexed) [DOE]

& Aftertreatment Systems -- DEER Conference 1 6 October 2011 Kevin Barnum Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance DEER 2011 Conference...

128

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine * Integration of proposed air path and HCCI combustion control strategies into ECU software * Prototype level 2 updates and proof of combustion concept for vehicle readiness...

129

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine installed and vehicle available for application, emission and fuel economy optimization with advanced combustion modes. 4 Advanced combustion control strategy, capable of...

130

Original article Biomass of root and shoot systems  

E-Print Network [OSTI]

Original article Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain biomass of kermes oak shrublands (Quercus coccifera L.), an evergreen sclerophyllous species common- mass has been measured on 320 1-m2 plots. Total biomass varies with age and ranges between 0.4 (7

Paris-Sud XI, Université de

131

Combustion process in a biomass grate fired industry furnace: a CFD study  

Science Journals Connector (OSTI)

This paper presents a CFD investigation of the combustion process in a 50 MW grate fired furnace. The CFD results were compared with available experimental data at the furnace outlet to validate the models for the volatile oxidation and NOx formation. The models were then used to predict the effect of an 'ECO' tube system on NOx emissions. It was shown that with an improved flow structure and air distribution, 30% NOx reduction can be obtained. CFD results revealed the impact of load and fuel moisture on the flow structure, the temperature distribution and the flow residence time.

T. Klason; X.S. Bai

2006-01-01T23:59:59.000Z

132

Handbook of biomass downdraft gasifier engine systems  

SciTech Connect (OSTI)

This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

Reed, T B; Das, A

1988-03-01T23:59:59.000Z

133

Thermochemical Gasification of Biomass: Fuel Conversion, Hot Gas Cleanup and Gas Turbine Combustion  

Science Journals Connector (OSTI)

Air-blown fluidized bed biomass gasification integrated with a gas- and steam turbine combined cycle (BIGCC) is a potentially attractive way to convert biomass into electricity and heat with a high efficiency.

J. Andries; W. de Jong; P. D. J. Hoppesteyn

2002-01-01T23:59:59.000Z

134

The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition  

Science Journals Connector (OSTI)

Abstract In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.

Seongyool Ahn; Gyungmin Choi; Duckjool Kim

2014-01-01T23:59:59.000Z

135

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network [OSTI]

during the open combustion of biomass in the laboratory, J.from smoldering combustion of biomass measured by Open-Pathof levoglucosan in biomass combustion aerosol by high-

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

136

Interannual variability in global biomass burning emissions from 1997 to 2004  

E-Print Network [OSTI]

F. : Retrieval of biomass combustion rates and totals fromM. C. : Fuel biomass and combustion factors associated within global biomass burning emissions combustion factor.

van der Werf, G. R; Randerson, J. T; Giglio, L.; Collatz, G. J; Kasibhatla, P. S; Arellano, A. F

2006-01-01T23:59:59.000Z

137

Observations of nonmethane organic compounds during ARCTAS - Part 1: Biomass burning emissions and plume enhancements  

E-Print Network [OSTI]

from smoldering combustion of biomass measured by open-pathorganic species from biomass combustion, J. Geophys. Res. ,Biomass Burning Plume Origin Plume Age, Days a Modified Combustion

2011-01-01T23:59:59.000Z

138

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network [OSTI]

of potassium in biomass combustion, Proceedings of thethan those from biomass combustion. In Figure 3, ? ap valuesspectral dependence for the biomass combustion particulates.

2008-01-01T23:59:59.000Z

139

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Environmental Management (EM)

congestion on the constrained Northeast power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food...

140

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Systems and procedures for integrated recovery of forest biomass  

SciTech Connect (OSTI)

Whether recovery of forest biomass will become a common procedure depends on how acceptable biomass is for fuel and fiber, what the demand is for it, how stable is its supply, and how economic it is when it comes to energy. Manufacturers appear interested in continuing to develop machines and systems that recover biomass resulting from silvicultural treatments, final harvests, and site preparation. (Refs. 9).

Walbridge, T.A.; Stuart, W.B.

1983-03-01T23:59:59.000Z

142

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

143

Modular Biomass Systems Could Boost Rural Areas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas Modular Biomass Systems Could Boost Rural Areas June 16, 2010 - 1:09pm Addthis Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Community Power Corporation's modular biomass systems can generate up to 100 kilowatts of energy. | Courtesy of Community Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE Increased ethanol production will help revitalize the rural economy and decrease America's dependence on foreign oil, but there are other ways to create opportunities in the farmlands. For Robb Walt, president of Community Power Corporation (CPC) in Littleton, Colo., one answer is community-scale, bio-energy service companies, or

144

Chemical Looping Combustion Reactions and Systems  

SciTech Connect (OSTI)

Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

2011-07-01T23:59:59.000Z

145

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect (OSTI)

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

146

10January 1998 Small-Scale Gasification-Based Biomass Power Generation  

E-Print Network [OSTI]

, gasified biomass canbe usedto power internal combustion engines(ICEs), gasturbines, and fuel cells, all. Historical Perspective on Biomass-Gasifier/Internal Combustion Engine (BiG/ICE) Systems Gasified wood10January 1998 I Small-Scale Gasification-Based Biomass Power Generation Eric D. Larson Centerfor

147

Scalable, Efficient Solid Waste Burner System - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion experts at CSU, the device is superior to other systems and achieves improved gasification and combustion of biomass and waste through novel chassis design and process....

148

Combustion Tests of Bio-Oils Derived from Biomass Slow Pyrolysis  

Science Journals Connector (OSTI)

ENEL in collaboration with Region Abruzzo and Tecnars has carried out some experimental combustion tests of bio-oil produced with a conventional slow pyrolysis process, with a partial economic support of EEC.

C. Rossi; R. Frandi; E. Bonfitto

1993-01-01T23:59:59.000Z

149

Laboratory Measurements of Alkali Metal Containing Vapors Released during Biomass Combustion  

Science Journals Connector (OSTI)

Alkali metals, in particular potassium. have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. Whe...

David C. Dayton; Thomas A. Milne

1996-01-01T23:59:59.000Z

150

Assessment of Literature Related to Combustion Appliance Venting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Literature Related to Combustion Appliance Venting Systems Assessment of Literature Related to Combustion Appliance Venting Systems Title Assessment of Literature Related to Combustion Appliance Venting Systems Publication Type Report LBNL Report Number LBNL-5798E Year of Publication 2012 Authors Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray Date Published 06/2012 Abstract In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable

151

System, method, and apparatus for remote measurement of terrestrial biomass  

DOE Patents [OSTI]

A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

Johnson, Patrick W (Jefferson, MD)

2011-04-12T23:59:59.000Z

152

Economic development through biomass system integration. Volumes 2--4  

SciTech Connect (OSTI)

Report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners.

DeLong, M.M.

1995-10-01T23:59:59.000Z

153

Cooling system for internal combustion engines  

SciTech Connect (OSTI)

A cooling system for an internal combustion engine is described comprising: a head-side water jacket and a block-side water jacket made independent of each other; and a radiator and a cooling fan shared between the two water jackets. The improvement comprises: a first cooling water conduit for connecting the outlet of the head-side water jacket and the inlet of the radiator; a mixing valve having two water inlets and one water outlet; a second cooling water conduit for connecting one of the water inlets of the mixing valve and the outlet of the radiator; a third conduit for connecting the water outlet of the block-side water jacket and the remaining one of the water inlets of the mixing valve; a water pump, a fourth conduit branched midway from the second conduit and connected with the water inlet of the head-side water jacket; an auxiliary water pump; a fifth conduit branched midway from the third conduit and connected with the first conduit; one-way valve; and a control unit for controlling the mixing ratio of the mixing valve, the displacement of the auxiliary water pump and the operation of the cooling fan.

Itakura, M.

1988-07-26T23:59:59.000Z

154

Biomass and Other Unconventional Energy Resources  

E-Print Network [OSTI]

. The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr.... The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr...

Gershman, H. G.

1982-01-01T23:59:59.000Z

155

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

156

Corrosion performance of materials for advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments requires development and application of advanced ceramic materials for heat exchangers in these designs. This paper characterizes the chemistry of coal-fired combustion environments over the wide temperature range of interest in these systems and discusses some of the experimental results for several materials obtained from laboratory tests and from exposures in a pilot-scale facility.

Natesan, K. [Argonne National Lab., IL (United States); Freeman, M.; Mathur, M. [Pittsburgh Energy Technology Center, PA (United States)

1995-05-01T23:59:59.000Z

157

Task 2: Materials for Advanced Boiler and Oxy-combustion Systems  

SciTech Connect (OSTI)

Characterize advanced boiler (oxy-fuel combustion, biomass cofired) gas compositions and ash deposits Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardisation

G. R. Holcomb and B. McGhee

2009-05-01T23:59:59.000Z

158

Progress of energy system with chemical-looping combustion  

Science Journals Connector (OSTI)

Chemical-looping combustion with zero energy penalty of CO2...separation is a significant breakthrough in resolving energy and environment problems for power generation systems. This paper summarizes the research...

HongGuang Jin; Hui Hong; Tao Han

2009-03-01T23:59:59.000Z

159

Acoustooptic spectrometer system used to monitor combustion processes  

Science Journals Connector (OSTI)

An optical system using a tunable acoustooptic filter to measure the temperature and partial pressures of CO and CO2 in combustion gases has been designed and operated. The...

Bardash, M; Wolga, George J

1989-01-01T23:59:59.000Z

160

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network [OSTI]

from Smoldering Biomass Combustion. Atmos. Chem. Phys. , 10,aerosols emitted during biomass combustion [Robinson et al.burning samples. Combustion of biomass produces EC a and

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke  

E-Print Network [OSTI]

air pollution from biomass combustion and acute respiratoryparticulate matter from combustion of biomass fuels in ruralcountries where combustion of biomass and kerosene is common

Pokhrel, Amod Kumar

2010-01-01T23:59:59.000Z

162

Regional Waste Systems Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid Waste Location Cumberland County, Maine Coordinates 43.8132979°, -70.3870587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8132979,"lon":-70.3870587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Engineered microbial systems for enhanced conversion of lignocellulosic biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

752; 752; NO. OF PAGES 6 Please cite this article in press as: Elkins JG, et al. Engineered Q1microbial systems for enhanced conversion of lignocellulosic biomass, Curr Opin Biotechnol (2010), doi:10.1016/ j.copbio.2010.05.008 Available online at www.sciencedirect.com Engineered microbial systems for enhanced conversion of lignocellulosic biomass James G Elkins, Babu Raman and Martin Keller In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost- effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and

164

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC  

Office of Energy Efficiency and Renewable Energy (EERE)

FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC.

165

E-Print Network 3.0 - advanced combustion systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of these include pulverized coal combustion... combustion in gas turbines and coal gasification-fuel cell systems hold out ... Source: Kammen, Daniel M. - Renewable and...

166

BioSAR Airborne Biomass Sensing System  

SciTech Connect (OSTI)

This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

Graham, R.L.; Johnson, P.

2007-05-24T23:59:59.000Z

167

Biomass District Heat System for Interior Rural Alaska Villages  

SciTech Connect (OSTI)

Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the right sized harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

Wall, William A.; Parker, Charles R.

2014-09-01T23:59:59.000Z

168

Chemical Looping Combustion Reactions and Systems  

SciTech Connect (OSTI)

Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

2014-03-01T23:59:59.000Z

169

Characterization of Gaseous- and Particle-Phase Emissions from the Combustion of Biomass-Residue-Derived Fuels in a Small Residential Boiler  

Science Journals Connector (OSTI)

The aim of this study was to fill the gap in the data of emissions from the combustion of agricultural biomass fuels. ... Before starting each experiment, the heat transfer medium (water) was preheated to 70 C by an additional natural gas boiler, with the objective to reach optimal combustion conditions quicker and avoid condensation on the surfaces of the boiler during the startup phase. ... hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. ...

Edvinas Krugly; Dainius Martuzevicius; Egidijus Puida; Kestutis Buinevicius; Inga Stasiulaitiene; Inga Radziuniene; Algirdas Minikauskas; Linas Kliucininkas

2014-07-15T23:59:59.000Z

170

Local Option - Solar, Wind and Biomass Energy Systems Exemption |  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption Local Option - Solar, Wind and Biomass Energy Systems Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info Start Date 01/01/1991 State New York Program Type Property Tax Incentive Rebate Amount 100% exemption for 15 years (unless local jurisdiction has opted out) Provider Office of Real Property Tax Services Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy

171

System and method for reducing combustion dynamics in a combustor  

DOE Patents [OSTI]

A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

2013-08-20T23:59:59.000Z

172

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

173

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

174

NETL: News Release - Combustion Optimization Systems - Cleaner Coal Burning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Combustion Optimization System" - Cleaner Coal Burning at Lower Costs "Combustion Optimization System" - Cleaner Coal Burning at Lower Costs DOE Joins with Sunflower Electric to Outfit Kansas Coal Plant with Lower Cost System to Cut Air Emissions FINNEY COUNTY, KS - A unique combination of high-tech combustion modifications and sophisticated control systems will be tested on a Kansas coal-fired power plant as part of the federal government's efforts to show how new technology can reduce air emissions and save costs for ratepayers. - Sunflower Electric's Holcomb Station - Sunflower Electric's Holcomb Station will be outfitted with a combination of innovative hardware and software to further reduce air emissions. - The U.S. Department of Energy and Sunflower Electric Power Corporation have signed an agreement to use the utility's Holcomb Station power plant in

175

Development of a commercial enzymes system for lignocellulosic biomass saccharification  

SciTech Connect (OSTI)

DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

Manoj Kumar

2012-12-20T23:59:59.000Z

176

Improving the Technical, Environmental, and Social Performance of Wind Energy Systems Using Biomass-Based Energy Storage  

SciTech Connect (OSTI)

A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO{sub 2} emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment.

Denholm, P.

2006-01-01T23:59:59.000Z

177

Corrosion performance of materials for advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at more elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development/application of advanced ceramic materials in these designs. This report characterizes the chemistry of coal-fired combustion environments over the wide temperature range that is of interest in these systems and discusses preliminary experimental results on several materials (alumina, Hexoloy, SiC/SiC, SiC/Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4}, ZIRCONIA, INCONEL 677 and 617) with potential for application in these systems.

Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

1993-12-01T23:59:59.000Z

178

Methanol vaporization and injection system for internal combustion engine  

SciTech Connect (OSTI)

An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

Bayley, R.I.

1980-05-06T23:59:59.000Z

179

Characterization of Dried and Torrefied Arundo Donax Biomass for Inorganic Species Prior to Combustion  

SciTech Connect (OSTI)

Portland General Electric (PGE) potentially plans to replace the coal with torrefied Arundo donax for their Boardman coal-fired power plant by 2020. Since there is only a limited amount of experience with this high yield energy crop, PGE would like to characterize raw and torrefied Arundo before a test burn and therefore avoid possible ash related operational problems such as slagging, deposit formation and corrosion. This report describes the results from characterization of ground and cross-sectioned samples of Arundo with a high-resolution scanning electron microscopy and energy dispersive spectroscopy, and also includes analytical results from a short water-leaching test for concentrations of Ca, Mg, K, Na, S, and Cl in the non-leached and leached Arundo and leachates. SEM-EDS analysis of torrefied Arundo revealed that condensation of volatile components during torrefaction can result in their undesirable re-deposition on the outside surfaces in the form of amorphous or crystallized clusters with a size from a few ms to as large as 100 m. A short exposure of Arundo to water resulted in an efficient removal of volatile species from the raw and torrefied Arundo, e.g., ~ 98 wt% of total K and Cl, and ~75 wt% of total S were removed from raw Arundo, and more than 90 wt% of total K and Cl, and 70 wt% of S from torrefied Arundo, suggesting that water-leaching of Arundo before combustion can be an effective pre-treatment method because high concentrations of Cl increase emissions of HCl, and in combination with K can form large amounts of KCl deposits on boiler surfaces and in combination with H2O or SO3 cause corrosion.

Matyas, Josef; Johnson, Bradley R.; Cabe, James E.

2012-08-01T23:59:59.000Z

180

FEMP Technology Brief: Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

There are more than 45,000 industrial and commercial boilers larger than 10 MMBtu/hr in the United States with a total fuel input capacity of 2.7 million MMBtu/hr. Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of industrial combustion control systems. Final report  

SciTech Connect (OSTI)

This study evaluated O/sub 2/ and CO monitoring systems used for combustion controls to provide reliable data on their performance, operating range and accuracy. The study concentrated on three in-situ O/sub 2/ and two in-situ CO monitoring systems which are applicable to furnace and boiler controls. The project provides technical information for cost/benefit analysis of combustion control systems and to help expedite implementation of combustion control technology by industry. The evaluation of the stack gas monitoring systems was carried out for ranges of furnace operating parameters such as fuel to air mixture ratio, burner firing rate, heat extraction rate, fuel type, combustion air preheat temperature, and cyclic operating conditions, which are based on information gathered from typical operational practices of representative industrial furnaces and boilers. The experiments were performed in the NBS experimental furnace under both natural gas and No. 2 fuel oil fired conditions. An on-line gas sampling/analysis system was used as a reference system for comparative evaluation of the stack gas monitors. The system is set up to determine the level of CO, CO/sub 2/, O/sub 2/, NO/NO/sub x/ and total hydrocarbons in the stack gases.

Presser, C.; Semerjian, H.G.

1984-10-01T23:59:59.000Z

182

Pre-Combustion CO2 Removal System … Demonstration Unit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO Post-Combustion CO 2 Capture System for Existing Coal-fired Power Plant Project Review (DE-FE-0007580) Gökhan Alptekin, PhD Ambal Jayaraman, PhD Robert Copeland, PhD DOE/NETL CO 2 Capture Technology Meeting Meeting Pittsburgh, PA July 8, 2013 TDA R e s e a r c h Project Summary * The objective is to develop a post-combustion capture process for coal-fired power plants and demonstrate technical feasibility (at bench-scale) and economic viability of the new concept * A mesoporous carbon adsorbent is used to selectively remove CO 2 from the flue gas, regenerating under very mild conditions Budget Period 1 * Sorbent Optimization/scale-up and Laboratory Evaluations * Process Design and System Analysis Budget Period 2 * Long-term Sorbent Cycling * Design of a Breadboard Prototype Test Unit

183

Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements  

E-Print Network [OSTI]

fuel/biofuel combustion (FFBF), biomass burning (BIOM) andsource from fuel combustion as well as biomass burning of

Arellano, Avelino F; Kasibhatla, Prasad S; Giglio, Louis; van der Werf, Guido R; Randerson, James T; Collatz, G. James

2006-01-01T23:59:59.000Z

184

Environmental assessment of energy production by combustion of biogas provided by the anaerobic digestion of agricultural biomass  

Science Journals Connector (OSTI)

This paper tries to compare the environmental impacts of energy production using agricultural biomass and energy production using traditional reactor systems (natural gas and fuel oil) by using the Life Cycle Assessment (LCA) methodology. In order to make this comparison, the impact assessment methods CML 2 BASELINE 2000 (problem oriented method) and ECOINDICATOR 99 (damage oriented method) are used. The heat produced by cogeneration is intended to feed a heating network connected to 16 dwellings. The results show that the use of biogas reduces the emissions taking part in the global warming potential and reduces the global environmental impact.

Sebastien Moras

2008-01-01T23:59:59.000Z

185

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

186

Solid fuel combustion system for gas turbine engine  

DOE Patents [OSTI]

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

187

Thermodynamic Analysis of the Supercritical Water Gasification of Biomass  

Science Journals Connector (OSTI)

The focus here is on biomass-water reacting system. The reaction process (gasification) is aimed at producing a syngas rich in combustible species, such as H2, CH4 and CO. According to the syngas final use (burner

Luca Fiori; Daniele Castello

2014-01-01T23:59:59.000Z

188

Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

Ferri, J. L.

189

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters- Fact Sheet 2014  

Broader source: Energy.gov [DOE]

Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

190

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

time constant algal heat of combustion (6 Kcal/gm) dilutionSource: temperature, heat of combustion, and the depth at

Haven, Kendall F.

2011-01-01T23:59:59.000Z

191

Chemical Looping Combustion System-Fuel Reactor Modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

Gamwo, I.K.; Jung, J. (ANL); Anderson, R.R.; Soong, Y.

2007-04-01T23:59:59.000Z

192

Economic development through biomass system integration: Volume 1  

SciTech Connect (OSTI)

This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

1995-10-01T23:59:59.000Z

193

Instrumentation and tar measurement systems for a downdraft biomass gasifier.  

E-Print Network [OSTI]

??Biomass gasification is a promising route utilizing biomass materials to produce fuels and chemicals. Gas product from the gasification process is so called synthesis gas (more)

Hu, Ming

2009-01-01T23:59:59.000Z

194

Development of Practical Stirling Engine for Co-Generation System Using Woody Biomass Fuels  

Science Journals Connector (OSTI)

With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel suc...

Akira Hoshi; Nobutoshi Tezuka; Seizi Sasaki

2009-01-01T23:59:59.000Z

195

Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler  

Science Journals Connector (OSTI)

Abstract This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (pCombustion tests in a 120kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler.

E.G.A. Forbes; D.L. Easson; G.A. Lyons; W.C. McRoberts

2014-01-01T23:59:59.000Z

196

Economic development through biomass systems integration in central Florida  

SciTech Connect (OSTI)

A biomass to energy system for central Florida was conceptualized with sugarcane as the main feedstock. Additional feedstocks include elephantgrass, leucaena (woody tropical legume), and Eucalyptus. Juice will be pressed from sugarcane and sugars fermented into ethanol with conventional technology. Enough sugarcane will be grown to supply a conventional ethanol plant with juice for a 330 day operating period each yr. Juice will be condensed to 24 degrees Brix for direct conversion during the approximately 100 day harvest season and to 70 degrees Brix for storage and use the remaining 230 days. Residues (mainly lignin), from converting lignocellulosic materials to ethanol, will fuel the plant including evaporators for sugarcane juice. Sugarcane presscake, elephantgrass, leucaena, and Eucalyptus will be feedstocks for the lignocellulose conversion processes. The lignocellulose plant will be sized to convert all sugarcane presscake as it is produced to reduce storage costs. Elephantgrass, leucaena and Eucalyptus will feed the plant outside sugarcane harvest season. The biomass/energy system will produce 123,230,000 L (32,830,000 gal) of ethanol per year with 90% conversion of sugars from juice, hemicellulose, and cellulose to ethanol. Estimated cost of producing ethanol form various feedstocks include: sugarcane $0.25/L ($0.94/gal), elephantgrass $0.30/L ($1.13/gal), 1 leucaena $0.28/L ($1.06/gal), and Eucalyptus $0.28/L (1.07/gal). Future opportunities exist for development of a chemical industry based on lignocellulose materials from biomass.

Stricker, J.A.; Rahmani, M.; Hodges, A.W. [Univ. of Florida, Gainesville, FL (United States)] [and others

1995-11-01T23:59:59.000Z

197

An experimental study of combustion and emissions of two types of woody biomass in a 12-MW reciprocating-grate boiler  

Science Journals Connector (OSTI)

Abstract The gaseous emissions of primary concern from biomass combustion are nitrogen oxides (NOX), carbon monoxide, and various unburned gaseous components. Detailed characterization of the gas in the hot reaction zones is necessary to study the release, formation, and evolution of the gas components. In the present study, gas temperature and concentration were measured in a 12-MWth biomass-fired reciprocating-grate boiler operated with over-fire air and flue-gas recirculation. Temperature measurement was combined with flue gas quenching and sample gas extraction using two water-cooled stainless-steel suction pyrometers. The concentration profiles of O2, NO, and CO were experimentally determined throughout the furnace, and the profile gas temperature was measured in several positions inside the furnace for the two types of woody biomass studied. For both fuels, the gas temperature varied between approximately 450C (average primary chamber temperature) and 1200C (average secondary chamber temperature). The concentration profiles of CO and O2 suggested no conclusive difference between the two types of biomass. However, the local mean concentrations of NO and NOX emission factors (measured in the stack) were higher for Greenery fuel due to its higher nitrogen content than that of Standard fuel.

Hamid Sefidari; Narges Razmjoo; Michael Strand

2014-01-01T23:59:59.000Z

198

Climate benefits from alternative energy uses of biomass plantations in Uganda  

E-Print Network [OSTI]

consumption is derived from the combustion of biomass sources such as fuelwood, charcoal and residues. A veryClimate benefits from alternative energy uses of biomass plantations in Uganda Giuliana Zanchi a be produced by biomass based energy systems in Anaka, a rural settlement in the Amuru district in northern

Vermont, University of

199

Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems  

SciTech Connect (OSTI)

Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

Westbrook, C.K.

2000-07-07T23:59:59.000Z

200

High-Throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-throughput High-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass Jaclyn D. DeMartini 1,2,3,Ã and Charles E. Wyman 1,2,3 1 Department of Chemical and Environmental Engineering, University of California, Riverside, USA 2 Center for Environmental Research and Technology, University of California, Riverside, USA 3 BioEnergy Science Center, Oak Ridge, USA 22.1 Introduction: The Need for High-throughput Technologies The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when com- bined with optimized pretreatment processes and enzyme mixtures, could potentially

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-temperature corrosion in advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

1993-11-01T23:59:59.000Z

202

Results of fly ash quality for disposal options from high thermal shares up to pure biomass combustion in a pilot-scale and large scale pulverized fuel power plants  

Science Journals Connector (OSTI)

Abstract This work evaluated fly ash quality from combustion of high thermal shares of biomass fuels. Woody biomass was (co)combusted in an industrial scale pulverized fuel power plant, and aherbaceous biomass was co-combusted in a pilot-scale test facility. Ashes from the electrostatic precipitator were collected and evaluated for chemical compounds, leaching behavior, and mechanical properties. Results from the large-scale industrial pulverized fuel showed the ashes still had good reactivity and mechanical properties according to EN450-1, which is a good unexpected occurrence regarding strength development. Results from the pilot-scale test facility showed that aherbaceous biomass co-fired up to 50% thermal share does not seem to have any negative impact on existing fly ash utilization routes. It is concluded that co-firing clean woody biomass at a very high thermal share and co-firing a high thermal share of aherbaceous biomass with lignite would not change current utilization practices. In practice ashes from high thermal shares are not used due to safeguards in standards form a lack of experience from enough performance testing. Thus, the findings can lead to support for standards that incorporate other assessment methods for biomass fly ash utilization requirements.

A. Fuller; M. Carbo; P. Savat; J. Kalivodova; J. Maier; G. Scheffknecht

2015-01-01T23:59:59.000Z

203

Heat transfer efficiency of biomass cookstoves.  

E-Print Network [OSTI]

??Nearly half of the worlds human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

204

System issues and tradeoffs associated with syngas production and combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

205

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed=moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

206

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier  

E-Print Network [OSTI]

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier DOE Hydrogen Program Contractors biomass #12;Approach Outline Gasifier Pilot Plant· Develop subsystems for the hydrogen production system and pyrolysis occur simultaneously in a single reactor · Exothermic combustion provides heat · Endothermic

207

Development of Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computation Capabilities Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems Background Staged combustion is a method of reducing nitrogen oxide (NO x ) emissions in boilers by controlling the combustion mixture of air and fuel. Its process conditions are particularly corrosive to lower furnace walls. Superheaters and/or reheaters are often employed in the upper furnace to reuse hot combustion gasses to further raise the

208

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

209

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

210

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

211

High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations  

Broader source: Energy.gov [DOE]

This abstract outlinse a project that is designing and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations.

212

Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits.  

E-Print Network [OSTI]

??This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes (more)

Brownsort, Peter A

2009-01-01T23:59:59.000Z

213

Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion.  

E-Print Network [OSTI]

??The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to (more)

Murphy, Patrick Thomas

2009-01-01T23:59:59.000Z

214

Combustion chemical vapor deposited coatings for thermal barrier coating systems  

SciTech Connect (OSTI)

The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-12-31T23:59:59.000Z

215

DOE/NETL ADVANCED COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY JULY 2013 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li- ability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-

216

MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

2009-01-01T23:59:59.000Z

217

E-Print Network 3.0 - advanced wall-fired combustion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Animal Waste Combustion Energy Engine Emission Fuel Cells... Gasification Internal Combustion Engine Performance Pollutants Formation (NOx, Hg) and...

218

Advanced Combustion Systems Project Information | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FC26-07NT43088 Recovery Act: Oxy-combustion: Oxygen Transport Membrane Development Praxair, Inc. Completed Projects FE0009686 High Efficiency Molten-Bed Oxy-Coal Combustion...

219

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

220

DEVELOPMENT AND TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3  

SciTech Connect (OSTI)

In the second half of calendar year 1998, no work was performed on the present project. The 20 MMBtu/hr combustor-boiler facility was operated for 11 tests, primarily with Coal Tech resources on biomass combustion and gasification. The total test days on the Philadelphia facility to the end of August 1998 was 119. Of these, 36 tests were part of another DOE project on sulfur retention is slag, and 8 were on an in-house biomass combustion effort. The test days on the other project are listed here because they demonstrate the durability of the combustor, which is one of the objectives of the present project. Also, the test work of 1998 revealed for the first time the major potential of this combustor for biomass combustion. These tests are double the 63 tests in the original plan for this project. All key project objectives have been exceeded including combustor durability, automated combustor operation, NO{sub x} emissions as low as 0.07 lb/MMBtu and SO{sub 2} emissions as low as 0.2 lb/MMBtu. In addition, a novel post-combustion NOx control process has been tested on a 37 MW and 100 MW utility boiler. The only effort remaining on this project is facility disassembly and Final Report. However, as part of the commercialization effort for this combustor technology, Coal Tech is planning to maintain the combustor facility in an operational mode at least through 2001. Coal Tech is focusing on utilizing the combustor with biomass fuels in very low cost, small (1 MW nominal) steam power plants. Worldwide application of this technology would have a major impact in reduction of greenhouse gas emissions because the energy content of agricultural biomass is equal to the energy content of the USA's annual coal production.

Dr. Bert Zauderer

1999-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fast computation of multi-scale combustion systems  

Science Journals Connector (OSTI)

...consider a detailed combustion mechanism for air...The mean specific heat (under constant...being the specific heat of species i (mass...with a detailed combustion mechanism, where...between retrieved data and detailed solution...combustion mechanism for hydrocarbons. Moreover, on...

2011-01-01T23:59:59.000Z

222

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

223

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents [OSTI]

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

224

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Thermal characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a fluidized bed. The used combustor allows the novel, jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jetting-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The experiments show that smooth combustion of natural gas with rice straw can be performed in the jetting-fountain fluidized bed avoiding acoustic effects and explosions of burning bubbles that occurs in conventional operation. The jetting-fountain fluidized bed is shown to dampen greatly the freeboard overheating at particularly lower bed temperatures. This is because the fountain-particles absorb a great part of heat released in the freeboard and recover it back to the bed. It is confirmed by measuring the in-bed cooling load that was found to increase considerably at lower bed temperatures. The natural gas contribution is found to play a major role when applying the jetting-fountain configuration. Increasing the natural gas contribution enlarges the fountain zone that causes greater reduction in the freeboard overheating and recovers more heat back to the bed. Measuring the in-bed cooling also approves the later conclusion.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

225

Microsoft Word - Draft Ft Yukon Biomass System EA_0220  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION FEBRUARY 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

226

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect (OSTI)

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

227

Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks  

SciTech Connect (OSTI)

The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

2014-06-30T23:59:59.000Z

228

Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado  

SciTech Connect (OSTI)

The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

Milne, T.

1995-01-01T23:59:59.000Z

229

CFD Modeling of Biomass Gasification Using a Circulating Fluidized Bed Reactor.  

E-Print Network [OSTI]

??Biomass, as a renewable energy resource, can be utilized to generate chemicals, heat, and electricity. Compared with biomass combustion, biomass gasification is more eco-friendly because (more)

Liu, Hui

2014-01-01T23:59:59.000Z

230

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are produced, generally, when insufficient oxygen or other factors result in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in...

231

Gasifier system identification for biomass power plants using response surface method  

Science Journals Connector (OSTI)

Biomass in the form of wood has been used by human as a source of energy for a long period of time. Recently, the use of renewable energy sources has been widely experienced in domestic, commercial, and industrial appliances. This has resulted in a greater ... Keywords: biomass, gasifier System, identification, modelling, response surface method

J. Satonsaowapak; T. Ratniyomchai; T. Kulworawanichpong; P. Pao-La-Or; B. Marungsri; A. Oonsivilai

2010-02-01T23:59:59.000Z

232

Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures  

Science Journals Connector (OSTI)

Co-firing biomass with challenging fuels, such as sludge, demolition wood, and solid recovered fuel (SRF), has become an attractive possibility to improve the economy of power production and to reduce the amount of landfill. ... Therefore, the fuel was extremely wet, with a dry solids content below 50 wt %. ... Thus, CS could reduce NOx effectively in devices where other techniques fails, e.g., in kraft recovery boilers, fluidized bed combustors, low-grade fuel combustors, small and domestic boilers, and fast engines. ...

Emil Vainio; Anders Brink; Mikko Hupa; Hannu Vesala; Tuula Kajolinna

2011-11-28T23:59:59.000Z

233

AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters  

Broader source: Energy.gov [DOE]

Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

234

Low emission U-fired boiler combustion system  

DOE Patents [OSTI]

At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

Ake, Terence (North Brookfield, MA); Beittel, Roderick (Worcester, MA); Lisauskas, Robert A. (Shrewsbury, MA); Reicker, Eric (Barre, MA)

2000-01-01T23:59:59.000Z

235

A network design model for biomass to energy supply chains with anaerobic digestion systems  

Science Journals Connector (OSTI)

Abstract Development and implementation of renewable energy systems, as a part of the solution to the worldwide increasing energy consumption, have been considered as emerging areas to offer an alternative to the traditional energy systems with limited fossil fuel resources and to challenge environmental problems caused by them. Biomass is one of the alternative energy resources and agricultural, animal and industrial organic wastes can be treated as biomass feedstock in biomass to energy conversion systems. This study aims to develop an effective supply chain network design model for the production of biogas through anaerobic digestion of biomass. In this regard, a mixed integer linear programming model is developed to determine the most appropriate locations for the biogas plants and biomass storages. Besides the strategic decisions such as determining the numbers, capacities and locations of biogas plants and biomass storages, the biomass supply and product distribution decisions can also be made by this model. Mainly, waste biomass is considered as feedstock to be digested in anaerobic digestion facilities. To explore the viability of the proposed model, computational experiments are performed on a real-world problem. Additionally, a sensitivity analysis is performed to account for the uncertainties in the input data to the decision problem.

?ebnem Y?lmaz Balaman; Hasan Selim

2014-01-01T23:59:59.000Z

236

Flexible engine control system for the development of innovative combustion processes  

Science Journals Connector (OSTI)

Daimler, IAV and Etas present a flexible engine control system for the development of innovative combustion processes. The functionality of conventional indication systems has ... important step in forwarding the...

Dr. Josef Steuer; Dr. Michael Mladek; Christian Dengler

2009-09-01T23:59:59.000Z

237

Analysis of syngas formation and ecological efficiency for the system of treating biomass waste and other solid fuels with CO2 recuperation based on integrated gasification combined cycle with diesel engine  

Science Journals Connector (OSTI)

Biomass combustion is a more complex process and its model solving is difficult than combustion of traditional liquid fuels. At the same...2...] to obtain the data for operating regimes of ICE with syngas-based d...

A. Y. Pilatau; H. A. Viarshyna

2014-10-01T23:59:59.000Z

238

Life cycle assessment of a biomass gasification combined-cycle power system  

SciTech Connect (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

239

Investigation into ash related issues during co-combustion of coal and biomass: Development of a co-firing advisory tool.  

E-Print Network [OSTI]

??The co-firing technology of coal with biomass has been implemented to enhance the usage of biomass in power generation, thus reducing the release of greenhouse (more)

Arun Kumar, Veena Doshi

2007-01-01T23:59:59.000Z

240

Detection and control of combustion instability based on the concept of dynamical system theory  

Science Journals Connector (OSTI)

We propose an online method of detecting combustion instability based on the concept of dynamical system theory, including the characterization of the dynamic behavior of combustion instability. As an important case study relevant to combustion instability encountered in fundamental and practical combustion systems, we deal with the combustion dynamics close to lean blowout (LBO) in a premixed gas-turbine model combustor. The relatively regular pressure fluctuations generated by thermoacoustic oscillations transit to low-dimensional intermittent chaos owing to the intermittent appearance of burst with decreasing equivalence ratio. The translation error, which is characterized by quantifying the degree of parallelism of trajectories in the phase space, can be used as a control variable to prevent LBO.

Hiroshi Gotoda; Yuta Shinoda; Masaki Kobayashi; Yuta Okuno; Shigeru Tachibana

2014-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

242

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

243

Combustion Technology Development for an Advanced Glass Melting System  

E-Print Network [OSTI]

Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

244

Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass  

E-Print Network [OSTI]

biomass combustion and gasification Milena Nowakowska, Olivier Herbinet, Anthony Dufour, Pierre. Methoxyphenols are one of the main precursors of PAH and soot in biomass combustion and gasification. Keywords: Anisole; Pyrolysis; Oxidation; Tars; Biomass; Kinetic modeling Corresponding author

Paris-Sud XI, Université de

245

Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits  

E-Print Network [OSTI]

This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes and how this affects potential benefits of pyrolysis biochar ...

Brownsort, Peter A

2009-01-01T23:59:59.000Z

246

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems  

E-Print Network [OSTI]

to pessimistic scenarios are used for system operation. Slow pyrolysis is compared to fast pyrolysis and biomass co-firing for GHG abatement and electricity production, using various scenarios for availability of indigenous Scottish feedstocks....

Hammond, James A R

2009-01-01T23:59:59.000Z

247

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

248

Prediction of ash deposition in pulverized coal combustion systems  

SciTech Connect (OSTI)

A predictive scheme based on CCSEM flyash data and Computational Fluid Dynamics (CFD) has been developed to study the slagging propensity of coals. The model has been applied to predict the deposition potential of three UK coals; Bentinck, Daw Mill and Silverdale, in a pilot scale single burner ash deposition test facility and an utility size multi-burner front wall-fired furnace. The project is part of a collaborative research program sponsored by the UK Department of Trade and Industry and involved various industrial organizations and universities. The objective of the project is to understand the fundamental aspects of slagging in pulverized coal-fired combustion systems. This paper is a sequel to the poster paper entitled: The Prediction of Ash Deposition in a Coal Fired Axi-symmetric Furnace, presented in the last Engineering Foundation Conference. The present model predicts the relative slagging propensity of the three coals correctly. The predicted deposition patterns are also consistent with the observations. The results from the model indicate a preferential deposition of iron during the initial stage of ash deposition. The average compositions of the deposits become closer to that of the bulk ash when the accumulation of ash deposits is taken into account.

Lee, F.C.C.; Riley, G.S. [National Power PLC, Swindon (United Kingdom); Lockwood, F.C. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

1996-12-31T23:59:59.000Z

249

Biomass of the cryptoendolithic microbiota from the Antarctic desert.  

Science Journals Connector (OSTI)

...the results of the combustion or total- organic-matter...DISCUSSION The biomass of the cryptoendolithic...the Kjeldahl or combustion method (Tables...regardless of where the biomass was located in the...Kjeldahl carbon. When combustion carbon was compared...range of viable biomass to total carbon...

J R Vestal

1988-04-01T23:59:59.000Z

250

Ultrafast Structural Dynamics in Combustion Relevant Model Systems  

SciTech Connect (OSTI)

The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecules structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecules structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electrons orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecules time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e

Weber, Peter M. [Brown University

2014-03-31T23:59:59.000Z

251

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

1992-11-01T23:59:59.000Z

252

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect (OSTI)

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

253

CLC of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

254

Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock  

Science Journals Connector (OSTI)

Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40kg/h The effects of equivalence ratio in the range of 0.210.3, steam feed at a fixed flow rate of 12kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 9761100C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86MJ/Nm3 and 87.6% respectively.

P.K. Senapati; S. Behera

2012-01-01T23:59:59.000Z

255

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

Application and testing of the new combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this 12th quarterly report. In this quarter, continued validation and testing of the combustion LES code was performed for the DOE-SimVal combustor. Also, beta testing by six consortium members was performed for various burner and combustor configurations. A list of suggested code improvements by the beta testers was itemized. Work will continue in FY04. A conditional modification to the contract will be granted. The additional work will focus on modeling/analyzing the SimVal experiments.

Clifford Smith

2003-09-01T23:59:59.000Z

256

NETL: Coal and Coal/Biomass to Liquids - Systems and Industry Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C&CBTL > Systems Analyses C&CBTL > Systems Analyses Coal and Coal/Biomass to Liquids Reference Shelf – Systems and Industry Analyses Studies DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Coal and Coal/Biomass to Liquids Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. Coal and Coal/Biomass to Liquids Program's Systems and Industry Analyses Studies Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study - Presentation

257

Couplings between changes in the climate system and biogeochemistry  

E-Print Network [OSTI]

roles of fossil fuel combustion, biomass burning and soil4 and VOC Fossil fuel combustion Biomass burning N 2 ?xationcombustion & industrial processes Aircraft Agriculture Biomass

Canada, Kenneth L. Denman

2008-01-01T23:59:59.000Z

258

Computational fluid dynamics combustion modelling--A comparison of secondary air system designs  

SciTech Connect (OSTI)

A newly developed computer simulation of the combustion process in a kraft recovery furnace uses computational fluid dynamics to model the processes of mass, momentum, and energy transport. This paper describes two models and a presentation of the flow fields obtained. The results predict a dramatic improvement in combustion behavior using a refined secondary air system with reduction in particulate carryover, enhanced operating temperatures, more uniform gas flow, and less carbon monoxide at the furnace exit.

Jones, A.K. (ABB Combustion Engineering Systems, Ottawa, Ontario (Canada)); Chapman, P.J. (ABB Combustion Engineering Systems, Windsor, CT (United States))

1993-07-01T23:59:59.000Z

259

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EstablishmEnt EstablishmEnt of an EnvironmEntal Control tEChnology laboratory with a CirCulating fluidizEd-bEd Combustion systEm Description In response to President Bush's Clear Skies Initiative in 2002-a legislative proposal to control the emissions of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and mercury (Hg) from power plants-the National Energy Technology Laboratory (NETL) organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified four high- priority research needs for controlling emissions from fossil-fueled power plants: multipollutant control, improved sorbents and catalysts, mercury monitoring and capture, and an improved understanding of the underlying combustion chemistry.

260

Gasoline direct injection: Actual trends and future strategies for injection and combustion systems  

SciTech Connect (OSTI)

Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.

Fraidl, G.K.; Piock, W.F.; Wirth, M.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research  

E-Print Network [OSTI]

Engineering Main themes: - solid fuel combustion/packed beds - liquid droplet combustion - biofuels (biomass, Mechanical Engineering #12;Liquid Droplet Combustion W. Hallett, Mechanical Engineering Recent Work - biomasshttp://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research W. Hallett, Mechanical

Hallett, William L.H.

262

Pilot design of biomass energy resources inquiry system based on MapX: a case of Liyang city in China  

Science Journals Connector (OSTI)

With the rapid development of large- and medium-scale biomass energy utilisation in Jiangsu Province of China, to explore the potential of biomass energy resources availability becomes increasingly necessary. This paper analyses the biomass energy resources within Liyang City of Changzhou and designs a referral information system based on MapX software provided by Mapinfo GIS platform. The system is secondarily developed according to practical demand and achieves many functions of professional GIS software such as amplification, dwindling, scale enquiry, point enquiry, thememap and so on. The enquiry system will provide valuable reference to energy and environmental policies or relevant biomass energy enterprises.

Peibing Yan; Weiming Wu; Xiaohua Wang

2008-01-01T23:59:59.000Z

263

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

264

In Situ Measurement Technique for Simultaneous Detection of K, KCl, and KOH Vapors Released During Combustion of Solid Biomass Fuel in a Single Particle Reactor  

Science Journals Connector (OSTI)

A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation...

Sorvajrvi, Tapio; DeMartini, Nikolai; Rossi, Jussi; Toivonen, Juha

2014-01-01T23:59:59.000Z

265

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexington

1992-11-01T23:59:59.000Z

266

A systemic approach for dimensioning and designing anaerobic bio-digestion/energy generation biomass supply networks  

Science Journals Connector (OSTI)

Abstract Anaerobic bio-digestion/energy generation complexes using animal waste raw materials represent an important component of renewable energy initiatives and policies worldwide, and are significant contributors to broaden sustainability efforts. In such projects bio-power feasibility depends heavily on generation complex access to biomass which is of costly transportation. As a result, an important component of renewable energy planning is the optimization of a logistics system to guarantee low-cost access to animal waste. This access is a function of local characteristics including number and geographic location of organic waste sources, operating and maintenance costs of the generation facility, energy prices, and marginal contribution of biomass collected and delivered to the anaerobic bio-digestion unit. Because biomass exhibits high transportation costs per unit of energy ultimately generated, and because different types of biomass have different biogas-generating properties, design of the supply logistics system can be the determinant factor towards economic viability of energy generation from an anaerobic bio-digestion plant. Indeed, to address this problem it is helpful to consider the farms, the logistics system, the anaerobic bio-digestion plant, and the generation plant as subsystems in an integrated system. Additionally, the existence of an outlet for manure may allow farmers to significantly raise boundaries of one constraint they face, namely disposing of animal waste, therefore permitting increases in farm production capacity. This paper suggests and outlines a systematic methodology to address the design of such systems.

Joo Neiva de Figueiredo; Srgio Fernando Mayerle

2014-01-01T23:59:59.000Z

267

Oxy-fuel combustion systems for pollution free coal fired power generation  

SciTech Connect (OSTI)

Jupiter Oxygen's patented oxy-fuel combustion systems1 are capable of economically generating power from coal with ultra-low emissions and increased boiler efficiency. Jupiter's system uses pure oxygen as the combustion agent, excluding air and thus nitrogen, concentrating CO2 and pollutants for efficient capture with near zero NOx production, reducing exhaust mass flow, and increasing radiant heat transfer. Flue-gas recirculation rates can be varied to add flexibility to new boiler designs using this technology. Computer modeling and thermal analysis have identified important design considerations in retrofit applications.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Gross, Dietrich (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Gross, Alex (Jupiter Oxygen Corp.); Dogan, Cindy; Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfeld, Mark (Jupiter Oxygen Corp.)

2004-01-01T23:59:59.000Z

268

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect (OSTI)

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

269

Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses  

SciTech Connect (OSTI)

Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

Kay, Steve A. [University of California San Diego

2013-05-02T23:59:59.000Z

270

Effect of storage time on the flowability of biomass-coal granular system  

Science Journals Connector (OSTI)

Abstract The influence of storage time on the flowability of biomass-coal blends is experimental and theoretical investigated. The results show that there exists exponential relationship between discharge rate and storage time in an appropriate rice straw mass fraction range (less than 10%). In addition, the mechanism of gravity discharge rate variation for biomass-coal blends is theoretically investigated by analyzing the porosity variation of particle bed. The mechanism of porosity variation in the binary granular system is theoretically analyzed on the basis of emergent gas, mutual compression and particle rearrangement, and a mathematical model has been developed which agrees well with the experimental results. Furthermore, relaxation effect is proposed, which is mainly induced by elasticity of rice straw particle and cohesion of blends. Relaxation time is the most important parameters determining this effect. The latter decreases with increasing of coal particle size and biomass mass fraction.

Zhiguo Guo; Xueli Chen; Haifeng Liu; Haifeng Lu; Xiaolei Guo; Xin Gong

2014-01-01T23:59:59.000Z

271

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

272

Optimum usage and economic feasibility of animal manure-based biomass in combustion systems  

E-Print Network [OSTI]

in biogas vs. H/C and O/C ratios in flushed DB (b) HHV of biogas vs. H/C and O/C ratios in flushed DB (adopted from Carlin, 2005)........................................................................60 Figure 2.23 Cattle manure gasification for corn...

Carlin, Nicholas T.

2010-07-14T23:59:59.000Z

273

Combustion Noise  

E-Print Network [OSTI]

stabilize or destabilize the modes of the system, depending on the configuration of the combustor and the form of the coupling [26, 30]. In contrast to combustion instability, in broad-band combustion noise the unsteadiness in the rate of combustion... from th s in a mod on tempera , entropic a de of indir t frequenci r, open que sical theory assical expe s [14] who it by a spa d a transie le gases. A e bubble si idered as a flame was ent was o ng and dif depended udy it wa ion, ? ?,p r t? : (a...

Dowling, Ann P.; Mahmoudi, Yasser

2014-01-01T23:59:59.000Z

274

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

Vision 21 combustion systems will require innovative low emission designs and low development costs if Vision 21 goals are to be realized. In this three-year project, an advanced computational software tool will be developed for the design of low emission combustion systems required for Vision 21 clean energy plants. The combustion Large Eddy Simulation (LES) software will be able to accurately simulate the highly transient nature of gaseous-fueled turbulent combustion so that innovative concepts can be assessed and developed with fewer high-cost experimental tests. During the first year, the project included the development and implementation of improved chemistry (reduced GRI mechanism), subgrid turbulence (localized dynamic), and subgrid combustion-turbulence interaction (Linear Eddy) models into the CFDACE+ code. University expertise (Georgia Tech and UC Berkeley) was utilized to help develop and implement these advanced submodels into the unstructured, parallel CFD flow solver, CFD-ACE+. Efficient numerical algorithms that rely on in situ look-up tables or artificial neural networks were implemented for chemistry calculations. In the second year, the combustion LES software was evaluated and validated using experimental data from lab-scale and industrial test configurations. This code testing (i.e., alpha testing) was performed by CFD Research Corporation's engineers. During the third year, six industrial and academic partners used the combustion LES code and exercised it on problems of their choice (i.e., beta testing). Final feedback and optimizations were then be implemented in the final release version of the combustion LES software that will be licensed to the general public. An additional one-year task was added for the fourth year of this program entitled, ''LES Simulations of SIMVAL Results''. For this task, CFDRC performed LES calculations of selected SIMVAL cases, and compared predictions with measurements. In addition to comparisons with NO{sub x} and CO exit measurements, comparisons were made to measured pressure oscillations. Possible gaps in the data sets were identified, as well as potential areas of improvement for combustion and turbulence models. Work in this seventeenth quarter (October-December 2004) consisted of writing the draft final report for review by DOE. The report was delivered to DOE in January, 2005.

Clifford E. Smith

2005-04-01T23:59:59.000Z

275

Biomass energy analysis for crop dehydration  

SciTech Connect (OSTI)

In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

Whittier, J.P.; Haase, S.G.; Quinn, M.W. [and others

1994-12-31T23:59:59.000Z

276

Mechanism of Hydrocarbon Formation in Combustion Processes  

Science Journals Connector (OSTI)

Emissions from transportation systems that derive their energy directly from combustion processes include products of incomplete combustion, oxides of...

R. A. Matula

1973-01-01T23:59:59.000Z

277

Combustion system development of a two-stroke, spark-assisted DI diesel engine  

SciTech Connect (OSTI)

A loop-scavenged, two-stroke, spark-assisted DI diesel engine was developed by modifying an outboard marine gasoline engine to operate on diesel fuel with high fuel efficiency similar to a diesel engine, yet retain the two-stroke engine advantages of low cost, light weight, and high power-to-weight ratio. Engine modification was concentrated in the area of the combustion system, including transfer port design to generate air swirl in the cylinder, and combustion chamber design to generate air squish and turbulence. Bore and stroke (84 x 72 mm) remained the same as those of the base engine. The experimental engine used the production engine's piston, crankshaft, connecting rod, bearings, and cylinder block. The transfer port design was optimized using a flow test bench for best swirl and air flow pattern with a simple flow visualization technique. The best combustion chamber geometry, compression ratio, and fuel injection spray pattern were determined through engine experiments.

Ariga, S.; Matsushita, Y.

1988-01-01T23:59:59.000Z

278

Orimulsion in low NO{sub x} burner based combustion systems  

SciTech Connect (OSTI)

The potential of Orimulsion (a bitumen in water emulsion) as a suitable fuel for power generation boilers has been established subject to full recognition being given to the environmental aspects of its application. An important factor is the control of NO{sub x} emissions from the combustion process. Work on NO{sub x} control when firing Orimulsion has inevitably been based on the techniques utilized for low NO{sub x} fuel oil combustion. This fundamental work has indicated the different performance characteristics of these two fuels when fired in similar low NO{sub x} burner configurations. Nevertheless it has been demonstrated that Orimulsion can achieve similar, and perhaps even improved, low NO{sub x} performance when compared to heavy (No. 6) fuel oil, and can be used with equal flexibility to that of heavy fuel oil in low NO{sub x} combustion systems based on both burner and in furnace staging techniques.

Allen, J.W.; Beal, P. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1996-12-31T23:59:59.000Z

279

Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion Systems  

Broader source: Energy.gov [DOE]

The sources of unburned hydrocarbons and CO emissions from a PCI-like, early-injection low-temperature combustion system are examined through a combination of homogeneous reactor modeling employing detailed kinetics, multi-dimensional modeling using a reduced kinetic scheme, engine-out emissions measurements, and in-cylinder imaging of the spatial distributions of UHC and CO.

280

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg  

E-Print Network [OSTI]

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg for the Second Law heat engine cycles the maximum power that can be extracted is independent of layout Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

1. Solid Flame, Merzhanov A. and Mukasyan A., Torus Press, Nauka, Moscow 2007, 280. 2. Combustion of Heterogeneous Systems: Fundamentals and Applications for Material  

E-Print Network [OSTI]

. Combustion of Heterogeneous Systems: Fundamentals and Applications for Material Synthesis, ed. Mukasyan A. "Combustion Synthesis of Advanced Materials", in ASM Handbook: Powder Metal Technologies and Applications of Heterogeneous Systems: Fundamentals and Applications for Material Synthesis, Research Signpost Publisher, 2007

Mukasyan, Alexander

282

Life cycle assessment of energy crop production with special attention to the establishment of regional biomass utilisation systems  

Science Journals Connector (OSTI)

We conducted a life cycle assessment of energy crop production for bioethanol to clarify the potentialities of biomass utilisation systems in Japan, focusing on cumulative fossil energy demand and global warming potential. Their reductions were evaluated under two scenarios; one was improving cultivation technologies and breeding of new crop varieties, and the other was setting up of regional biomass utilisation systems, in which biomass resources from various industries were utilised mutually and effectively. It was proved that the improvement in cultivation technologies and the establishment of regional biomass utilisation systems have large potential for saving fossil fuel resources and reducing greenhouse gas emissions. Although these results largely depend on scenarios including the lifetime and coverage area of agricultural machinery, and types of biomass utilisation, it was concluded that substitution of petrol by bioethanol converted from these energy crops has considerable potential for rendering our society more sustainable.

Susumu Uchida; Kiyotada Hayashi; Mitsuru Gau; Tsutomu Kajiyama; Shigekiyo Shirasawa; Hiroyuki Takahashi; Yoshifumi Terajima; Makoto Matsuoka; Masaru Yoshinaga

2012-01-01T23:59:59.000Z

283

Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies  

Science Journals Connector (OSTI)

...John Schellnhuber Integrating biomass, sulphate and sea-salt aerosol...biomass burning. In Global biomass burning: atmospheric, climatic...particles from African savanna combustion experiments. Atmos. Res...99)00329-5 . Integrating biomass, sulphate and sea-salt aerosol...

2007-01-01T23:59:59.000Z

284

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-05-01T23:59:59.000Z

285

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

flow from an on-site steam turbine to raise the kelp to 45Ca 1200 Kw electric steam turbine/generator system. CapitalFinally, the waste steam stream from the turbine is used to

Haven, Kendall F.

2011-01-01T23:59:59.000Z

286

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2012-01-01T23:59:59.000Z

287

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2013-01-01T23:59:59.000Z

288

Biomass Energy Heat Provision in Modern Small-Scale Systems  

Science Journals Connector (OSTI)

The use of wood for the supply of heat in furnace systems with small to medium capacity has never really gone out of fashion, particularly in rural areas. Especially in recent years, a virtual renaissance in t...

Dr. Hans Hartmann; Dr. Volker Lenz

2013-01-01T23:59:59.000Z

289

Biomass Energy Heat Provision in Modern Small-Scale Systems  

Science Journals Connector (OSTI)

The use of wood for the supply of heat in furnace systems with small to medium capacity has never really gone out of fashion, particularly in rural areas. Especially in recent years, a virtual renaissance in t...

Dr. Hans Hartmann; Dr. Volker Lenz

2012-01-01T23:59:59.000Z

290

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network [OSTI]

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method...

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

291

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

292

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

293

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

Vivek Khanna

2002-09-30T23:59:59.000Z

294

Fuels from Biomass: Integration with Food and Materials Systems  

Science Journals Connector (OSTI)

...W-7405-ENG-92. using each ofthese solar energy systems. In photosynthesis...with the Gov-ernment of Tanzania last August on the potential of solar energy for the villages of...con-ducted a workshop in Tanzania on solar energy. Dr. Brown is an...

E. S. Lipinsky

1978-02-10T23:59:59.000Z

295

Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power  

E-Print Network [OSTI]

Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

Brasington, Robert David, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

296

A coal-fired combustion system for industrial process heating applications  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

297

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

Wei-Ping Pan; Yan Cao; John Smith

2008-05-31T23:59:59.000Z

298

NOTE / NOTE Variability in organic matter lost by combustion in  

E-Print Network [OSTI]

) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal libère du carbone (C) directement dans l'atmosphère par la combustion de biomasse. AnnuellementNOTE / NOTE Variability in organic matter lost by combustion in a boreal bog during the 2001

Benscoter, Brian W.

299

Microsoft Word - 41020_GE_Adv Combustion System_Factsheet_Rev01_10-03.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACT SHEET FACT SHEET Advanced Combustion Systems for Next Generation Gas Turbines I.) Participants: Principal Investigator: General Electric, Air Force Research Lab II.) Description A. Objective: Develop a new gas turbine combustion system design with 50% lower emissions, and demonstrate it at sub-scale. The system will be compared with state-of- the-art lean premixed gas turbine NOx emissions at temperatures and pressures comparable to GE F-Class turbines. B. Background/Relevancy: Next generation turbine power plants will require high efficiency gas turbines with higher combustor pressures and firing temperatures than is currently available. These increases in the severity of gas turbine operating conditions will tend to increase NOx emissions. As the desire for higher efficiency drives combustor pressures

300

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fifth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. The use of multiple trees and periodic tree dumping was investigated. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry was finished for serial applications. Validation of the model on a backstep reacting case was performed. Initial calculations of the SimVal experiment were performed for various barrel lengths, equivalence ratio, combustor shapes, and turbulence models. The effects of these variables on combustion instability was studied. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. Next quarter, the 2nd consortium meeting will be held at CFDRC. LES software development and testing will continue. Alpha testing of the code will be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for chemical kinetics speed-up in CFD-ACE+, should be accomplished.

Steve Cannon; Baifang Zuo; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

2002-01-01T23:59:59.000Z

302

Corrosion and its effect on mechanical properties of materials for advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces that can operate at temperatures much higher than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development and application of advanced ceramic materials in these designs. The objectives of the present program are to evaluate (a) the chemistry of gaseous and condensed products that arise during combustion of coal; (b) the corrosion behavior of candidate materials in air, slag and salt environments for application in the combustion environments; and (c) the residual mechanical properties of the materials after corrosion. The program emphasizes temperatures in the range of 1000-1400{degrees}C for ceramic materials and 600-1000{degrees}C for metallic alloys. Coal/ash chemistries developed on the basis of thermodynamic/kinetic calculations, together with slags from actual combustors, are used in the program. The materials being evaluated include monolithic silicon carbide from several sources: silicon, nitride, silicon carbide in alumina composites, silicon carbide fibers in a silicon carbide- matrix composite, and some advanced nickel-base alloys. The paper presents results from an ongoing program on corrosion performance of candidate ceramic materials exposed to air, salt and slag environments and their affect on flexural strength and energy absorbed during fracture of these materials.

Natesan, K. [Argonne National Lab., IL (United States); Freeman, M.; Mathur, M. [Pittsburgh Energy Technology Center, Pittsburgh, PA (United States)

1996-05-01T23:59:59.000Z

303

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

304

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

305

Integrated Biomass Gasification - Gas Turbine - Fuel Cell Systems for Small-Scale, Distributed Generation of Electricity and Heat  

Science Journals Connector (OSTI)

A system design for application on commercial scale based on present day technology will be considered. At Delft University of Technology, a biomass gasifier has been set up...th process development unit, will be...

B. J. P. Buhre; J. Andries

2002-01-01T23:59:59.000Z

306

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

307

DOE/NETL ADVANCED COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-OSU-Coal%20Direct%20Chem%20Looping.pdf. Fan, L.-S., "Chemical Looping Systems for Fossil Energy Conversions," John Wiley & Sons, Inc., Hoboken, NJ, USA, October 2010. http:...

308

Hydrothermal combustion of biofuels in supercritical water  

SciTech Connect (OSTI)

Supercritical water oxidation (SCWO) has long been recognized as a safe, clean and energy efficient method for destroying a wide range of organic materials and hazardous wastes. As SCWO systems operate at elevated pressure, all effluent streams are fully contained allowing efficient recovery of thermal energy using compact heat exchangers. Water vapor produced by the combustion efficiency, especially for fuels with increasing moisture content such as biomass. This paper compares the performance of a simple Rankine vapor power cycle which derives it`s heat input from (1) a hydrothermal combustion system, and (2) a conventionally-fired steam boiler. The study is based on a hypothetical cellulose-based organic fuel with a higher heating value of 7,000 BT/1bm (dry). For a constant organic feedrate of 100 tons/day (bone dry) mixed in 20:80 fuel/water ratio with water, the calculated net electric power output from the 31.93%. Whereas, for an organic feedrate of 100 tons/day (bone dry) with zero of 5,382 kW, at an overall thermal efficiency of 31.48%. The hydrothermal combustion power cycle is unaffected by free moisture in the fuel, and thereby uniquely well-suited for use in biomass power generation applications. The hydrothermal combustion process is exceptionally clean burning, and allows full control over carbon dioxide and SOx emissions. NOx levels are inherently ultra-low due to lower combustion temperatures. Hydrothermal combustion technology is ready for pilot-scale engineering development and demonstration.

McGuinness, T.G. [Summit Research Corporation, Sante Fe, NM (United States); Marentis, R. [Summit Research Corporation, Allentown, PA (United States)

1994-12-31T23:59:59.000Z

309

High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Task Task Description Sample calculations LBL-PMC Future Work High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems Jian Cai 1 Ricardo Marquez 1 Michael F. Modest 2 1 Postdoctoral Research Associate 2 Shaffer and George Professor of Engineering University of California Merced Merced, CA 95343, USA DE-FG26-10FE0003801 May 2012 - Pittsburgh 2/17 Introduction Task Description Sample calculations LBL-PMC Future Work Radiation Challenges in Multi-Phase Reacting Flows Radiative heat transfer in high temperature combustion systems Thermal radiation becomes very important at elevated temperatures Coal and hydrocarbon fuels C n H m → H 2 O, CO 2 , CO, NO x , soot, char, ash CO 2 , H 2 O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels) Radiative effects are conveniently ignored or treated with very crude models Neglecting

310

9 - Oxyfuel combustion systems and technology for carbon dioxide (CO2) capture in power plants  

Science Journals Connector (OSTI)

Abstract: Oxyfuel combustion uses pure oxygen instead of air to burn carbonaceous materials, resulting in a CO2 separation efficiency theoretically close to 100% should the fuel and oxygen be free of contaminants. This chapter examines several oxyfuel systems, considering two categories of power cycle those based on steam cycles and those based on gas cycles both of which generate oxygen using a cryogenic air separation unit. Also covered is the AZEP cycle, which belongs in the second category but which uses a ceramic membrane integrated into the system to separate oxygen from air. Oxy-combustion in IGCC plants and in gas turbine cycles integrating solid oxide fuel cells is also examined here as a low emission process. The technical issues and future potential for each option are discussed and reference is made to several pilot installations and ongoing R & D projects.

P. Mathieu

2010-01-01T23:59:59.000Z

311

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

312

Primary energy consumption of the dwelling with solar hot water system and biomass boiler  

Science Journals Connector (OSTI)

Abstract This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present Algorithm for determining the energy demands and efficiency of technical systems in buildings, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with better thermal insulation.

Mihaela Berkovi?-ubi?; Martina Rauch; Damir Dovi?; Mladen Andrassy

2014-01-01T23:59:59.000Z

313

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

314

Research in Industrial Combustion Systems - Current and Future R&D  

E-Print Network [OSTI]

/DIP have funded R&D primarily directed to applications that would benefit the industrial sector. The following material briefly describes some of the GRI2.3 and DOE/Olp3.4 program activi ties in industrial combustion systems. The overall goal of DOE... technology develop ments in gas-fired equipment. GRI's emphasis is on developing generic technologies which have diverse applications in many industries and on integrating these technologies in selected industries where the present gas load...

Rebello, W. J.; Keller, J. G.

315

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-07-30T23:59:59.000Z

316

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network [OSTI]

during the open combustion of biomass in the laboratory, J.J. R. , and Veres, P. : Biomass burning in Siberia andOpen burning of agricultural biomass: Physical and chemical

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

317

Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California  

E-Print Network [OSTI]

fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BBEmission characteristics of black carbon in anthropogenic and biomass burning plumes over. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over

Jimenez, Jose-Luis

318

Influence of the Type of Oxygen Carriers on the Performance of a Hybrid Solar Chemical Looping Combustion System  

Science Journals Connector (OSTI)

A thermal analysis of a hybrid solar chemical looping combustion (Hy-Sol-CLC) system is presented to identify the energetic performance of various combinations of fuel and oxygen carriers. ... (6, 13) However, the potential advantages and disadvantages of these alternative oxygen carriers and inert materials for use in Hy-Sol-CLC systems are yet to be evaluated. ... combustion has the advantage that no energy is lost for the sepn. of CO2. ...

Mehdi Jafarian; Maziar Arjomandi; Graham J. Nathan

2014-04-09T23:59:59.000Z

319

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

320

Vehicle Technologies Office: Combustion Engine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

322

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

323

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect (OSTI)

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

324

Compact, electro-hydraulic, variable valve actuation system providing variable lift, timing and duration to enable high efficiency engine combustion control  

Broader source: Energy.gov [DOE]

Discusses development of advanced variable valve actuation system to enable high efficiency combustion highlighting advances to improving system packaging while reducing cost

325

Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine  

SciTech Connect (OSTI)

Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

Johansson, L. [Stirling Thermal Motors, Inc., Ann Arbor, MI (United States); Ziph, B.; McKeough, W.; Houtman, W.

1996-12-31T23:59:59.000Z

326

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

In this project, an advanced computational software tool will be developed for the design of low emission combustion systems required for Vision 21 clean energy plants. This computational tool will utilize Large Eddy Simulation (LES) methods to predict the highly transient nature of turbulent combustion. The time-accurate software will capture large scale transient motion, while the small scale motion will be modeled using advanced subgrid turbulence and chemistry closures. This three-year project is composed of: Year 1--model development/implementation, Year 2--software alpha validation, and Year 3--technology transfer of software to industry including beta testing. In this first year of the project, subgrid models for turbulence and combustion are being developed through university research (Suresh Menon-Georgia Tech and J.-Y. Chen- UC Berkeley) and implemented into a leading combustion CFD code, CFD-ACE+. The commercially available CFDACE+ software utilizes unstructured , parallel architecture and 2nd-order spatial and temporal numerics. To date, the localized dynamic turbulence model and reduced chemistry models (up to 19 species) for natural gas, propane, hydrogen, syngas, and methanol have been incorporated. The Linear Eddy Model (LEM) for subgrid combustion-turbulence interaction has been developed and implementation into CFD-ACE+ has started. Ways of reducing run-time for complex stiff reactions is being studied, including the use of in situ tabulation and neural nets. Initial validation cases have been performed. CFDRC has also completed the integration of a 64 PC cluster to get highly scalable computing power needed to perform the LES calculations ({approx} 2 million cells) in several days. During the second year, further testing and validation of the LES software will be performed. Researchers at DOE-NETL are working with CFDRC to provide well-characterized high-pressure test data for model validation purposes. To insure practical, usable software is developed, a consortium of gas turbine and industrial burner manufacturers has been established to guide and direct the software development/validation effort. The consortium members include Siemens- Westinghouse, GE Power Systems, Pratt & Whitney, Rolls-Royce, Honeywell, Solar, Coen, McDermott, Vapor Power, Woodward FST, Parker Hannifin, John Zink, RamGen Power, Virginia Tech, DOE-NETL, Air Force Research Laboratory, DOE-ANL, and NASA GRC. Annual consortium meetings are being held in Huntsville, with the 2nd meeting scheduled for January 31-February 1, 2002. 2 Benefits of the program will include the ability to assess complex combustion challenges such as combustion instability, lean blowout, flashback, emissions and the effect of fuel type on performance. The software will greatly reduce development costs and the time cycle of combustor development. And perhaps the greatest benefit will be that the software will stimulate new, creative ideas to solve the combustion challenges of the Vision 21 plant.

Cannon, Steven M.; Adumitroaie, Virgil; McDaniel, Keith S.; Smith, Clifford E.

2001-11-06T23:59:59.000Z

327

RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE  

SciTech Connect (OSTI)

Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

Takashi Nakamura

2004-11-01T23:59:59.000Z

328

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

329

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

330

Turbulent combustion  

SciTech Connect (OSTI)

Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

331

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

332

Low-Temperature Automotive Diesel Combustion | Department of...  

Office of Environmental Management (EM)

in Low Temperature Automotive Diesel Combustion Systems Mixture Formation in a Light-Duty Diesel Engine Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments...

333

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

334

"Optimization of Zero Length Chromatographic System and Measuring Properties of Model Compounds from Biomass Pyrolysis"  

E-Print Network [OSTI]

Compounds from Biomass Pyrolysis" Ross Kendall Faculty Mentor: Dr. Paul Dauenhauer, Chemical Engineering by using what he made to measure many of the compounds involved in biomass pyrolysis. If we can understand to retrieve diffusion coefficients of many intermediates of the biomass pyrolysis reaction. From this data

Mountziaris, T. J.

335

Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

SciTech Connect (OSTI)

A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., Active Sulfidation Corrosion Mechanism, has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., Active Sulfide-to-Oxide Corrosion Mechanism, has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 acidic fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by basic fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

Kung, Steven; Rapp, Robert

2014-08-31T23:59:59.000Z

336

Organic Rankine Cycle System Preliminary Design with Corn Cob Biomass Waste Burning as Heat Source  

Science Journals Connector (OSTI)

Abstract The renewable energy source potencies in Indonesia are needed to be utilized to fulfill the electricity requirement in rural or remote area that not yet get electricity. One of the potency is biomass waste. Therefore, this paper discusses about the electricity generation preliminary design of Organic Rankine Cycle (ORC) system with corn cob biomass waste burning as heat source, so it can be obtained the theoretic corn farm area requirement, electricity power, and thermal efficiency at heat source temperature and flow rate variations. Corn cob burning temperature can heat up the heating fluid that is heated by boiler with corn cob as the biomass fuel. Furthermore, that heating fluid is used as ORC electricity generation heat source. The independent variables in this study are the heating fluid temperature which varied between 110, 120, and 130oC, and the heating fluid flow rate that varied between 100, 150, and 200 liter/minute. \\{R141b\\} is selected to be the working fluid, palm oil is used for heating fluid and water as cooling fluid. The calculation results that the theoretic electricity power, thermal efficiency, and corn farm area requirement, respectively, are in the range of 3.5-8.5kW, 9.2-10.3%, and 49.5-101.1hectare/year. All of the highest range values are resulted at the highest temperature and flow rate, 130oC and 200 liter/minute. This result shows that corn cob burning heat is potential to be utilized as electricity generation heat source for rural society, particularly for some areas that have been studied.

Nur Rohmah; Ghalya Pikra; Agus Salim

2013-01-01T23:59:59.000Z

337

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the worlds annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

338

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

339

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect (OSTI)

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

340

Role of Pulverized Coal Ash against Agglomeration, Fouling, and Corrosion in Circulating Fluidized-Bed Boilers Firing Challenging Biomass  

Science Journals Connector (OSTI)

The mechanisms of fouling and corrosion in biomass combustion have been extensively studied for a long time, and although the basic aspects are well-accepted, the complexity of the details are not yet fully understood. ... (5) In an earlier study, Foster Wheeler tested the effectiveness of different alternative bed materials to counteract the agglomeration induced by high-alkali biomass. ... Figure 4 show SEM/EDX analysis complemented with phase composition calculations (Noran System, NSS 2.3) of loopseal samples from combustion tests, where bed material included both PC-ash and sand. ...

Vesna Barii?; Kari Peltola; Edgardo Coda Zabetta

2013-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report  

SciTech Connect (OSTI)

The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

1996-02-01T23:59:59.000Z

342

Boosting Small Engines to High Performance- Boosting Systems and Combustion Development Methodology  

Broader source: Energy.gov [DOE]

Overview on combustion approaches and challenges for smaller boosted engines to improve vehicle fuel economy, particularly downsizing gasoline engines

343

Engine Combustion & Efficiency - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

344

Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report  

SciTech Connect (OSTI)

The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

1994-08-01T23:59:59.000Z

345

The influence of feedstock drying on the performance and economics of a biomass gasifierengine CHP system  

Science Journals Connector (OSTI)

The need to dry biomass feedstocks before they can be gasified can place a large energy and capital cost burden on small-to-medium scale biomass gasification plants for the production of heat and power. Drying may not always be unavoidable, but as biomass moisture content to the gasifier increases, the quality of the product gas deteriorates along with the overall performance of the whole system. This system modelling study addresses the influence of feedstock moisture content both before and after drying on the performance and cost of a biomass gasifierengine system for combined heat and power at a given scale and feedstock cost. The scale range considered 0.53.0MWe. The system comprises an updraft gasifier with external thermal and catalytic tar cracking reactors, gas clean-up and a spark-ignition gas engine. A spreadsheet-based system model is constructed, with individual worksheets corresponding to sub-models of system components, and a number of drying technology options and modes of operation are examined. Wherever possible, data supplied by manufacturers or taken from real systems is used in the construction of the sub-models, particularly in the derivation of cost functions.

J.G. Brammer; A.V. Bridgwater

2002-01-01T23:59:59.000Z

346

Donnerstag, 24. Juli 2003 Biomasse Info-Zentrum  

E-Print Network [OSTI]

Centre Biogas - fuel cell Dust engine/-turbine ORC--process Hot Gasturbine Gasification - engine-engine Steamprocess Bioethanol - engine Methanol - engine* Methanol - fuel cell* Co- Combustion Biogas Methan - fuel 8 Biomasse Info-Zentrum Biomass Information Centre Internal Combustion Engine, Biogas #12;Donnerstag

347

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion  

Science Journals Connector (OSTI)

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion ... This suggests that while leaching reduces fuel nitrogen, it may also affect the nitrogen combustion chemistry in that a larger fraction of the fuel-bound nitrogen was converted to NO(g) during combustion of the leached samples compared to the unleached samples. ... Six biomasses with different chemical compositions ... ...

D. C. Dayton; B. M. Jenkins; S. Q. Turn; R. R. Bakker; R. B. Williams; D. Belle-Oudry; L. M. Hill

1999-04-28T23:59:59.000Z

348

Combustion Control  

E-Print Network [OSTI]

using a liquid fuel. The air and fuel valve designs are vastly different, with different flow characteristics. These factors make the initial adjustment of the system difficult, and proper maintenance of ratio accuracy unlikely. Linked valves... casing of the fuel control regulator with the combustion air piping. The upstream pressure on the burner air orifice is applied to the main diaphragm of the pressure balanced regulator. Assuming sufficient gas pressure at the regulator inlet...

Riccardi, R. C.

1984-01-01T23:59:59.000Z

349

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

350

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

351

In-line continuous sizing of biomass particles in gas-solid two-phase flow at a biomass-fired power plant  

Science Journals Connector (OSTI)

Gas-solid two-phase flows are widely seen in many industrial processes. A good exampleis the pneumatically conveyed pulverised fuel flow in the power generation industry. As a significant renewable fuel source biomass has been widely adopted in electrical power generation. The particle size distribution of pneumatically conveyed biomass correlates closely with combustion efficiency and pollutant emissions and should therefore be monitored on anin-line continuous basis. In this paper an integrated instrumentation system using both a piezoelectric sensorand anelectrostatic sensor arrayis proposed to measure the size distribution and flow velocity of biomass particles. A prototype system was tested on a 250mm bore pipe at a biomass-fired power plantand its performance has been evaluated under industrial conditions.

2014-01-01T23:59:59.000Z

352

Effect of ignition location on the in-process removal of combustion deposits from the output window of a gas turbine laser ignition system  

Science Journals Connector (OSTI)

The effect of ignition location on the effectiveness of combustion deposit removal from the reverse side of an optical window in a laser ignition system for use in gas turbines is presented. Such deposits consist of carbon and other by-products which accumulate on the walls of the chamber as a result of incomplete combustion. In laser based ignition systems this accumulation of combustion deposits has the potential to reduce the transmissive properties of the output window required for transmission of the laser radiation into the combustion chamber, adversely affecting the likelihood of successful ignition. In this work, a full empirical study into the in-process removal of combustion deposits from the reverse side of the optical window in a laser ignition system using a Q-switched Nd:YAG laser is presented, with an emphasis on the effect of ignition location on the effectiveness of combustion deposit removal. In addition, the mechanism of deposit removal is discussed.

J. Griffiths; J. Lawrence; P. Fitzsimons

2013-01-01T23:59:59.000Z

353

Development of a Web-based woody biomass energy expert system.  

E-Print Network [OSTI]

??Woody biomass is evolving as a potential bioenergy feedstock at an industrial scale to provide the required supply for industries relying on these resources at (more)

Dhungana, Sabina.

2009-01-01T23:59:59.000Z

354

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

355

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

356

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

The purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter January--March 2004. The following tasks have been completed. First, plans for the renovation of space for a new Combustion Laboratory for the CFBC Facility have progressed smoothly. Second, the design calculations, including the mass balances, energy balances, heat transfer, and strength calculations have been completed. Third, considerable modifications have been made on the draft design of the CFBC Facility based on discussions conducted during the project kick-off meeting held on January 13, 2004 at the National Energy Technology Laboratory (NETL). Comments received from various experts were also used to improve the design. Finally, the drawings of all assembly parts have been completed in order to develop specifications for the fabrication of individual parts. At the same time, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Kunlei Liu; John T. Riley

2004-04-01T23:59:59.000Z

357

LES SOFTWARE FOR THE DESIGN OF LOW EMISSION COMBUSTION SYSTEMS FOR VISION 21 PLANTS  

SciTech Connect (OSTI)

Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fourth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. A more efficient PK binary tree data structure is being developed and implemented to replace the original BSP-tree structure. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry has also started. In addition, Georgia Tech has shown that a chemical neural net (1-step chemistry) trained at certain turbulent conditions can be used at different turbulent conditions without expensive chemical kinetic integrations. Initial evaluations of the code accuracy have also been carried out. The evaluations cases included the unstable DOE-NETL combustor and a lid-driven cavity. Next quarter, the ISAT algorithm for efficient chemistry will be tested for the unstable DOE-NETL combustor. Initial flame calculations, with the LEM subgrid chemistry model are planned. Also, demonstration of the neural net approach, for chemical kinetics speed-up, should be demonstrated for more advanced chemistry (8-species and 19-species mechanisms).

Steve Cannon; Virgil Adumitroaie; Keith McDaniel; Cliff Smith

2001-10-01T23:59:59.000Z

358

Development of a coal combustion product (CCP) database system. Final report  

SciTech Connect (OSTI)

Nearly 90 million tons of coal combustion products (CCPs) are produced annually in the United States. The value of CCPs is well established by research and commercial practice; however, only 25% of these products are utilized. The objective of this project was to develop a computer program containing a database of advanced analytical and comprehensive engineering information on CCPs, accessible through a user-friendly interface. Version 1.0 of the ACAA CCP Data Manager was specifically designed to: perform multiple-criteria queries to produce a set of sample for in-depth study; view and print standard test reports, such as C618 reports; compare and contrast analytical results in graphs and tables; graph utilization information by application and region; and save data to a file for use in other computer applications, such as spreadsheet programs. The program was designed to contain descriptive information about a given CCP sample, including sample formation data (material type, sample location, fuel type, collection device etc.), combustion system design data (steam generator type, furnace type, SO{sub 2} and NO{sub x} control information, ash-handling configurations), test data (chemical, mineralogical, and physical characterization data), and utilization potential of the CCP. The location of the plant is identified by region. The database has been initially populated with information on over 800 CCP samples, taken from the Coal Ash Resources Research Consortium (CARRC). An installation package and user`s guide was developed for unlimited distribution by the American Coal Ash Association (ACAA).

O`Leary, E.M.; Pflughoeft-Hassett, D.F.

1997-09-01T23:59:59.000Z

359

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-04-30T23:59:59.000Z

360

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

362

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

363

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Ld

2012-01-01T23:59:59.000Z

364

Biomass Crop Assistance Program (BCAP) | Open Energy Information  

Open Energy Info (EERE)

Biomass Crop Assistance Program (BCAP) Biomass Crop Assistance Program (BCAP) Jump to: navigation, search Tool Summary Name: Biomass Crop Assistance Program (BCAP) Agency/Company /Organization: United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Develop Finance and Implement Projects Resource Type: Guide/manual User Interface: Website Website: www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap Cost: Free The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. Overview The Biomass Crop Assistance provides financial assistance to offset, for a period of time, the fuel costs for a biomass facility. The Biomass Crop

365

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

366

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

367

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

368

Diagnosis of a turbocharging system of 1MW internal combustion engine  

Science Journals Connector (OSTI)

A diagnostic procedure is presented purposely for the turbocharging system of 1MW internal combustion engine (I.C.E.) and specifically, for the filters and compressor modules. This study is part of a wider research activity, concerning the development of a diagnosis system dedicated to the cogenerative I.C.E. installed at the Engineering Faculty in Perugia. Firstly a 1-D thermodynamic model of the CHP engine working fluid was developed to simulate failure conditions of the turbocharging groups, which are not directly replicable on the I.C.E. to avoid plant stoppage. This model is able to simulate the degradation in performance of the engine components. It also takes into account the effect of compensation which the regulation system activates in case of efficiency loss or failure relative to filters or compressors. In order to identify and assess such failures, the fuzzy logic was chosen as the tool for the diagnosis system design. The developed diagnosis system displayed a good reliability degree with the 1-D thermodynamic model results, for operating conditions in correspondence of bad performance either on behalf of the filters or the compressor. Moreover, the procedure can be implemented in the plant monitoring system and provides in real-time diagnosis results about the status of the components and the need of maintenance, on the basis of few parameters already measured on the I.C.E.

L. Barelli; G. Bidini; F. Bonucci

2013-01-01T23:59:59.000Z

369

Institute of Energy Technolog y Section for Fluidmechanics and Combustion Technology  

E-Print Network [OSTI]

of generalized model for grate-combustion of biomass final repo rt #12;PS02002-4730 Development of generalized model for grate-combustion of biomass final repo rt Contents 1 Project overviewInstitute of Energy Technolog y Section for Fluidmechanics and Combustion Technology &.G UNIV~ ~ PS

370

Nutrient release from combustion residues of two contrasting herbaceous vegetation types  

E-Print Network [OSTI]

(muffle and flame burning) to combust herbaceous biomass from contrasting nutrient level sites to estimate caused by a fire is the combustion and charring of vegetation. Both C and N contained in plant biomassNutrient release from combustion residues of two contrasting herbaceous vegetation types Benjamin A

Florida, University of

371

Assessment of Literature and Simulation Software Related to Combustion Appliance Venting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Literature Related to Assessment of Literature Related to Combustion Appliance Venting Systems V.H. Rapp, B.C. Singer, J.C. Stratton, C.P. Wray Environmental Energy Technologies Division June 2012 LBNL-5798E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

372

Capture and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and Sequestration of CO Capture and Sequestration of CO 2 From Stationary Combustion Systems by Photosynthesis of Microalgae Takashi Nakamura (nakamura@psicorp.com; 925-743-1110) Constance Senior (senior@psicorp.com; 978-689-0003) Physical Sciences Inc Andover, MA 01810 Miguel Olaizola (molaizola@aquasearch.com; 808-326-9301 Michael Cushman (mcushman@aquasearch.com; 808-326-9301) Aquasearch Inc. Kailua-Kona, HI 96740 Stephen Masutani (masutan@wiliki.eng.hawaii.edu; 808-956-7388) University of Hawaii Honolulu, HI 96822 Introduction Emissions of carbon dioxide are predicted to increase this century 1 leading to increases in the concentrations of carbon dioxide in the atmosphere. While there is still much debate on the effects of increased CO 2 levels on global climate, many scientists agree that the projected increases could have a

373

Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems  

SciTech Connect (OSTI)

A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1995-11-01T23:59:59.000Z

374

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

375

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan

2007-01-01T23:59:59.000Z

376

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

377

Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US)  

SciTech Connect (OSTI)

Exposures were completed to ~1400 hr. Analysis of kinetics are close to completion. No oxy-combustion gas phase effects were found at 700{degrees}C.

Holcomb, Gordon R. [NETL; Tylczak, Joseph [NETL

2013-08-28T23:59:59.000Z

378

Upgrading of low-rank coals for conventional and advanced combustion systems  

SciTech Connect (OSTI)

Low-rank coals, subbituminous, lignitic, and brown coals, have a ubiquitous presence in the world, being found in all continents. Close to half of the world`s estimated coal resources are low- rank coals. Many countries have no alternative economic source of energy. In the lower 48 states of the United States, there are 220 billion tons of economically recoverable reserves of lignite and subbituminous coal. Add to this quantity 5 trillion tons of predominantly subbituminous coal in Alaska, and the combined amount represents the largest supply of the lowest-cost fuels available for generating electric power in the United States. However, to use these coals cost-effectively and in an environmentally acceptable way, it is imperative that their properties and combustion/gasification behavior be well understood. The Energy and Environmental Research Center (EERC) takes a cradle-to-grave approach (i.e., mining, precleaning, combustion/gasification, postcleaning, and reuse and disposal of residues) for all aspects of coal processing and utilization. The environmental impact of these activities must be matched with the appropriate technologies. Experience over many years has shown that variations in coal and ash properties have a critical impact on design, reliability and efficiency of operation, and environmental compliance when low-rank coals are burned in conventional systems. This chapter reviews the significant technical issues of beneficiation, which includes reduction in moisture as well as ash (including sulfur), in relation to low-rank coal properties and their impact on conventional and advanced power systems. Finally, the development and utilization of low-rank coal resources are briefly discussed in view of policy, economic, and strategic issues.

Young, B.C.; Musich, M.A.; Jones, M.L.

1993-12-31T23:59:59.000Z

379

Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system  

DOE Patents [OSTI]

A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

Levendis, Yiannis A. (Boston, MA); Wise, Donald L. (Belmont, MA)

1994-05-17T23:59:59.000Z

380

Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies  

E-Print Network [OSTI]

power plant exhaust gases using conventional air pollution control devices (APCDs) is significantly Act list of sources of hazardous air pollutants. Both the reversal and the CAMR were vacated by the UMercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot

Li, Ying

382

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

383

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

SciTech Connect (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

384

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

385

Achieve Continuous Injection of Solid Fuels into Advanced Combustion System Pressures  

SciTech Connect (OSTI)

The overall objective of this project is the development of a mechanical rotary-disk feeder, known as the Stamet Posimetric High Pressure Solids Feeder System, to feed dry granular coal continuously and controllably into pressurized environments of up to 35 kg/cm{sup 2} (500 psi). This was to be accomplished in two phases. The first task was to review materials handling experience in pressurized operations as it related to the target pressures for this project, and review existing coal preparation processes and specifications currently used in advanced combustion systems. Samples of existing fuel materials were obtained and tested to evaluate flow, sealing and friction properties. This provided input data for use in the design of the Stamet Feeders for the project, and ensured that the material specification used met the requirements of advanced combustion & gasification systems. Ultimately, Powder River Basin coal provided by the PSDF facility in Wilsonville, AL was used as the basis for the feeder design and test program. Based on the material property information, a Phase 1 feeder system was designed and built to accomplish feeding the coal to an intermediate pressure up to 21 kg/cm{sup 2} (300 psi) at feed rates of approximately 100 kilograms (220lbs) per hour. The pump & motor system was installed in a custom built test rig comprising an inlet vessel containing an active live-wall hopper mounted in a support frame, transition into the pump inlet, transition from pump outlet and a receiver vessel containing a receiver drum supported on weigh cells. All pressure containment on the rig was rated for the final pressure requirement of 35 kg/cm{sup 2} (500psi). A program of testing and modification was carried out in Stamet's facility in CA, culminating in successful feeding of coal into the Phase 1 target of 21 kg/cm{sup 2} (300psi) gas pressure in December 2003. Further testing was carried out at CQ Inc's facility in PA, providing longer run times and experience of handling and feeding the coal in winter conditions. Based on the data developed through the testing of the Phase I unit, a Phase II system was designed for feeding coal into pressures of up to 35 kg/cm{sup 2} (500 psi). A further program of testing and modification was then carried out in Stamet's facility, with the target pressure being achieved in January 2005. Repeated runs at pressure were achieved, and optimization of the machine resulted in power reductions of 60% from the first successful pressure runs. General design layout of a commercial-scale unit was conducted, and preliminary cost estimates for a commercial unit obtained.

Derek L. Aldred; Timothy Saunders

2005-07-01T23:59:59.000Z

386

Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology  

Science Journals Connector (OSTI)

Abstract The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas.

Antonio M. Pantaleo; Sara Giarola; Ausilio Bauen; Nilay Shah

2014-01-01T23:59:59.000Z

387

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

388

Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems  

SciTech Connect (OSTI)

Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

2010-12-12T23:59:59.000Z

389

Study of hydrogen mixing within the combustion engineering system 80+ containment  

SciTech Connect (OSTI)

A scoping study is performed to determine how hydrogen distributes throughout an evolutionary, advanced pressurized water reactor (PWR) spherical containment given a variety of hydrogen inflows and delivery locations. The study uses MAAP and a preliminary containment design for the Combustion Engineering (C-E) System 80+{trademark} standard design as the bases for the detailed thermal-hydraulic analyses. Results are compared to applicable design criteria from the Advanced Light Water Reactor (ALWR) Requirements Document. The C-E System 80+ containment design is based on the Cherokee-Perkins System 80{sup R} spherical containment design, revised to accommodate ALWR Requirements Document design criteria. A feature of this design is the 500,000-gal in-containment refueling water storage tank (IRWST) located in the lower region of the containment building. This tank is the source for the safety injection and containment spray pumps, and the discharge location for the primary system safety and bleed valves. The containment design directs water accumulation on lower floors to the IRWST to preclude its depletion.

Hawley, J.T.; Hammersley, R.J.; Plys, M.G. (Fauske Associates, Inc., Burr Ridge, IL (USA))

1989-11-01T23:59:59.000Z

390

Mini-biomass electric generation  

SciTech Connect (OSTI)

Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

391

Economic Development Through Biomass Systems Integration in Central Florida: Final Report; May 5, 1995  

SciTech Connect (OSTI)

Reclaimed phosphate mined land in central Florida has been identified as an area with potential for growing biomass crops. Approximately 73,000 acres of land could be available for production. Additional research is needed to define the possibilities.

Stricker, J. A.; Smith, W. H.

2004-07-01T23:59:59.000Z

392

Technoeconomic Analysis and Life Cycle Assessment of an Integrated Biomass Gasification Combined Cycle System  

Science Journals Connector (OSTI)

A biomass gasification combined-cycle power plant, consisting of a low pressure......Economic analyses were then performed to determine the levelized cost of electricity. The economic viability and efficiency of...

M. K. Mann; P. L. Spath

1997-01-01T23:59:59.000Z

393

JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation  

SciTech Connect (OSTI)

The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

2008-02-01T23:59:59.000Z

394

Aviation Combustion Toxicology: An Overview  

Science Journals Connector (OSTI)

......in a radiant heat furnace. Rats...the produced combustion products in...in both the combustion tube and radiant heat systems proved...literature data for CO2, low...acrolein, and heat expo- sures...primary toxic combustion gases and are...structures. The hydrocarbon constituents......

Arvind K. Chaturvedi

2010-01-01T23:59:59.000Z

395

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

396

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network [OSTI]

pyrolysis of wood: Applications to thermochemical processing of newsprint and biomass.of pyrolysis of cellulose, is a well-established biomasspyrolysis products (such as levoglucosan). In contrast, laboratory combustion of biomass

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

397

Biomass electricity plant allocation through non-linear modeling and mixed integer optimization.  

E-Print Network [OSTI]

?? Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This dissertation uses (more)

Smith, Robert Kennedy

2012-01-01T23:59:59.000Z

398

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents [OSTI]

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

399

Extractors manual for Fluidized-Bed Combustion Data Base System: Test Data Data Base. [FBC; planning  

SciTech Connect (OSTI)

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. To capture the results of Government-sponsored FBC research programs, documents have been written for the TDDB and MPDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the TDDB and MPDB will meet the needs of the users of the FBC data system. This document addresses what information is needed and how it must be formatted so that it can be entered into the TDDB for FBC. The level of detail needed to satisfy the wide variety of potential users' needs is the primary consideration in determining the types and amounts of data to be stored. The TDDB was designed so that data could be stored at any level of detail. 3 figs., 26 tabs.

Not Available

1986-09-01T23:59:59.000Z

400

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser  

SciTech Connect (OSTI)

H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

Wang, L.G. [Coll. of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Vay, S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

1995-12-31T23:59:59.000Z

402

Structural analysis of Catliq bio-oil produced by catalytic liquid conversion of biomass  

E-Print Network [OSTI]

. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomassStructural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass Toor, S The potential offered by biomass for solving some of the world's energy problems is widely recognized

Toor, Saqib

403

Lean Catalytic Combustion for Ultra-low Emissions at High Temperature in Gas-Turbine Burners  

Science Journals Connector (OSTI)

This illustrates the weak point of current catalytic combustion technology: the unavailability of catalytic systems stable at the temperature of the gas turbine inlet temperature. ... The possible feeds are methane, gaseous fuels, and gasified biomasses. ... In particular, the paper presents current development status and design challenges being addressed by Siemens Westinghouse Power Corp. for large industrial engines (>200 MW) and by Solar Turbines for smaller engines (Turbine Systems (ATS) program. ...

Fabrizio DAlessandro; Giovanna Pacchiarotta; Alberto Rubino; Mauro Sperandio; Pierluigi Villa; Arturo Manrique Carrera; Reza Fakhrai; Gianluigi Marra; Annalisa Congiu

2010-12-16T23:59:59.000Z

404

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network [OSTI]

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

405

Extractors manual for Fluidized-Bed Combustion Data Base System: Major Plants Data Base. [FBC; planning  

SciTech Connect (OSTI)

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. The FBC Data System consists of FBC data stored in the MPDB, TDDB, and MMDB; it will contain both atmospheric and pressurized FBC facilities. To capture the results of Government-sponsored FBC programs, documents have been written for the MPDB and TDDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the MPDB and TDDB will meet the needs of the users of the FBC Data System. This document identifies what information is needed and how it must be formatted so that it can be entered into the MPDB for FBC demonstration and commercial plants. The structure of the MPDB is shown in Figure 1-1. Section 2.0 describes the needs of potential users of the FBC Data System. Section 3.0 explains how the contractor should report and format this data so that it can be entered into the MPDB. Section 4.0 explains the quality control procedures that should be used to ensure the integrity of the data that is stored in the MPDB. 2 figs., 28 tabs.

Not Available

1986-09-01T23:59:59.000Z

406

Corrosion performance of structural alloys for oxy-fuel combustion systems.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Fossil Energy is intensely promoting research and development of oxyfuel combustion systems that employ oxygen, instead of air, for burning the fuel. The resulting flue gas primarily consists of H{sub 2}O and CO{sub 2} that facilitates sequestration of CO{sub 2}, thereby leading to reduction in CO{sub 2} emissions. Also, as the oxidant is bereft of N{sub 2}, NO{sub x} emissions are minimized to a great extent from the exhaust gas. Studies at NETL have indicated that oxy-fuel combustion can increase efficiency in the power plants from the current 30-35% to 50-60%. However, the presence of H{sub 2}O/CO{sub 2} and trace constituents like nitrogen and sulfur in the environment at the operating temperatures and pressures can have adverse effects on the corrosion and mechanical properties of structural alloys. Thus, there is a critical need to evaluate the response of structural and turbine materials in simulated H{sub 2}O/CO{sub 2} environments in an effort to select materials that have adequate high temperature mechanical properties and environmental performance. During the past year, a program was initiated to evaluate the corrosion performance of structural alloys in CO{sub 2} and CO{sub 2}-steam environments at elevated temperatures. Materials selected for the study include intermediate-chromium ferritic steels, Fe-Cr-Ni heat-resistant alloys, and nickelbased superalloys. Coupon specimens of several of the alloys were exposed to pure CO{sub 2} at temperatures between 650 and 850C for times up to 1450 h. The corrosion tests in CO{sub 2}-50% steam environment was conducted at temperatures between 650 and 850C for times up to 1250 h. The steam for the experiment was generated by pumping distilled water and converting it to steam in the preheat portion of the furnace, ahead of the specimen exposure location. Preliminary results will be presented on weight change, scale thickness, internal penetration, and microstructural characteristics of corrosion products.

Natesan, K.; Rink, D. L.; Nuclear Engineering Division

2007-01-01T23:59:59.000Z

407

Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner.  

E-Print Network [OSTI]

?? Insufficient knowledge of fireside behavior in the near-burner region during biomass combustion is one of major factors preventing widespread use of this renewable fuel (more)

Wu, Chunyang

2006-01-01T23:59:59.000Z

408

Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner.  

E-Print Network [OSTI]

??Insufficient knowledge of fireside behavior in the near-burner region during biomass combustion is one of major factors preventing widespread use of this renewable fuel in (more)

Wu, Chunyang 1975-

2006-01-01T23:59:59.000Z

409

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network [OSTI]

, Ketone, Biomass burning, Fossil fuel combustion 1. Introduction Globally the two largest sources of primary organic aerosol are fossil fuel combustion (2-28 Tg C yr-1 ) and biomass burning (31-45 Tg C yr-1Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California

Russell, Lynn

410

Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications  

DOE Patents [OSTI]

An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

1997-01-01T23:59:59.000Z

411

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li; John T. Riley

2005-10-01T23:59:59.000Z

412

Combustion engine with fuel injection system, and a spray valve for such an engine  

SciTech Connect (OSTI)

This paper describes a fuel system for a combustion engine have a cylinder with an air inlet passage. It comprises: a fuel spray valve having a fuel injection nozzle for spraying fuel into the cylinder air inlet passage and having a fuel spray valve passage leading to the nozzle, means for mounting the fuel spray valve to position the nozzle to open into the cylinder air inlet passage adjacent the cylinder, a fuel pump for providing fuel under pressure to the fuel spray valve passage to be sprayed from the fuel spray valve nozzle, and a fuel heating device connectable to an electrical power supply and disposed adjacent to the valve to be energized for heating the fuel to enhance finer spraying thereof by the fuel spray valve nozzle, the fuel heating device comprising means defining a spiral fuel flow path of selected length connected to and coaxial with the fuel spray valve passage to dispose the selected length of fuel flow path closely adjacent to the fuel spray valve passage, and a fuel heating element comprising a thermistor of a ceramic material of positive temperature coefficient of resistivity arranged to heat the selected length of the spiral fuel flow path to transfer heat to the fuel flowing in the spiral fuel flow path throughout the selected length of the spiral fuel flow path to substantially heat the fuel at a location closely adjacent to the fuel spray valve passage to enhance vaporizing of fuel being sprayed from the valve nozzle.

Wechem, G.V.; Beunk, G.; Van Den Elst, F.; Gerson, P.M.

1991-10-08T23:59:59.000Z

413

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

SciTech Connect (OSTI)

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

414

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

415

Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering of a High-Throughput Screening System to Identify Cellulosic Biomass, Pretreatments, and Enzyme Formulations That Enhance Sugar Release Michael H. Studer, Jaclyn D. DeMartini, Simone Brethauer, Heather L. McKenzie, Charles E. Wyman Chemical and Environmental Engineering Department, Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, California 92507; telephone: þ951-781-5791; fax: þ951-781-5790; e-mail: charles.wyman@ucr.edu Received 7 April 2009; revision received 21 August 2009; accepted 31 August 2009 Published online 3 September 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22527 ABSTRACT: The recalcitrance of cellulosic biomass, the only abundant, sustainable feedstock for making liquid fuels, is a primary

416

Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification  

Science Journals Connector (OSTI)

Abstract This research focused on the feasibility and stability of applying the forward and reverse combustion approach to the in situ gasification of lignite and bituminous coal with oxygen or oxygensteam mixtures as gasification agents, especially reverse combustion gasification. A high-quality syngas (H2 and CO) could be obtained using the reverse combustion gasification technique combined with forward combustion gasification in a pilot system for in situ gasification. The gasification time was extended more than 25% using the reverse combustion approach. The controlling conditions for reverse combustion gasification were obtained by comparing and analyzing experimental data. The results show the relationship between the inject gas flow within certain limits and velocity of the gasification flame was linear during reverse combustion. The underground conditions of the coal seam and strata were simulated in a pilot-scale underground gasifier during experiments. The combustion gasification of coal was carried out experimentally for over 5days. The average effective content (H2 and CO) of syngas was in the range of 6070%, meeting the requirement of synthesis gas. The optimal ranges of gasifying lignite and bituminous coal were found to be 1.52.0 and 1.31.75, respectively. The product gas flow was proportional to oxygen blast. These are expected to provide useful guidance on practical underground coal gasification operations and to give experimental evidence in support of theory.

Yong Cui; Jie Liang; Zhangqing Wang; Xiaochun Zhang; Chenzi Fan; Dongyu Liang; Xuan Wang

2014-01-01T23:59:59.000Z

417

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network [OSTI]

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

418

Advanced system demonstration for utilization of biomass as an energy source  

SciTech Connect (OSTI)

The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

Not Available

1980-10-01T23:59:59.000Z

419

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

420

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

SciTech Connect (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems  

SciTech Connect (OSTI)

The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

Jeff Melzak; Tim Lieuwen; Adel Mansour

2012-01-31T23:59:59.000Z

422

Improve Your Boiler's Combustion Efficiency  

SciTech Connect (OSTI)

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

423

Advanced Combustion  

SciTech Connect (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

424

Transformations of inorganic coal constituents in combustion systems. Volume 2, Sections 6 and 7: Final report  

SciTech Connect (OSTI)

Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

1992-11-01T23:59:59.000Z

425

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System (Redirected from LEAP) Jump to: navigation, search Tool Summary Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

426

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

427

Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass  

Science Journals Connector (OSTI)

Abstract The potential for bisphenol A (BPA) removal by mixed consortia of immobilized microorganisms with high nitrification activity was investigated with BPA concentrations in the influent from 2.5 to 10.0mg/L. The presence of BPA limited ammonium oxidation; nitrification efficiency decreased from 91.21.3% in the control series to 47.49.4% when BPA concentration in wastewater was the highest. The efficiency of BPA removal rose from 87.15.5% to 92.92.9% with increased BPA concentration in the influent. Measurement of oxygen uptake rates by biomass exposed to BPA showed that BPA was mainly removed by heterotrophic bacteria. A strong negative correlation between the BPA removal efficiency and nitrification efficiency indicated the limited contribution of ammonia-oxidizing bacteria (AOB) to BPA biodegradation. Exposure of biomass to BPA changed the quantity and diversity of AOB in the biomass as shown by real-time PCR and denaturing gradient gel electrophoresis.

Magdalena Zieli?ska; Agnieszka Cydzik-Kwiatkowska; Katarzyna Bernat; Katarzyna Bu?kowska; Irena Wojnowska-Bary?a

2014-01-01T23:59:59.000Z

428

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

429

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

430

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect (OSTI)

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

431

Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion  

E-Print Network [OSTI]

110.6 million barrels per day by 2030 [1]. One possible source of alternative fuel, biodiesel, can be derived from biomass feedstocks (e.g., soybean). This bio-based diesel can augment or replace petroleum based diesel with little to no modifications...

Pickett, Derek

2013-12-31T23:59:59.000Z

432

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

433

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products  

Science Journals Connector (OSTI)

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products ... One of the most promising options to produce transportation fuels from biomass is the so-called biomass-to-liquids (BtL) route, in which biomass is converted to syngas from which high-quality Fischer?Tropsch (FT) fuels are synthesized. ... Alternatively to converting biomass into liquids or coal-like material, new and dedicated feeding systems for biomass can be developed. ...

Robin W. R. Zwart; Harold Boerrigter; Abraham van der Drift

2006-08-29T23:59:59.000Z

434

Synthesis Gas Generation by Chemical-Looping Reforming of Biomass with Natural Copper Ore as Oxygen Carrier  

Science Journals Connector (OSTI)

Chemical-looping reforming (CLR) of biomass is a ... However, at the cost of synthesis gas combustion for heat, the gas lower heating value...

Lei Guo; Haibo Zhao; Chuguang Zheng

2014-11-01T23:59:59.000Z

435

Optimization of the performance ofdown-draft biomass gasifier installedat National Engineering Research &Development (NERD) Centre ofSri Lanka.  

E-Print Network [OSTI]

?? Using biomass gasification to produce combustible gas is one of the promising sustainable energy optionsavailable for many countries. At present, a few small scale (more)

Gunarathne, Duleeka

2012-01-01T23:59:59.000Z

436

Euler-Euler simulation of wood chip combustion on a grate - effect of fuel moisture content and full scale application  

Science Journals Connector (OSTI)

Nowadays, it is common practice to perform CFD calculations for optimisation purposes of technical biomass combustion applications. A numerical model for wood chip combustion on grate firing arrangements has been developed. The model is based on an Euler-Euler approach, enabling a detailed multiphase description of the combustion chamber in terms of flow, turbulence and heat transfer. The model explicitly accounts for interactions between bed and freeboard region and comprises a global description of the whole incineration process associated with wood combustion. For validation purposes, the effect of fuel moisture content in a 240 kWth test facility has been observed experimentally and the results are opposed to the model predictions. Additionally, measurements within a 58 MWth full scale grate firing system have been conducted and the scalability of the numerical model towards industrial applications is investigated.

D. Kurz; U. Schnell; G. Scheffknecht

2013-01-01T23:59:59.000Z

437

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion System + Air Handling Air Handling + Sensors + Calibration Low P, High Flow Rate EGR + VVA - Simulated Robustness Advanced Combustion Concepts - Simulated 0.0...

438

High Efficiency Clean Combustion for Heavy-Duty Engine  

Broader source: Energy.gov [DOE]

Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize engine-out emissions while optimizing fuel economy.

439

Fuel Effects on Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Greenpower Trap Mufflerl System Low-Temperature Diesel Combustion...

440

Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions  

E-Print Network [OSTI]

and combustion conditions in determining OA loadings from biomass burning. 1. INTRODUCTION Biomass burningCharacterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta: Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass

Jimenez, Jose-Luis

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Measurement of Trace Emissions and Combustion Characteristics for a Mass Fire  

E-Print Network [OSTI]

32 The Measurement of Trace Emissions and Combustion Characteristics for a Mass Fire Ronald A of emissions from biomass burning on global climate. While the burning of biomass constitutes a large fraction of world emis- sions, there are insufficient data on the combustion efficiency, emission factors, and trace

442

Modeling the behavior of selenium in Pulverized-Coal Combustion systems  

SciTech Connect (OSTI)

The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel [Reaction Engineering International, 77 W. 200 South, Salt Lake City, UT 84101 (United States)

2010-11-15T23:59:59.000Z

443

Biomass recycling and the origin of phenotype in fungal mycelia  

Science Journals Connector (OSTI)

...resource in each cell, the biomass conversion efficiency (gamma0.2...genotype In modelled systems where biomass conversion efficiency, gamma, is low...at each time step due to the biomass conversion efficiency parameter, but...

2005-01-01T23:59:59.000Z

444

Combustion Engine  

Broader source: Energy.gov [DOE]

Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

445

Market and equipment performance analysis for the application of coal-based fuels/advanced combustion systems: Commercial and small industrial applications: Volume B, Appendices  

SciTech Connect (OSTI)

In March 1985, Burns and Roe Services Corporation (BRSC) under Contract No. AC22-84PC72571 with the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) initiated a task entitled ''Market and Equipment Performance Analysis for the Application of Coal-Based Fuels/Advanced Combustion Systems.'' This volume contains the following Appendices: Commercial sector applications of coal based fuels and advanced technologies, EOS Technologies, Inc.; Estimation of fuel use and population for industrial boilers <50 mm Btu/hr and direct fired combustors <100 mm Btu/hr firing oil and gas, PEI Associates; Characteristics of oil and gas fired boilers; Characteristics of oil and gas fired process heaters; Environmental permitting considerations; States air emission rules and regulations applying to commercial/industrial boilers and process heaters <100 mm Btu/hr heat input; Advanced coal combustion systems; Application of advanced coal combustion systems to watertube boilers; Application of advanced coal combustion systems to firetube boilers; and Application of advanced coal combustion systems to process heaters.

Not Available

1986-05-01T23:59:59.000Z

446

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

SciTech Connect (OSTI)

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

447

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

448

Simulation of lean premixed turbulent combustion  

E-Print Network [OSTI]

combustion systems that can burn fuels such as hydrogen or syngas.syngas, which is obtained from coal gasi?cation. E?ective utilization of these fuels requires combustion

2008-01-01T23:59:59.000Z

449

Pulse combustion  

Science Journals Connector (OSTI)

Pulse combustion has been gaining increased interest because of its potential for higher combustion efficiency greater combustion intensity and lower pollutant emissions. Unsteady combustion causes increased mass momentum and heat transfer. As a result reactants mix faster heat release is accelerated and heat transfer is enhanced in unsteady reacting flows. Many of these phenomena were discovered long ago by engineers looking for the cause of often detrimental combustion instabilities. Much more recently some of these enhanced transfer properties have been used to design efficient and compact pulse combustors. Although to date successful commercialization on a large scale has been limited to home heating units (e.g. the Lenox Pulse Furnace) highly efficient pulse spray dryers (Bepex Unison Dryer) pulse calciners and pulse waste incinerators have been designed. Pulsations have also been applied to carbon black fluidized bed gasifiers. Not all these designs will become economically viable. However the development of tunable pulse combustors that can be acoustically matched to the changing resonance frequency of these pulse processes have made many of them more promising. Recent findings that pulsation can enhance burning even in turbulent flows lend further encouragement to the developers of novel pulse combustion devices.

Jechiel I. Jagoda

2000-01-01T23:59:59.000Z

450

Plant physiology Heat of combustion, degree of reduction  

E-Print Network [OSTI]

Plant physiology Heat of combustion, degree of reduction and carbon content: 3 interrelated methods of combustion and carbon content have been proposed as 3 ways of estimating the construction cost of plant the energy content of biomass and its reduction level. This relationship is not absolute and the regression

Paris-Sud XI, Université de

451

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion  

E-Print Network [OSTI]

Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion A. J. Aspden1,2 , M. S. Day2 between fuel consumption and heat release. Keywords: turbulent premixed combustion, low Mach number flow or hydrogen-rich mixtures obtained from gasi- fication of coal or biomass. These types of fuels provide clean

Bell, John B.

452

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

deposition due to the heat of combustion. The problem wedimensionless heat of combustion, QpYoxoolhw t transferredfraction of specie i heat of combustion per gram of fuel

,

2012-01-01T23:59:59.000Z

453

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

454

Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning  

E-Print Network [OSTI]

Physics and Chemistry Abstract The combustion of biomass is a major source of atmospheric trace gasesFormation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning by Matthew and Planetary Sciences #12;Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning

455

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

456

Design strategy for a Chemical Looping Combustion system using process simulation and Computational Fluid Dynamics  

Science Journals Connector (OSTI)

A strategy for design and optimisation of chemical processes involving multiple fluidised bed reactors is presented through a combination of standard design calculations, process simulation and Computational Fluid Dynamics (CFD). The strategy is demonstrated in designing a Chemical Looping Combustion (CLC) process that generates 12.5 kW of heat in the air reactor. The resulting design strategy will allow for very economical investigations into various design and optimisation considerations. It also offers a platform from which to conduct virtual prototyping investigations for new process concepts, which will lead to significant economic benefits when compared with a traditional experimental process development strategy.

Schalk Cloete; Shahriar Amini

2012-01-01T23:59:59.000Z

457

Transformations of inorganic coal constituents in combustion systems. Volume 3, Appendices: Final report  

SciTech Connect (OSTI)

This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

1992-11-01T23:59:59.000Z

458

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

459

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

460

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1ppm at 1700K, 2ppm at 1800K and 34ppm at 1900K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass combustion systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A study of the effect of chloride on mercury removal in a fluidized bed combustion (FBC) system  

SciTech Connect (OSTI)

Mercury exists in three forms, which are elemental mercury, inorganic mercury compounds, and organic mercury. Each form of mercury has a very different exposure potential. Oxidized mercury is soluble and has a tendency to associate with particles. Nearly all the post-combustion flue gas cleaning systems proposed to remove mercury may be categorized as either scrubbers or adsorbers. Therefore, the mercury sink in the cleaning system will be either the excess water of a wet scrubber or the mercury laden sorbent from an absorber. The major problem for post-combustion mercury capture systems is capturing the practically water-insoluble elemental mercury. Co-firing with high chlorine coal or RDF in utility boiler systems can provide an HCI atmosphere for the oxidation of elemental mercury in flue gas at relatively low temperatures (500--600 C). The objective of this study is to increase the efficiency of mercury emission cleaning methods by using HCl to convert elemental mercury to oxidized mercury species at low monetary costs and lower other toxic air emissions. When high chlorine (0.3--0.5%) coals were burned and a high intensity vortex flow (from secondary air) was used, around 70% of the total mercury in the fuel was condensed and absorbed by the fly ash (including calcium compounds). The remaining 30% of total fuel mercury was emitted in the gas phase in the flue gas. As for the gas phase mercury, about 98% of it exists in an oxidized form with a higher boiling temperature than elemental mercury and can be easily captured by an ESP or FGP apparatus. Only about 0.5% of the total fuel mercury was released to the atmosphere in elemental form.

Liu, K.; Gao, Y.; Li, F.; Pan, W.P.; Riley, J.T.; Mehta, A.K.; Ho, K.K.; Smith, S.R.

2000-07-01T23:59:59.000Z

462

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect (OSTI)

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

463

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network [OSTI]

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

464

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in