Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Woody Biomass Harvesting and Processing Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

In May 2010, Wisconsin enacted legislation allowing taxpayers to claim a tax credit from income or franchise taxes of 10% of the cost of equipment primarily used to harvest or process woody biomass...

2

Woody Biomass Harvesting and Processing Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

In May 2010, Wisconsin enacted legislation allowing taxpayers to claim a tax credit from income or franchise taxes of 10% of the cost of equipment primarily used to harvest or process woody biomass...

3

Agricultural Experiment Station SP701-A Growing and Harvesting Switchgrass for  

E-Print Network [OSTI]

Agricultural Experiment Station SP701-A Growing and Harvesting Switchgrass for Ethanol Production feedstock for ethanol production. It is anticipated that switchgrass can yield sufficient biomass to produce approximately 500 gal- lons of ethanol per acre. While the Tennessee Biofuels Initiative includes

Grissino-Mayer, Henri D.

4

Post-harvest Fates of Agricultural Seed in Tennessee Croplands  

E-Print Network [OSTI]

/ha) * TME / DER QF = quantity of food TME= true metabolizable energy DER = daily energy requirement Lower MS.51 BIOMASS = 241.1 × e (-0.637 × TIME) Giving-up Density 50 kg/ha (Greer et al. 2009) 4.5X Faster than LMVJV Daily Loss Rate 2-3 mo PH Harvested Soybean Mass: Temporal Declines P BIOMASS = 116

Gray, Matthew

5

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network [OSTI]

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

Gratton, Claudio

6

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect (OSTI)

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

7

Switchgrass Biomass Production in the Midwest USA: Harvest and Nitrogen Management  

E-Print Network [OSTI]

Switchgrass Biomass Production in the Midwest USA: Harvest and Nitrogen Management Kenneth P. Vogel.,for switchgrass (Panicum virgatum L.) grown as a biomass or bioen- 1998; Brejda, 2000; Muir et al., 2001). The N and N rates for biomass produc- ment of switchgrass used for hay or grazing largely de- tion

Laughlin, Robert B.

8

E-Print Network 3.0 - agriculture biomass feedstock Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass feedstock Search Powered by Explorit Topic List Advanced Search Sample search results for: agriculture biomass feedstock Page: << < 1 2 3 4 5 > >> 1 Developing a Portfolio...

9

Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment  

SciTech Connect (OSTI)

The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

Mark E. Kubiske

2013-04-15T23:59:59.000Z

10

Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass  

SciTech Connect (OSTI)

As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

Langholtz, Matthew H [ORNL; Caffrey, Kevin R [ORNL; Barnett, Elliott J [ORNL; Webb, Erin [ORNL; Brummette, Mark W [ORNL; Downing, Mark [ORNL

2011-12-01T23:59:59.000Z

11

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa  

E-Print Network [OSTI]

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

Highwood, Ellie

12

Co-processing of agricultural and biomass waste with coal  

SciTech Connect (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

13

Perceptions of secondary school agriculture teachers regarding biomass production education in Iowa.  

E-Print Network [OSTI]

??With the boom of biorenewable energy, biomass production has become an important segment in agriculture industry (Iowa Energy Center, 2013). A higher workforce will be… (more)

Han, Guang

2014-01-01T23:59:59.000Z

14

Physical and Chemical Characteristics of High-Tonnage Sorghum for an Extended Biomass Harvesting Season and Storage  

E-Print Network [OSTI]

and storage; various harvest techniques investigated to identify potential cost savings; and impact of various storage techniques on quantity and quality of deliverable biomass. This study investigated the use of two sorghum varieties as a potential bioenergy...

Hartley, Brandon

2013-05-06T23:59:59.000Z

15

The economic potential of producing energy from agricultural biomass  

E-Print Network [OSTI]

allocation of farm land to meet the forced biomass energy supplies. Most conventional crop prices rise and all biomass feedstock prices rise with increasing feedstock production. As a consequence, farmers receive increased profits. Consumers, however...

Jerko, Christine

1996-01-01T23:59:59.000Z

16

Co-processing of agriculture and biomass waste with coal  

SciTech Connect (OSTI)

Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P. [West Virginia Univ., Morgantown, WV (United States)

1995-12-01T23:59:59.000Z

17

Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues  

SciTech Connect (OSTI)

This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

2009-12-01T23:59:59.000Z

18

Second biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings  

SciTech Connect (OSTI)

This volume provides the proceedings for the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry which was held August 21-24, 1995. The volume contains copies of full papers as provided by the researchers. Individual papers were separately indexed and abstracted for the database.

NONE

1995-01-01T23:59:59.000Z

19

2012 Sino-US Symposium on Eco-agriculture and Biomass Energy Industry Renewable Energy Session  

E-Print Network [OSTI]

2012 Sino-US Symposium on Eco-agriculture and Biomass Energy Industry Renewable Energy Session and wastewater algae technologies, Dr. Roger Ruan, Professor, BBE, University of Minnesota 11:45 am Lunch break Corporation 1:40 pm Wastewater algae screening, acclimation, and culture. Dr. Joe Zhou, Research Associate

Blanchette, Robert A.

20

Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade  

SciTech Connect (OSTI)

Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass imports and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.

Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3  

SciTech Connect (OSTI)

This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

22

Harvesting a renewable resource under uncertainty  

E-Print Network [OSTI]

Consider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”Harvesting a Renewable Resource under Uncertainty 1 (with

Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

23

First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2  

SciTech Connect (OSTI)

This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

24

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

25

The Mechanical Harvesting of Cotton.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION. BRAZOS COUNTY, TEXAS --- - . - - -- BULLETIN NO. 452 AUGUST, 1932 DIVISION OF AGRICULTURAL ENGINEERING The Mechanical Harvesting of Cot...~eration with U. S. Department of Agriculture. CONTENTS w -- ( Z Relat uevel V Ackn Sumn -. Page reduction 5 tory of the Development of Cotton Harvesters 5 Picker Type 6 Thresher Type 11 Pneumatic Type ---_-_---.--------------------------2...

Smith, H. P.; Killough, D. T.; Byrom, M. H.; Scoates, D.; Jones, D. L.

1932-01-01T23:59:59.000Z

26

Supplying High-Quality, Raw Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

27

Sustainable Harvest for Food and Fuel  

SciTech Connect (OSTI)

The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

2007-04-01T23:59:59.000Z

28

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

et al. 1998). Modeling biomass quantities Fig. 2. Potentialet al. 2008. The quantity of biomass that can be harvested

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

29

Interpreting Deer Harvest Records.  

E-Print Network [OSTI]

I Texas A&M versity System Agricultural Extension Service Zerle L. Carpenter. Director College Station B-1486 People Helping People Interpreting Deer Harvest Records LIB ARY Dwight f. Guynn* JUN 11 1985 Deer harvest records... and adequacy of the har vest . The minimum data to collect from deer harvests are: ages, weights, body conditions and measurements of antler size. The data should be grouped according to age categories and ana lyzed separately for bucks and does . This pub...

Guynn, Dwight E.

1984-01-01T23:59:59.000Z

30

Comparison of Different Methods of Harvesting Cotton.  

E-Print Network [OSTI]

- - TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, Director College Station. Texas BULLETIN NO. 683 OCTOBER, 1946 COMPARISON OF DIFFERENT METHODS OF HARVESTING COTTON Division of Agricultural Engineering . and Division of Agronomy... on the rougher methods of harvesting cotton, such as hand-snapping and machine harvesting both with the picker type and the stripper type mechanical harvesters. This n-as largely because the lint from the roughly harvested cottons contained more foreign...

Smith, H. P. (Harris Pearson)

1946-01-01T23:59:59.000Z

31

Harvesting a renewable resource under uncertainty  

E-Print Network [OSTI]

is pervasive for renewable resources, and it can play aConsider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”

Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

32

Harvesting Grain with the Combined Harvester-Thresher in Northwest Texas.  

E-Print Network [OSTI]

OF PUBLIC ROADS. UNITED STATES DEPARTMENT OF AGRICULTURE Harvesting Grain with the Combined Harvester- Thresher in Northwest Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President ' STATION ADMINISTRATION: *H. YOUNGRLOOD, M. S... in 1926 shows that the cost of harvesting is lowered, the amount of labor required is reduced, and the period of harvesting and threshing is short- ened by use of the combine. The cost of harvesting and threshing with the combine ranged from $1...

Smith, H. P. (Harris Pearson); Spilman, Robert F.

1928-01-01T23:59:59.000Z

33

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

34

Agricultural  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011Oversupply ManagementAgricultural Sign In

35

Agricultural  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011Oversupply ManagementAgricultural Sign

36

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

37

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

38

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

2013-01-01T23:59:59.000Z

39

Biomass Feedstocks  

Broader source: Energy.gov [DOE]

A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

40

Kentucky Department of Agriculture | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Agriculture Kentucky Department of Agriculture At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer...

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Bamboo: An Overlooked Biomass Resource?  

SciTech Connect (OSTI)

Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

Scurlock, J.M.O.

2000-02-01T23:59:59.000Z

42

innovati nNovel Biomass Conversion Process Results in Commercial Joint Venture  

E-Print Network [OSTI]

biomass feedstocks such as corn stover, agricultural waste, and energy crops. The pretreatment enables

43

Biomass as Feedstock for a Bioenergy and Bioproducts Industry...  

Energy Savers [EERE]

Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

44

Conversion of Waste Biomass into Useful Products  

E-Print Network [OSTI]

Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

Holtzapple, M.

45

Virtual Engineering Approach to Developing Selective Harvest Technologies  

SciTech Connect (OSTI)

Agricultural crop residues (e.g., straw and stover) are a current focus for bioenergy feedstocks, with new technologies being developed to improve the economics of bioenergy production. Among the emerging technologies focused on feedstock engineering is the selective harvest concept. Due to the complexity of the biomass separations required for addressing the challenges and requirements of selective harvest, high fidelity models and advanced experimental methods that allow observation and measurement of the physical system are needed. These models and methods were developed and include computational fluid dynamics (CFD) modeling to simulate the cleaning shoe of a grain combine and a particle image velocimetry (PIV) technique to quantitatively and qualitatively characterize the cleaning shoe performance. While these techniques alone can be sufficient engineering and analysis tools for developing selective harvest technologies, this paper presents a new methodology, Virtual Engineering (VE), that integrates the CFD and PIV data into a virtual environment, where the data is coupled with the geometric model of a grain combine to provide a virtual representation of the cleaning shoe performance. Using VE visualization capabilities, the CFD and PIV data can be viewed in the context of the physical system for an interactive evaluation of characteristics and performance. This paper also discusses the concepts of additional VE tools that are being developed to provide necessary visualization, simulation and integration functionality.

Kevin L. Kenney; Christopher T. Wright

2005-07-01T23:59:59.000Z

46

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation… (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

47

Review: Harvesting the Biosphere  

E-Print Network [OSTI]

Review: Harvesting the Biosphere: What We Have Taken fromTorino, Italy Smil, Vaclav. Harvesting the biosphere. Whatof the present-day. In Harvesting the Biosphere, Vaclav Smil

Ferrara, Enzo

2013-01-01T23:59:59.000Z

48

IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS  

SciTech Connect (OSTI)

Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

2012-10-01T23:59:59.000Z

49

The Single Pass Multi-component Harvester  

SciTech Connect (OSTI)

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of Presentation. ASAE Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

Reed Hoskinson; John R. Hess

2004-08-01T23:59:59.000Z

50

Charles County- Agricultural Preservation Districts- Renewable Generation Allowed  

Broader source: Energy.gov [DOE]

Charles County provides that producing energy "from solar, wind, biomass, and farm waste and residue crops" is a permitted agricultural use in areas zoned as Agricultural Preservation Districts.

51

Abstract: Design and Demonstration of an Advanced Agricultural...  

Broader source: Energy.gov (indexed) [DOE]

Trailer. Annual demonstration harvests will be performed on large-acre tracts of biomass feedstocks including switchgrass, mixed stands of prairie grasses, and corn stover....

52

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3088  

E-Print Network [OSTI]

BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 Where Does Michigan's Wood Supply Michigan forest land? Can woody biomass be harvested, transported, and delivered at a profit? Will woody biomass harvesting compete with existing forest industries? How does the woody biomass potential compare

53

Rainwater Harvesting  

E-Print Network [OSTI]

and used on-site. Distribution systems channel the captured rainwater to holding areas. The roof of a building or home is one common- ly used catchment. The bigger the roof, the larger the volume of water collected. Gravity then naturally directs... rainwater harvesting system, Texans can easily get through the dry periods of the year without the need for additional water. Each year, irrigation accounts for 30 percent to 50 percent of Texas urban water use, averaging 20 gallons of water per square...

Crawford, Amanda

2005-01-01T23:59:59.000Z

54

Researchers at the Biomass Energy Center  

E-Print Network [OSTI]

into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken fromHARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David of 2005, the term "energy independence" suddenly held new urgency. Finding the energy sources

Lee, Dongwon

55

Vibration Harvesting using Electromagnetic Transduction  

E-Print Network [OSTI]

Van Hoof, and R. Puers, “Harvesting Energy from Vibrationsfor vibration energy harvesting,” Journal of Micromechanicspiezoelectric energy harvesting,” Applied Physics Letters,

Waterbury, Andrew

2011-01-01T23:59:59.000Z

56

Federal Biomass Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

57

Biomass power for rural development  

SciTech Connect (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

58

Mechanical Harvesting of Cotton as Affected by Varietal Characteristics and Other Factors.  

E-Print Network [OSTI]

LIBRARY, A & M COLLEGE, CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 580 DECEMBER 1939 DIVISION OF AGRICULTURAL ENGINEERING Mechanical Harvesting Of Cotton... harvesting, extracting, and cleaning equipment has not been fully realized until recent years. During the past ten years the Texas Station Cotton Harvester has been improved so that it will harvest 94 to 98 per cent of the cotton from varieties developed...

Smith, H. P. (Harris Pearson)

1939-01-01T23:59:59.000Z

59

Energy Harvesting Optimization  

E-Print Network [OSTI]

Energy Harvesting Optimization Power Systems Analysis Final Project into energy harvesting techniques about two decade ago as a valuable way to satisfy those new demands. Energy harvesting derives energy from the ambient environment

Lavaei, Javad

60

Oklahoma Agriculture Agriculture  

E-Print Network [OSTI]

Oklahoma Agriculture Agriculture #12;Oklahoma Agriculture 2011Oklahoma Agriculture 2011 Oklahoma agriculture affects each of us every day, young and old, whether we live in largely rural regions or the state's Division of Agricultural Sciences and Natural Resources promotes sustainable land use and embraces the land

Veiga, Pedro Manuel Barbosa

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast  

E-Print Network [OSTI]

Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied

Vermont, University of

62

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network [OSTI]

during the open combustion of biomass in the laboratory, J.J. R. , and Veres, P. : Biomass burning in Siberia andOpen burning of agricultural biomass: Physical and chemical

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

63

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...  

Energy Savers [EERE]

WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

64

Rainwater Harvesting Program Evaluation  

E-Print Network [OSTI]

and collect rainwater and divert to landscape areas that need extra water Install a rainwater harvestingRainwater Harvesting Program Evaluation Your views on the quality and effectiveness of Extension system Install a rainwater harvesting system to water landscape Install a rainwater harvesting system

65

Mechanical harvesting of leafy greens on small farms  

E-Print Network [OSTI]

Over the last century and a half, farming practices have been revolutionized by the advent of mechanical harvesters, but there is a disparity between available agricultural technology and the technology used in the farm ...

Kraines, Kathleen (Kathleen Agnes)

2013-01-01T23:59:59.000Z

66

Biomass pretreatment  

DOE Patents [OSTI]

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

67

Dielectric Elastomers for Actuation and Energy Harvesting  

E-Print Network [OSTI]

Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Materials Energy Harvesting119 Basic Energy Harvesting Circuitry and Current

Brochu, Paul

2012-01-01T23:59:59.000Z

68

Agricultural and Biological Engineering College of Agricultural Sciences Cooperative Extension  

E-Print Network [OSTI]

solar energy or "green sunshine" derived from the solar- powered photosynthesis process during. The relatively low cost of biomass and the environmental benefits more than offset any boiler efficiency losses, and Pennsylvania Counties Cooperating Biomass Energy Dennis E. Buffington, Professor, Agricultural and Biological

Lee, Dongwon

69

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

70

U.S. Departments of Agriculture and Energy Announce Funding for...  

Broader source: Energy.gov (indexed) [DOE]

will support research, development and demonstration activities for improving biomass feedstocks and their supply, including the harvest, transport, preprocessing, and storage...

71

Harvest Aids in Sorghum  

E-Print Network [OSTI]

Growers can obtain higher prices and increased profits for their grain sorghum by applying harvest aids, which are chemicals that bring the grain to a more uniform percentage of moisture at harvest. This publication explains what causes uneven...

Stichler, Charles; Livingston, Stephen

2003-03-11T23:59:59.000Z

72

WEB HARVESTING Wolfgang Gatterbauer  

E-Print Network [OSTI]

WEB HARVESTING Wolfgang Gatterbauer Computer Science and Engineering University of Washington, USA SYNONYMS web data extraction, web information extraction, web mining DEFINITION Web harvesting describes the process of gathering and integrating data from var- ious heterogeneous web sources. Necessary input

Gatterbauer, Wolfgang

73

Rainwater Harvesting: Landscape Methods  

E-Print Network [OSTI]

With the state's growing population and limited supply of groundwater and surface water, Texans must use water wisely. Rainwater harvesting is an approach that anyone can use to capture rainfall. This publication explains how rainwater harvesting...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-05-30T23:59:59.000Z

74

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

75

A PVDF SENSOR FOR MONITORING GRAIN LOSS IN COMBINE HARVESTER  

E-Print Network [OSTI]

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, P.R.China,212013 * Corresponding author, Address: Key Laboratory of Modern Agricultural Equipment the intelligent automatic control in combine harvester. Polyvinylidene fluoride piezoelectricity film has been one

Boyer, Edmond

76

Post-Harvest Marketing Alternatives  

E-Print Network [OSTI]

The marketing time frame for crops can be divided into three parts--pre-harvest, harvest and post-harvest. This publication focuses on the more common post-harvest marketing strategies using forward contracts, storage, futures contracts, options...

McCorkle, Dean; Welch, Mark

2009-02-04T23:59:59.000Z

77

ORNL/TM-2008/105 Cost Methodology for Biomass  

E-Print Network [OSTI]

ORNL/TM-2008/105 Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Resource and Engineering Systems Environmental Sciences Division COST METHODOLOGY FOR BIOMASS FEESTOCKS ....................................................................................................... 3 2.1.1 Integrated Biomass Supply Analysis and Logistics Model (IBSAL).......................... 6 2

Pennycook, Steve

78

Biomass energy: the scale of the potential resource  

E-Print Network [OSTI]

Biomass energy: the scale of the potential resource Christopher B. Field1 , J. Elliott Campbell1 Avenue, Livermore, CA 94550, USA Increased production of biomass for energy has the potential to offset resources and decrease food security. The net effect of biomass energy agriculture on climate could

79

Peace Corps | Agriculture Agriculture Volunteers  

E-Print Network [OSTI]

Peace Corps | Agriculture Agriculture Volunteers Agriculture is the primary economic activity Volunteers contribute sustain- able solutions to a community's agricultural issues and help preserve natural resources. Programs and Sample Projects Agriculture and Forestry Extension · Collaborate with farmers

Kaminsky, Werner

80

Washington State biomass data book  

SciTech Connect (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cotton Harvest-Aid Chemicals.  

E-Print Network [OSTI]

of Application Managing Harvest-Aid Program Secondary Growth Insect Control Care of Equipment Safety with Chemicals Guide for Using Cotton Harvest Aids Defoliants Desiccants Mixtures Plant Regulators-Conditioners 3 3 4 4 4 4 5 5 6 7 7 COTTON... HARVEST-AID CHEMICALS Robert B. Metzer and James Supak* As the name implies, harvest-aid chemicals pre pare the cotton crop for harvest by reducing foliage and plant moisture that interfere with harvesting operations. Harvest-aid chemicals...

Metzer, Robert B.; Supak, James

1987-01-01T23:59:59.000Z

82

ORIGINAL PAPER Estimation of tree biomass, carbon pool and net primary  

E-Print Network [OSTI]

ORIGINAL PAPER Estimation of tree biomass, carbon pool and net primary production of an old Science+Business Media B.V. 2011 Abstract & Background The data on carbon pool and biomass distribution in north-eastern India, using biomass equations developed from 40 harvested trees between 9 and 63 cm

Paris-Sud XI, Université de

83

Developing a Sustainable Forest Biomass Industry: Case of the US Northeast  

E-Print Network [OSTI]

in renewable energy has produced a spate of new research into the feasibility of forest biomass as a feedstock. Keywords: forest biomass, sustainable, renewable energy, supply, harvest, forest landowners, social energy has produced a spate of new research into the feasibility of forest biomass as a feedstock. The US

Schweik, Charles M.

84

Hay harvesting services respond to market trends  

E-Print Network [OSTI]

acres . . . . . . . . . . Custom harvesting parametersof the alfalfa hay harvesting industry across California. Ofown hay and did custom harvesting, 13% harvested their own

Blank, Steven; Klonsky, Karen; Fuller, Kate

2009-01-01T23:59:59.000Z

85

An evaluation of oscillating digging blades for carrot harvesters  

E-Print Network [OSTI]

AN EVALUATION OF OSCILLATING DIGGING BLADES FOR CARROT HARVESTERS A Thesis by ROBERT DWIGHT CHENOWETH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... May 1972 Major Subject: Agricultural Engineering AN EVALUATION OF OSCILLATING DIGGING BLADES FOR CARROT HARVESTERS A Thesis by ROBERT DWIGHT CHENOWETH Approved as to style and content by: (Chairman of Committee) Head of Department) (Member...

Chenoweth, Robert Dwight

1972-01-01T23:59:59.000Z

86

Progress in the Study of the Mechanical Harvesting of Cotton.  

E-Print Network [OSTI]

Harvesting of Cotton AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President STATION STAFPt Administration : Veterinary Science : A. B. Conner, M. S., Diraetor *M. Francis, D. V. M., Chief R. E. Karper. M. S., Vice Director 33. Schmidt, D... slightly roughened surface gave a high efficiency in harvesting cotton. Rolls 56 inches in length, operated at an angle between 25 and 30 degrees with the ground, and hav- ing a peripheral travel faster than that of the forward travel of the tractor...

Smith, H. P. (Harris Pearson)

1935-01-01T23:59:59.000Z

87

Tenure and Mechanization of the Cotton Harvest, Texas High Plains.  

E-Print Network [OSTI]

Tenure and the Cotton Texas High Mechanization Harvest, Plains TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, DIRECTOR, COLLEGE STATION. TEXAS SUMMARY Cotton farmers on the High Plains of Texas are unable to rely on either all... handpulling or all ma- chine-stripping. Handpulling depends on the timely appearance of an adequate supply of migratory workers who will stay through the season. Machine-stripping depends on a frost early enough to per- mit harvesting over a period of 4...

Metzler, William H.; Adkins, William G.

1955-01-01T23:59:59.000Z

88

Biomass Surface Characterization Laboratory  

E-Print Network [OSTI]

the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

89

Rainwater Harvesting in Texas  

E-Print Network [OSTI]

As the population of Texas grows, so does the state's need for water. Rainwater harvesting is one way to keep up with the demand. Rainwater Harvesting in Texas gives residents information on how to collect rainwater for their own uses. 1 photo, 1...

Kniffen, Billy

2008-07-14T23:59:59.000Z

90

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest and storage  

E-Print Network [OSTI]

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest illness. Steps to take prior to harvest When washing and sanitizing surfaces, use the appropriate. Pressure washing is a good way to clean. Clean and sanitize harvesting tools such as knives, pruners

Liskiewicz, Maciej

91

Introduction Agriculture/Agricultural Science  

E-Print Network [OSTI]

38 Introduction Guide Entrance Life Career Inquiries Agriculture/Agricultural Science Mission and goal of the Graduate School of Agricultural Science The mission of agricultural science organization which aims to realize this agricultural ideal, the Graduate School of Agricultural Science's basic

Banbara, Mutsunori

92

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISĂ? and DTU Anne Belinda Thomsen (RISĂ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

93

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

94

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network [OSTI]

2008. Sustainable liquid biofuels from biomass: The writingscandidates for refining into biofuels also possess qualitiesin the production of biofuels from agricultural feed- stocks

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

95

Macroalgae as a Biomass Feedstock: A Preliminary Analysis  

SciTech Connect (OSTI)

A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

2010-09-26T23:59:59.000Z

96

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect (OSTI)

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

97

Lighting and Daylight Harvesting  

E-Print Network [OSTI]

exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

Bos, J.

2011-01-01T23:59:59.000Z

98

FACT SHEETUNITED STATES DEPARTMENT OF AGRICULTURE FARM SERVICE AGENCY  

E-Print Network [OSTI]

and forest lands will be rededicated to new shrub willow planting for biomass purposes. To support shrub enrollment. The 3,500 acres will be planted in 2013 and 2014 to provide a steady supply of this biomassFACT SHEETUNITED STATES DEPARTMENT OF AGRICULTURE FARM SERVICE AGENCY Page 1 June 2012 Biomass Crop

Keinan, Alon

99

Environmental analysis of biomass-ethanol facilities  

SciTech Connect (OSTI)

This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

Corbus, D.; Putsche, V.

1995-12-01T23:59:59.000Z

100

Alcohol production from agricultural and forestry residues  

SciTech Connect (OSTI)

Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

Dale, L; Opilla, R; Surles, T

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alcohol production from agricultural and forestry residues  

SciTech Connect (OSTI)

A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

Opilla, R.; Dale, L.; Surles, T.

1980-05-01T23:59:59.000Z

102

Saskatchewan Agricultural  

E-Print Network [OSTI]

Saskatchewan Agricultural Hall of Fame College of Agriculture and Bioresources Inductees 2014 Edition #12;"SALUTE TO SASKATCHEWAN FARM LEADERS" Photos courtesy of the Saskatchewan Agriculture Hall Williams 1941- Lorne Alan Babiuk 1946- #12;"SALUTE TO SASKATCHEWAN FARM LEADERS" Photos courtesy

Peak, Derek

103

SOUTHWEST COTTON HARVEST AID PERFORMANCE AND NARROW ROW OPTIONS Wayne Keeling  

E-Print Network [OSTI]

SOUTHWEST COTTON HARVEST AID PERFORMANCE AND NARROW ROW OPTIONS Wayne Keeling Texas Agricultural Experiment Station Lubbock, TX Abstract Cotton is produced in the Southwest (Texas and Oklahoma) under a wide in rainfall and availability of irrigation, yields may range from 1250 lb/A. Cotton is harvested

Mukhtar, Saqib

104

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

105

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

106

Superheater Corrosion Produced By Biomass Fuels  

SciTech Connect (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

2012-01-01T23:59:59.000Z

107

Assessment of Biomass Resources in Liberia  

SciTech Connect (OSTI)

Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

Milbrandt, A.

2009-04-01T23:59:59.000Z

108

Fiscalini Farms Biomass Energy Project  

SciTech Connect (OSTI)

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

109

Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL)  

SciTech Connect (OSTI)

The Integrated Biomass Supply & Logistics (IBSAL) model is a dynamic (time dependent) model of operations that involve collection, harvest, storage, preprocessing, and transportation of feedstock for use at a biorefinery. The model uses mathematical equations to represent individual unit operations. These unit operations can be assembled by the user to represent the working rate of equipment and queues to represent storage at facilities. The model calculates itemized costs, energy input, and carbon emissions. It estimates resource requirements and operational characteristics of the entire supply infrastructure. Weather plays an important role in biomass management and thus in IBSAL, dictating the moisture content of biomass and whether or not it can be harvested on a given day. The model calculates net biomass yield based on a soil conservation allowance (for crop residue) and dry matter losses during harvest and storage. This publication outlines the development of the model and provides examples of corn stover harvest and logistics.

Sokhansanj, Shahabaddine [ORNL; Webb, Erin [ORNL; Turhollow Jr, Anthony F [ORNL

2008-06-01T23:59:59.000Z

110

Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on  

E-Print Network [OSTI]

to determine how trees affect the behavior of these nutrients in soil water, both during growth and afterTree Harvest in an Experimental Sand Ecosystem: Plant Effects on Nutrient Dynamics and Solute Sciences/US Department of Agriculture, Washington State University, Pullman, Washington 99164, USA; 4 USDA

Vermont, University of

111

Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header  

SciTech Connect (OSTI)

Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

Eisenbies, Mark [SUNY ESF; Volk, Timothy [SUNY ESF

2014-10-03T23:59:59.000Z

112

Light harvesting arrays  

DOE Patents [OSTI]

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

113

Harvesting nanoscale thermal radiation using pyroelectric materials  

E-Print Network [OSTI]

D. , 2008. “Energy harvesting based on Ericsson pyroelectricD. J. , 2009. Energy Harvesting Tech- nologies. Springer,materials for harvesting waste heat”. International Journal

Fang, Jin; Frederich, Hugo; Pilon, Laurent

2010-01-01T23:59:59.000Z

114

Photon echo studies of photosynthetic light harvesting  

E-Print Network [OSTI]

of the B800-B820 light-harvesting complex. Proc Natl Acadphotosynthetic light harvesting Elizabeth L. Read Ć Hohjaitransfer events in light harvesting. Here, we outline the

Read, Elizabeth L.; Lee, Hohjai; Fleming, Graham R.

2009-01-01T23:59:59.000Z

115

Rainwater Harvesting in San Francisco Schools  

E-Print Network [OSTI]

and planned rain- water harvesting (RWH) systems areadopted the Rain- water Harvesting Guidelines in ear- lywater management education was matched with a de- SFUSD Rainwater Harvesting

Bintliff, Jacob M.

2011-01-01T23:59:59.000Z

116

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

117

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

118

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3085  

E-Print Network [OSTI]

BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 Energy Use in Michigan Before we sources--woody biomass, agricultural products (food and non-food), wind, solar, hydro and ground heat of renewable sources--woody biomass, agricultural products (food and non-food), wind, solar, hydro and ground

119

Biomass District Heat System for Interior Rural Alaska Villages  

SciTech Connect (OSTI)

Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

Wall, William A.; Parker, Charles R.

2014-09-01T23:59:59.000Z

120

Harvesting Chaparral Biomass for Energy--An Environmental Assessment1  

E-Print Network [OSTI]

of chaparral wood fuel products have been pro- posed, and a transportable wood densification unit is being readily available and few indus- trial plants can use wood fuels (J. A. Miles, pers. commun.). However

Standiford, Richard B.

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

122

Biomass Densification Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

123

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

124

Dynamics of light interception, leaf area and biomass production in Populus clones  

E-Print Network [OSTI]

Dynamics of light interception, leaf area and biomass production in Populus clones-Forest Service, Rhinelander, WI 54501,U.S.A. Introduction Biomass production in agricultural crops is directly that a linear relation- ship between solar radiation capture and biomass production also exists for forest

Paris-Sud XI, Université de

125

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3093  

E-Print Network [OSTI]

. Biomass feedstocks might be wood, agricultural products, or municipal solid waste. A "co-gen" plant the biomass feedstocks that are most available in their area. Wood has proven to be quite advantageous where that use biomass feedstocks can sell carbon credits or "green" credits in financial markets where

126

Hay Harvesting Costs in Texas.  

E-Print Network [OSTI]

......... 10 COMPARING HAY HARVESTING ALTERNATIVES ................... 11 INVESTMENT DECISIONS CONCERNING MACHINERy ...... 13 ACKNOWLEDGMENTS .............. 15 James T. Long, Wayne D. Taylor and Todd W. Berry* INTRODUCTION Making profitable decisions... and lead to a less profitable and less Texas farmers and ranchers are confronted with methods of harvesting forage. Generally, graz is the cheapest harvest method. However, some ical hay harvesting and feeding is necessary Texas operations.' area...

Long, James T.; Taylor, Wayne D.; Berry, Todd W.

1977-01-01T23:59:59.000Z

127

Vibration Harvesting using Electromagnetic Transduction  

E-Print Network [OSTI]

Journal of Microelectromechanical Systems, vol. 18, no. 2,Capability,” Microelectromechanical Systems, Journal of,Harvesting,” Microelectromechanical Systems, Journal of, no.

Waterbury, Andrew

2011-01-01T23:59:59.000Z

128

E-Print Network 3.0 - agricultural wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capable of converting wastes into fuels to other agriculturally based or other biomass feedstocks... ACTION TEAM PROGRESS REPORT Recovering the Value of Waste for Environmental...

129

Ecological Modelling 180 (2004) 211229 A forest growth and biomass module for a landscape simulation  

E-Print Network [OSTI]

integrated a simple model of biomass growth, mortality, and decay into LANDIS, a spatially dynamic landscape model. The combined model simulates disturbances (fire, wind, harvesting), dispersal, forest biomass growth and mortality, and inter- and intra-specific competition. We used the model to quantify how fire

Mladenoff, David

130

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

131

Rainwater Harvesting: Livestock  

E-Print Network [OSTI]

with age, weight, pregnancy and lactation. Figure 1. A typical rainwater harvesting system uses a roof, gutters, downspout and pipes underground, and backup into the top of the collection tank. This prevents livestock from damaging the pipes and allows... the tank to be much further away from the shed. Unless there is a drain along the lower pipe, the standing pipes will contain water that is susceptible to freezing. 2 Sources of Water Rivers, streams, springs and existing stock ponds provide the least...

Kniffen, Billy

2007-05-24T23:59:59.000Z

132

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

133

Hydrothermal Liquefaction of Biomass  

SciTech Connect (OSTI)

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

134

College of Agriculture & Life Sciences Agricultural Technology  

E-Print Network [OSTI]

College of Agriculture & Life Sciences Agricultural Technology Applied Agricultural Management Option Checksheet for Students Graduating in Calendar Year 2013 Associate of Agriculture Degree Required Agricultural Technology Core Courses (31 credits) 3 AT 0104 Computer Applications 3 AT 0114 Applied

Virginia Tech

135

Biomass Gasification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Biomass Gasification Biomass Gasification Photo of switchgrass being swathed. The Program anticipates that biomass gasification could be deployed in the...

136

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

137

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

138

EERC Center for Biomass Utilization 2005  

SciTech Connect (OSTI)

Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

139

agriculture project fact: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIR) Characterization.fl. ) 12;Swedish University of Agricultural Sciences www.slu.se Heat treated biomass into green' bio-coal 176 FACTS II (Aspen FACE) Facility and Harshaw...

140

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rainwater Harvesting: Guidance for Homeowners Although rainwater harvesting has been practiced for thousands of years,  

E-Print Network [OSTI]

supply for a home or business. A rainwater harvesting system captures stormwater runoff, often from1 Rainwater Harvesting: Guidance for Homeowners Although rainwater harvesting has been practiced to consider using rainwater harvesting systems. While advanced systems are available from consultants

Hunt, William F.

142

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

143

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

144

Abstract--This paper presents ambient mechanical vibrations as an alternative source for energy harvesting, especially  

E-Print Network [OSTI]

Abstract--This paper presents ambient mechanical vibrations as an alternative source for energy harvesting, especially beneficial where alternatives such as light, wind, biomass and thermal energy are limited, e.g., powering underground sensors. Transduction of ambient kinetic energy, e.g., the vibrations

Kumar, Ratnesh

145

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

146

Factors Affecting the Performance of Mechanical Cotton Harvesters (Stripper Type), Extractors and Cleaners.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR College Station, Texas ULLETIN NO. 686 DECEMBER, 1946 FACTORS AFFECTING THE PERFORMANCE OF MECHANICAL COTTON HARVESTERS (STRIPPER TYPE), EXTRACTORS AND CLEANERS H. P. SMITH, D. T... stripping machines during the past five years. Several concerns are now building two-row tractor mounted machines for the commercial trade. The performance of the stripper type cotton harvester is influenced by a number of factors, Tests to determine...

Jones, D. L. (Don L.); Killough, D. T. (David Thornton); Smith, H. P. (Harris Pearson)

1946-01-01T23:59:59.000Z

147

Agriculture INTRODUCTION  

E-Print Network [OSTI]

volatility following trade liberalization. This had an adverse effect on agricultural economies of regions impact on small and mar- ginal farmers. · Increased non-agricultural demand for land and water as a result of the higher overall GDP growth and urbanization. · Aggravation in social distress

Sohoni, Milind

148

Harvesting Machine Census 1999 & 2001  

E-Print Network [OSTI]

1 Harvesting Machine Census 1999 & 2001 231 Corstorphine Road Edinburgh EH12 7AT www.forestry.gov.uk FCTN001 SUMMARY This Technical Note contains information on the 1999 and 2001 harvesting machine machines, converted forwarders, etc., account for the remaining machines. In the 2001 census, 65

149

Hay Harvesting Costs $$$$$ in Texas.  

E-Print Network [OSTI]

Hay is an important crop in Ta 1 Harvesting costs constitute the major5 pense of hay production in many M Mg and Wayne D . Taylor INTRODUCTION .................................................... 2 Fixed Costs or Ownership Costs... ............................................. 10 Totarl Cost .............................................................. 10 HAY HARVESTING ALTERNATIVES COMPARED ...................... 11 HOW TO MAKE WISE DECISIONS CONCERNING INVESTMENTS IN MACHINERY...

Long, James T.; Taylor, Wayne D.

1972-01-01T23:59:59.000Z

150

Biofuels and Agriculture  

E-Print Network [OSTI]

residues, or other kinds of plant-based "biomass feedstocks". Ethanol is typically made from plant biomass

Pawlowski, Wojtek

151

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan C

2007-01-01T23:59:59.000Z

152

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan

2007-01-01T23:59:59.000Z

153

Rainwater Harvesting in San Francisco Schools  

E-Print Network [OSTI]

et al. Applied Rainwater Harvesting Education: An AustralianNatasha et al. Rainwater Harvesting for Non-Potable Use inPorter, Dana et al. Rainwater Harvesting. American Rainwater

Bintliff, Jacob M.

2011-01-01T23:59:59.000Z

154

Scientists produce transparent, light-harvesting material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

155

Harvesting nanoscale thermal radiation using pyroelectric materials  

E-Print Network [OSTI]

materials for harvesting waste heat”. International Journala way to convert waste heat directly into electricity. Ita novel way to harvest waste heat by combining pyroelectric

Fang, Jin; Frederich, Hugo; Pilon, Laurent

2010-01-01T23:59:59.000Z

156

Organic agriculture cannot replace conventional agriculture  

E-Print Network [OSTI]

Organic agriculture cannot replace conventional agriculture Sina Adl , David Iron and Theodore Agriculture | Pathogen Dispersal Introduction Organic farming [1, 2] is gaining in popularity in Eu- rope, because or- ganic agriculture avoids using environmentally harmful chem- icals that pollute soil

Kolokolnikov, Theodore

157

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white...

158

Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity and season of harvest on cellulosic feedstock and  

E-Print Network [OSTI]

and Wildlife Foundation, "Budweiser Renewable Energy and Wildlife Conservation Prize," South Dakota Game, Fish) and by state and federal agencies. This project will examine how feedstock harvest will affect game bird, and Parks Federal Aid in Wildlife Restoration, and South Dakota State University Agricultural Experiment

159

Electricity from biomass: An environmental review and strategy  

SciTech Connect (OSTI)

This report presents an environmental assessment and strategy for the US Department of Energy Biomass Power Program. The regulatory context and the environmental impact of biomass power technologies are described, and an environmental plan for the program is suggested. The plan suggest a proactive, synergistic approach, involving multiple parties with a stake in the successful commercialization of a biomass power industry. These parties include feedstock growers, state regulators. Forest Service and agricultural agents, utilities and independent power producers, rural electric cooperatives, and environmental activists.

None

1993-06-01T23:59:59.000Z

160

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Recovery of energy from sludge-Comparison of the various2006. Wim Rulkens, Sewage sludge as a biomass resource forEpstein, E. , Sewage sludge and effluent use in agriculture,

FAN, XIN

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can’t grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

None

2010-01-01T23:59:59.000Z

162

Stump Harvesting: Interim Guidance on  

E-Print Network [OSTI]

to supply biomass for heat and power generation in the UK and attention is now turning to the potential placed in adjacent `wind-rows', and then extracted by forwarder to road side for storage and subsequent, the benefits of increasing the use of biomass, as well as other potential advantages (such as easier site

163

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

164

Piezoelectric MEMS for energy harvesting  

E-Print Network [OSTI]

Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for ...

Kim, Sang-Gook

165

Biomass Processing Photolibrary  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

166

Co-firing biomass  

SciTech Connect (OSTI)

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

167

Biomass 2013 Attendee List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

168

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

169

Distance Effect of Molecular Harvesting over Signal Reception and Harvesting Performance in DIRECT  

E-Print Network [OSTI]

Distance Effect of Molecular Harvesting over Signal Reception and Harvesting Performance in DIRECT, they do not attenuate over time and they are considered 100% reusable, if properly harvested. In this paper, the impact of harvester location over the signal reception and the harvesting performance

Politècnica de Catalunya, Universitat

170

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne Biomass

171

NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

172

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

173

Biomass Research Program  

SciTech Connect (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2011-01-01T23:59:59.000Z

174

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

175

Improving Crop Yield and Water Productivity by Ecological Sanitation and Water Harvesting in South Africa  

E-Print Network [OSTI]

, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa *S Supporting Information and fertility constraints in rain- fed smallholder agriculture in South Africa, namely in situ water harvesting significantly increased maize yields by 12% and transpiration by 2% on average across South Africa. In situ

Wehrli, Bernhard

176

Assessment of Biomass Resources from Marginal Lands in APEC Economies  

SciTech Connect (OSTI)

The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

Milbrandt, A.; Overend, R. P.

2009-08-01T23:59:59.000Z

177

Biomass energy in China and its potential Li Jingjing  

E-Print Network [OSTI]

& Mining Unit, East Asia and the Pacific Region, The World Bank #172 Xizhimennei Avenue, 100035, Beijing, P of firewood and agricultural residues for cooking and heating brings with it detrimental effects of indoor air pollution and associated adverse health impacts. In addition, the time spent collecting biomass fuels

178

APPLIED ISSUES Deforestation alters the resource base and biomass of  

E-Print Network [OSTI]

APPLIED ISSUES Deforestation alters the resource base and biomass of endemic stream insects-rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents

Benstead, Jon

179

About California Agriculture  

E-Print Network [OSTI]

Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 2Carol Lovatt California Agriculture (ISSN 0008-0845, print,

Editor, The

2013-01-01T23:59:59.000Z

180

About California Agriculture  

E-Print Network [OSTI]

Form 3579” to California Agriculture at the address above. ©Submissions. California Agriculture manages the peer reviewour Writing CALIFORNIA AGRICULTURE • VOLUME 66 , NUMBER 4

Editors, The

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

About California Agriculture  

E-Print Network [OSTI]

Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 1Carol Lovatt California Agriculture (ISSN 0008-0845, print,

Editor, The

2013-01-01T23:59:59.000Z

182

Pennsylvania Agricultural  

E-Print Network [OSTI]

- mental regulations cover industrial pollution as well as pollution controls for agriculture. Two of PA but must be kept on the farm and made available upon request. Plans NPDES Permits The National Pollutant Discharge Elimination System (NPDES) permit is a requirement for construction activities that disturb 1 acre

Guiltinan, Mark

183

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

184

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

185

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

186

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels...

187

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

188

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

189

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to...

190

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

191

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

192

2011 Fur Seal Subsistence Harvest Report The Subsistence Harvest of Northern Fur Seals  

E-Print Network [OSTI]

.................................................................................................................... 6 By-products and Waste.............................. 6 Heat Strokes seals harvested b) incidence of by-products and waste during the harvest process c) the occurrence

193

BIOMASS-TO-ENERGY FEASIBILITY STUDY  

SciTech Connect (OSTI)

The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

Cecil T. Massie

2002-09-03T23:59:59.000Z

194

EA-1957: Cabin Creek Biomass Facility, Placer County, California  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood?to?energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities. NOTE: After review of a final California Environmental Quality Act Environmental Impact Report, DOE has determined that preparation of an EA is not necessary. The propsed action fits within DOE's categorical exclusion B5.20. Therefore, this EA is cancelled.

195

Factors affecting agricultural journalists and agricultural communicators  

E-Print Network [OSTI]

Agricultural journalism and agricultural communication have been researched in depth, identifying job skills, job satisfaction, educational backgrounds, and curriculum issues. However, a study examining the spheres (subjective, institutional...

Chenault, Edith Anne

2009-05-15T23:59:59.000Z

196

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

197

Saphenous vein harvesting site dermatoses in eastern India  

E-Print Network [OSTI]

great saphenous vein harvesting for coronary artery bypassSaphenous vein harvesting site dermatoses in eastern Indiaside effects of the leg vein harvesting include a variety of

Ghosh, Sudip Kumar; Bandyopadhyay, Debabrata

2009-01-01T23:59:59.000Z

198

Feasibility of using nanoporous materials in water harvesting  

E-Print Network [OSTI]

Possible Role in Water Harvesting Experiment: AtmosphericMATERIALS IN WATER HARVESTING A thesis submitted in partialMATERIALS IN WATER HARVESTING by Brian Justin Chow Master of

Chow, Brian Justin

2010-01-01T23:59:59.000Z

199

Feasibility of using nanoporous materials in water harvesting  

E-Print Network [OSTI]

Possible Role in Water Harvesting Experiment: AtmosphericNANOPOROUS MATERIALS IN WATER HARVESTING A thesis submittedNANOPOROUS MATERIALS IN WATER HARVESTING by Brian Justin

Chow, Brian Justin

2010-01-01T23:59:59.000Z

200

A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface  

E-Print Network [OSTI]

and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

He, Hong

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

202

Strategic Biomass Solutions (Mississippi)  

Broader source: Energy.gov [DOE]

The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

203

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

204

Biomass Energy Production Incentive  

Broader source: Energy.gov [DOE]

In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

205

Harvesting Energy from Wastewater Treatment  

E-Print Network [OSTI]

Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack #12;Energy content of Wastewaters · Electricity "lost" to water and wastewater treatment= 0.6 quad

206

Harvesting Energy from Wastewater Treatment  

E-Print Network [OSTI]

Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health IssuesGlobal Energy & Health content of WastewatersEnergy content of Wastewaters ·· ElectricityElectricity ""lostlost"" to water

207

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

208

The potential impact of externalities considerations on the market for biomass power technologies  

SciTech Connect (OSTI)

This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

Swezey, B.G.; Porter, K.L.; Feher, J.S.

1994-02-01T23:59:59.000Z

209

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

210

Biomass | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass: Organic

211

Assessment of rainwater harvesting in Northern Ghana  

E-Print Network [OSTI]

This study assesses the current state of rainwater harvesting in the Northern Region of Ghana and makes recommendations regarding if and how rainwater harvesting could be used to address Pure Home Water's goal of reaching ...

Barnes, David Allen

2009-01-01T23:59:59.000Z

212

Thermal Storage with Ice Harvesting Systems  

E-Print Network [OSTI]

Application of Harvesting Ice Storage Systems. Thermal storage systems are becoming widely accepted techniques for utility load management. This paper discusses the principles of ice harvesting equipment and their application to the multi...

Knebel, D. E.

1986-01-01T23:59:59.000Z

213

Ultra wide-bandwidth micro energy harvester  

E-Print Network [OSTI]

An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

Hajati, Arman

2011-01-01T23:59:59.000Z

214

Harvesting energy from non-ideal vibrations  

E-Print Network [OSTI]

Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

Chang, Samuel C

2013-01-01T23:59:59.000Z

215

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

216

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

217

Northeast Regional Biomass Program  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

Lusk, P.D.

1992-12-01T23:59:59.000Z

218

Framtidens lantbruk / Future Agriculture Future Agriculture  

E-Print Network [OSTI]

Framtidens lantbruk / Future Agriculture Future Agriculture ­ Livestock, Crops and Land Use Report from a multidisciplinary research platform. Phase I (2009 ­ 2012) #12;Future Agriculture ­ Livestock Waldenström Utgivningsår: 2012, Uppsala Utgivare: SLU, Framtidens lantbruk/Future Agriculture Layout: Pelle

219

INTERNAL PROJECT INFORMATION NOTE 10/08 Title: CCF Harvesting Method Development: Harvester Head  

E-Print Network [OSTI]

INTERNAL PROJECT INFORMATION NOTE 10/08 Title: CCF Harvesting Method Development: Harvester Head PROJECT INFORMATION NOTE 10/08 Ref 1200A/56/07 CCF Harvesting Method Development: Harvester Head Visibility SUMMARY The use of Continuous Cover Forestry (CCF) can lead to situations where a dense

220

Energy Harvesting Diamond Channel with Energy Cooperation  

E-Print Network [OSTI]

Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

Ulukus, Sennur

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Harvesting Communications with Continuous Energy Arrivals  

E-Print Network [OSTI]

Energy Harvesting Communications with Continuous Energy Arrivals Burak Varan Kaya Tutuncuoglu Aylin--This work considers an energy harvesting transmit- ter that gathers a continuous flow of energy from intermittent sources, thus relaxing the modeling assumption of discrete amounts of harvested energy present

Yener, Aylin

222

Afternoon Session-Part 1 Energy Harvesting  

E-Print Network [OSTI]

Afternoon Session- Part 1 Energy Harvesting Wireless Networks Aylin Yener yener@ee.psu.edu Wireless Wireless networking with rechargeable (energy harvesting) nodes: Green, self-sufficient nodes, Extended. 7/27/2011Wireless Information Theory Summer School in Oulu, Finland #12;Energy Harvesting

Ulukus, Sennur

223

Supervised Harvesting of Expression Trees Trevor Hastie  

E-Print Network [OSTI]

Supervised Harvesting of Expression Trees Trevor Hastie #3; , Robert Tibshirani y , David Botstein learning from gene ex- pression data. We call it \\Tree Harvesting". This technique starts between genes. Conclusions Tree Harvesting is a potentially useful tool for exploration of gene expression

Hastie, Trevor

224

Energy Cooperation in Energy Harvesting Wireless Communications  

E-Print Network [OSTI]

Energy Cooperation in Energy Harvesting Wireless Communications Berk Gurakan1 , Omur Ozel1 , Jing node, a relay node and a destination node where the source and the relay can harvest energy from the nature. Energy required for communication arrives (is harvested) at the transmitter and an unlimited

Ulukus, Sennur

225

Energy Harvesting Communication Networks: Optimization and Demonstration  

E-Print Network [OSTI]

) and the UK (Imperial College London). Index Terms--energy harvesting; energy packet net- works; Markov models harvesting devices. EH capability can scavenge ambient energy, such as vibrations, thermal gradients or solar1 Energy Harvesting Communication Networks: Optimization and Demonstration (The E-CROPS Project

Gesbert, David

226

Robotics in Crop Production Department of Agricultural and Biological Engineering, University of Illinois at  

E-Print Network [OSTI]

Robotics in Crop Production Tony Grift Department of Agricultural and Biological Engineering such as harvesting of citrus fruits, grapes, and raisins. An important part of Automation is the use of robots. Robotics in agriculture is not a new concept; in controlled environments (green houses), it has a his- tory

227

Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation  

DOE Patents [OSTI]

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

2012-10-09T23:59:59.000Z

228

Agricultural Producer Attitudes and Perceptions Towards New Bio-based Business Opportunities  

E-Print Network [OSTI]

in biomass activities and markets assuming it was viable relative to current farming activities. Results in the U.S. will require the use of bioenergy crops and agricultural residues (Walsh et al., 2003). In 2007

Wu, Qinglin

229

A preliminary assessment of the state of harvest and collection technology for forest residues  

SciTech Connect (OSTI)

To meet the 'Twenty in Ten Initiative' goals set in the 2007 State of the Union address, forest resources will be needed as feedstocks for lignocellulosic ethanol production. It has been estimated that 368 million dry tons can be produced annually in the U.S. from logging residues and fuel treatment thinnings. Currently, very little of this woody biomass is used for energy production due to the costs and difficulty in collecting and transporting this material. However, minimizing biomass costs (including harvest, handling, transport, storage, and processing costs) delivered to the refinery is necessary to develop a sustainable cellulosic ethanol industry. Achieving this goal requires a fresh look at conventional timber harvesting operations to identify ways of efficiently integrating energy wood collection and developing cost-effective technologies to harvest small-diameter trees. In conventional whole-tree logging operations, entire trees are felled and skidded from the stump to the landing. The residues (also called slash), consisting of tops and limbs, accumulate at the landing when trees are delimbed. This slash can be ground at the landing with a mobile grinder or transported to another central location with a stationary grinder. The ground material is transported via chip vans, or possibly large roll on/off containers, to the user facility. Cut-to-length harvesting systems are gaining popularity in some locations. In these operations, specialized harvesters that can fall, delimb, and cut logs to length are used. The small diameter tops and limbs accumulate along the machine's track. It can be left in the forest to dry or removed soon after harvest while logs are extracted. Removing slash during the same operation as the wood has been shown to be more efficient. However, leaving residue in the forest to dry reduces moisture content, which improves grinder performance, reduces dry matter loss during storage, and inhibits colonization of fungi that produce harmful spores. In recent years, new machines that are specially designed for collection of small diameter wood have been developed in the U.S. and Europe. Residue bundlers and balers improve transportation and handling efficiency by densifying the material and packaging it so that it can be handled with conventional equipment. An experimental integrated harvester/grinder can fall small diameter trees and feed them into a grinder. The ground material is collected in a bin that can be dumped into a chip van. The harvester head is also capable of delimbing and bucking (cut into sections) small timber to be used for pulp and posts. Limitations of these new technologies are their large capital costs and complexity, leading to high maintenance costs and the need for highly trained operators. To ensure that quality feedstock materials consistently enter the mouth of the refinery, the uniform format supply system concept proposes that feedstock diversity be managed at harvest, much like the current grain supply system. This allows for standardization of key infrastructure components and facilitation of a biomass commodity system. Challenges in achieving a uniform woody biomass supply include, but are not limited to, developing machines for efficient harvest of small-diameter trees in a range of topographies and conditions, developing machines and operating plans for grinding biomass as near to the stump as possible, developing cost-effective drying strategies to reduce losses and mold growth during wood chip storage, and quantifying environmental impacts of slash removal and fuel thinnings to aid landowner decisions and policy development.

Webb, Erin [ORNL; Perlack, Robert D [ORNL; Blackwelder, D. Brad [Idaho National Laboratory (INL); Muth, David J. [Idaho National Laboratory (INL); Hess, J. Richard [Idaho National Laboratory (INL)

2008-08-01T23:59:59.000Z

230

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS)WebmasterBiomass

231

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed,Tracy Biomass

232

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

233

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

234

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

235

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

236

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

237

Initial Market Assessment for Small-Scale Biomass-Based CHP  

SciTech Connect (OSTI)

The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

Brown, E.; Mann, M.

2008-01-01T23:59:59.000Z

238

Sustainable Biomass Supply Systems  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

239

YEAR 2 BIOMASS UTILIZATION  

SciTech Connect (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

240

Economic development through biomass systems integration in central Florida  

SciTech Connect (OSTI)

A biomass to energy system for central Florida was conceptualized with sugarcane as the main feedstock. Additional feedstocks include elephantgrass, leucaena (woody tropical legume), and Eucalyptus. Juice will be pressed from sugarcane and sugars fermented into ethanol with conventional technology. Enough sugarcane will be grown to supply a conventional ethanol plant with juice for a 330 day operating period each yr. Juice will be condensed to 24 degrees Brix for direct conversion during the approximately 100 day harvest season and to 70 degrees Brix for storage and use the remaining 230 days. Residues (mainly lignin), from converting lignocellulosic materials to ethanol, will fuel the plant including evaporators for sugarcane juice. Sugarcane presscake, elephantgrass, leucaena, and Eucalyptus will be feedstocks for the lignocellulose conversion processes. The lignocellulose plant will be sized to convert all sugarcane presscake as it is produced to reduce storage costs. Elephantgrass, leucaena and Eucalyptus will feed the plant outside sugarcane harvest season. The biomass/energy system will produce 123,230,000 L (32,830,000 gal) of ethanol per year with 90% conversion of sugars from juice, hemicellulose, and cellulose to ethanol. Estimated cost of producing ethanol form various feedstocks include: sugarcane $0.25/L ($0.94/gal), elephantgrass $0.30/L ($1.13/gal), 1 leucaena $0.28/L ($1.06/gal), and Eucalyptus $0.28/L (1.07/gal). Future opportunities exist for development of a chemical industry based on lignocellulose materials from biomass.

Stricker, J.A.; Rahmani, M.; Hodges, A.W. [Univ. of Florida, Gainesville, FL (United States)] [and others

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass Scenario Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09BiomassAct ofBiomass

242

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

243

Agricultural Biomass Income Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan Update asIndustryCorporate

244

Agricultural Biomass Income Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan Update

245

Agricultural Biomass and Landfill Diversion Incentive (Texas) | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan Updateof Energy

246

Wisconsin Agriculture SPECIAL ARTICLE  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . 31 · Corn Ethanol: Impacts on Markets Communities and the Environment . . . . . . 33 · BioenergySTATUS OF Wisconsin Agriculture 2009 · SPECIAL ARTICLE: Bioenergy and Agriculture in Wisconsin . . . . . . . . . . . . . . . . . 29 III Special Article: Bioenergy and Agriculture in Wisconsin

Radeloff, Volker C.

247

Missouri Agriculture Outlook Conference  

E-Print Network [OSTI]

Missouri Agriculture Outlook Conference Conference Information This conference will discuss the drivers of Missouri agricultural and bio-fuel markets and the implications for Missouri farmsDr.JonHagler, DirectoroftheMissouriDepartment ofAgriculture. · Outlookpresentationsderivedfrom thelatestbaselineresultsof

Noble, James S.

248

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

249

ENERGY FROM BIOMASS AND  

E-Print Network [OSTI]

in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

250

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

251

Kentucky Department of Agriculture  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Kentucky Department Kentucky Department of Agriculture of Agriculture Motor Fuel and Pesticide Motor Fuel and Pesticide Testing Laboratory Testing Laboratory Introduction...

252

Sustainable Harvest for Food and Fuel Preliminary Food & Fuel Gap Analysis Report  

SciTech Connect (OSTI)

To promote economic growth and energy security, and to protect the environment, the U.S. is pursuing a national strategy of energy independence and climatic protection in which domestic renewable carbon-neutral biofuels displace 30 percent of U.S. oil consumption by the mid-21st century. Such fuels, including ethanol and biodiesel, will be produced from biological feed stocks (biomass). The availability of this billion-ton biomass will hinge on the application of modern scientific and engineering tools to create a highly-integrated biofuel production system. Efforts are underway to identify and develop energy crops, ranging from agricultural residues to genetically engineered perennials; to develop biology-based processing methods; and, to develop large-scale biorefineries to economically convert biomass into fuels. In addition to advancing the biomass-to-biofuel research and development agenda, policy makers are concurrently defining the correct mix of governmental supports and regulations. Given the volumes of biomass and fuels that must flow to successfully enact a national biomass strategy, policies must encourage large-scale markets to form and expand around a tightly integrated system of farmers, fuel producers and transporters, and markets over the course of decades. In formulating such policies, policy makers must address the complex interactions of social, technical, economic, and environmental factors that bound energy production and use. The Idaho National Laboratory (INL) is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy (DOE). The INL Bioenergy Program supports the DOE and the U.S. Department of Agriculture. Key multidisciplinary INL capabilities are being leveraged to address major science and technology needs associated with the cost-effective utilization of biomass. INL’s whole crop utilization (WCU) vision is focused on the use of the entire crop, including both the grain and traditionally discarded plant biomass to produce food, feed, fiber, energy, and value-added products.

Ray Grosshans; Kevin M. Kostelnik; Jake Jacobson

2007-04-01T23:59:59.000Z

253

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

254

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

255

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

256

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

257

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

258

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

259

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

260

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

262

Reburn system with feedlot biomass  

DOE Patents [OSTI]

The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

Annamalai, Kalyan; Sweeten, John M.

2005-12-13T23:59:59.000Z

263

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

264

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

265

New Harvest | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2Harvest Jump to: navigation, search

266

Harvest Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form.Guizhou New MaterialHan WindHafeiHarvest

267

Harvest Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategyHarvest BioFuels LLC Place:

268

Harvest II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategyHarvest BioFuels LLC Place:MI

269

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne �stergård, Risø National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

270

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

271

Edward R. Murrow's "Harvest of  

E-Print Network [OSTI]

in the United States. Debate over the critical portrait of agricultural life and politics reflected the tensions and of journalists that remain at the center of political discourse today. The film will be introduced and discussion to sponsor two public film screenings discussions "Dismal History" (2010) Friday, October 4 at 7:00 p

272

Seamless Data Management for Agricultural Vehicles within the iGreen Infrastructure  

E-Print Network [OSTI]

in the agricultural sector in the future. Introduction The global demand for agricultural products is growing rapidly and developing world population on the one side and the increasing importance of biomass as an energy source information on its position, fuel consumption and workload in real-time. Even though such systems help

Berns, Karsten

273

Pre-Harvest Sprouting in Wheat  

E-Print Network [OSTI]

This leaflet cautions producers about the problems associated with pre-harvest sprouting of wheat and how to recognize affected grains....

Morgan, Gaylon

2005-01-26T23:59:59.000Z

274

Apparatus and method for harvesting woody plantations  

DOE Patents [OSTI]

A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

Eggen, D.L.

1988-11-15T23:59:59.000Z

275

Apparatus and method for harvesting woody plantations  

DOE Patents [OSTI]

A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.

Eggen, David L. (Rte. 1, Box 257, Moose Lake, MN 55767)

1988-11-15T23:59:59.000Z

276

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

40 College of Agriculture, Forestry, and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences (virtual- nity and Economic Development Concentration; Agricultural Education; Agricultural Mechanization

Stuart, Steven J.

277

Molecular beam mass spectrometric characterization of biomass pyrolysis products for fuels and chemicals  

SciTech Connect (OSTI)

Converting biomass feedstocks to fuels and chemicals requires rapid characterization of the wide variety of possible feedstocks. The combination of pyrolysis molecular beam mass spectrometry (Py-MBMS) and multivariate statistical analysis offers a unique capability for characterizing these feedstocks. Herbaceous and woody biomass feedstocks that were harvested at different periods were used in this study. The pyrolysis mass spectral data were acquired in real time on the MBMS, and multivariate statistical analysis (factor analysis) was used to analyze and classify Py-MBMS data into compound classes. The effect of harvest times on the thermal conversion of these feedstocks was assessed from these data. Apart from sericea lespedeza, the influence of harvest time on the pyrolysis products of the various feedstocks was insignificant. For sericea lespedeza, samples harvested before plant defoliation were significantly different from those harvested after defoliation. The defoliated plant samples had higher carbohydrate-derived pyrolysis products than the samples obtained from the foliated plant. Additionally, char yields from the defoliated plant samples were lower than those from the foliated plant samples.

Agblevor, F.A.; Davis, M.F.; Evans, R.J. [National Renewal Energy Lab., Golden, CO (United States)

1994-12-31T23:59:59.000Z

278

Carbon sequestration via wood harvest and storage: An assessment of its harvest potential  

E-Print Network [OSTI]

this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. WeCarbon sequestration via wood harvest and storage: An assessment of its harvest potential Ning Zeng Abstract A carbon sequestration strategy has recently been proposed in which a forest is actively managed

Zeng, Ning

279

environment and agriculture  

E-Print Network [OSTI]

environment and agriculture environmentagriculture.curtin.edu.au Bachelor of Science - majorS in agriculture, environmental Biology or coaStal Zone management Science and engineering #12;t he department of environment and agriculture caters for students who are passionate about agriculture, biology, conserving

280

Roadmap for Agriculture  

E-Print Network [OSTI]

A Science Roadmap for Food and Agriculture A Science Roadmap for Food and Agriculture Prepared and Policy (ESCOP)-- Science and Technology Committee November 2010 #12;2 pA Science Roadmap for Food and Agriculture #12;A Science Roadmap for Food and Agriculture p i About this Publication To reference

Buckel, Jeffrey A.

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Agricultural and Food Sciences  

E-Print Network [OSTI]

Faculty of Agricultural and Food Sciences (FAFS) #12;86 Faculty of Agricultural and Food Sciences (FAFS) Undergraduate Catalogue 2014­15 Faculty of Agricultural and Food Sciences (FAFS) Officers-level courses in agriculture were offered by the School of Arts and Sciences at AUB as early as 1914. Between

282

Agricultural and Food Sciences  

E-Print Network [OSTI]

Faculty of Agricultural and Food Sciences (FAFS) #12;88 Faculty of Agricultural and Food Sciences (FAFS) Graduate Catalogue 2013­14 Faculty of Agricultural and Food Sciences (FAFS) Officers aims to offer specialized training in a variety of fields in food and agriculture, and to prepare

283

FACT SHEET Agriculture and Natural Resources AEX-651.1-11  

E-Print Network [OSTI]

Farmers are familiar with storing high-moisture forage crops as silage. Tall silos, horizontal or bunker silos, and more recently “shrink-wrapped” round bales are common examples of storing crops “wet ” instead of “dry.” Today, scientists and engineers are looking at “silage ” techniques as a way of preserving lignocellulosic biomass for use as a feedstock for biobased energy and products. Lignocellulosic biomass is an abundant, widely available resource and includes agricultural crop residues, such as corn stover and wheat straw; energy crops, such as switchgrass; and municipal waste. The most common lignocellulosic biomass on Ohio farms is corn stover. The ability to store biomass feedstocks year-round is essential

Storing Lignocellulosic Biomass; Jian Shi

284

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network [OSTI]

Information Capacity of Energy Harvesting Sensor Nodes R Rajesh CABS, DRDO Bangalore, India Email: rajesh81r@gmail.com Vinod Sharma Dept. of ECE Indian Institute of Science Bangalore, India Email: vinod Email: pramodv@uiuc.edu Abstract--Sensor nodes with energy harvesting sources are gaining popularity due

Sharma, Vinod

285

Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and  

E-Print Network [OSTI]

-scale energy con- version, renewable and green energy, efficient energy transmission, energy stor- age, energy effort in developing technologies related to energy scavenging.1 3 Energy harvested from the environmentHybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy Benjamin J

Wang, Zhong L.

286

Undergraduate Education The College of Agricultural Sciences will provide undergraduate degrees in Agricultural Business, Agricultural Economics,  

E-Print Network [OSTI]

Undergraduate Education The College of Agricultural Sciences will provide undergraduate degrees in Agricultural Business, Agricultural Economics, Agricultural Education, Animal Sciences, Equine Sciences, economics, business, and communications. The program in Agricultural Education recently has been renovated

287

Biomass power and state renewable energy policies under electric industry restructuring  

SciTech Connect (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

288

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

289

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network [OSTI]

sensor node using our solar energy harvesting module. VI. Care not speci?c to solar energy harvesting, but representin the design of a solar energy harvesting module and their

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

290

Chaga and Other Fungal Resources Assessment of Sustainable Commercial Harvesting  

E-Print Network [OSTI]

Chaga and Other Fungal Resources Assessment of Sustainable Commercial Harvesting in Khabarovsk #12;Chaga and Other Fungal Resources Assessment of Sustainable Commercial Harvesting in Khabarovsk.......................................................................................................8 Harvesting and processing...................................................................9

291

Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar  

E-Print Network [OSTI]

Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells George F. Burkhard generation (absorp- tion), exciton harvesting (the process of excitons migrating to the donor materials decay radiatively, so exciton harvesting is usually evaluated by observing photolumines- cence

McGehee, Michael

292

Tropical Africa: Land use, biomass, and carbon estimates for 1980  

SciTech Connect (OSTI)

This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

293

Biomass gasification for liquid fuel production  

SciTech Connect (OSTI)

In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

2014-08-06T23:59:59.000Z

294

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

295

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

Li, Hongjia

2012-01-01T23:59:59.000Z

296

The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative  

SciTech Connect (OSTI)

The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

2009-03-31T23:59:59.000Z

297

Sheldon (Xiaodong) Du (608)262-0699 Department of Agricultural & Applied Economics xdu23@wisc.edu  

E-Print Network [OSTI]

Biomass Markets." Biomass & Bioenergy 63: 250-256. Du, X., D. Hennessy, and H. Feng. 2014. "A Natural. and M. Carriquiry. 2013. "Spatiotemporal Analysis of Ethanol Market Penetration." Energy Economics 38 and Transmission between Energy and Agricultural Markets." Energy Journal 33(2): 171-194. Du, X. and D. Hennessy

Radeloff, Volker C.

298

alternative post harvest: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use harvested energy and test these both in simulation and experimentally on an energy harvesting sensor network, prototyped for this work. Aman Kansal; Jason Hsu; Sadaf...

299

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

300

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...  

Energy Savers [EERE]

ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Department of Mechanical Engineering Fall 2011 Flowserve Vibration Energy Harvesting  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2011 Flowserve Vibration Energy Harvesting of these vibrations, Flowseve is looking at using vibration absorbers coupled with energy harvesting technology

Demirel, Melik C.

302

Harvests, St. Tracy Lekanof, Island Sentinel, Kayumixtax Eco-office  

E-Print Network [OSTI]

.................................................................................................................... 4 By-products and Waste..................................... 5 Heat Strokes seals harvested b) incidence of by-products and waste during the harvest process c) the occurrence

303

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Sensor Networks through Solar Energy Harvesting Jason Hsu,Heliomote A integrated solar energy harvesting and storageYellow bar represent solar energy received locally Solar

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

304

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network [OSTI]

sensor node using our solar energy harvesting module. VI. CDesign Considerations for Solar Energy Harvesting Wirelessfactors. For example, solar energy supply is highly time

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

305

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhatActivities in Biomass

306

Biomass 2013: Welcome  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass 2013

307

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuelsBiomass Renewable

308

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

309

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

310

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

311

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

312

Biomass Rapid Analysis Network (BRAN)  

SciTech Connect (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

313

System and process for biomass treatment  

SciTech Connect (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

314

Renewal of Collaborative Research: Economically viable Forest Harvesting Practices that Increase Carbon Sequestration  

SciTech Connect (OSTI)

This technical report covers a 3-year cooperative agreement between the University of Maine and the Northeastern Forest Experiment Station that focused on the characterization of forest stands and the assessment of forest carbon storage (see attached for detailed description of the project). The goal of this work was to compare estimates of forest C storage made via remeasurement of FIA-type plots with eddy flux measurements. In addition to relating whole ecosystem estimates of carbon storage to changes in aboveground biomass, we explored methodologies by partitioning growth estimates from periodic inventory measurements into annual estimates. In the final year, we remeasured plots that were subject to a shelterwood harvest over the winter of 2001-02 to assess the production of coarse woody debris by this harvest, to remeasure trees in a long-term stand first established by NASA, to carry out other field activities at Howland, and, to assess the importance of downed and decaying wood as well as standing dead trees to the C inputs to harvested and non harvested plots.

Dail, David Bryan [University of Maine

2012-08-02T23:59:59.000Z

315

Immigration reform and California agriculture  

E-Print Network [OSTI]

reform and California agriculture Philip Martin Professor,proposals for California agriculture. Immigration reformCenter. 196 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4

Martin, Philip

2013-01-01T23:59:59.000Z

316

Networks, Local Institutions and Agriculture  

E-Print Network [OSTI]

Working Paper Series Agriculture for Development Paper No.Institutions and Agriculture. Chris Udry Yale UniversityMay 2009 Conference on “Agriculture for Development in Sub-

Udry, Chris

2009-01-01T23:59:59.000Z

317

Climate Change and Agriculture Reconsidered  

E-Print Network [OSTI]

2009 Paper 1080 Climate Change and Agriculture Reconsideredby author(s). Climate Change and Agriculture Reconsideredimpact of climate change on agriculture, there still exists

Fisher, Anthony

2009-01-01T23:59:59.000Z

318

Biomass in the Deregulated Marketplace: Current Issues for Biomass Power  

SciTech Connect (OSTI)

This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

Not Available

1998-12-01T23:59:59.000Z

319

Soft Capacitors for Wave Energy Harvesting  

E-Print Network [OSTI]

Wave energy harvesting could be a substantial renewable energy source without impact on the global climate and ecology, yet practical attempts have struggle d with problems of wear and catastrophic failure. An innovative technology for ocean wave energy harvesting was recently proposed, based on the use of soft capacitors. This study presents a realistic theoretical and numerical model for the quantitative characterization of this harvesting method. Parameter regio ns with optimal behavior are found, and novel material descriptors are determined which simplify analysis dramatically. The characteristics of currently ava ilable material are evaluated, and found to merit a very conservative estimate of 10 years for raw material cost recovery.

Karsten Ahnert; Markus Abel; Matthias Kollosche; Per Jřrgen Jřrgensen; Guggi Kofod

2011-10-14T23:59:59.000Z

320

The Cleaning of Mechanically Harvested Cotton.  

E-Print Network [OSTI]

The Cleaning of. Mechanically Harvested Cotton H. P. SMITH, D. L. JONES and H. F. MILLER, JR. 3lank Page in Original Bulletin] Preface For many years cotton growers in the High Plains area have found that cotton harvested late in the season... contained an excessive amount of foreign matter, and that the quality of the cotton was much lower than that of cotton harvested early in the season. This bulletin gives the results of a study conducted at Lubbock and College Station to determine...

Miller, H. F. (Herbert F.); Jones, D. L. (Don. L.); Smith, H. P. (Harris Pearson)

1950-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

College of Agricultural Sciences College of Agricultural Sciences  

E-Print Network [OSTI]

College of Agricultural Sciences College of Agricultural Sciences Office in Shepardson Building and maintaining a productive, safe, and sustainable environment. Agricultural programs integrate biological agricultural systems. COLLEGE PROGRAMS Undergraduate Majors Undergraduate programs lead to a Bachelor

Collett Jr., Jeffrey L.

322

College of Agriculture, Food and Environment GEN General Agriculture  

E-Print Network [OSTI]

College of Agriculture, Food and Environment GEN General Agriculture KEY: # = new course * = course IN AGRICULTURE. (3) Anintroductorycourserequiringcriticalanalysisofthemajorsocial. Prereq: Students enrolled in the College of Agriculture; freshmen only in fall semesters and transfers

MacAdam, Keith

323

College of Agriculture, Food and Environment AEC Agricultural Economics  

E-Print Network [OSTI]

College of Agriculture, Food and Environment AEC Agricultural Economics KEY: # = new course THE ECONOMICS OF FOOD AND AGRICULTURE. (3 of agriculture in both a national and international dimension. Students who have completed ECO 201

MacAdam, Keith

324

College of Agriculture, Food and Environment SAG Sustainable Agriculture  

E-Print Network [OSTI]

College of Agriculture, Food and Environment SAG Sustainable Agriculture KEY: # = new course INTRODUCTION TO SUSTAINABLE AGRICULTURE. (3) Broad introduction to the environmental, economic and cultural agriculture are discussed along with pertinent soil, crop and livestock management practices. Relationships

MacAdam, Keith

325

Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute  

E-Print Network [OSTI]

Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute College of Agricultural Sustainability Institute Professor, Department of LAWR With input from Steve Kaffka, Ford Denison Sustainability Institute The Russell Ranch Sustainable Agriculture Facility is a unique 300-acre facility near

California at Davis, University of

326

Fulbrighters Agricultural scientists  

E-Print Network [OSTI]

Fulbrighters are... Agricultural scientists Anthropologists Archeologists Architects Art historians. Jenny Montgomery Film Studies Vijay Narasimhan Material Sciences/ Nanotechnology Michael Haughton

327

European Commission Agriculture and  

E-Print Network [OSTI]

European Commission Agriculture and Rural Development Good practice guidance on the sustainable Commission (EC) DG Agriculture and Rural Development 130, Rue de la Loi B ­ 1049 Brussels, Belgium Phone: +32 (0) 2-2969909 Fax: +32 (0) 2-29211 33 E-mail: info@ec.europa.eu Web: https://www.ec.europa.eu/agriculture

328

Growing Hawaii's agriculture industry,  

E-Print Network [OSTI]

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

329

International Programs in Agriculture  

E-Print Network [OSTI]

International Programs in Agriculture MessagefromtheDirector­ Staying Ahead of Globalization and more prosperous place for all. Fortunately, Purdue International Programs in Agriculture (IPIA) has natural disasters caution us to remember the power of nature. The United Nations Food and Agriculture

330

Missouri Agriculture Outlook Conference  

E-Print Network [OSTI]

Missouri Agriculture Outlook Conference Conference Information Join us to discuss the drivers of Missouri agricultural and bio-fuels markets and participate in a special review of international policy implications for Missouri agriculture. Registration Deadline To guarantee space availability, please register

Noble, James S.

331

Division of Agriculture,  

E-Print Network [OSTI]

DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

Ray, David

332

Agriculture KENNETH L. KOONCE  

E-Print Network [OSTI]

COLLEGE OF Agriculture KENNETH L. KOONCE Dean M. E. GARRISON Associate Dean JACQUELINE M. MALLET BAKER Recruitment Coordinator 104 Agricultural Administration Building 225/578-2362 FAX 225/578-2526 Student Services 138 Agricultural Administration Building 225/578-2065 FAX 225/578-2526 The College

Harms, Kyle E.

333

Meats & Products Agricultural Inputs  

E-Print Network [OSTI]

Meats & Products Agricultural Inputs Processing Idaho B20 C C B Meats and Livestock Products Index to agriculture? Legend Overall weighted grade Weighted rank Northwest Midwest Southwest East Meats & ProductsProcessingessing Maine B11 B A A Meats & Products Agricultural Inputs Processing New York F49 F F F soductsoducts

Collett Jr., Jeffrey L.

334

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

335

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

336

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

337

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

338

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

339

Downhole vibration sensing by vibration energy harvesting  

E-Print Network [OSTI]

This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

Trimble, A. Zachary

2007-01-01T23:59:59.000Z

340

Ultra-wide bandwidth piezoelectric energy harvesting  

E-Print Network [OSTI]

Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a ...

Hajati, Arman

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Montana State University 1 College of Agriculture  

E-Print Network [OSTI]

Montana State University 1 College of Agriculture Graduate Programs Available Agricultural Education Program (http:// catalog.montana.edu/graduate/agriculture/agricultural- education) · M.S. in Agricultural Education (http://catalog.montana.edu/graduate/ agriculture/agricultural-education) Department

Lawrence, Rick L.

342

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

343

Session Title Climate Smart Agriculture  

E-Print Network [OSTI]

Session Title Climate Smart Agriculture Session Date Khosla (moderator) Professor, Soil and Crop Sciences College of Agricultural Climate Smart Agriculture is a multi-disciplinary approach to practice agriculture

Barnes, Elizabeth A.

344

Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets  

Broader source: Energy.gov [DOE]

Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets David Cleaves, Climate Change Advisor to the Chief, U.S. Forest Service, U.S. Department of Agriculture

345

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network [OSTI]

Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gasEconomic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider emissions. However, subsidies are needed to make agricultural biofuel production economically feasible

McCarl, Bruce A.

346

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

347

Agricultural and Biological Engineering College of Agricultural Sciences Cooperative Extension  

E-Print Network [OSTI]

. Biodiesel is converted (trans- esterified) biomass oil feedstock such as vegetable oil, animal fats, or used

Lee, Dongwon

348

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

349

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network [OSTI]

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

350

Transmission Completion Time Minimization in an Energy Harvesting System  

E-Print Network [OSTI]

Transmission Completion Time Minimization in an Energy Harvesting System Jing Yang Sennur Ulukus-user energy harvesting wireless communication system. In this system, both the data packets and the harvested time is minimized. Under a deterministic system setting, we assume that the energy harvesting times

Ulukus, Sennur

351

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Long - Lived Sensor Networks through Solar Energy Harvestingsolar energy harvesting and storage device for sensor

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

352

Agricultural and Resource Economics Update  

E-Print Network [OSTI]

forecasting drought effects on agriculture based on waterEffects of 2009 Drought on San Joaquin Valley Agriculture

2011-01-01T23:59:59.000Z

353

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

354

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

355

NREL: Biomass Research - Robert M. Baldwin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

356

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

357

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

358

NREL: Biomass Research - Daniel J. Schell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

359

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

360

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

362

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

363

Converting Biomass to High-Value Feedstocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

364

Biomass Guidelines (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

365

Hydrogen Production Cost Estimate Using Biomass Gasification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is...

366

Hydrogen from biomass: state of the art and research challenges  

SciTech Connect (OSTI)

The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of appropriate feedstocks and deployment scenarios that match hydrogen to the local markets. Co-production opportunities are of particular interest for near-term deployment since multiple products improve the economics; however, co-product development is not covered in this report. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Since biomass is renewable and consumes atmospheric CO2 during growth, it can have a small net CO2 impact compared to fossil fuels. However, hydrogen from biomass has major challenges. There are no completed technology demonstrations. The yield of hydrogen is low from biomass since the hydrogen content in biomass is low to being with (approximately 6% versus 25% for methane) and the energy content is low due to the 40% oxygen content of biomass. Since over half of the hydrogen from biomass comes from splitting water in the steam reforming reaction, the energy content of the feedstock is an inherent limitation of the process . The low yield of hydrogen on a weight basis is misleading since the energy conversion efficiency is high. However, the cost for growing, harvesting, and transporting biomass is high. Thus even with reasonable energy efficiencies, it is not presently economically competitive with natural gas steam reforming for stand-alone hydrogen without the advantage of high-value co-products. Additionally, as with all sources of hydrogen, production from biomass will require appropriate hydrogen storage and utilization systems to be developed and deployed. The report also looked at promising areas for further research and development. The major areas for R,D and D are: feedstock preparation and feeding; gasification gas conditioning; system integration; modular systems development; valuable co-product integration; and larger-scale demonstrations. These are in addition to the challenges for any hydrogen process in storage and utilization technologies.

Milne, Thomas A.; Elam, Carolyn C.; Evans, Robert J.

2002-02-01T23:59:59.000Z

367

Potential producers and their attitudes toward adoption of biomass crops in central Florida  

SciTech Connect (OSTI)

A recent study by the University of Florida, Center for Biomass Programs (1996) showed that biomass crops have potential as a new agricultural commodity in central Florida. Both herbaceous and woody biomass crops have high yields, and weather and soil conditions are favorable. In the Polk County area over 40,371 ha (100,000 A) of phosphate-mined land and about 161,486 ha (400,000 A) of pastureland may be available for biomass production at low opportunity cost. Phosphate land is owned by a few mining companies while pastureland is owned by or rented to cattlemen. Infrastructure for large-scale crop production, such as in the Midwest United States, does not presently exist in central Florida. Personal interviews were conducted with phosphate company managers and a mail survey was conducted with 940 landowners, with at least 16 ha (40 A) of agricultural land. Data were gathered related to decision making factors in growing biomass and other new crops. Results suggested that economic factors, particularly availability of an established market and an assured high return per acre were considered the most important factors. Lack of familiarity with new crops was an important barrier to their adoption. Potential net returns and production costs were considered the most important information needed to make decisions about growing biomass crops.

Rahmani, M.; Hodges, A.W. [Univ. of Florida, Gainesville, FL (United States); Stricker, J.A. [Univ. of Florida, Bartow, FL (United States)

1996-12-31T23:59:59.000Z

368

Agricultural sector impacts of making ethanol from grain  

SciTech Connect (OSTI)

This report presents the results of a model of the effects on the agricultural sector of producing ethanol from corn in the United States between 1979 and 1983. The model is aggregated at the national level, and results are given for all of the major food and feed crops, ethanol joint products, farm income, government payment, and agricultural exports. A stochastic simulation was performed to ascertain the impacts of yield and demand variations on aggregate performance figures. Results indicate minimal impacts on the agricultural sector for production levels of less than 1 billion gallons of ethanol per year. For higher production levels, corn prices will rise sharply, the agricultural sector will be more vulnerable to variations in yields and demands, and joint-product values will fall. Possibilities for ameliorating such effects are discussed, and such concepts as net energy and the biomass refinery are explored.

Hertzmark, D.; Ray, D.; Parvin, G.

1980-03-01T23:59:59.000Z

369

Harvests, St. Hertha Kashevarof, Island Sentinel, Kayumitax Eco-office  

E-Print Network [OSTI]

mortality i) weather conditions at the time of the harvest j) any other unusual conditions related harvested. Date of Harvest Rookery Weather Time of Harvest # of seals harvested 7-8-2013 North Wind: SW 8 Temp: 41 Start: 10:50am End: 11:20am 10 7-10-2013 Zapadni Wind: Calm Temp: 46 (fog) Start: 10:55am End

370

Agricultural and Resource Economics Update  

E-Print Network [OSTI]

with an empty flat and resume picking. A labor aid canget an empty flat, and resume harvesting, which can reduce

2011-01-01T23:59:59.000Z

371

Intagorn et al. Harvesting Geospatial Knowledge from Social Metadata Harvesting Geospatial Knowledge from Social  

E-Print Network [OSTI]

Intagorn et al. Harvesting Geospatial Knowledge from Social Metadata Harvesting Geospatial Institute lerman@isi.edu ABSTRACT Up-to-date geospatial information can help crisis management community of the social photo-sharing site Flickr to learn geospatial concepts and relations. Our method leverages

Lerman, Kristina

372

Proceedings ofAsia-Pacific Microwave Conference 2007 Agricultural Applications for Electromagnetic  

E-Print Network [OSTI]

Proceedings ofAsia-Pacific Microwave Conference 2007 Agricultural Applications for Electromagnetic treatment for anti-freezing operation, pre-harvest Sunne pest control, and Orchid flower control rate of energy in pistachio and sensitive objects is the most. This frequency depends

Paris-Sud XI, Université de

373

MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE  

E-Print Network [OSTI]

1099 MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE in intensively (>80%) cultivated areas. From January 2001 to August 2002, we monitored movements of 77 (61 adult of seasonal migration, whereas crop emergence and harvest had minimal effects. Four deer (8%) dispersed a mean

374

Living on the Edge: Agriculture in Periurban Mexico City Andy Wanning  

E-Print Network [OSTI]

Living on the Edge: Agriculture in Periurban Mexico City Andy Wanning Spring 2014 Capstone M.S. Sustainability Management Isla Urbana installs rainwater harvesting systems in and around Mexico City so that people aren't forced to get water via... Sistema Biobolsa installs biodigesters throughout Mexico so that

375

Acceleration-assisted entanglement harvesting and rangefinding  

E-Print Network [OSTI]

We study entanglement harvested from a quantum field through local interaction with Unruh-DeWitt detectors undergoing linear acceleration. The interactions allow entanglement to be swapped locally from the field to the detectors. We find an enhancement in the entanglement harvesting by two detectors with anti-parallel acceleration over those with inertial motion. This enhancement is characterized by the presence of entanglement between two detectors that would otherwise maintain a separable state in the absence of relativistic motion (with the same distance of closest approach in both cases). We also find that entanglement harvesting is degraded for two detectors undergoing parallel acceleration in the same way as for two static, comoving detectors in a de Sitter universe. This degradation is known to be different from that of two inertial detectors in a thermal bath. We comment on the physical origin of the harvested entanglement and present three methods for determining distance between two detectors using properties of the harvested entanglement. Information about the separation is stored nonlocally in the joint state of the accelerated detectors after the interaction; a single detector alone contains none. We also find an example of entanglement sudden death exhibited in parameter space.

Grant Salton; Robert B. Mann; Nicolas C. Menicucci

2014-08-06T23:59:59.000Z

376

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

377

Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum  

E-Print Network [OSTI]

for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

Borden, Dustin Ross

2012-02-14T23:59:59.000Z

378

Ohio Biomass Energy Program (Ohio)  

Broader source: Energy.gov [DOE]

Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

379

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission

380

Biomass Supply for a Bioenergy  

E-Print Network [OSTI]

Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION  

E-Print Network [OSTI]

biomass, such as peanut shells, for urban transportation. The process involves pyrolysis of the biomassHYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION Collaborating Project Team Y. Yeboah (PI) and K and liquid fuels) · Potential sources of hydrogen include biomass, natural gas and other fossil fuels. #12

382

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

383

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

384

Biomass Surface Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

Not Available

2012-04-01T23:59:59.000Z

385

November 2011 Competition for biomass among  

E-Print Network [OSTI]

remain high, limiting the development of national or even regional markets for biomass feedstocks. We

Noble, James S.

386

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

387

GMP- Biomass Electricity Production Incentive  

Broader source: Energy.gov [DOE]

Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

388

Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case  

SciTech Connect (OSTI)

This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

Matei, M.

1998-07-01T23:59:59.000Z

389

Sustainable Agriculture Loan Program  

Broader source: Energy.gov [DOE]

The Minnesota Sustainable Agriculture Loan program will provide loans to Minnesota residents actively engaged in farming for capital expenditures which enhance the environmental and economic...

390

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

391

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

392

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

393

Wisconsin Agriculture Department of Agricultural and Applied Economics  

E-Print Network [OSTI]

Wisconsin Agriculture 2012 STATUS OF Department of Agricultural and Applied Economics · Status­Extension College of Agricultural & Life Sciences UNIVERSITY OF WISCONSIN­MADISON #12;#12;Status of Wisconsin Agriculture, 2012 An annual report by the Department of Agricultural and Applied Economics, UW

Radeloff, Volker C.

394

Solar cells incorporating light harvesting arrays  

DOE Patents [OSTI]

A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: ##EQU1## wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S.; Meyer, Gerald J.

2003-07-22T23:59:59.000Z

395

Quantum entanglement in photosynthetic light harvesting complexes  

E-Print Network [OSTI]

Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.

Mohan Sarovar; Akihito Ishizaki; Graham R. Fleming; K. Birgitta Whaley

2010-06-07T23:59:59.000Z

396

Solar cells incorporating light harvesting arrays  

DOE Patents [OSTI]

A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

2002-01-01T23:59:59.000Z

397

Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration  

SciTech Connect (OSTI)

Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest management in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of subcanopy trees by opening up the forest canopy to increasing light penetration. Decomposition of onsite harvest slash and of wastes created during timber processing releases CO{sub 2} to the atmosphere, thus offsetting some of the C sequestered in vegetation. Decomposition of soil C and dead roots may also be temporarily stimulated by increased light penetration and warming of the forest floor. Quantification of these processes and their net effect is needed. We began studying C sequestration in a planned shelterwood harvest at the Howland Forest in central Maine in 2000. The harvest took place in 2002 by the International Paper Corporation, who assisted us to track the fates of harvest products (Scott et al., 2004, Environmental Management 33: S9-S22). Here we present the results of intensive on-site studies of the decay of harvest slash, soil respiration, growth of the remaining trees, and net ecosystem exchange (NEE) of CO{sub 2} during the first six years following the harvest. These results are combined with calculations of C in persisting off-site harvest products to estimate the net C consequences to date of this commercial shelterwood harvest operation. Tower-based eddy covariance is an ideal method for this study, as it integrates all C fluxes in and out of the forest over a large 'footprint' area and can reveal how the net C flux, as well as gross primary productivity and respiration, change following harvest. Because the size of this experiment precludes large-scale replication, we are use a paired-airshed approach, similar to classic large-scale paired watershed experiments. Measurements of biomass and C fluxes in control and treatment stands were compared during a pre-treatment calibration period, and then divergence from pre-treatment relationships between the two sites measured after the harvest treatment. Forests store carbon (C) as they accumulate biomass. Many forests are also commercial sources of timber and wood fiber. In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the at

Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.; Richardson, A.

2012-08-02T23:59:59.000Z

398

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

399

Particulate residue separators for harvesting devices  

SciTech Connect (OSTI)

A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

2010-06-29T23:59:59.000Z

400

MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION  

SciTech Connect (OSTI)

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report  

SciTech Connect (OSTI)

Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisture feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.

Lynn M Wendt; William A Smith; Kara G Cafferty; Ian J Bonner; Qiyang Huang; Rachel D Colby

2014-07-01T23:59:59.000Z

402

Biomass Biorefinery for the production of Polymers and Fuels  

SciTech Connect (OSTI)

The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

Dr. Oliver P. Peoples

2008-05-05T23:59:59.000Z

403

Collective behavior of semiconductor nanoparticles for use in solar energy harvesting  

E-Print Network [OSTI]

for use in solar energy harvesting. A dissertation submittedfor Solar Energy Harvesting March 2012 American Physicalthe use in solar energy harvesting. Using spectroscopic and

Shcherbatyuk, Georgiy

2012-01-01T23:59:59.000Z

404

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network [OSTI]

2010. “Thermal energy harvesting through pyroelectricity”.Pilon, L. , 2010. “Harvesting nanoscale thermal radiationfor waste heat energy harvesting using co-polymer P(VDF-

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

405

AGRICULTURAL REPORT MAY 1998  

E-Print Network [OSTI]

Farmer Crop Workshop . . . . . . . . . . . 12 #12;2 MAY 1998 ® Will the trend of increasing high and the future of the industry, fac- ulty in the School of Agriculture at Purdue University in collaboration and will continue to dominate trade trends. Potential demand for agricultural products is greatest in Asia

406

Administration ....................................................................................................................................3 School of Agriculture Faculty ............................................................................  

E-Print Network [OSTI]

....................................................................................................................................3 School of Agriculture Faculty .............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................17 Research Projects School of Agriculture

407

Administration....................................................................................................................................3 School of Agriculture Faculty..............................................................................  

E-Print Network [OSTI]

....................................................................................................................................3 School of Agriculture Faculty.............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................17 Research Projects School of Agriculture

408

Administration....................................................................................................................................3 School of Agriculture Faculty..............................................................................  

E-Print Network [OSTI]

....................................................................................................................................3 School of Agriculture Faculty.............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................18 Research Projects School of Agriculture

409

Administration ............................................................................................................2 School of Agriculture Faculty .........................................................................................3  

E-Print Network [OSTI]

............................................................................................................2 School of Agriculture Faculty .........................................................................................3 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY Research Projects School of Agriculture

410

Essays on Development, Ownership Structure, and Agriculture  

E-Print Network [OSTI]

of climate change on Indian agriculture. ” Manuscript,study of climate change impacts on Indian agriculture hasclimate change on agricultural output, because of the relevance of agriculture

Moorthy, Aravind

2012-01-01T23:59:59.000Z

411

University College Dublin Agriculture, Food Science and Human Nutrition AgriculturAl Science  

E-Print Network [OSTI]

1 University College Dublin Agriculture, Food Science and Human Nutrition AgriculturAl Science DN250 Agricultural Science Dn250AeS Agri-environmental Sciences Dn250AcP Animal and crop Production Dn Engineering Technology DN250FAM Food and Agribusiness Management #12;1 Contents Agricultural Science DN250 1

Buehrer, R. Michael

412

ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT  

E-Print Network [OSTI]

ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT N.C. Townsend nick@soton.ac.uk Fluid Structure Educational Trust, through the Lloyd's Register University Technology Centre FSI Away Day 2011 The Concept be applied to any moving object or vehicle to enable energy recovery. The rolling and pitching motions

Sóbester, András

413

Easy Gardening.....Harvesting and Handling Vegetables  

E-Print Network [OSTI]

Easy Gardening Joseph Masabni, Assistant Professor and Extension Horticulturist, The Texas A&M University System HARVESTING ? HANDLING ? STORING VEGETABLES -1- T ohelpensurethatthevegetables yougrowandprepareareofhigh quality.... Acknowledgments Thispublicationwasrevisedfromearlierversionswrittenby SamCotner,ProfessorEmeritusandformerExtension Horticulturist,andAlWagner,formerProfessorand ExtensionHorticulturist. -6- Produced by AgriLife Communications, The Texas A&M System Extension...

Cotner, Sam; Masabni, Joseph; Wagner, Al

2009-05-29T23:59:59.000Z

414

Improved Algal Harvesting Using Suspended Air Flotation  

E-Print Network [OSTI]

, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs). KEYWORDS: Suspended air flotation (SAF), dissolved air flotation (DAF), wastewater, algae, Chlorella

Jacobson, Arne

415

Harvested Wood Products -an Incentive for Deforestation?  

E-Print Network [OSTI]

1 Harvested Wood Products - an Incentive for Deforestation? Andreas Fischlin1 Abstract Mitigation for deforestation is real. To curb the disadvantages of HWP, some debiting of non-sustainable forest management activities are implemented that provide true disincentives to deforestation, HWP may continue to create some

Fischlin, Andreas

416

CANADIAN PEAT HARVESTING AND THE ENVIRONMENT  

E-Print Network [OSTI]

CANADIAN PEAT HARVESTING AND THE ENVIRONMENT SECOND EDITION ISSUES PAPER, No. 2001-1 PUBLISHED IN PARTNERSHIP WITH: North American Wetlands Conservation Council Committee Canadian Sphagnum Peat Moss Tourbe de and funding of: · Canadian Sphagnum Peat Moss Association · Canadian Wildlife Service, Environment Canada

Laval, Université

417

Optimization of Energy Harvesting MISO Communication Channels  

E-Print Network [OSTI]

1 Optimization of Energy Harvesting MISO Communication Channels Rajeev Gangula, Student Member-to-point multiple-input single-output (MISO) communication system is con- sidered when both the transmitter (TX bound on the ergodic rate of MISO channel with beamforming and limited feedback. Feedback bit allocation

Gesbert, David

418

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

419

Oregon Agriculture and the Economy  

E-Print Network [OSTI]

Oregon Agriculture and the Economy: An Update Oregon State University Extension Service Rural Analyst Department of Agricultural and Resource Economics Oregon State University #12;Contents ...........................................................................................................................................12 Agricultural Support Services, Wholesale Trade, Transportation and Warehousing, Retail Trade

Tullos, Desiree

420

Public Parking > Agriculture Building Parkade**  

E-Print Network [OSTI]

Engineering Poultry Science Kirk Hall Agriculture Agriculture and Agri-Food Canada SCIENCE PLACE VETERINARY > Agriculture Building Parkade** > Pay Parking Lots** > Stadium Parkade** > Diefenbaker Lot > Health Sciences Parkade** Disabled Persons' Parking* Motorcyle Parking* Faculty & Sta Parking Lots* Student Parking Lots

Saskatchewan, University of

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dynamic analysis of an electrostatic energy harvesting system  

E-Print Network [OSTI]

Traditional small-scale vibration energy harvesters have typically low efficiency of energy harvesting from low frequency vibrations. Several recent studies have indicated that introduction of nonlinearity can significantly ...

Niu, Feifei

2013-01-01T23:59:59.000Z

422

Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging  

E-Print Network [OSTI]

Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging Abhijit Sarkar dynamic range CMOS video camera to integrate daylight harvesting and occupancy sensing functionalities by these sensors. The prototype involves three algorithms, daylight estimation, occupancy detection and lighting

Salvaggio, Carl

423

alfalfa haylage harvesting: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

through. The CLNG can harvest the mechanical movement energy in a noncontact mode to generate electricity Wang, Zhong L. 418 MULTI-AXIS ALN-ON-SILICON VIBRATION ENERGY HARVESTER...

424

Energy harvesting from wind-induced vibration of suspension bridges  

E-Print Network [OSTI]

Recently, an extensive amount of research has been focused on energy harvesting from structural vibration sources for wireless self-powered microsystem applications. One method of energy harvesting is using electromagnetic ...

Shi, Miao, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

425

An Investigation of Hydrological Aspects of Water Harvesting  

E-Print Network [OSTI]

Water harvesting is a potential source of water for arid and semiarid lands. The objectives of this study were to determine combinations of land surface treatments and land forming which result in efficient but inexpensive water harvesting...

Wilke, O.; Runkles, J.; Wendt, C.

426

Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass  

SciTech Connect (OSTI)

Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

1999-05-20T23:59:59.000Z

427

Biomass power for rural development. Quarterly report, July 3--December 4, 1997  

SciTech Connect (OSTI)

This paper describes progress in several projects related to biomass power. These include switchgrass conversion development; switchgrass gasification development; production activities including soil studies, carbon studies, switchgrass production economics, watershed impacts, and prairie lands bio-products; information and education; and geographical information system. Attachments describe switchgrass co-firing test; switchgrass production in Iowa; cooperative agreements with ISU; Rathbun Lake watershed project; newspaper articles and information publications; Secretary of Agriculture Glickman`s visit; integration of technical aspects of switchgrass production in Iowa; and evaluation of an integrated biomass gasification/fuel cell power plant.

Cooper, J.T.

1998-03-01T23:59:59.000Z

428

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

429

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

430

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

431

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

432

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

433

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

434

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

435

Biomass Resources Overview and Perspectives on Best Fits for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

436

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

437

Commons and Anticommons in a simple Renewable Resource Harvest Model  

E-Print Network [OSTI]

Commons and Anticommons in a simple Renewable Resource Harvest Model June 20, 2007 M. Bredea a model where agents harvesting from a renewable resource can impose limita- tions on the harvesting that a fluctuation destabilizes the system into severe overexploitation. key words: renewable resources, commons

Boschetti, Fabio

438

Cooperative Energy Harvesting Communications with Relaying and Energy Sharing  

E-Print Network [OSTI]

, exposing a trade-off between energy cooperation and use of harvested energy for transmission. A multiCooperative Energy Harvesting Communications with Relaying and Energy Sharing Kaya Tutuncuoglu where the transmitters harvest their energy in an inter- mittent fashion. In this network, communication

Yener, Aylin

439

The Energy Harvesting Multiple Access Channel with Energy Storage Losses  

E-Print Network [OSTI]

The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

Yener, Aylin

440

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effects of Forest Harvesting and Regeneration on Peak Streamflow  

E-Print Network [OSTI]

Effects of Forest Harvesting and Regeneration on Peak Streamflow in a Coastal Watershed By Robert Harvesting and Regeneration on Peak Streamflow in a Coastal Watershed. Research Section, Vancouver Forest to harvest timber on Crown lands--is re-invested in the forests, forest workers, and forest communities

442

Piezoelectric energy harvesting from traffic-induced bridge vibrations  

E-Print Network [OSTI]

Piezoelectric energy harvesting from traffic-induced bridge vibrations Micha¨el Peigney1 harvesting of traffic-induced vibrations in bridges. Using a pre-stressed concrete highway bridge as a case of cantilever piezoelectric harvester was designed, tested, and modeled. Even though the considered bridge

Paris-Sud XI, Université de

443

Improved Capacity Bounds for the Binary Energy Harvesting Channel  

E-Print Network [OSTI]

Improved Capacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu1 , Omur Ozel2 of Maryland, College Park, MD 20742 Abstract--We consider a binary energy harvesting channel (BEHC) where is asymptotically optimal for small energy harvesting rates. We then present a novel upper bounding technique, which

Yener, Aylin

444

Optimal Harvesting of a Spatially Explicit Fishery Model  

E-Print Network [OSTI]

Optimal Harvesting of a Spatially Explicit Fishery Model Wandi Ding and Suzanne Lenhart Department(L) = 0. 2. Neubert's Results · No-take marine reserves are always part of an optimal harvest designed of the habitat · For large values of this parameter, the optimal harvest- ing strategy is a spatial "chattering

Ding, Wandi

445

Harvesting can increase severity of wildlife disease epidemics  

E-Print Network [OSTI]

Harvesting can increase severity of wildlife disease epidemics Marc Choisy1,* and Pejman Rohani1 extinction. Surprisingly, infectious diseases have not been accounted for in harvest models, which is a major and harvesting can substantially increase both disease prevalence and the absolute number of infectious

446

Paper Generators: Harvesting Energy from Touching, Rubbing and Sliding  

E-Print Network [OSTI]

Paper Generators: Harvesting Energy from Touching, Rubbing and Sliding Mustafa Emre Karagozler1, PA 15213 USA ABSTRACT We present a new energy harvesting technology that generates electrical energy from a user's interactions with paper-like materials. The energy harvesters are flexible, light

Poupyrev, Ivan

447

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices  

E-Print Network [OSTI]

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices Azalia intensive computation on ultra-low power devices with discontinuous energy-harvesting supplies. We devise on a battery-less RF energy-harvester platform. Extensive experiments targeting applications in medical implant

448

Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks  

E-Print Network [OSTI]

Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks Zhe Wang, Vaneet@research.att.com Abstract--We develop optimal energy-bandwidth allocation algorithm for the energy harvesting transmitters in interference networks. We assume that both the channel gain and the harvested energy are known for K slots

Fisher, Kathleen

449

Energy Harvesting in Wireless Communications Communicating with Energy  

E-Print Network [OSTI]

Energy Harvesting in Wireless Communications Communicating with Energy Harvesting Transmitters Tech, utilizing strain Wireless networking with energy harvesting nodes: · Green, self-sufficient nodes, · Extended network lifetime, · Smaller nodes with smaller batteries, · Very limited and varying energy

Smith, Adam D.

450

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect (OSTI)

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

451

Effect of pre-harvest calcium chloride applications on fruit calcium level and post-harvest anthracnose disease of papaya  

E-Print Network [OSTI]

-harvest anthracnose disease of papaya Babak Madani a,*, Mahmud Tengku Muda Mohamed a,**, Alan R. Biggs c , Jugah Kadir

Biggs, Alan R.

452

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/00/$04.00 0  

E-Print Network [OSTI]

.g., the choice of plant species and soil amendments, may have a great impact on the quantity and species in aboveground biomass (9, 34). The metal-enriched biomass can be harvested using standard agricultural methods

Pawlowska, Teresa

453

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

SciTech Connect (OSTI)

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

454

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

40 College of Agriculture, Forestry and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

Stuart, Steven J.

455

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

43 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The College of Agriculture, Forestry and Life Scienc- es (CAFLS) supports Clemson University's land-grant mission to provide education, research and service to the public. The College of Agriculture

Stuart, Steven J.

456

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

39 College of Agriculture, Forestry, and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences (www.clemson.edu/CAFLS) offers a broad. The undergraduate academic programs include Agricultural and Applied Economics with a Community and Economic

Stuart, Steven J.

457

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research and service in agriculture, forestry and life sciences that will benefit the citizens of South

Bolding, M. Chad

458

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

46 College of Agriculture, Forestry, and Life Sciences 46 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences offers graduate programs in 17 traditional disciplines in agriculture, forestry, and a wide variety of biological sciences, from

Stuart, Steven J.

459

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

44 College of Agriculture, Forestry, and Life Sciences 44 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences offers graduate programs in 17 traditional disciplines in agriculture, forestry, and a wide variety of biological sciences, from

Stuart, Steven J.

460

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

20 College of Agriculture, Forestry, and Life Sciences 20 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The mission of the College of Agriculture, Forestry, and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens

Stuart, Steven J.

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

College of Agriculture, Forestry, and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

40 College of Agriculture, Forestry, and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The mission of the College of Agriculture, Forestry, and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens

Stuart, Steven J.

462

College of Agriculture, Food and Environment AEN Agricultural Engineering  

E-Print Network [OSTI]

College of Agriculture, Food and Environment AEN Agricultural Engineering KEY: # = new course of engineering systems, earthwork computations, and introduction to boundary surveys for Agriculture students in the College of Agriculture and/or consent of instructor. AEN 220 FARM TRACTORS AND ENGINES. (3) Principles

MacAdam, Keith

463

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

41 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

Stuart, Steven J.

464

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

20 College of Agriculture, Forestry and Life Sciences 20 COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research and service in agriculture, forestry and life sciences that will benefit the citizens of South

Stuart, Steven J.

465

College of Agriculture, Forestry and Life Sciences AGRICULTURE,  

E-Print Network [OSTI]

42 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

Stuart, Steven J.

466

AgraPure Mississippi Biomass Project  

SciTech Connect (OSTI)

The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

2006-03-31T23:59:59.000Z

467

AGRICULTURAL SPRING 2005  

E-Print Network [OSTI]

. In 1877, William Beal established the first seed testing laboratory in the United States at what was then the Michigan Agricultural College. Beal was also the first person to cross-fertilize corn to increase yield

468

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

469

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

470

Biomass Feedstock Composition and Property Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

471

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

472

Biomass Equipment and Materials Compensating Tax Deduction  

Broader source: Energy.gov [DOE]

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

473

Biomass energy systems program summary  

SciTech Connect (OSTI)

Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

None

1980-07-01T23:59:59.000Z

474

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

475

Biomass from Combined Backseatter Modeling  

E-Print Network [OSTI]

and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

Weishampel, John F.

476

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

477

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-07-01T23:59:59.000Z

478

Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter  

SciTech Connect (OSTI)

The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

Lovley, Derek R

2012-12-28T23:59:59.000Z

479

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

480

BC Agriculture Climate Change Adaptation  

E-Print Network [OSTI]

BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

Pedersen, Tom

Note: This page contains sample records for the topic "biomass agricultural harvested" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Purdue Agriculture Annual Statistical Report  

E-Print Network [OSTI]

Purdue Agriculture Research Works Annual Statistical Report 2005-2006 Purdue AGrICuLTure Read the full report on the Web www.ag.purdue.edu/arp/stat_report_05-06 #12;Purdue AGrICuLTure Purdue Agriculture Research Works Here's why. We are riding the wave of revolutionary changes brought about

482

BC Agriculture Climate Change Adaptation  

E-Print Network [OSTI]

BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report executive summary #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

Pedersen, Tom

483

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

484

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

485

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

486

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

487

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

488

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

489

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

490

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

491

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

492

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

493

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

494

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

495

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

496

Original article Micronutrients in biomass fractions  

E-Print Network [OSTI]

Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

Boyer, Edmond

497

Gasification reactivities of solid biomass fuels  

SciTech Connect (OSTI)

The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

Moilanen, A.; Kurkela, E.

1995-12-31T23:59:59.000Z

498

AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions  

E-Print Network [OSTI]

STATUS OF WISCONSIN AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions Situation and Challenges Department of Agricultural and Applied Economics College of Agricultural and Life Sciences OF WISCONSIN AGRICULTURE, 2003 An Annual Report by: Department of Agricultural and Applied Economics College

Radeloff, Volker C.

499

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

500

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z