National Library of Energy BETA

Sample records for biological systems science

  1. Biological Systems Science Division (BSSD) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Biological Systems Science Division (BSSD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER

  2. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  3. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  4. Protein-Folding Landscapes in Multi-Chain Systems Major Classification: Biological Sciences

    Office of Scientific and Technical Information (OSTI)

    Protein-Folding Landscapes in Multi-Chain Systems Major Classification: Biological Sciences Minor Classification: Biophysics Authors: Troy Cellmer 1 , Dusan Bratko 1,2 , John M. Prausnitz 1,3 , and Harvey Blanch 1,* 1 Department of Chemical Engineering, University of California, Berkeley, CA 94720 2 Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284 3 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 * corresponding author Tel:

  5. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect (OSTI)

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  6. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology Genomics and Systems Biology Los Alamos scientists perform research in functional genomics and structural genomics, and applications for such work cover diverse fields such as energy, agriculture, and environmental cleanup. Contact Us Babetta Marrone Biofuels Program Manager Email Cheryl Kuske DOE BER Biological System Science Division Program Manager Email Kirsten McCabe Emerging Threats Program Manager Email Rebecca McDonald Bioscience Communications Email "We

  7. Structural Biology | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Structural Biology Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link

  8. Biological Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Science Biological Science The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. <a href="http://energy.gov/articles/malaria-researchers-find-weakness-global-killer">Read more</a> The protozoan Plasmodium falciparum gliding through a cell in the gut of a

  9. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology LANL leads the world in computational finishing of microbial genomes Read caption + In 2013, Los Alamos scientist Richard Sayre and his team genetically modified the organisms to harvest light more efficiently for maximum production. Overview of Research and Highlights Researchers at Los Alamos National Laboratory are using their renowned expertise in genomics, computation, and experimental biology as the foundation of a dynamic systems biology capability. Systems

  10. UK Biotechnology and Biological Sciences Research Council | Open...

    Open Energy Info (EERE)

    Biotechnology and Biological Sciences Research Council Jump to: navigation, search Name: UK Biotechnology and Biological Sciences Research Council Place: London, United Kingdom...

  11. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    SciTech Connect (OSTI)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  12. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    SciTech Connect (OSTI)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  13. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems: * Understanding the dynamics and treatments of viral diseases, such as HIV, influenza, and hepatitis. * Explore the complex soil community of bacteria and fungi using...

  14. Systems biology approach to bioremediation

    SciTech Connect (OSTI)

    Chakraborty, R.; Wu, C. H.; Hazen, T. C.

    2012-01-01

    Bioremediation has historically been approached as a ?black box? in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ?black box?.

  15. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSIIPSI...

  16. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  17. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  18. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect (OSTI)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  19. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution

  20. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding,

  1. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.: Davis, J.C.; Stanker, L.H.

    1993-05-11

    A method is disclosed of quantifying molecules in biological substances, comprising: selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere; preparing a long-lived radioisotope labeled reactive chemical specie; administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system; allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host; isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources; converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation; and measuring the radioisotope concentration in the material by means of direct isotopic counting.

  2. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  3. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    SciTech Connect (OSTI)

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  4. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect (OSTI)

    Barcellos-Hoff, Mary Helen

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  5. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-12-27

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figures.

  6. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  7. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.; Stanker, Larry H.

    1993-05-11

    Disclosed is a method of quantifying molecules in biological substances, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  8. Data System Sciences & Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSS Directorate ORNL Data System Sciences & Engineering Group Computational Sciences & Engineering Division Home Organization The Advanced Computing Solutions Team The Data Systems Research Integration Team Research Areas Data Systems Architectures for National Security Risk Analysis Streaming Realtime Sensor Networks Visual Analytics Opportunities Contact Us Data System Sciences & Engineering Group DSSE goes past traditional approaches to develop new methods for meeting user needs

  9. Modular microfluidic system for biological sample preparation

    DOE Patents [OSTI]

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  10. Radiological/biological/aerosol removal system

    DOE Patents [OSTI]

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  11. KPFM and PFM of Biological Systems

    SciTech Connect (OSTI)

    Rodriguez, Brian [University College, Dublin; Kalinin, Sergei V [ORNL

    2011-01-01

    Surface potentials and electrostatic interactions in biological systems are a key element of cellular regulation and interaction. Examples include cardiac and muscular activity, voltage-gated ion channels, protein folding and assembly, and electroactive cells and electrotransduction. The coupling between electrical, mechanical, and chemical signals and responses in cellular systems necessitates the development of tools capable of measuring the distribution of charged species, surface potentials, and mechanical responses to applied electrical stimuli and vice versa, ultimately under physiological conditions. In this chapter, applications of voltage-modulated atomic force microscopy (AFM) methods including Kelvin probe force microscopy (KPFM) and piezoresponse force microscopy (PFM) to biological systems are discussed. KPFM is a force-sensitive non-contact or intermittent-contact mode AFM technique that allows electrostatic interactions and surface potentials to be addressed. Beyond long-range electrostatic interactions, the application of bias can lead to a mechanical response, e.g., due to linear piezoelectric coupling in polar biopolymers or via more complex electrotransduction and redox pathways in other biosystems. The use and development of PFM, based on direct electromechanical detection, to biological systems will also be addressed. The similarities and limitations of measuring surface potentials and electromechanical coupling in solution will be outlined.

  12. Method for photo-altering a biological system to improve biological effect

    DOE Patents [OSTI]

    Hill, Richard A. (Irvine, CA); Doiron, Daniel R. (Santa Ynez, CA); Crean, David H. (Santa Barbara, CA)

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  13. Detter, John C. [Los Alamos National Laboratory] Basic Biological

    Office of Scientific and Technical Information (OSTI)

    State of the Art for Autonomous Detection Systems using Genomic Sequencing Detter, John C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science...

  14. Renewable Energy from Synthetic Biology (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Keasling, Jay

    2011-04-28

    Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in work funded by the Bill & Melinda Gates Foundation.

  15. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  16. Fungal Genomics Program Grigoriev, Igor 59 BASIC BIOLOGICAL SCIENCES...

    Office of Scientific and Technical Information (OSTI)

    and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world...

  17. Modular microfluidic system for biological sample preparation (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Modular microfluidic system for biological sample preparation Citation Details In-Document Search Title: Modular microfluidic system for biological sample preparation A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis

  18. Genomic Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Genomic Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities

  19. Genomics and Systems Biology of Tuberculosis (2009 JGI User Meeting)

    ScienceCinema (OSTI)

    Galagan, James

    2011-04-25

    James Galagan from the Broad Institute spoke about the "Genomics and Systems Biology of TB" on March 26, 2009 during the 4th Annual User Meeting

  20. Renewable Hydrogen Production from Biological Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy from Biological Systems Renewable Hydrogen Production from Biological Systems Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_posewitz.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report

  1. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect (OSTI)

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  2. PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PDF icon PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) More Documents & Publications PIA - WEB iPASS System DOE PIA Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Advanced Test Reactor National

  3. The OME Framework for genome-scale systems biology

    SciTech Connect (OSTI)

    Palsson, Bernhard O.; Ebrahim, Ali; Federowicz, Steve

    2014-12-19

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity of genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome-scale metabolic models or for genome-scale data analysis, no implementations exist that explicitly handle data and models concurrently. The OME Framework structures data in a connected loop with models and the components those models are composed of. This results in the first full, practical implementation of a framework that can enable genome-scale design-build-test. Over the coming years many more software packages will be developed and tools will necessarily change. However, we hope that the underlying designs shared here can help to inform the design of future software.

  4. Systems Biology Knowledgebase (GSC8 Meeting)

    ScienceCinema (OSTI)

    Cottingham, Robert W [ORNL

    2011-04-29

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Robert W. Cottingham of Oak Ridge National Laboratory discusses the DOE KnowledgeBase at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009.

  5. Accelerating Science Driven System Design With RAMP

    SciTech Connect (OSTI)

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  6. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  7. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect Technical Report: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production × You are accessing a document from the Department of

  8. Comparative systems biology across an evolutionary gradient within the

    Office of Scientific and Technical Information (OSTI)

    Shewanella genus (Journal Article) | SciTech Connect Comparative systems biology across an evolutionary gradient within the Shewanella genus Citation Details In-Document Search Title: Comparative systems biology across an evolutionary gradient within the Shewanella genus To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology such as the species definition. Here, we take

  9. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect Technical Report: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Authors: Collins, James J [1] + Show Author Affiliations

  10. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Authors: Collins, James J [1] + Show Author Affiliations Boston University

  11. Chemical Biological Emergency Management Information System

    Energy Science and Technology Software Center (OSTI)

    2004-06-15

    CB-EMIS is designed to provide information and analysis to transit system operators and emergency responders in the event of a chemical attack on a subway system. The software inforporates detector data, video images, train data, meteorological data, and above- and below-ground plume dispersion models, hight of the liquid level.

  12. Computational Proteomics: High-throughput Analysis for Systems Biology

    SciTech Connect (OSTI)

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  13. Behavior of REE in geological and biological systems

    SciTech Connect (OSTI)

    Laul, J.C.; Weimer, W.C.

    1981-05-01

    The REE abundances when normalized to primordial (chondritic) abundances behave as a smooth function of the REE ionic radii in both the geological and biological systems. The REE are hardly fractionated chemically through various stages of their transformation from soil-soil extract-plant-geological systems.

  14. SC e-journals, Biology/Genetics

    Office of Scientific and Technical Information (OSTI)

    Biology/Genetics ACM Transactions on Applied Perception (TAP) ACS Chemical Biology ACS Synthetic Biology Acta Biotheoretica Acta Neuropathologica Advances in Bioinformatics - OAJ Advances in Health Sciences Education Agriculture and Human Values Agroforestry Systems American Journal of Agricultural and Biological Science - OAJ American Journal of Medical Genetics Amino Acids Analyst Analytical and Bioanalytical Chemistry Analytical Biochemistry Anatomical Record, The Anatomy and Embryology

  15. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  16. New Opportunities for Outer Solar System Science using Radioisotope

    Office of Scientific and Technical Information (OSTI)

    Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion Noble, Robert J.; SLAC; Amini, Rashied; Beauchamp, Patricia M.; Caltech, JPL; Bennett, Gary...

  17. Terrestrial Ecosystem Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Terrestrial Ecosystem Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  18. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    SciTech Connect (OSTI)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop â??From Computational Biophysics to Systems Biology (CBSB12)â? which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  19. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. November 1, 2014 Computer modeling provides policymakers with essential information on such data as

  20. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  1. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOE Patents [OSTI]

    Hunt, Ryan W; Chinnasamy, Senthil; Das, Keshav C; Rolim de Mattos, Erico

    2014-02-25

    The present disclosure relates to biological optimization systems for enhancing photosynthetic efficiency and methods of use.

  2. Systems Biology in Prokaryote - Eukaryote Symbiosis | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Systems Biology in Prokaryote - Eukaryote Symbiosis Monday, June 25, 2012 - 12:00pm SLAC, SSRL Main Conference Room, 137-322 Allen M. Orville, Brookhaven National Laboratory Frontier challenges for macromolecular crystallography (MX) now include determining structures of trapped reactive intermediates, large macromolecules and viruses, membrane proteins, protein-protein complexes, and protein-nucleic acid complexes. Although structure and function are intimately linked,

  3. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown

  4. New Opportunities for Outer Solar System Science using Radioisotope

    Office of Scientific and Technical Information (OSTI)

    Electric Propulsion (Technical Report) | SciTech Connect Technical Report: New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion Citation Details In-Document Search Title: New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur

  5. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  6. Climate and Environmental Sciences Division (CESD) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Climate and Environmental Sciences Division (CESD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate

  7. DIVERSITY. EDUCATION. SCIENCE. The ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sciences-Biology, Computer, Information Technology, Geology, Mathematics, Microbiology, and Physics. Social Sciences-Economics, Organizational Psychology, Political Science, ...

  8. Frontiers of Plant Cell Biology: Signals and Pathways, System-Based Approaches 22nd Symposium in Plant Biology (University of California-Riverside)

    SciTech Connect (OSTI)

    Minorsky, Peter V.

    2003-06-01

    The symposium ''Frontiers of Plant Cell Biology: Signals and Pathways, Systems-Based Approaches'' was held January 15-18, 2003 at the Riverside Convention Center in Riverside, California. The host organization for the symposium was the Center for Plant Cell Biology (CEPCEB) at the University of California, Riverside (UCR). The meeting, focusing on systems-based approaches to plant cell biology research, was the first of this kind in the field of plant biology. The speakers and nearly 100 posters placed emphasis on recent developments in plant cellular biology and molecular genetics, particularly those employing emerging genomic tools, thereby sharing the most current knowledge in the field and stimulating future advances. In attendance were many well-established scientists and young investigators who approach plant cell biology from different but complementary conceptual and technical perspectives. Indeed, many disciplines are converging in the field of cell biology, producing synergies that will enable plant scientists to determine the function of gene products in the context of living cells in whole organisms. New, cross-disciplinary collaborations, as well as the involvement of computer scientists and chemists in plant biology research, are likely additional outcomes of the symposium. The program included 39 invited session speakers and workshop/panel speakers. Sessions were convened on the following themes: Cell-Cell Communication; Protein Trafficking; Cell Surface, Extracellular Matrix and Cell Wall; Signal Transduction; Signal Transduction and Proteosome; and Systems-Based Approaches to Plant Cell Biology. Workshops on Chemical Genetics and Visual Microscopy were also presented. Abstracts from each of the speaker presentations, as well as the posters presented at the meeting were published in a program booklet given to the 239 faculty members, researchers, postdoctoral scientists and graduate students in attendance. The booklet thus serves as a reference for symposium attendees to locate additional information about a topic of their particular interest and to contact other investigators. In addition, an article reviewing the symposium by science writer Peter V. Minorsky appeared in the June 2003 issue of Plant Physiology, a special issue devoted to systems-based approaches in the study of the model plant Arabidopsis (article submitted as part of this Final Technical Report).

  9. Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology @WIPP Life Begins at 250,000,000 Years WIPP's underground isn't just suited for physics experiments aiming to unlock the mysteries of the Universe, it is also a perfect "dig site" for biologists wanting to chronicle the history of life. 250 million years ago, the area around WIPP was all part of the Permian Sea. Today, the salt beds that make up the WIPP underground provide a time capsule, of sorts, to this ancient era. Researchers have uncovered ancient bacteria, cellulose and

  10. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  11. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  12. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  13. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    SciTech Connect (OSTI)

    Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.; Friedman, Robert M

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as synthetic biology has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDAs authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPAs resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology industry, and non-governmental organizations. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/

  14. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  15. Biologically-based signal processing system applied to noise removal for signal extraction

    DOE Patents [OSTI]

    Fu, Chi Yung; Petrich, Loren I.

    2004-07-13

    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  16. Enabling a Systems Biology Knowledgebase with Gaggle and Firegoose

    SciTech Connect (OSTI)

    Baliga, Nitin S.

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and improve the integration within different environments, and we have created a new tools pipeline for generating EGRIN2 models in a largely automated way.

  17. Biological and Environmental Research Advisory CommitteeOctober...

    Office of Science (SC) Website

    Geernaert .pdf file (2.1MB) - Climate and Environmental Sciences Division Update Todd Anderson .pdf file (5.1MB) - Biological Systems Science Division Update Kent Peters .pdf file...

  18. Biological & Environmental Research Abstracts Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the Biological and Environmental Research Abstracts Database The U.S. Department of Energy's Office of Biological and Environmental Research (BER) conducts research in the areas of Climate and Environmental Sciences and Biological Systems Science. This database contains abstracts of research projects supported by the program. Work was performed at DOE Laboratories as well as at nearly 300 universities and other research institutions. This is a historical database that includes the

  19. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and researchers at work. News Releases Science Briefs Photos Picture of the Week Social Media Videos Fact Sheets Publications PHOTOS BY TOPIC Careers Community Visitors...

  20. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  1. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  2. DOE Joint Genome Institute | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    DOE Joint Genome Institute Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link

  3. Integrated Assessment of Global Climate Change | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Assessment of Global Climate Change Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling

  4. Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Subsurface Biogeochemical Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  5. Magnetic Systems Mimic Granular Materials | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Magnetic Systems Mimic Granular Materials Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 06.01.13 Magnetic Systems Mimic Granular Materials Magnetic

  6. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Arkin, Adam [LBNL

    2013-01-15

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  7. Building the DOE Systems Biology Knowledgebase (KBase) ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Brettin, Tom [Oak Ridge National Laboratory

    2013-03-22

    Tom Brettin on "Building the DOE Systems Biology Knowledgebase (KBase)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  8. DOE Systems Biology Knowledgebase (KBASE) (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Arkin, Adam [LBNL] [LBNL

    2012-03-21

    Adam Arkin from Berkeley Lab on the DOE Systems Biology Knowledgebase (KBASE) at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  9. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses Citation Details In-Document Search Title: Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol

  10. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose ...

  11. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In

  12. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the

  13. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    SciTech Connect (OSTI)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-02-01

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the pastincluding the intense focus on individual genes and proteins typical of molecular biologyhave not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

  14. Modular Automated Processing System (MAPS) for analysis of biological samples.

    SciTech Connect (OSTI)

    Gil, Geun-Cheol; Chirica, Gabriela S.; Fruetel, Julia A.; VanderNoot, Victoria A.; Branda, Steven S.; Schoeniger, Joseph S.; Throckmorton, Daniel J.; Brennan, James S.; Renzi, Ronald F.

    2010-10-01

    We have developed a novel modular automated processing system (MAPS) that enables reliable, high-throughput analysis as well as sample-customized processing. This system is comprised of a set of independent modules that carry out individual sample processing functions: cell lysis, protein concentration (based on hydrophobic, ion-exchange and affinity interactions), interferent depletion, buffer exchange, and enzymatic digestion of proteins of interest. Taking advantage of its unique capacity for enclosed processing of intact bioparticulates (viruses, spores) and complex serum samples, we have used MAPS for analysis of BSL1 and BSL2 samples to identify specific protein markers through integration with the portable microChemLab{trademark} and MALDI.

  15. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  16. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C. (Argonne, IL); Wegerich, Stephan W. (Argonne, IL); Vilim, Rick B. (Argonne, IL); White, Andrew M. (Skokie, IL)

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  17. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    SciTech Connect (OSTI)

    2010-03-01

    The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified in models can provide a basis for testing hypotheses, guiding experiment design, integrating scientific knowledge on multiple environmental systems into a common framework, and translating this information to support informed decision making and policies. Subsurface behavior typically has been investigated using reductionist, or bottom-up approaches. In these approaches, mechanisms of small-scale processes are quantified, and key aspects of their behaviors are moved up to the prediction scale using scaling laws and models. Reductionism has and will continue to yield essential and comprehensive understanding of the molecular and microscopic underpinnings of component processes. However, system-scale predictions cannot always be made with bottom-up approaches because the behaviors of subsurface environments often simply do not result from the sum of smaller-scale process interactions. Systems exhibiting such behavior are termed complex and can range from the molecular to field scale in size. Complex systems contain many interactive parts and display collective behavior including emergence, feedback, and adaptive mechanisms. Microorganisms - key moderators of subsurface chemical processes - further challenge system understanding and prediction because they are adaptive life forms existing in an environment difficult to observe and measure. A new scientific approach termed complex systems science has evolved from the critical need to understand and model these systems, whose distinguishing features increasingly are found to be common in the natural world. In contrast to reductionist approaches, complexity methods often use a top-down approach to identify key interactions controlling diagnostic variables at the prediction scale; general macroscopic laws controlling system-scale behavior; and essential, simplified models of subsystem interactions that enable prediction. This approach is analogous to systems biology, which emphasizes the tight coupling between experimentation and modeling and is defined, in the context of Biological Systems Science research programs under DOE'

  18. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect (OSTI)

    S.V. Gerasimov

    2009-05-15

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  19. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  20. Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a crucial role in the Laboratory's Science of Signatures scientific thrust. Measurement and detection science areas that require chemistry include nuclear and radiological, materials, biological, energy, climate, and space. Los Alamos scientists integrate chemical-science capabilities to ensure that the Laboratory can

  1. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect (OSTI)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  2. Photosynthetic Systems | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Print Text Size: A A A FeedbackShare Page This research area supports fundamental research on the biological conversion of solar energy to chemically stored forms of energy. Topics ...

  3. NREL: Energy Systems Integration - Computational Science and Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Visualization Computational science and visualization capabilities at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. These efforts will save time and money, significantly improve the likelihood of breakthroughs and useful advances, and reduce risks and uncertainties that are often barriers to

  4. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOE Patents [OSTI]

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  5. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScience Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Science New C-band scanning ARM

  6. Interaction of biological systems with static and ELF electric and magnetic fields

    SciTech Connect (OSTI)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  7. A case for Sandia investment in complex adaptive systems science and technology.

    SciTech Connect (OSTI)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.

  8. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  9. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    SciTech Connect (OSTI)

    Mather, James; McCord, Raymond; Sisterson, Doug; Voyles, Jimmy

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  10. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    SciTech Connect (OSTI)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  11. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  12. The ChemCam instrument for the 2011 Mars science laboratory mission: system

    Office of Scientific and Technical Information (OSTI)

    requirements and performance (Conference) | SciTech Connect The ChemCam instrument for the 2011 Mars science laboratory mission: system requirements and performance Citation Details In-Document Search Title: The ChemCam instrument for the 2011 Mars science laboratory mission: system requirements and performance Authors: Wiens, Roger C [1] ; Barraclough, Bruce L [1] ; Bender, Steve C [1] ; Perez, R. [2] ; Cousin, A. [3] ; Cros, A. [3] ; De Flores, L. [4] ; Leroch, N. [5] ; Maurice, S. [3] ;

  13. The ChemCam instrument for the 2011 Mars science laboratory mission: system

    Office of Scientific and Technical Information (OSTI)

    requirements and performance (Conference) | SciTech Connect The ChemCam instrument for the 2011 Mars science laboratory mission: system requirements and performance Citation Details In-Document Search Title: The ChemCam instrument for the 2011 Mars science laboratory mission: system requirements and performance × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is

  14. Experimental nonlinear laser systems: Bigger data for better science?

    SciTech Connect (OSTI)

    Kane, D. M.; Toomey, J. P.; McMahon, C.; Noblet, Y.; Argyris, A.; Syvridis, D.

    2014-10-06

    Bigger data is supporting knowledge discovery in nonlinear laser systems as will be demonstrated with examples from three semiconductor laser based systems one with optical feedback, a photonic integrated circuit (PIC) chaotic laser and a frequency shifted feedback laser system.

  15. DOE Science Showcase - Earth System Models | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Earth System Models Research in DOE Databases In the OSTI Collections: Earth System Models, Dr. William Watson DOE PAGESBeta - journal articles and accepted manuscripts resulting ...

  16. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOE Patents [OSTI]

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  17. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  18. Licensable Life Science Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensable Life Science Technologies A selection of biology-based technologies available for licensing PDF icon licensable_biological_technologies

  19. New Opportunities for Outer Solar System Science using Radioisotope...

    Office of Scientific and Technical Information (OSTI)

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ... INFORMATION; ION THRUSTERS; MOBILITY; ORIGIN; PLANETS; POWER; POWER RANGE; PROPULSION; ...

  20. New Opportunities for Outer Solar System Science using Radioisotope...

    Office of Scientific and Technical Information (OSTI)

    the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. ...

  1. An EBIS system for rare isotope science project in Korea

    SciTech Connect (OSTI)

    Kim, Jongwon E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Han, Jae-Eun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Son, Hyock-Jun E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Yi, Kun-Hui E-mail: jehan@ibs.re.kr E-mail: khyi@ibs.re.kr; Zhao, Liangji E-mail: kim@far-tech.com; Kim, Jin-Soo E-mail: kim@far-tech.com

    2015-01-09

    An EBIS system has been designed to be used as a charge breeder for the post accelerator of an ISOL system. An electron gun, which is designed to produce a maximum current of 3 A at the beam energy of 20 kV, will be acquired from the Budker Institute, Novosibirsk. Electron beam optics calculations of the EBIS system as well as of the gun assembly have been performed using PBGUNS and TRAK. A superconducting solenoid with a maximum field of 6 T is to be used to compress the electron beam. A test stand, which includes the gun assembly and a high-power electron beam collector, is being designed and will be ready for the gun test in the end of this year. Charge breeding simulation using EBIS0D and CBSIM has been performed for a few key isotopes.

  2. Integrated Omics in Systems Biology: The New Frontier for Environmental Biotechnology

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2008-08-12

    Environmental biotechnology encompasses a wide range of characterization, monitoring and control for bioenergy and bioremediation technologies that are based on biological processes. Recent breakthroughs in our understanding of biogeochemical processes and genomics are leading to exciting new and cost effective ways to monitor and manipulate the environment and potentially produce bioenergy fuels as we also cleanup the environment. Indeed, our ability to sequence an entire microbial genome in just a few hours is leading to similar breakthroughs in characterizing proteomes, metabolomes, phenotypes, and fluxes for organisms, populations, and communities. Understanding and modeling functional microbial community structure and stress responses in subsurface environments has tremendous implications for our fundamental understanding of biogeochemistry and the potential for making biofuel breakthroughs. Monitoring techniques that inventory and monitor terminal electron acceptors and electron donors, enzyme probes that measure functional activity in the environment, functional genomic microarrays, phylogenetic microarrays, metabolomics, proteomics, and quantitative PCR are also being rapidly adapted for studies in environmental biotechnology. Integration of all of these new high throughput techniques using the latest advances in bioinformatics and modeling will enable break-through science in environmental biotechnology. A review of these techniques with examples from field studies and lab simulations will be discussed.

  3. Towards Composing Data Aware Systems Biology Workflows on Cloud Platforms: A MeDICi-based Approach

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian; Kulkarni, Anand V.; Wynne, Adam S.

    2011-09-08

    Cloud computing is being increasingly adopted for deploying systems biology scientific workflows. Scientists developing these workflows use a wide variety of fragmented and competing data sets and computational tools of all scales to support their research. To this end, the synergy of client side workflow tools with cloud platforms is a promising approach to share and reuse data and workflows. In such systems, the location of data and computation is essential consideration in terms of quality of service for composing a scientific workflow across remote cloud platforms. In this paper, we describe a cloud-based workflow for genome annotation processing that is underpinned by MeDICi - a middleware designed for data intensive scientific applications. The workflow implementation incorporates an execution layer for exploiting data locality that routes the workflow requests to the processing steps that are colocated with the data. We demonstrate our approach by composing two workflowswith the MeDICi pipelines.

  4. Final Report - Phylogenomic tools and web resources for the Systems Biology Knowledgebase

    SciTech Connect (OSTI)

    Sjolander, Kimmen

    2014-11-07

    The major advance during this last reporting period (8/15/12 to present) is our release of data on the PhyloFacts website: phylogenetic trees, multiple sequence alignments and other data for protein families are now available for download from http://phylogenomics.berkeley.edu/data/. This project as a whole aimed to develop high-throughput functional annotation systems that exploit information from protein 3D structure and evolution to provide highly precise inferences of various aspects of gene function, including molecular function, biological process, pathway association, Pfam domains, cellular localization and so on. We accomplished these aims by developing and testing different systems on a database of protein family trees: the PhyloFacts Phylogenomic Encyclopedia (at http://phylogenomics.berkeley.edu/phylofacts/ ).

  5. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    SciTech Connect (OSTI)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  6. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  7. BER Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Science Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is

  8. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  9. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  10. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  11. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Silver, Pam [Harvard University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  12. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Silver, Pam [Harvard University] [Harvard University

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  13. Biological and Environmental Research Network Requirements

    SciTech Connect (OSTI)

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  14. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    SciTech Connect (OSTI)

    Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J; Hurst, Gregory {Greg} B; Engle, Nancy L; Zhou, Wen; Dam, Phuongan; Xu, Ying; Dice, Lezlee T; Davison, Brian H; Brown, Steven D

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.

  15. Reliability of unstable periodic orbit based control strategies in biological systems

    SciTech Connect (OSTI)

    Mishra, Nagender; Singh, Harinder P.; Hasse, Maria; Biswal, B.

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  16. The Encyclopedia of Systems Biology and OMICS (first presentation) and The ISA Infrastructure for Multi-omics Data (second presentation) (GSC8 Meeting)

    ScienceCinema (OSTI)

    Kolker, Eugene [Seattle Children's Hospital]; Sansone, Susanna [EBI

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Eugene Kolker from Seattle Children's Hospital briefly discusses "The Encyclopedia of Systems Biology and OMICS," followed by Susanna Sansone from the EBI on "The ISA Infrastructure for multi-omics data" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 11, 2009.

  17. The Encyclopedia of Systems Biology and OMICS (first presentation) and The ISA Infrastructure for Multi-omics Data (second presentation) (GSC8 Meeting)

    SciTech Connect (OSTI)

    Kolker, Eugene; Sansone, Susanna

    2011-09-11

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Eugene Kolker from Seattle Children's Hospital briefly discusses "The Encyclopedia of Systems Biology and OMICS," followed by Susanna Sansone from the EBI on "The ISA Infrastructure for multi-omics data" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 11, 2009.

  18. A comprehensive collection of systems biology data characterizing the host response to viral infection

    SciTech Connect (OSTI)

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagan; Carter, Victoria; Chang, Jean H.; Clauss, Therese R. W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy L.; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa; Green, Richard; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sarah; Law, Gale Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa M.; McDermott, Jason E.; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh D.; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicholas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison L.; Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; Mcweeney, Shannon K.; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.

  19. A comprehensive collection of systems biology data characterizing the host response to viral infection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagan; Carter, Victoria; Chang, Jean H.; et al

    2014-10-14

    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less

  20. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan G de Boer B Argrow G Bland J Elston D Lawrence J Maslanik S Palo M Tschudi December 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  1. System and method for preconcentrating, identifying, and quantifying chemical and biological substances

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA); Koo, Jackson C. (San Ramon, CA)

    2000-01-01

    A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.

  2. Photo Gallery: National Labs and the Science Behind Nuclear Security...

    Broader source: Energy.gov (indexed) [DOE]

    computing; national security; engines; alternative fuels; environmental science; physics; chemistry and biological sciences. Image: Photo courtesy of Argonne...

  3. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    SciTech Connect (OSTI)

    Papoutsakis, Elefterios

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome-scale model (GSM) (Maranas group). Omics data are also integrated using bioinformatics (Wu and Huang group), whereby regulatory details of gene and protein expression, protein-protein interactions and metabolic flux regulation are incorporated. The PI (Papoutsakis) facilitated project integration through monthly meeting and reports, conference calls, and collaborative manuscript preparation. The five groups collaborated extensively and made a large number of presentations in national and international meetings. It has also published several papers, with several more in the preparation stage. Several PhD, MS and postdoctoral students were trained as part of this collaborative and interdisciplinary project.

  4. X-Ray Microscopy and Imaging: Science and Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fields: Biology and Life Sciences Environmental Sciences Materials Science Nanoscience Optics and Fundamental Physics Our research often employs the following techniques: Coherent...

  5. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  6. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  7. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  8. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  9. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  10. Report of The Structural Biology Subcommittee of The Biological and

    Office of Science (SC) Website

    Environmental Research Advisory Committee | U.S. DOE Office of Science (SC) Report of The Structural Biology Subcommittee of The Biological and Environmental Research Advisory Committee Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Charges/Reports Report of The Structural Biology Subcommittee of

  11. Report of the Structural Biology Subcommittee of the Biological and

    Office of Science (SC) Website

    Environmental Research Advisory Committee | U.S. DOE Office of Science (SC) Report of the Structural Biology Subcommittee of the Biological and Environmental Research Advisory Committee Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Charges/Reports Report of the Structural Biology Subcommittee of

  12. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  13. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect (OSTI)

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  14. Merit Review System | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Supplementary Information: An amendment to the DOE Financial Assistance Rules (54 FR ... requirements of the Office of Science Financial Program Rule (10 CFR Part 605) or an SC ...

  15. Development and Applications of Photosensitive Device Systems to Studies of Biological and Organic Materials

    SciTech Connect (OSTI)

    Gruner, Sol M.

    2005-06-01

    R&D and application testing are proceeding on Pixel Array Detectors (PADs) for time-resolved and crystallographic applications at synchrotron radiation (SR) sources [1, 2, 4, 23, 24]. In conjunction with an NIH-funded SBIR grant, a novel mixed-mode analog/digital pixel design is being developed. Reports and publications on recent developments in the hybrid detector will be presented at the IEEE Nuclear Science Symposium in Rome in October, 2004 [21-23]. We've been invited to help prepare a special issue of Journal of Synchrotron Radiation on x-ray detectors; additionally, we will contribute an article on fast time-resolved PADs [24]. Application of a PAD developed under a DOE Facilities Initiative Grant, in collaboration with Dr. Jin Wang's group at the Advanced Photon Source, is being intensively used for microsecond time-resolved x-ray imaging of fuel injectors [3, 15]. This detector is the primary data acquisition device used by the Wang collaboration for work which was awarded the 2002 DOE Combustion and Emission Control R&D award.

  16. A Fish-eye View of Riverine Hydropower Systems: Understanding the Biological Response to Turbine Passage

    SciTech Connect (OSTI)

    Pracheil, Brenda M; DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-01-01

    Fish populations that have been traditionally thought of as completely fragmented by dams still maintain limited, one-way connectivity from upstream to downstream reaches via downstream turbine passage. This one-way connectivity may be important to population dynamics, but can also introduce a new and significant source of mortality due to turbine-induced fish injury and mortality. Mechanistically, fish injury and mortality associated with downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. The overarching goals of this project are two-fold: 1. To inform biological limitations of fish for use in creating and testing advanced turbine designs (e.g., research and development) and 2. To provide insight into locations that would be good initial locations for deploying advanced turbines (e.g., marketing). This report is an initial step in linking physical forces to injury and mortality rates to provide a better understanding turbine-associated injury and mortality rates for turbine designers and manufacturers and examine the spatial distribution of hydropower, turbines, and fishes across the U.S.A. to determine locations that may be good candidates for advanced turbine designs. We also use this report to present an initial approach for selecting species for further laboratory and field studies that examine the impacts of hydropower on fishes.

  17. OPTIONS for systemic change in mathematics, science, and technology education: Scientist/teacher partnerships

    SciTech Connect (OSTI)

    Glantz, C.S.; Fayette, L.

    1994-01-01

    Options is a US Department of Energy/Pacific Northwest Laboratory (DOE/PNL) project whose goal is to assist Washington and Oregon middle schools having high percentages of students historically underrepresented in mathematics, science, and technology. The goal is to ensure that all students receive high-quality mathematics, science, and technology education throughout their middle school years. Teams of scientists work with teams of teachers from participating OPTIONS schools to initiate significant change in the manner in which science, mathematics, and technology are taught. As part of this effort, PNL scientists team up with teachers to develop curricula.

  18. A Study to Determine the Biological Feasibility of a New Fish-Tagging System : Annual Report 1998-1999.

    SciTech Connect (OSTI)

    Downing, Sandra L.; Prentice, Earl F.; Peterson, Bradley W.; Nunnallee, Edmund P.; Jonasson, Bruce F.

    2000-09-01

    This report covers our work during 1998 and 1999 (FY99) on a project to expand and improve technology for passive-integrated-transponder tags (PIT tags) throughout the Columbia River Basin. The National Marine Fisheries Service (NMFS) in cooperation with the Bonneville Power Administration (BPA) conducted the work. Timely and accurate information derived from PIT-tag technology is increasingly critical to resource stakeholders in assessing the effectiveness of efforts to enhance survival of juvenile and adult salmonids. Continued development of PIT-tag technology will enable researchers and fisheries managers to address issues expressed in the NMFS biological opinions for operation of the Federal Columbia River Power System (FCRPS) and the proposed Snake River Recovery Plan. The FY99 work was divided into individual projects that are covered separately in this report.

  19. An adaptive multi-level simulation algorithm for stochastic biological systems

    SciTech Connect (OSTI)

    Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics, SIAM Multiscale Model. Simul. 10(1), 146179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of ?. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where ? is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.

  20. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect (OSTI)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  1. A Study to Determine the Biological Feasability of a New Fish Tagging System : Annual Report, 1986-1987.

    SciTech Connect (OSTI)

    Prentice, Earl F.; Flagg, T.A.

    1987-12-01

    In 1983, a multi-year project to evaluate the technical and biological feasibility of adapting a new identification system to salmonids was established. The system is based upon a miniaturized passive integrated transponder (PIT) tag. This report discusses the work completed and is divided into laboratory studies, field studies, and systems development. All studies were conducted using a glass-encapsulated tag implanted into the body cavity of test fish via a 12-gauge hypodermic needle. Laboratory studies with juvenile chinook salmon, Oncorhynchus tshawytscha, showed that retention of glass-encapsulated PIT tags was 99-100% in fish weighing 3 g (mean weight) or larger. No adverse tissue response to the tag was noted. The survival of fish 5 g (mean weight) or larger was usually greater than 99%. However, fish ranging in weight from 2 to 4 g, or fish undergoing a physiological change such as smoltification may have a low mortality (usually less than 5.0%) after tagging. The mortality rate in the smaller fish was dependent upon tagging skill whereas mortality in smolting fish seemed dependent upon the level of stress. Growth comparisons between tagged and control fish indicated PIT-tagged fish had a slightly depressed growth rate at some measurement periods. The operational life of glass-encapsulated PIT tags implanted in fish was good, with 100% of the tags operating after 401 days. No tags were rejected from the fish during the observation period.

  2. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  3. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science Computational Researchers Test Advanced Machine Learning Tools for HPC December 8, 2015 Contact: Kathy Kincade, kkincade@lbl.gov, 510-495-2124 braindeeplearning Researchers in Berkeley Lab's Biological Systems and Engineering Division are using a deep learning library to analyze recordings of the human brain during speech production. Image: Kris Bouchard Deep

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An optimized nanoparticle separator enabled by elecron beam induced deposition J. D. Fowlkes,1 M. J. Doktycz2 and P. D. Rack1,3 1Nanofabricatin Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 2Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory 3Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN Achievement Size-based separations technologies will inevitably benefit from

  5. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro/nanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures

  7. Toward an Earth System Modeling Approach to Simulate Irrigation Effects |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Toward an Earth System Modeling Approach to Simulate Irrigation Effects Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000

  8. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon ...

  9. Gatton Academy Wins 2015 DOE West Kentucky Regional Science Bowl...

    Broader source: Energy.gov (indexed) [DOE]

    PADUCAH, KY - Gatton Academy, Bowling Green, KY, won the U.S. Department of Energy's ... areas of science, including biology, chemistry, Earth science, physics, energy, and math. ...

  10. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  11. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are collaborating with this center under the leadership of the University of New Mexico's Cancer Center and Department of Pathology and in collaboration with Sandia National...

  12. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Glass, N Louise [UC Berkeley] [UC Berkeley

    2012-03-22

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  13. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Glass, N Louise [UC Berkeley

    2013-01-25

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  14. April 2013 Most Viewed Documents for Biology And Medicine | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Biology And Medicine Science Subject Feed Publications in biomedical and environmental sciences programs, 1981 Moody, J.B. (comp.) (1982) 306 /> Drug Retention Times Center for Human Reliability Studies (2007) 99 /> SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS. KRISHNA,C.R. (1999) 95 /> Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork Douglas

  15. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  16. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    SciTech Connect (OSTI)

    Voigt, Christopher

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  17. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  18. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs /newsroom/_assets/images/newsroom-icon.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Science Briefs - 2016» Science Briefs - 2015» Science Briefs - 2014» Science Briefs - 2013» Science Briefs - 2012» Science Briefs - 2011» Shown are time lapse images of supercritical CO2 displacing water in a fracture etched into a shale micromodel. The white, blue and gray colors represent supercritical CO2,

  19. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs newsroomassetsimageslegacy-icon-short.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are...

  20. Development of an Implementation Plan Related to Biological Opinion on Operation of the Federal Columbia River Power System ; Step 1: Review and Critique of Implementation Plans.

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret

    2000-12-01

    The Draft Biological Opinion on Operation of the Federal Columbia River Power System calls for the development of 1- and 5-year implementation plans. These plans will provide the roadmap for planning and subsequent implementation of actions intended to meet specific performance standards (i.e., biological objectives) in a timely manner. To develop implementation plans the key tasks and sequences of steps must be determined. Those responsible for specific tasks must be identified and they must understand what they need to do. There must be assurances that the resources (human, physical, and fiscal) to complete the tasks are available. Motivation and incentive systems should be set up. Systems to coordinate efforts and guide activity must be devised and installed. An information management system must be designed to manage and analyze data and ensure that appropriate data are collected. This will aid managers in assessing whether individual activities or actions are tracking with stated goals and objectives. Training programs to improve managerial and worker capability in making and implementing plans should be designed. Managerial leadership to guide the efforts of all individuals in achieving the goals of the anadromous and resident fish recovery must be developed. It is the entire process of managing fish recovery in relationship to the Biological Opinion that will guide, coordinate, motivate, and control work and determine the effectiveness and efficiency of plan implementation.

  1. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  2. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Broader source: Energy.gov (indexed) [DOE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PDF icon PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) More Documents & Publications PIA - WEB ...

  3. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  4. Contractor Assurance Systems | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contractor Assurance Systems Deputy Director for Field Operations Deputy Director Home Mission & Functions Deputy Director Biography Organization Oversight Contractor Assurance Systems Who We Are Operations Improvement Committee Contact Information Deputy Director for Field Operations U.S. Department of Energy SC-3/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5434 F: (202) 586-4120 E: Email Us Oversight Contractor Assurance Systems Print Text Size: A A A

  5. Science Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science Events Learn about our science by coming to Frontiers in Science lectures, catch Cafe Scientific events in your community, or come to sicence events at the Bradbury...

  6. NERSC Science Engagements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagements NERSC Science Engagements At NERSC, science comes first. NERSC systems and services are designed to enable and support cutting-edge research within the U.S. Deparment of Energy's Office of Science. NERSC engages with the scientific community in many ways both formally and informally. Among the more formal mechanisms are the NERSC Requirements Reviews, which have now become the DOE Exascale Requirements Reviews jointly with the Argonne and Oak Ridge Leadership Computing

  7. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  8. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  9. Life Sciences Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 4-Dimensional dynamics of complex biological systems -- ranging from molecules to microbes to humans. Important Message Regarding This Website Following all-hands meetings of...

  10. Biological and Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Environmental Research Biological and Environmental Research Understanding how genomic information is translated to functional capabilities, and the roles of Earth's biogeochemical systems so we can predict climate decades or centuries into the future. Get Expertise Cheryl Kuske (505) 665-4800 Email James Bossert (505) 667-3644 Email Manvendra Dubey (505) 665-3128 Email Kim Nitschke (505) 667-1186 Email Phil Jones (505) 667-6387 Email Cathy Wilson (505) 667-0202 Email Conducting

  11. Environmental Molecular Sciences Laboratory (EMSL) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Environmental Molecular Sciences Laboratory (EMSL) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and

  12. Life Sciences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Sciences Having a healthy impact on energy, medicine and the environment Argonne National Laboratory's life sciences research has yielded a portfolio of advanced technologies that are having a profound impact on medical technologies and therapies, energy production and sustainability, and bioremediation. Argonne's roster of world-class biology and environmental scientists develop viable technologies - from cancer therapies and antibody engineering to biological methane production and

  13. DOE Publishes Roadmap for New Biological Research for Energy...

    Office of Science (SC) Website

    DOE Publishes Roadmap for New Biological Research for Energy and Environmental Needs News ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  14. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As

  15. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been able to

  16. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  17. At Solar System's Edge, There be...Bubbles? - NERSC Science News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are affected by material expelled from other stars in our corner of the Milky Way galaxy. Data sent from the Voyager spacecraft as they exit our solar system is informing new...

  18. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    SciTech Connect (OSTI)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  19. Compilation of Systems of Records | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Compilation of Systems of Records Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Compilation of Systems of Records Energy Employees Occupational Illness Compensation Program Act (EEOICPA) How to Submit a Privacy Act Request Reference Links NEPA Documents Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Don F. Thress, Jr. U.S. Department of Energy

  20. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    SciTech Connect (OSTI)

    de Boer, G; Bland, G; Elston, J; Lawrence, D; Maslanik, J; Palo, S; Tschudi, M

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  1. Science Programs Organization | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Programs Organization Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Organization Chart .pdf file (79KB) Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Staff

  2. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    SciTech Connect (OSTI)

    Drake, John B; Worley, Patrick H; Hoffman, Forrest M; Jones, Phil

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  3. High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl January 23, 2016 A Competition Like No Other The Iowa Regional High School Science Bowl is an opportunity for Iowa's top science and math students to face-off in an intense question and answer format where contestants are quizzed on their knowledge of math and a range of science disciplines including biology, chemistry, Earth and space science, physics and energy. Iowa's Regional competition is hosted by the U.S. Department of Energy's Ames Laboratory and Iowa State

  4. Science at ALCF | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The form factor for the decay of a kaon into a pion and two leptons Lattice QCD Paul Mackenzie Allocation Program: INCITE Allocation Hours: 180 Million Science at ALCF Allocation Program - Any - INCITE ALCC ESP Director's Discretionary Year Year -Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 Research Domain - Any - Physics Mathematics Computer Science Chemistry Earth Science Energy Technologies Materials Science Engineering Biological Sciences Apply sort descending An example of a Category 5

  5. Biological preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  6. Squaring the Circle in Biofuels? | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... DOE Office of Science, Office of Biological and Environmental Research (BRC) Life Sciences Research Foundation Related Links Clint Chapple Web Page at Purdue University External ...

  7. Biological Mass Spectrometry and Shotgun Proteomics of Microbial Systems: Methods for studying microbial physiology from isolates to environmental communities

    SciTech Connect (OSTI)

    Dill, Brian; Young, Jacque C; Carey, Patricia A; Verberkmoes, Nathan C

    2010-01-01

    Microbial ecology is currently experiencing a renaissance spurred by the rapid development of molecular techniques and omics technologies in particular. As never before, these tools have allowed researchers in the field to produce a massive amount of information through in situ measurements and analysis of natural microbial communities, both vital approaches to the goal of unraveling the interactions of microbes with their environment and with one another. While genomics can provide information regarding the genetic potential of microbes, proteomics characterizes the primary end-stage product, proteins, thus conveying functional information concerning microbial activity. Advances in mass spectrometry instrumentation and methodologies, along with bioinformatic approaches, have brought this analytic chemistry technique to relevance in the biological realm due to its powerful applications in proteomics. Mass spectrometry-enabled proteomics, including bottom-up and top-down approaches, is capable of supplying a wealth of biologically-relevant information, from simple protein cataloging of the proteome of a microbial community to identifying post-translational modifications of individual proteins.

  8. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  10. July 2013 Most Viewed Documents for Biology And Medicine | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Biology And Medicine Science Subject Feed Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn (2002) 51 /> SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS. KRISHNA,C.R. (1999) 46 /> Human radiation studies: Remembering the early years. Oral history of Donner Lab Administrator Baird G. Whaley, August 15, 1994 NONE (1995)

  11. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  12. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  13. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  14. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Gateways A science gateway is a web-based interface to access HPC computers ... perform shared computations, and generally interact with NERSC resources over the web. ...

  15. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  16. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For more information contact: e:mail: Public Affairs Golden, Colo., May 2, 1997 -- Tracy Swedlund, biology teacher at Centauri High School in LaJara, was selected as Colorado's 1997 Outstanding Biology Teacher and will be recognized by the National Association of Biology Teachers (NABT). NABT honors exemplary biology and life science middle and high school educators nationwide. Criteria include teaching

  17. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  18. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature.

  19. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  20. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  1. A Study to Determine the Biological Feasibility of a New Fish Tagging System : Annual Report 1990-1993.

    SciTech Connect (OSTI)

    Prentice, Earl F.; Maynard, D.J.; Downing, S.L. (and others)

    1994-01-01

    In 1983, the National Marine Fisheries Service (NMFS) began a multiyear cooperative research program with the Bonneville Power Administration (BPA) to evaluate a new miniaturized identification system that could be used with salmonids. The system is referred to as the passive-integrated-transponder (PIT) tagging and interrogation system. The program has focused on determining the effects of PIT tags on juvenile and adult salmonids, as well as the development and evaluation of tagging and interrogation methods. Earlier results of the program have been reported in annual reports and journal articles cited in this report. This report covers the work per formed from 1990 through 1993. For convenience, the report is divided into three sections: (1) Interrogation and separation systems at Columbia River Basin dams; (2) Systems development and evaluation; and (3) Information and technology transfer.

  2. Biomolecular Science (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  3. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader Joanne Wendelberger Email Deputy Group Leader James R. Gattiker Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research. Statistical

  4. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Science Explosives Science Current efforts in explosives science cover many areas critical to national security. One particular area is the need for countermeasures against explosive threats. v Comprehensive explosives process Los Alamos National Laboratory offers a comprehensive explosives process. This process leverages entire technical divisions dedicated to explosives science. Los Alamos scientists combine advanced expertise and capabilities with modern facilities. These assets

  5. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  6. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  7. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  8. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  9. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Explore Science Create your own science adventure by exploring our varied exhibits, and learn what inspired our scientists, engineers and technicians to discover new things. August 18, 2014 boys conducting experiment [Science is] a great game. It is inspiring and refreshing. The playing field is the universe itself. -I.I. Rabi Science is thinking in an organized way about things. You don't need a license or permission to practice science. Scientists are interested in just about anything

  10. ARM - Selected Science Team Proposals - FY 1994

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1994 Dr. Thomas

  11. ARM - Selected Science Team Proposals - FY 1998

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1998 Dr. Shepard

  12. ARM - Selected Science Team Proposals - FY 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2002 The Office

  13. ARM - Selected Science Team Proposals - FY 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2005 The Office

  14. Quantifying evolvability in small biological networks

    SciTech Connect (OSTI)

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  15. National Science Bowl Brings Best and Brightest to DC

    Broader source: Energy.gov [DOE]

    The National Science Bowl Finals in Washington D.C. April 27 to 30 pit 113 high and middle school teams against one another answering questions Jeopardy-style about biology, chemistry, earth science, physics, astronomy, and math.

  16. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Robinson, Gene

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Robinson, Gene

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  18. New Jersey Regional Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elimination contest with question and answer rounds in the fields of chemistry, biology, physics, astronomy, mathematics and general and earth sciences. Teams from middle, high...

  19. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Science Briefs Science Briefs ALS Science Briefs are short (200 words maximum) descriptions of recently published ALS-related work. These "brief" highlights also include one image, a caption (50 words), and the publication citation. All ALS users and beamline scientists are invited to fill out the short submission form here

  20. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  1. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs /science-innovation/_assets/images/icon-science.jpg Science Programs The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Applied Energy Programs» Civilian Nuclear Programs» Laboratory Directed Research & Development» Office of Science»

  2. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  3. A Proposal submitted to Biological Systems Science Division of DOE requesting Participant Support Costs for the Fifth International Conference on Polar and Alpine Microbiology

    SciTech Connect (OSTI)

    Priscu, John

    2012-11-20

    The 5th International Conference on Polar and Alpine Microbiology (PAM5) was held in Big Sky, Montana (USA) from 8-12 September 2013. This meeting is a continuation of the highly successful meetings previously held in Rovaniemi, Finland (2004), Innsbruck, Austria (2006), Banff, Canada (2008) and Ljubljana, Slovenia (2011), which brought together leading international researchers and students in this field. The objectives of the Big Sky meeting were to bring together scientists, students and professionals to discuss all aspects of cold-adapted microorganisms and the roles they play in polar and alpine environments, to understand the role of these organisms in our search for life on other icy worlds, to address recent developments, and to exchange ideas and experiences on an international scale. The conference provided a multi-disciplinary forum to explore emerging areas in the field and as always, will have a wealth of opportunities for the exchange of ideas and building of collaborations. Funds were requested to help defray registration fees and travel costs of 13 early career scientists. Distribution of the funds were based on the quality of the abstracts submitted.

  4. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  5. September 2013 Most Viewed Documents for Biology And Medicine | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Biology And Medicine Science Subject Feed Drug Retention Times Center for Human Reliability Studies (2007) 29 /> Oleoresin Capsicum toxicology evaluation and hazard review Archuleta, M.M. (1995) 27 /> SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS. KRISHNA,C.R. (1999) 27 /> Site-Directed Research and Development FY 2012 Annual Report , (2013) 27 /> Human

  6. March 2014 Most Viewed Documents for Biology And Medicine | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Biology And Medicine Science Subject Feed Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn (2002) 30 /> Dose and volume specification for reporting interstitial therapy NONE (1997) 29 /> Geothermal demonstration: Zunil food dehydration facility Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los

  7. Experimental Data from the Proteomics Research Center for Integrative Biology

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Smith, Richard D.

    The possible roles and importance of proteomics are rapidly growing across essentially all areas of biological research. The precise and comprehensive measurement of levels of expressed proteins and their modified forms can provide new insights into the molecular nature of cell-signaling pathways and networks, the cell cycle, cellular differentiation, and other processes relevant to understanding human health and the progression of various disease states. The ability to characterize protein complexes complements this capability, allowing hypotheses to be tested and the biological system operation to be defined. The Proteomics Research Center for Integrative Biology is a national user facility established and funded by the National Institute of General Medical Sciences component of the National Institutes of Health. This Center has been established to serve the biomedical research community by developing and integrating new proteomic technologies for collaborative and service studies, disseminating the new technologies, and training scientists in their use. The Center is housed in DOEs William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory.

  8. Experimental Data from the Proteomics Research Center for Integrative Biology

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Smith, Richard D.

    The possible roles and importance of proteomics are rapidly growing across essentially all areas of biological research. The precise and comprehensive measurement of levels of expressed proteins and their modified forms can provide new insights into the molecular nature of cell-signaling pathways and networks, the cell cycle, cellular differentiation, and other processes relevant to understanding human health and the progression of various disease states. The ability to characterize protein complexes complements this capability, allowing hypotheses to be tested and the biological system operation to be defined. The Proteomics Research Center for Integrative Biology is a national user facility established and funded by the National Institute of General Medical Sciences component of the National Institutes of Health. This Center has been established to serve the biomedical research community by developing and integrating new proteomic technologies for collaborative and service studies, disseminating the new technologies, and training scientists in their use. The Center is housed in DOE’s William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory.

  9. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    SciTech Connect (OSTI)

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

  10. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  11. Science DMZ for ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  12. Science DMZ Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study...

  13. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  14. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  15. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  16. Computing and Computational Sciences Directorate - Computer Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics Division Computer Science and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic and applied research in high-performance computing, applied mathematics, and intelligent systems. Our mission includes basic research in computational sciences and application of advanced computing systems, computational, mathematical and analysis techniques to the solution of scientific problems of national importance. We seek to work

  17. Fermilab | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science

  18. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  19. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  20. SCIENCE Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program early science program Early at the Argonne Leadership Computing Facility CONTACT Argonne Leadership Computing Facility | www.alcf.anl.gov | (877) 737-8615...

  1. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  2. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveals the Assembly and Evolution of Complex Metalloenzymes summary written by Raven Hanna The potential for using biological enzymes to make hydrogen to use as a...

  3. Michael Levitt and Computational Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Levitt and Computational Biology Resources with Additional Information * Publications Michael Levitt Courtesy of Linda A. Cicero / Stanford News Service Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has won the 2013 Nobel Prize in Chemistry. ... Levitt ... shares the ... prize with Martin Karplus ... and Arieh Warshel ... "for the development of multiscale models for complex chemical systems." Levitt's work focuses on

  4. Briefing: DOE and the Life and Medical Sciences

    Broader source: Energy.gov [DOE]

    Aristides Patrinos, Deputy Director for Research, NYU Center for Urban Science and Progress, discussed DOE and the Life and Medical Sciences in his presentation entitled, The Promise and Challenges of the Human Genome Program. Sharlene Weatherwax, Associate Director, Biological and Environmental Research, Office of Science, DOE, discussed DOE and the Life and Medical Sciences in her presentation entitled, The Department of Energy's Activities Supporting the Life and Medical Sciences.

  5. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE CERN Research Org.: Sponsoring Org.: Publication Date: Publication Date Until to System Entry Date: Publication Date Until to Sort: Relevance Publication Date (Newest to Oldest)

  6. KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL...

    Office of Scientific and Technical Information (OSTI)

    KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL SCIENCES; 42 ENGINEERING; CONSUMPTION RATES; DEAD TIME; DETECTION; DIFFUSION; DNA; ENERGY TRANSFER; FABRICATION;...

  7. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities in both biology and materials sciences. Piecing it all Together Lensless imaging uses a computer to decode light diffraction patterns that are captured by a...

  8. The Science and Energy Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science and Energy Plan The Science and Energy Plan The Science and Energy Plan Download the Science and Energy Plan [PDF] FY 2016 Science and Energy Plan The FY 2016 Science and Energy Plan (SEP) is aimed at improving the overall effectiveness of the Science and Energy enterprise by: Creating awareness and transparency about how DOE performs its science and energy functions Demonstrating how the Department operates as a coordinated system to address complex challenges Providing a baseline

  9. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    SciTech Connect (OSTI)

    O'Neill, Peter; Anderson, Jennifer

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor ? (TGF?) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGF? pathways initiated by low and high LET radiation. We will characterize ATM and TGF? signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGF? and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.

  10. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  11. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells, viruses), plant or soil samples (USDA quarantines), recombinant DNA, or blood-borne pathogen. Biological Use Authorization The great majority of biological work at...

  12. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating Biological Structures at the Atomic and Molecular Levels Your browser...

  13. Plant Vascular Biology 2010

    SciTech Connect (OSTI)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  14. Biological and Environmental Research Advisory Committee (BERAC) Homepage |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) BERAC Home Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Print Text Size: A A A FeedbackShare Page The Biological and Environmental Research Advisory Committee (BERAC) provides advice on a continuing basis to the Director of the Office of Science, Department of Energy, on the many complex scientific and

  15. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  16. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  17. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  18. ARM - Selected Science Team Proposals - FY 1991

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  19. ARM - Selected Science Team Proposals - FY 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  20. ARM - Selected Science Team Applications - FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  1. ARM - Selected Science Team Proposals - FY 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  2. ARM - Selected Science Team Proposals - FY 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  3. ARM - Selected Science Team Proposals - FY 1995

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  4. Joint Genome Institute (JGI) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Genome Institute (JGI) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  5. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & ANALYSIS www.sciencemag.org SCIENCE VOL 339 8 FEBRUARY 2013 635 Steven Chu, the fi rst Nobel-winning scien- tist to lead the sprawling U.S. Department of Energy (DOE), has rarely...

  6. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Resources Energy Sciences Building (ESB) brochure Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design. Argonne's Energy Sciences Building (ESB) contains a nexus of interdisciplinary research in basic materials design, fundamental chemistry and energy systems research designed to address the nation's most pressing challenge of the 21st century - clean, affordable, and

  7. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  8. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Science Highlights Science highlights feature research conducted by staff and users at the ALS. If a Power Point summary slide or a PDF handout of the highlight is available, you will find it linked beneath the highlight listing and on the highlight's page. You may also print a version of a highlight by clicking the print icon associated with each highlight. Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 ALS research has shown that

  10. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  11. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  12. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  13. Sandia National Labs: Physical, Chemical and Nano Sciences Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for NNSA Mission Needs Collective Hierarchical Systems Compound Semiconductor Science and Technology Nanosciences Optical Sciences A diverse set of funding resources...

  14. LANL | Earth and Environmental Sciences Division (EES) | Home...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Systems Monitoring, Measurement, & VerificationSensors Nuclear Weapons Effects Energy Systems Repository Science Waste & Geomaterial Characterization Environmental...

  15. Synthetic biology and crop engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic biology and crop engineering Synthetic biology and crop engineering Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Jonathan Burbaum, Program Director, Department of Energy, Office of Science, ARPA-E PDF icon b13_burbaum_2-a.pdf More Documents & Publications EIS-0481: Final Programmatic Environmental Impact Statement EIS-0481: Draft Programmatic Environmental Impact Statement EIS-0481: Notice of Intent to Prepare a Programmatic

  16. DOE Science Showcase | OSTI, US Dept of Energy, Office of Scientific and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Information DOE Science Showcase 2016 2015 2014 2013 2012 2011 2010 2009 February DOE Science Showcase: Shape-Memory Materials January DOE Science Showcase - Spintronics December DOE Science Showcase - Stirling Engines November DOE Science Showcase - Microbes October DOE Science Showcase - Bent Crystals September DOE Science Showcase - Quantum Chaos August DOE Science Showcase - MicroElectroMechanical Systems May DOE Science Showcase - Mesoscale April DOE Science Showcase -

  17. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Science Highlight Archives: 1995-2004 Print Thursday, 04 May 2000 08:31 Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of

  18. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  19. Before the House Science and Technology Subcommittee on Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy Subcommittee on Energy and Environment By: Dr. Anna Palmisano, Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications PDF icon 9-10-09_Final_Testimony_(Palmisano).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Chapter 9 - Enabling Capabilities for Science and Energy Biosystems Design Before the House

  20. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum January 9, 2014 First in series of evening lectures open to public LOS ALAMOS, N.M., Jan. 9, 2014-Los Alamos National Laboratory Senior Fellow Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons stockpile plays in maintaining the nation's defense - and that of our allies - in a talk at 5:30 p.m., Jan. 15 at the Bradbury Science Museum. The talk is the first in a

  1. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emerging threats to global security focus of March 12 talk at Bradbury Science Museum March 6, 2014 Terry Wallace to address Lab's role in helping the government meet national security challenges LOS ALAMOS, N.M., March 6, 2014-Terry Wallace, principal associate director for Global Security at Los Alamos National Laboratory, will talk about potential emerging threats in a lecture at 5:30 p.m., March 12 at the Bradbury Science Museum. The talk is the third in a series of evening lectures planned

  2. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administrations Mars Science Laboratory, which launched in November of 2011.

  3. Biological and Environmental Research Advisory Committee

    Office of Science (SC) Website

    March 03-04, 2014 | U.S. DOE Office of Science (SC) March 03-04, 2014 Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings Biological and Environmental Research Advisory Committee March 03-04, 2014 Print Text Size: A A A FeedbackShare Page Agenda .pdf file (21KB) Presentations: Sharlene Weatherwax .pdf

  4. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  5. Thomas P. Guilderson, 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Biological and Environmental Sciences: For ground-breaking radiocarbon measurements of corals, advancements in understanding the paleo-history of ocean currents and ocean processes ...

  6. CASL OLCF Early Science Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Tom Evans Fausto Franceschini Andrew Godfrey Steven Hamilton Wayne Joubert John Turner CASL-U-2013-0231-000 CASL OLCF Early Science Award CASL-U-2013-0231-000 ii Oak Ridge...

  7. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  8. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  9. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  10. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadrunner firsts pave way for greener, faster supercomputing science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and ...

  11. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  12. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high performance networks is a consistent, widely deployed, well-maintained toolset that is optimized for wide area, high-speed data transfer (e.g. GridFTP) that allows scientists to easily utilize the services and capabilities that the network provides. Network test and measurement is an important part of ensuring that these tools and network services are functioning correctly. One example of a tool in this area is the recently developed perfSONAR, which has already shown its usefulness in fault diagnosis during the recent deployment of high-performance data movers at NERSC and ORNL. On the other hand, it is clear that there is significant work to be done in the area of authentication and access control - there are currently compatibility problems and differing requirements between the authentication systems in use at different facilities, and the policies and mechanisms in use at different facilities are sometimes in conflict. Finally, long-term software maintenance was of concern for many attendees. Scientists rely heavily on a large deployed base of software that does not have secure programmatic funding. Software packages for which this is true include data transfer tools such as GridFTP as well as identity management and other software infrastructure that forms a critical part of the Open Science Grid and the Earth System Grid.

  13. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively since the late 1980s, only in the last decade has the field matured into a cohesive area of science. November 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  14. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  16. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  18. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2009 » Links Scientific Highlight Duckworth Research Sposito Research SSRL MEIS » Share this Article Laboratree Ologeez SciLink LabSpaces The Competition for Iron Impacts the Global Carbon Cycle Phytoplankton are microorganisms that live in the ocean surface waters and are important because they act as lungs for the planet, consuming carbon dioxide and producing oxygen. Phytoplankton account for an astounding 50% of the total biological uptake (or sequestration) of carbon dioxide annually.

  19. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  20. Tobacco mosaic virus: A biological building block for micro/nano...

    Office of Scientific and Technical Information (OSTI)

    Tobacco mosaic virus: A biological building block for micronanobio systems Citation Details In-Document Search Title: Tobacco mosaic virus: A biological building block for micro...

  1. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, Janet M. (Ten Mile, TN); Palumbo, Anthony V. (Oak Ridge, TN)

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  2. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  3. 2013 Biological Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the implications for both in vivo and in vitro activity were discussed. "Self-repair" is often cited as an advantage of biological systems, and some of the mechanisms...

  4. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  5. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  6. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  7. Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Gray, Joe; Love, Susan M.; Bissell, Min; Barcellos-Hoff, Mary Helen

    2011-10-04

    In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Mary Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.

  8. NJ Regional Middle School Science Bowl | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and...

  9. Science Brief Submission Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Brief Submission Form Science Brief Submission Form Print Tuesday, 01 May 2007 00:00 Loading... < Prev

  10. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation /science-innovation/_assets/images/icon-science.jpg Science and Innovation Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Science & Engineering Capabilities» Science Programs» Science Facilities» Features» Capabilities Strategy: Science Pillars» Top Ten Innovations of 2013 Science and

  11. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The...

  13. Physical Sciences and Engineering Directorate Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (CEES II) P. Fenter (CSE) Center for Nanoscale Materials S. Guha Argonne Tandem Linac Accelerator System G. Savard (PHY) Center for Emergent Conductivity (CES) W....

  14. The Intersection of Physics and Biology

    ScienceCinema (OSTI)

    Liphardt, Jan [University of California, Berkeley, California, United States

    2010-09-01

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.

  15. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  16. Science Cafe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cafés Science Cafe April 27, 2015-Special ALS Colloquium Print Wednesday, 22 April 2015 13:19 Special Event on Monday, April 27 @ 12 noon, USB 15-253 X-Ray Microscopy: The First 120 Years Janos Kirz, ALS Abstract Röntgen's great discovery became an instant public sensation. Fascination with the "new kind of rays" that could reveal the structure of opaque objects swept the world in 1896. Fifty years later it was widely recognized that the short wavelength of the radiation should open

  17. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Print Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of Telomere-Protecting Proteins (4/04) Designing a Novel Globular Protein

  18. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Print Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of Telomere-Protecting Proteins (4/04) Designing a Novel Globular Protein

  19. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Print Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of Telomere-Protecting Proteins (4/04) Designing a Novel Globular Protein

  20. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2008 » Links Scientific Highlight Harbury Website » Share this Article Laboratree Ologeez SciLink LabSpaces A Golden Ruler Used to Measure the Stretching Rigidity of Short-length Scale DNA summary written by Brad Plummer, SLAC Communication Office DNA is softer and stretchier than previously believed, at least on the short length scales of up to 20 base pairs. This finding is the result of a recent study conducted in part at SSRL's biological small-angle x-ray scattering Beam Line 4-2 by a

  1. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2008 » Links Scientific Highlight Saphire Website Scripps Press Release Tracking Ebola, Scripps At the Forefront » Share this Article Laboratree Ologeez SciLink LabSpaces Revealing a Structural Weakness of the Deadly Ebolavirus summary written by Brad Plummer, SLAC Communication Office Scientists are one step closer to conquering the deadly Ebolavirus, thanks to research conducted at SSRL structural biology Beam Lines 9-2 and 11-1 and ALS Beam Line 5.02 by a team of researchers led by

  2. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  3. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  4. Biological sample collector

    DOE Patents [OSTI]

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  5. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum - Science on Wheels Our Mission: To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory Our Vision: The public interested in and excited about science, technology, engineering and mathematics, and the work of Los Alamos National Laboratory Program Description During the school year, the Bradbury Science Museum Educators drive there van to schools

  6. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    SciTech Connect (OSTI)

    Hallick, R.B.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  7. Solar Energy Education. Renewable energy activities for biology (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect biology Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for biology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale

  8. Large Scale Production Computing and Storage Requirements for Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Environmental Research: Target 2017 Large Scale Production Computing and Storage Requirements for Biological and Environmental Research: Target 2017 BERmontage.gif September 11-12, 2012 Hilton Rockville Hotel and Executive Meeting Center 1750 Rockville Pike Rockville, MD, 20852-1699 TEL: 1-301-468-1100 Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National Energy

  9. Capabilities: Science Pillars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars /science-innovation/_assets/images/icon-science.jpg Capabilities: Science Pillars The Lab's four Science Pillars harness our scientific capabilities for national security solutions. What are the Los Alamos National Laboratory's Science Pillars? The Laboratory has established the Science Pillars under four main themes to bring together the Laboratory's diverse array of scientific capabilities and expertise: Information, Science, and Technology Pillar Materials for the Future Pillar

  10. NERSC Exascale Science Postdoctoral Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 26, 2015 Applications are being accepted for up to eight postdoctoral fellowship positions at NERSC. The positions are part of a larger effort to enable new, pathbreaking science with NERSC's next generation manycore Cori supercomputer. Fellows will be working in multidisciplinary teams composed of computer, computational, and domain scientists that will transition codes to the Cori system and produce mission-relevant science that truly pushes the limits of high-end computing. The list

  11. NERSC Exascale Science Postdoctoral Fellowships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 3, 2014 Applications are being accepted for up to eight postdoctoral fellowship positions at NERSC. The positions are part of a larger effort to enable new, pathbreaking science with NERSC's next generation manycore Cori supercomputer. Fellows will be working in multidisciplinary teams composed of computer, computational, and domain scientists that will transition codes to the Cori system and produce mission-relevant science that truly pushes the limits of high-end computing. The list

  12. NREL: Energy Analysis - Energy Sciences Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  13. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESCC,
Salt
Lake
City
 Steve
Co6er,
Dept
Head

 steve@es.net

 Lawrence
Berkeley
NaDonal
Lab
 Outline
 * Staff
Updates
 * Network
Update
 * Advanced
Networking
IniDaDve
 * ESnet
Projects
 * Infrastructure
Projects
 * Staff
Projects
 Staff
Update
 New
hires:
 * Hing
Chow:

Project
Manager
(ANI)
 * Chris
Tracy:

Network
/
SoVware
Engineer
(ANI)
 * Andy
Lake:

SoVware
Engineer
(ANI)
 *

  14. GEOTHERMAL ENERGY; 59 BASIC BIOLOGICAL SCIENCES; BRINES; DETOXIFICATIO...

    Office of Scientific and Technical Information (OSTI)

    PROCESSING; BACTERIA; BIOCHEMISTRY; BIOREACTORS; BIOTECHNOLOGY; GEOCHEMISTRY; GEOTHERMAL ENERGY; METALS; SLUDGES; TOXIC MATERIALS; CHEMISTRY; ELEMENTS; ENERGY; ENERGY SOURCES;...

  15. Division of Chemical & Biological Sciences | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new catalysts that enable more efficient chemical reactions, discover new ways to convert plants to biofuels, and understand how solvents, such as water, affect chemical reactions...

  16. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  17. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  18. Students From Highlands Ranch Triumph in Colorado Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Highlands Ranch Triumph in Colorado Science Bowl For more information contact: Sarah Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Feb. 27, 2001 - Students from Highlands Ranch High School won top honors at the Colorado Science Bowl on Feb. 24 at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Highlands Ranch High School were victorious over

  19. Students from Aurora Triumph in Denver Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denver Regional Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 27, 1999 — Students from Aurora's Smoky Hill High School won top honors at the 1999 Denver Regional Science Bowl today at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Smoky Hill High School were victorious over Highlands Ranch High School. Twenty-one student

  20. Students from Pueblo Triumph in Colorado Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pueblo Triumph in Colorado Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 28, 1998 — Students from Pueblo South High School won top honors at the 1998 Colorado Science Bowl today at Metropolitan State College in Denver. In the final round of rapid fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Pueblo South High School were victorious over Pueblo Centennial High School. Forty-two student

  1. Eligibility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Eligibility DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home Eligibility Print Text Size: A A A FeedbackShare Page Graduate students currently pursuing Ph.D. degrees in areas of physics, chemistry, material sciences, biology (non-medical), mathematics, engineering, computer or computational sciences,

  2. Programs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Programs Programs Home Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 GE Dual Iso Mixed End Simulation of a

  3. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  4. Community Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Community Resources Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: Email Us More Information » Community Resources Print Text

  5. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » Staff Biological and Environmental Research (BER) BER Home About Organization Chart .pdf file (73KB) Staff Program Contacts BER Budget BER Committees of Visitors Directions Jobs Research Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington,

  6. Directions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Directions Biological and Environmental Research (BER) BER Home About Organization Chart .pdf file (73KB) Staff BER Budget BER Committees of Visitors Directions Jobs Research Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  7. Sharlene Weatherwax | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sharlene Weatherwax Biological and Environmental Research (BER) BER Home About Organization Chart .pdf file (73KB) Staff Program Contacts BER Budget BER Committees of Visitors Directions Jobs Research Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW

  8. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: Email Us More Information

  9. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Biological and Environmental Research (BER) BER Home About Organization Chart .pdf file (73KB) Staff BER Budget BER Committees of Visitors Directions Jobs Research Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251

  10. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation. PDF icon Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production More Documents & Publications Techno-Economic Boundary Analysis

  11. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  12. BioenergizeME Virtual Science Fair: Science & Technology Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: ...

  13. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  14. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  15. Micro/nanofabricated environments for synthetic biology

    SciTech Connect (OSTI)

    Collier, Pat [ORNL; Simpson, Michael L [ORNL

    2011-01-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of micro- and nanofabricated topological constraints.

  16. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  17. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum September 21, 2010 Los Alamos National Laboratory is taking science on the road to...

  18. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  19. Science for the 21st Century

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now take for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.

  20. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  1. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  2. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  3. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  4. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand

  5. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities /science-innovation/_assets/images/icon-science.jpg Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science»

  6. Green Biologics | Open Energy Information

    Open Energy Info (EERE)

    Biologics Jump to: navigation, search Name: Green Biologics Place: Oxfordshire, United Kingdom Sector: Biomass, Renewable Energy Product: Oxfordshire-based industrial biotech...

  7. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Goal 8: Science Serving Sustainability LANL takes opportunities to engage the ... ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan ...

  8. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  9. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faces of Science The people behind our science Radical Supercomputing Extreme speeds, big data, powerful simulations 70 Years of Innovation Addressing the nation's most complex...

  10. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  11. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  12. Nuclear Science Series: Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly ... working under the Committee on Nuclear Science within the National Academy of ...

  13. Stewardship Science Academic Alliances

    National Nuclear Security Administration (NNSA)

    0%2A en NNSA's holds Stewardship Science Academic Programs Annual Review Symposium http:nnsa.energy.govblognnsas-holds-stewardship-science-academic-programs-annual-review-symp...

  14. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is...

  15. Science Briefs - 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2012 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Los...

  16. Science Briefs - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2014 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing....

  17. ARM - TWP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical...

  18. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  19. PIA - Oak Ridge Institute for Science and Education Program Applicant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applicant and Participant Status System (APSS) PDF icon PIA - Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) More...

  20. Protein-Folding Landscapes in Multi-Chain Systems Cellmer, Troy...

    Office of Scientific and Technical Information (OSTI)

    37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; FREE ENERGY; MELTING; PROTEINS; THERMODYNAMICS; TOPOLOGY protein folding protein...

  1. Biomolecular Materials | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    polymeric, and biological, materials and systems that demonstrate energy conversion and storage capabilities found in nature; functional systems with collective properties ...

  2. Center for Biological Electron Transfer and Catalysis (BETCy) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Center for Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Biological Electron Transfer and Catalysis (BETCy) Print Text Size: A A A FeedbackShare Page BETCy Header Director John Peters Lead Institution Montana State University Year Established 2014 Mission To investigate the

  3. LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDICINE AND RADIATION BIOLOGY 900 VETERAN AVENUE UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024 AND DEPARTMENT OF RADIOLOGICAL SCIENCES UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This manuscript is a contribution to the monograph edited by Daniel S. Berman and Dean Mason, entitled "Clinical Nuclear Cardiology". These studies were supported by Contract #DE-AM03-76-SF00012 between the U.S. Department of Energy and the University of California Prepared for the U.S.

  4. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centersmore » and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  5. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  6. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  7. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  8. Computing and Computational Sciences Directorate - Computer Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics Division Supercomputing Oak Ridge National Laboratory is home to several of the world's most powerful supercomputing resources. Each of these resources is dedicated to delivering high-impact science results for the researchers that utilize them. For more information about each of these systems, please visit the following: Titan Kraken Gaea

  9. Science and Suds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Suds Science and Suds WHEN: Jul 18, 2015 12:00 PM - 4:00 PM WHERE: Los Alamos ScienceFest Beer Garden Ashley Pond, Downtown Los Alamos, NM CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science and Suds - Social Event Event Description Conversations with real scientists at the Los Alamos ScienceFest Beer Garden SCIENCE & SUDS Stop by the museum's tent in the beer garden at Ashley Pond during Los Alamos ScienceFest to visit with a scientist

  10. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us DOE Home » ScienceCinema Navigation ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us OSTI Home DOE Home ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE

  11. The Los Alamos Science Pillars The Science of Signatures

    SciTech Connect (OSTI)

    Smith, Joshua E.; Peterson, Eugene J.

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and imagination of many LANL staff and managers and resulted in a strategy which focuses on our strengths while recognizing that the science of signatures is dynamic. This report highlights the interdependence between SoS, advances in materials science, and advances in information technology. The intent is that SoS shape and inform Los Alamos investments in nuclear forensics, nuclear diagnostics, climate, space, energy, and biosurveillence; the areas of leadership that you will read about in this strategy document. The Science of Signatures is still a relatively new strategic direction for the Laboratory. The primary purpose of this document is tell Laboratory staff how SoS is being managed and give them a chance to get involved. A second important purpose is to inform the Department of Energy and our customers of our capability growth in this important scientific area. Questions concerning the SoS strategy and input to it are welcomed and may be directed to any member of the SoS Leadership Council or to the Chemistry, Life, and Earth Science Directorate Office.

  12. Biological Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Safety Biological Safety The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions

  13. Manhattan Project: Science

    Office of Scientific and Technical Information (OSTI)

    Science In the Laboratory Particle Accelerators and Other Technologies The Atom and Atomic Structure Nuclear Physics Bomb Design and Components Radioactivity Science and technology of the Manhattan Project Science PLEASE NOTE: The Science pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the science and technology of the Manhattan Project have been grouped into the categories listed to the left. A

  14. Committee on Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SHERWOOD BOEHLERT, CHAIRMAN Ralph M. Hall, Texas, Ranking Democrat www.house.gov/science October 9, 2001 Press Contacts: Heidi Mohlman Tringe (Heidi.Tringe@mail.house.gov) Jeff Donald (Jeffrey.Donald@mail.house.gov) (202)225-4275 BOEHLERT, GRUCCI TO URGE SWIFT CONFIRMATION OF SCIENCE ADVISOR WASHINGTON, DC -- Today, House Science Committee Chairman Sherwood Boehlert (R-NY23) and Committee member Felix J. Grucci (R-NY1) will call for the swift confirmation of Presidential Science Advisor

  15. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  16. Science Requirements Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  17. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  18. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  19. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  20. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory...

  1. NERSC-Science-2014.pptx.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Highlights !"1"!" February(25,(2015( Thanks(to(Harvey(Wasserman( NERSC: Science First !"2"!" NERSC's(mission(is(to(accelerate( scien3fic(discovery(at(the(DOE(Office(of( Science(through(high(performance( compu3ng(and(data(analysis.( #1 Goal: Scientific Productivity Systems and Services Designed for Science 3 Fusion(Research( * Requirements"Reviews" * NERSC"User"Group" * Annual"User"Survey" *

  2. Methods for isolation and viability assessment of biological organisms

    DOE Patents [OSTI]

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  3. Biological particle identification apparatus

    DOE Patents [OSTI]

    Salzman, Gary C. (Los Alamos, NM); Gregg, Charles T. (Los Alamos, NM); Grace, W. Kevin (Los Alamos, NM); Hiebert, Richard D. (Los Alamos, NM)

    1989-01-01

    An apparatus and method for making multiparameter light scattering measurements from suspensions of biological particles is described. Fourteen of the sixteen Mueller matrix elements describing the particles under investigation can be substantially individually determined as a function of scattering angle and probing radiations wavelength, eight elements simultaneously for each of two apparatus configurations using an apparatus which incluees, in its simplest form, two polarization modulators each operating at a chosen frequency, one polarizer, a source of monochromatic electromagnetic radiation, a detector sensitive to the wavelength of radiation employed, eight phase-sensitive detectors, and appropriate electronics. A database of known biological particle suspensions can be assembled, and unknown samples can be quickly identified once measurements are performed on it according to the teachings of the subject invention, and a comparison is made with the database.

  4. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Mission Our Mission The SSRL Structural Molecular Biology program operates as a integrated resource and has three primary areas (or cores) of technological research and development and scientific focus: Macromolecular Crystallography (MC) Small Angle X-ray Scattering/Diffraction (SAXS) X-ray Absorption Spectroscopy (XAS) Central to the core technological developments in all three of these areas is the development and utilization of improved detectors and instrumentation, especially to be

  5. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  6. Impact of Radiation Biology on Fundamental Insights in Biology

    DOE R&D Accomplishments [OSTI]

    Setlow, Richard B.

    1982-07-27

    Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.

  7. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  8. California Valley Solar Ranch Biological Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Valley Solar Ranch Biological Assessment California Valley Solar Ranch Biological Assessment Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California High Plains Ranch II, LLC (HPR II), a wholly owned subsidiary of SunPower Corporation, Systems ("SunPower") proposes to construct a 250-megawatt (MW) solar photovoltaic (PV) energy plant, the California Valley Solar Ranch Project (CVSR Project or Project), on a 4,747acre site in

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Lidar Observations of Cloud and Aerosol Campbell, J.R. (a), Welton, E.J. (b), Spinhrine, J.D. (c), and Flynn, C.J. (d), Science Systems Applications, Inc. (a), University of...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement (ARM) Science Team Meeting The implementation and use of a collection of web-based tools for a Common Data Quality Problem Report (DQPR) system is presented. These...

  11. ARM - 2008 Science Team Meeting Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Andy Vogelmann ARM Aerosol Observing Systems (PDF, 1.2MB) Anne Jefferson and John Ogren Tuesday, March 11, 2008 Plenary Chief Scientist Report ARM Science Team Meeting...

  12. Biological Applications of Synchrotron Radiation:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field in 2002 A BioSync Report. Issued by the Structural Biology Synchrotron users Organization, October, 2002. 2 Table of Contents: Introduction .................................................................................................... 3 Abbreviations .................................................................................................. 5 Executive Summary

  13. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Mar 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544 CONTACT: Jessica Privette 505 667-0375...

  14. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Nov 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544 USA SPEAKER: Ray Newell, Quantum...

  15. Science on Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January Science on Tap Science on Tap WHEN: Jan 15, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked The Wine Room, 145 Central Park Square, Los Alamos CONTACT: Jessica Privette 505...

  16. National Science Bowl

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Science Bowl is a nationwide academic competition that tests students' knowledge in all areas of science. High school and middle school students are...

  17. Biological Systems for Hydrogen Photoproduction (Poster)

    SciTech Connect (OSTI)

    Ghirardi, M.; King, P.; Maness, P. C.; Seibert, M.

    2006-05-01

    Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

  18. Systems Biology in Prokaryote - Eukaryote Symbiosis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vibrational structures; but, information about the latter two are not accessible by diffraction methods. Fortunately, spectroscopic methods provide data to help resolve...

  19. Modular microfluidic system for biological sample preparation...

    Office of Scientific and Technical Information (OSTI)

    filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module,...

  20. Abengoa Mojave Final Biological Opinion

    Broader source: Energy.gov [DOE]

    Biological Opinion on Mojave Solar, LLC's Mojave Solar Project, San Bernardino County, California (8-8-11-F-3)

  1. Science of Signatures - Past Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Science of Signatures - Past Programs Science of Signatures Program Science of Signatures - Past Programs Contact Institute Director Charles Farrar (505) 665-0860...

  2. Science of Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science of Signatures Science of Signatures (SoS) The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion Nancy Sauer Email Pillar Contact Gene Peterson Email Science of Signatures (SoS) Overview In its broadest and simplest sense, a "signature" is any information that is unique, recognizable, and useful. A handwritten mark as a means of demonstrating authenticity is a familiar example, as is the pattern variation

  3. Weaving Community and Science

    Broader source: Energy.gov [DOE]

    Weaving Community and Science: Former Summer Intern Is Investigating Plant Uptake of Contaminants on Disposal Cell Covers

  4. ORISE: Science Education Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Events Science Education Events Recognizing that vast improvements in science, technology, engineering and math are key to innovation and economic growth, the Oak Ridge Institute for Science and Education (ORISE) manages high-profile local and national education and research initiatives. For example, scholarly competitions, summer education workshops and teacher professional development programs create excitement and inspire educators and students to pursue interests in

  5. Frontiers in Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science Lectures » Frontiers in Science Archive Frontiers in Science Archive x LInda Anderman (505) 665-9196 Email The Frontiers in Science lecture series are a public service of the Los Alamos National Laboratory Fellows. Fellows are appointed by the Laboratory Director in recognition of sustained outstanding contributions and exceptional promise for continued professional achievement. All lectures are open to the public and free of charge. PAST LECTURES 2015 August Beyond Pluto:

  6. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation needed to develop a fusion energy source. Get Expertise Don Rej (505) 665-1883 Email Building the scientific foundation needed to develop a fusion energy source The mission of the DOE Office of Science's Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and

  7. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  8. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Science Questions This experiment seeks to use a

  9. Judicial Science School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Judicial Science School Judicial Science School The goal of Los Alamos Judicial Science School is to provide judges with knowledge and experience that will enhance their ability to evaluate whether scientific arguments meet the threshold requirements of admissibility. Contacts NSEC Director David L. Clark (505) 665-0983 Email Engineering Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Judicial Science School Developed through close

  10. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum Bradbury Science Museum Providing a window into the history of LANL, its national security mission, and the broad range of exciting science and technology research programs undertaken to improve our nation's future. June 13, 2012 Young visitor shakes the hand of an Oppenheimer statue J. Robert Oppenheimer is a welcoming presence in the Bradbury Science Museum's History Gallery. Visitors go on to explore the Laboratory's beginnings during the Manhattan Project through

  11. ARM - AMF Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AzoresAMF Science Questions Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning CAP-MBL Proposal Abstract and Related Campaigns Science Questions Science Plan (PDF, 4.4M) Rob Wood Website Outreach Backgrounders English Version (PDF, 363K) Portuguese Version (PDF, 327K) AMF Posters, 2009 English Version Portuguese Version Education Flyers English Version Portuguese Version News Campaign Images AMF Science Questions Which

  12. Center for Bio-Inspired Energy Science (CBES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Bio-Inspired Energy Science (CBES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Bio-Inspired Energy Science (CBES) Print Text Size: A A A FeedbackShare Page CBES Header Director Samuel Stupp Lead Institution Northwestern University Year Established 2009 Mission To discover and develop bio-inspired systems that reveal new connections between energy

  13. APS Science 2009.

    SciTech Connect (OSTI)

    Gibson, J. M; Mills, D. M.; Gerig, R.

    2010-05-01

    It is my pleasure to introduce the 2009 annual report of the Advanced Photon Source. This was a very good year for us. We operated with high reliability and availability, despite growing problems with obsolete systems, and our users produced a record output of publications. The number of user experiments increased by 14% from 2008 to more than 3600. We congratulate the recipients of the 2009 Nobel Prize in Chemistry-Venkatraman Ramakrishnan (Cambridge Institute for Medical Research), Thomas Steitz (Yale University), and Ada Yonath (Weizmann Institute) - who did a substantial amount of this work at APS beamlines. Thanks to the efforts of our users and staff, and the ongoing counsel of the APS Scientific Advisory Committee, we made major progress in advancing our planning for the upgrade of the APS (APS-U), producing a proposal that was positively reviewed. We hope to get formal approval in 2010 to begin the upgrade. With advocacy from our users and the support of our sponsor, the Office of Basic Energy Sciences in the Department of Energy (DOE) Office of Science, our operating budgets have grown to the level needed to more adequately staff our beamlines. We were also extremely fortunate to have received $7.9 M in American Recovery and Reinvestment Act ('stimulus') funding to acquire new detectors and improve several of our beamlines. The success of the new Linac Coherent Light Source at Stanford, the world's first x-ray free-electron laser, made us particularly proud since the undulators were designed and built by the APS. Among other highlights, we note that more than one-quarter of the 46 Energy Frontier Research Centers, funded competitively across the U.S. in 2009 by the DOE, included the Advanced Photon Source in their proposed work, which shows that synchrotron radiation, and the APS in particular, are central to energy research. While APS research covers everything from fundamental to applied science (reflected by the highlights in this report), the challenge of sustainable energy provides an opportunity for expanded involvement with industrial research. We were privileged to recruit several outstanding new leaders at the APS. Linda Young, from Argonne's Chemical Sciences Division, became the new Director of the X-ray Science Division (XSD). Chris Jacobsen (from Stony Brook University) has been added to Linda's team as an XSD Associate Division Director, joining George Srajer. Alexander (Sasha) Zholents (formerly of Berkeley Lab) became Director of the Accelerator Systems Division. Sasha is the inventor of the short-pulse x-ray scheme that we plan to implement in the APS-U to obtain very high average brightness, broadband, 1-ps x-ray pulses. Walter Lowe (formerly of Howard University) has taken a new position as senior advisor for outreach and development of the user community. Walter's role is to increase the diversity of the user community (with diversity read broadly to include users, institutions, and technical disciplines that are underrepresented at APS). Walter is also leading an effort to increase access for industrial users. I am confident that we have in place a great team to help our users and the APS take fullest advantage of the APS-U opportunity. In planning with users for the proposed APS-U, we focused on the need to study 'real materials under real conditions in real time' on spatial and temporal scales unavailable today. Only by studying materials as they are made-or as they perform-in difficult environments can we solve the grand challenge of higher-performance, sustainable materials for energy and health. The proposed APS-U will improve the brightness of penetrating x-rays produced by the APS over 100 times, and support our efforts in developing state-of-the-art instruments to address these challenges.

  14. Elements in biological AMS

    SciTech Connect (OSTI)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  15. Toward a Data Scalable Solution for Facilitating Discovery of Science Resources

    SciTech Connect (OSTI)

    Weaver, Jesse R.; Castellana, Vito G.; Morari, Alessandro; Tumeo, Antonino; Purohit, Sumit; Chappell, Alan R.; Haglin, David J.; Villa, Oreste; Choudhury, Sutanay; Schuchardt, Karen L.; Feo, John T.

    2014-12-31

    Science is increasingly motivated by the need to process larger quantities of data. It is facing severe challenges in data collection, management, and processing, so much so that the computational demands of data scaling are competing with, and in many fields surpassing, the traditional objective of decreasing processing time. Example domains with large datasets include astronomy, biology, genomics, climate/weather, and material sciences. This paper presents a real-world use case in which we wish to answer queries pro- vided by domain scientists in order to facilitate discovery of relevant science resources. The problem is that the metadata for these science resources is very large and is growing quickly, rapidly increasing the need for a data scaling solution. We propose a system SGEM designed for answering graph-based queries over large datasets on cluster architectures, and we re- port performance results for queries on the current RDESC dataset of nearly 1.4 billion triples, and on the well-known BSBM SPARQL query benchmark.

  16. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  17. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes

  18. Biological and Environmental Research Advisory Committee (BERAC) meeting |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) October 28-29, 2015 Gaithersburg, Md. Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings October 28-29, 2015 Gaithersburg, Md. Print Text Size: A A A FeedbackShare Page Agenda .pdf file (61KB) Presentations: Sharlene Weatherwax .pdf file (768KB) Office of Biological and

  19. Opens Sept. 17 at Laboratory's Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exhibit highlights the archaeology, wildlife and climate of Los Alamos September 11, 2014 Opens Sept. 17 at Laboratory's Bradbury Science Museum LOS ALAMOS, N.M., Sept. 11, 2014-The Bradbury Science Museum unveils a new interactive exhibit at 4 p.m., Sept. 17 featuring the rich history and current research into archaeology, wildlife biology, local climate and sustainability efforts at Los Alamos National Laboratory. "Our role is to support the mission of the Laboratory while being good

  20. The Science Behind Cheaper Biofuels | Department of Energy

    Energy Savers [EERE]

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Interaction Between Nanoscale Building Blocks and Biologically Relevant Molecules X. Zhao (CNMS Postdoc), A. Striolo (U of Oklahoma, now CNMS User), and P. T. Cummings (CNMS Staff) Scientists at Oak Ridge National Laboratory's new Center for Nanophase Materials Sciences (CNMS) are leading the way in developing detailed molecular-level understanding of how nanomaterials may interact with biologically important molecules. A provocative experimental study, published in 2004,

  2. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  3. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  4. BES Science Network Requirements

    SciTech Connect (OSTI)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  5. Middle School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 » February » Middle School Science Bowl Middle School Science Bowl WHEN: Feb 28, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, NM CATEGORY: Community INTERNAL: Calendar Login Event Description The Science Bowl is a Jeopardy-like event for high school and middle school students who have a strong interest in mathematics and science. The Science Bowl competition is in the form of a round robin in the morning and double elimination after lunch. Teams

  6. Annual symposium on Frontiers in Science

    SciTech Connect (OSTI)

    Metzger, N.; Fulton, K.R.

    1998-12-31

    This final report summarizes activities conducted for the National Academy of Sciences' Annual Symposium on Frontiers of Science with support from the US Department of Energy for the period July 1, 1993 through May 31, 1998. During the report period, five Frontiers of Science symposia were held at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering. For each Symposium, an organizing committee appointed by the NAS President selected and planned the eight sessions for the Symposium and identified general participants for invitation by the NAS President. These Symposia accomplished their goal of bringing together outstanding younger (age 45 or less) scientists to hear presentations in disciplines outside their own and to discuss exciting advances and opportunities in their fields in a format that encourages, and allows adequate time for, informal one-on-one discussions among participants. Of the 458 younger scientists who participated, over a quarter (124) were women. Participant lists for all symposia (1993--1997) are attached. The scientific participants were leaders in basic research from academic, industrial, and federal laboratories in such disciplines as astronomy, astrophysics, atmospheric science, biochemistry, cell biology, chemistry, computer science, earth sciences, engineering, genetics, material sciences, mathematics, microbiology, neuroscience, physics, and physiology. For each symposia, the 24 speakers and discussants on the program were urged to focus their presentations on current cutting-edge research in their field for a scientifically sophisticated but non-specialist audience, and to provide a sense of the experimental data--what is actually measured and seen in the various fields. They were also asked to address questions such as: What are the major research problems and unique tools in their field? What are the current limitations on advances as well as the frontiers? Speakers were asked to provide a 2500- to 3000-word synopsis of their speech in advance, so that participants, particularly those in other fields, could familiarize themselves with the topic.

  7. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Environmental Management (EM)

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  8. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy PDF icon Biological Conversion of Sugars To Hydrocarbons More...

  9. PIA - Oak Ridge Institute for Science and Education Program Applicant and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participant Status System (APSS) | Department of Energy Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PIA - Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PIA - Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PDF icon PIA - Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) More

  10. Interfacial and Surface Science | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfacial and Surface Science Image of irregular-outlined, light-colored shapes on a dark background. Represents a tapping-mode atomic force microscope image of gallium phosphide on silicon. NREL researchers have developed an integrated set of experimental capabilities to address a broad range of fundamental and applied issues in surface and interfacial science that are critical for advancing sustainable-energy technologies. Surface and interface phenomena often control the opto-electronic,

  11. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  12. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  13. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  14. Computing Sciences Staff Help East Bay High Schoolers Upgrade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT fields, the Laney College Computer Information Systems Department offered its Upgrade: Computer Science Program. Thirty-eight students from 10 East Bay high schools registered...

  15. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (University of Chicago): Computing quasiparticle energies and band offsets for large systems Session M27, March 5: Applications and Opportunities for Materials Science III Sherri...

  16. Tritium 2016 11TH International Conference on Tritium Science...

    Office of Environmental Management (EM)

    Conference on Tritium Science and Technology More Documents & Publications Advanced Polymers for Tritium Service A New Hydrogen Processing Demonstration System Hydrogen Isotope...

  17. Teachers Invited to April 2 Science Activities Night at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science games, sound, force and motion, the periodic table, diffraction, the solar system, static electricity, renewable energy, and compounds and mixtures. Teacher...

  18. Teachers Invited to April 20 Science Activities Night at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science games, sound, force and motion, the periodic table, diffraction, the solar system, static electricity, renewable energy, and compounds and mixtures. In...

  19. Science and Technology Challenges for Homeland Security

    SciTech Connect (OSTI)

    Murray, C A

    2006-03-24

    Preventing and protecting against catastrophic terrorism is a complex and dynamic challenge. Small groups or individuals can use advanced technology to cause massive destruction, and the rapid pace of technology and ease of information dissemination continually gives terrorists new tools. A 100% defense is not possible. It's a numbers problem--there are simply too many possible targets to protect and too many potential attack scenarios and adversaries to defend against. However, science and technology (S&T) is a powerful force multiplier for defense. We must use S&T to get ahead of the game by making terrorist attacks more difficult to execute, more likely to be interdicted, and less devastating in terms of casualties, economic damage, or lasting disruption. Several S&T areas have potential to significantly enhance homeland security efforts with regard to detecting radiation, pathogens, explosives, and chemical signatures of weapons activities. All of these areas require interdisciplinary research and development (R&D), and many critically depend on advances in materials science. For example, the science of nuclear signatures lies at the core of efforts to develop enhanced radiation detection and nuclear attribution capabilities. Current radiation detectors require cryogenic cooling and are too bulky and expensive. Novel signatures of nuclear decay, new detector materials that provide high resolution at ambient temperatures, and new imaging detectors are needed. Such technologies will improve our ability to detect and locate small, distant, or moving sources and to discriminate threat materials from legitimate sources. A more complete understanding of isotopic ratios via secondary ion mass spectrometry (SIMS), NanoSIMS, or yet-to-be-developed technologies is required to elucidate critical characteristics of nuclear materials (e.g., isotopics, age, reprocessing) in order to identify their source and route history. S&T challenges abound in the biodefense arena as well. Improved biodetectors are needed--autonomous instruments that continuously monitor the environment for threat pathogens, promptly alert authorities in the event of a positive detection, and have an extremely low false alarm rate. Because many threat pathogens are endemic to various regions of the world, the natural microbial environment must be characterized so that background detections can be distinguished from a deliberate release. In addition, most current detection approaches require an a priori knowledge of the pathogens of concern and thus won't work in the face of a new, naturally occurring disease, such as a mutated avian influenza that effects humans, or a deliberately manipulated organism. Thus, we must move from species-specific detection to function-based detection based on a fundamental understanding of the mechanisms and genetic markers of infectivity, pathogenicity, antibiotic resistance, and other traits that distinguish a harmful organism from an innocuous one. Last but not least, new vaccines and treatments are needed, which in turn require in-depth understanding of cellular surfaces, protein folding, and myriad nano-bio aspects of host-pathogen interactions. Much attention is being devoted to countering weapons-of-mass-destruction terrorism, since Al-Qaeda and other terrorist groups have repeatedly stated their intention to acquire and use nuclear, chemical, or biological weapons. However, terrorists in Iraq and elsewhere continue to wreak havoc using improvised explosive devices. Thus, there is a pressing security need for better methods for detecting explosive materials and devices. Transformational S&T such as pulsed fast-neutron analysis or terahertz spectroscopy for material- and element-specific imaging offer the promise of greatly improved explosive detection. For bioscience-based approaches, the development of highly multiplexed transducer arrays and molecular recognition methods that mimic biological systems would similarly provide the foundation for vastly improved capabilities. Likewise, new materials an

  20. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can be preferentially selected by local stimulus. It was traditionally believed that only biological systems can undergo multiple mechanisms with comparable energies, while phase...

  1. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  2. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  5. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  6. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  8. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  9. PROGRESS REPORT ON THE BIOLOGICAL MONITORING PROGRAM FOR THE

    Office of Legacy Management (LM)

    PROGRESS REPORT ON THE BIOLOGICAL MONITORING PROGRAM FOR THE MONTICELLO, UTAH, MILL SITE: AUGUST 1996 SAMPLING PERIOD J. G. Smith M. J. Peterson M. G. Ryon G. R. Southworth Date: March 3, 1997 Prepared for G. A. Pierce Health and Safety Research Division Environmental Technology Section OakRidge National Laboratory Grand Junction, Colorado Prepared by Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the

  10. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multipronged HIV vaccine shows promise in monkeys /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. lab worker Multipronged HIV vaccine shows promise in monkeys lab worker HIV constantly mutates into many different strains that

  11. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Liquid-scanning technology boosts airport security placeholder Uniquely combining Magnetic Resonance Imaging (MRI) and X-ray technology,

  12. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. RAPTOR telescope witnesses black hole birth placeholder The first "thinking telescope" RAPTOR found the birth of big black holes,

  13. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space probes predict hazards to protect spacecraft /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Space probes predict hazards to protect spacecraft placeholder Researchers think they've solved a 50-year-old space mystery about how

  14. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 GeV Upgrade Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. Read more User Information Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. Read more Experiment Research Science Jefferson Lab's Accelerator Tunnel Jefferson Lab's accelerator is

  15. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  16. Recent Science - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Science Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance &

  17. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Experimental Physical Sciences Developing and applying materials science and experimental physics capabilities to programs and problems of national importance. Advancing physics and materials science for problems of national importance Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium READ MORE Los Alamos among new DOE projects Create new technology pathways for low-cost fusion energy development READ MORE Combined methods

  18. Fermilab | Science | Historic Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark

  19. ARM - SGP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Science Overall Objectives The primary goal of the Southern Great Plains (SGP) site is to produce data adequate to support significant research addressing

  20. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land