Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

907: Biogas Anaerobic Digester Facility, Oakley, Kansas 907: Biogas Anaerobic Digester Facility, Oakley, Kansas EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas Summary This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

2

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase I - A Survey of U concrete steps to install an anaerobic digestion (AD) facility and documentation of the factors technology. Keywords Anaerobic digester, biogas, electricity production, manure management #12;4 Table

3

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase II - A Survey who took concrete steps to install an anaerobic digestion (AD) facility and documentation samples are overwhelmingly in favor of AD technology. Keywords Anaerobic digester, biogas, electricity

4

Estimation dynamical model of an anaerobic digestion of shrimp culture pond sediment in a biogas process using genetic algorithm  

Science Conference Proceedings (OSTI)

Biogas is one type of renewable energy which is important to the energy and environmental planning of Thailand. The study and analysis of the dynamical model of the biogas process can be explained the variables that affect biogas process and optimization. ... Keywords: anaerobic digestion, artificial intelligence, biogas process, mass balance equation, system identification

Jiraphon Srisertpol; Prasit Srinakorn; Adtavirod Kheawnak; Kontorn Chamniprasart; Arthit Srikaew

2010-10-01T23:59:59.000Z

5

A Study on Biogas from Anaerobic Digestion with the Distiller's Grains via Lactic Acid Fermentation  

Science Conference Proceedings (OSTI)

The methane production of the distiller’s grains via lactic acid fermentation (shorter for the fermentation residue) was investigated, and the variable trend of pH values, alkali concentration and volatile fatty acids were examined. The results ... Keywords: the residue of distillers' grains via lactic acid fermentation, biomass wastes, anaerobic digestion, volatile fatty acids, biogas production

Li-Hong Wang; Wang Qunhui; Sun Xiaohong; Xin Zhao

2010-12-01T23:59:59.000Z

6

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15T23:59:59.000Z

7

Enhanced biogas production by increasing organic load rate in mesophilic anaerobic digestion with sludge recirculation.  

E-Print Network (OSTI)

?? For enhancing anaerobic sludge digestion and biogas recovery, an increase in organic load rate (OLR) from 1.0 to 3.0kgVS/(m3·day) was imposed upon a new… (more)

Huang, Zhanzhao

2012-01-01T23:59:59.000Z

8

Analysis of microbial diversity and optimal conditions for enhanced biogas production from swine waste anaerobic digestion  

Science Conference Proceedings (OSTI)

Swine wastewater pretreated by solid–liquid separation was optimized for biogas production and water purification. Dynamic diversity of the bacterial community in the anaerobic plug flow reactor was investigated under various temperatures and hydraulic retention times (HRT). Results of batch experiments indicated that under optimal operating conditions

Hsiao-Hsien Lin

2013-01-01T23:59:59.000Z

9

Anaerobic Digestion  

Energy.gov (U.S. Department of Energy (DOE))

Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases,...

10

Energy Basics: Anaerobic Digestion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Biofuels Biopower Anaerobic Digestion Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Anaerobic Digestion Anaerobic digestion is a...

11

Refeeding biogas digester solids  

SciTech Connect

Biosolid, the digester residue from a biogas plant, must be of economical use to ensure the financial feasibility of biogas facilities. This paper sumarizes work performed for a Department of Energy study in the Imperial Valley of California. Feeding trials show that biosolid can only be used as a small proportion of feed rations. Apart from bacterial debris, biosolid is composed larely of non-nutritive residues. 5 refs.

Licht, L.A.

1981-01-01T23:59:59.000Z

12

Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

The organic fraction of municipal solid waste can be a significant energy source for renewable energy generation. The total production of municipal solid waste in Turkey was 25?×?106 tones per year. Anaerobic digestion (AD) process may be a solution to the problems of energy demand and waste management since it provides biomethanation along with waste stabilization. AD can be operated in single or two phase configurations. Two-phase processes have some advantages over one phase systems in terms of selection of microorganisms

Eylem Dogan; Göksel N. Demirer

2012-01-01T23:59:59.000Z

13

Optimization criteria for the stabilization of sewage sludge and biogas production through anaerobic digestion: an example of an environmental biotechnology application  

SciTech Connect

According to environmental protection and energy conservation principles, anaerobic digestion of activated sludges should have two main purposes: to stabilize the sludge within allowable limits and to increase biogas production as much as possible, in order to meet ecological requirement without neglecting a particular energy source. This implies optimization procedures for the design of the process, based upon its actual kinetics. This optimization has been developed in the present paper on the basis of experimental results on anaerobic digestion kinetics achieved in previous research.

Ferraiolo, G.; Del Borghi, M.; Gardi, R.; Solisio, C.

1983-03-01T23:59:59.000Z

14

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor .  

E-Print Network (OSTI)

??Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected… (more)

Wilkinson, Andrea

2011-01-01T23:59:59.000Z

15

Microcontroller-Based Fuzzy System to Optimize the Anaerobic Digestion in Biogas Reactors  

Science Conference Proceedings (OSTI)

This paper describes a fuzzy-system for the optimization of the yield of biogas at biogas plants. The algorithm introduced allows the transformation of a PC supported developed fuzzy-model to a microcontroller-system. This system can be utilised as a ...

Steffen Patzwahl; Thomas Nacke; Dieter Frense; Dieter Beckmann; Klaus-Dietrich Kramer; Tobias Tautz; Gerd-Rainer Vollmer

2001-10-01T23:59:59.000Z

16

Experimental study on rheological characteristics of high solid content sludge and it is mesophilic anaerobic digestion  

Science Conference Proceedings (OSTI)

Compared to conventional low solid content anaerobic digestion high solid content anaerobic digestion can offer attractive advantages such as higher biogas generation and smaller reactor volume demand. However

2013-01-01T23:59:59.000Z

17

Biogas-Fueled Distributed Generation: Three Manure Digester Case Studies  

Science Conference Proceedings (OSTI)

Biogas produced from the anaerobic digestion of livestock waste can provide electrical and thermal energy while solving environmental challenges, including waste management and greenhouse gas reduction. The three manure digester gas projects described in this report demonstrate the potential of such systems to provide co-generated power and heat.

2004-12-27T23:59:59.000Z

18

Anaerobic Digestion | Open Energy Information  

Open Energy Info (EERE)

(Redirected from - Anaerobic Digestion) Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:en.openei.orgw...

19

Anaerobic Digestion | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:en.openei.orgwindex.php?titleAnaerobicDigestion&oldid267145"...

20

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield  

SciTech Connect

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bio-Terre Cook Farm Anaerobic Digester Project  

Science Conference Proceedings (OSTI)

This report details the preliminary research and construction of a novel low temperature earthen cell for anaerobic digestion and biogas production facility at Cook Feeders Ltd., a 6,000 head swine finisher operation, located in central Manitoba, Canada.

2005-09-07T23:59:59.000Z

22

Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic Digestion by PENERGY Solutions  

E-Print Network (OSTI)

by wood-fired boilers. By generating biogas through anaerobic digestion of swine manure, fuel can: A mechanical anaerobic digester to handle organic farm waste. A complete biogas collection system with hookPENNSTATE Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic

Demirel, Melik C.

23

Pretreatment of Pulp Mill Wastewater Treatment Residues to Improve Their Anaerobic Digestion.  

E-Print Network (OSTI)

??Anaerobic digestion of excess biological wastewater treatment sludge (WAS) from pulp mills has the potential to reduce disposal costs and to generate energy through biogas… (more)

Wood, Nicholas

2009-01-01T23:59:59.000Z

24

Modeling Hydrogen Sulfide Adsorption by Activated Carbon made from Anaerobic Digestion By-product.  

E-Print Network (OSTI)

??Biogas, produced from anaerobic digestion of cattle manure, is an attractive alternative energy source as it is rich in methane. However, it is necessary to… (more)

Ho, Natalie

2012-01-01T23:59:59.000Z

25

Anaerobic Digestion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bacteria break down or "digest" organic material in the absence of oxygen and produce biogas as a waste product. (Aerobic decomposition, or composting, requires large amounts of...

26

Anaerobic digestion process  

SciTech Connect

An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

Ishida, M.; Haga, R.; Odawara, Y.

1982-10-19T23:59:59.000Z

27

Anaerobic digestion of industrial activated aerobic sludge  

Science Conference Proceedings (OSTI)

The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge.

Goodloe, J.G.; Roberts, R.S.

1990-04-01T23:59:59.000Z

28

Anaerobic digestion of the liquid fraction of dairy manure  

Science Conference Proceedings (OSTI)

The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

Haugen, V.; Dahlberg, S.; Lindley, J.A.

1983-06-01T23:59:59.000Z

29

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

30

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

31

Anaerobic Digestion Technology  

Science Conference Proceedings (OSTI)

As fuel resources become scarcer, it has become more important to identify and harness alternative energy sources. Currently, 24 states have renewable portfolio standards (RPS), requiring electricity providers to obtain a minimum percentage of their power from renewable energy sources, with the purpose of becoming less dependent on fossil fuels, reducing waste and greenhouse gas emissions, and decreasing costs as fuel prices increase. Anaerobic digestion (AD) has proven itself a viable alternative techno...

2007-12-21T23:59:59.000Z

32

A mixed plug flow anaerobic digester for dairy manure  

SciTech Connect

In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

1985-01-01T23:59:59.000Z

33

Anaerobic digestion of equine waste.  

E-Print Network (OSTI)

??The goals of this project were to determine the methane production potential of horse manure during anaerobic digestion; to examine the effect of softwood chip… (more)

Wartell, Brian A., 1984-

2009-01-01T23:59:59.000Z

34

Passive solar technology aids biogas digesters  

SciTech Connect

Farming communities throughout China rely on biogas generators as a primary source of light and heat, as well as using the sludge as a nitrogen-rich fertilizer. Now researchers at Beijing's Solar Energy Laboratory have improved efficiency by building a rectangular tank out of concrete slabs, with one slanted surface painted black and covered with glass. According to a report in New Scientist, this passive solar panel generates heat in the same way as a greenhouse, raising inside temperatures by 10{degree}C and increasing biogas production by 50%. Another advantage of the new tanks is easy access, since the tank's lid sites in wells of water which form a seal against oxygen. (Old biogas tanks were made of soil, sand and a little concrete, prone to developing severe cracks which would allow oxygen to enter thus slowing down anaerobic reaction). Explains Debora MacKenzie of New Scientist: with the new tank, the farmer can simply remove the lid and attack the contents with a spade. This means that the mixture can comprise more than 10% solids. Greater density allows smaller tanks. Rural families need one cubic meter of biogas daily for light and heat; instead of the former 8 cm biogas generator, the new tanks need only be 1 cm. The prediction is that the smaller size could make biogas more popular in China's crowded towns. The biogas department is headed by He Shao Qi, who is also investigating ways to reduce production costs for the tanks.

Not Available

1988-07-01T23:59:59.000Z

35

Biogas Markets and Federal Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

americanbiogascouncil.org americanbiogascouncil.org Promoting the Anaerobic Digestion and Biogas Industries 1 americanbiogascouncil.org Biogas Markets and Federal Policy Patrick Serfass, Executive Director www.americanbiogascouncil.org Promoting the Anaerobic Digestion and Biogas Industries www.americanbiogascouncil.org Promoting the Anaerobic Digestion and Biogas Industries American Biogas Council: The Voice of the US Biogas Industry ï‚£ The only U.S. organization representing the biogas and anaerobic digestion industry ï‚£ 151 Organizations in the U.S., Germany, Italy, Canada, Sweden, Denmark, Belgium, Brazil, the Netherlands and the UK ï‚£ All Industry Sectors Represented: ï‚£ Landowners, waste managers ï‚£ Project developers/owners ï‚£ Manufacturers ï‚£ Fuel refiners

36

Effects of Fe2+ on the Anaerobic Digestion of Chicken Manure: A Batch Study  

Science Conference Proceedings (OSTI)

Trace elements are considered to be essential for anaerobic process. Laboratory-scale batch studies were undertaken to evaluate the effect of Fe2+on the biogas production from chicken manure at mesophilic condition (37 ±1°C). The biogas production ... Keywords: anaerobic digestion, chicken manure, dynamics, iron, stimulation and inhibition

Zhang Wanqin; Guo Jianbin; Wu Shubiao; Dong Renjie; Zhou Jie; Lang Qianqian; Li Xin; Lv Tao; Pang Changle; Chen Li; Wang Baozhi

2012-07-01T23:59:59.000Z

37

Nya renings- och uppgraderingstekniker för biogas.  

E-Print Network (OSTI)

?? Biogas is a renewable energy source that is produced by anaerobic digestion of organic mate-rial. In Sweden, biogas predominately comes from sewage water sludge… (more)

Benjaminsson, Johan

2006-01-01T23:59:59.000Z

38

Effects of corn stover as carbon supplement on an integrated anaerobic digestion and ethanol fermentation process  

Science Conference Proceedings (OSTI)

An integrated anaerobic digestion (AD) and ethanol fermentation process on a mixed feedstock of dairy manure and corn stover was performed to investigate the influence of corn stover on biogas production

2013-01-01T23:59:59.000Z

39

Managing Manure with Biogas Recovery Systems  

E-Print Network (OSTI)

emissions and capture biogas--a useful source of energy. About Anaerobic Digestion Biogas recovery systems are sometimes known as anaerobic digesters, because they use a process called anaerobic digestion. (Conventional lagoons oper- ate on the same biological principle.) During anaerobic digestion, bacteria break down

Mukhtar, Saqib

40

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Performance Data For Anaerobic Digestion of Various Types ofMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OFMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF

Haven, Kendall F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Anaerobic Digesters Design and Operation  

E-Print Network (OSTI)

Public awar'eness of the need to develop systems for producing energy from readilyrenewable sources, as an alternative to energy from expensive and diminishing supplies of fossil fuels, led to research at The Pennsylvania State University on systems for methane production by anaerobic digestion of animal manures. Experiences with design, construction, and operation of a two-stage heated continuous-feed digester for a herd of 100 dairy cows are reported in this Bulletin. The publication contains discussions of the microbiological processes involved in the anaerobic digestion of organic materials;

S. P. E. Persson; R. W. Regan

1979-01-01T23:59:59.000Z

42

Biogas Potential in the United States (Fact Sheet), Energy Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Biogas Potential in the United States Biogas is the gaseous product of anaerobic digestion, a biological process in which microorganisms break down biodegradable...

43

Uppgradering av biogas i systemperspektiv med avseende på miljöpåverkan och kostnader; Biogas upgrading in a systems perspective with respect to environmental impact and economic cost.  

E-Print Network (OSTI)

?? Swedish biogas is currently produced mainly by anaerobic digestion of sewage sludge at sewage treatment plants, landfills and anaerobic digestion of household or industrial… (more)

Kovac, Elvedin

2013-01-01T23:59:59.000Z

44

Energy Basics: Anaerobic Digestion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic decomposition of organic materials. It is...

45

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

re- 35. John Paul, Anaerobic Digestion A Feel Good StrategyFACING VILOPMENT OF ANAEROBIC DIGESTION OF ANIMAl. WASTE INthan $40 million for anaerobic digestion systems." 19 The

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

46

Biogas Technologies and Integration with Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL BIOGAS WORKSHOP NREL BIOGAS WORKSHOP BIOGAS TECHNOLOGIES AND INTEGRATION WITH FUEL CELLS Ian Handley Ros Roca Envirotec USA American Biogas Council SUMMARY * Introduction and Background * Anaerobic Digestion * Biogas Utilization * Biogas Upgrading Technology * Biogas Specification * Biogas to Fuel Cell * Conclusions Promoting the use of Biogas and Anaerobic Digestion O 149 Members from the U.S., Germany, Italy, Canada and the UK O All Industry Sectors Represented Key Industry Goals: O Promote biogas markets, technologies and infrastructure O Achieve policy parity O Promote as a best practice for environmental stewardship and greenhouse gas reduction www.americanbiogascouncil.org Products and technologies for environmental protection Pneumatic waste

47

Biogas digesters in the Peoples Republic of China  

Science Conference Proceedings (OSTI)

This paper is a report on the use of biogas in China. The authors traveled in China from May 8 to June 12, 1982 during which time they visited several institutes doing research on biogas and many communes where biogas was produced and used. About 7,000,000 digesters are in actual use in China almost all of which are the small household type used for cooking and lighting.

Liljedahl, J.B.; Butler, J.; Caldwell, J.S.; Tyner, W.E.

1983-06-01T23:59:59.000Z

48

Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste  

Science Conference Proceedings (OSTI)

The effect of alkaline hydrothermal pre?treatment for anaerobic digestion of mechanically?sorted municipal solid waste (MSW) and source?sorted waste was studied. Waste was hydrothermally pre?treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170?°C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control

W. Hao; W. Hongtao

2008-01-01T23:59:59.000Z

49

A Design-Builder's Perspective: Anaerobic Digestion, Forest County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

50

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

51

The Effects of Different Anaerobic Fermentation Temperature on Biogas Fermentation of Swine Manure  

Science Conference Proceedings (OSTI)

Biogas yields and methane productivity were studied at different temperatures (15¡æ, 20¡æ, 25¡æ, 30¡æ and 35¡æ) by the way of anaerobic fermentation experiment which takes wine manure as biogas fermentation raw material, and ... Keywords: Temperature, Biogas, Swine manure, Anaerobic fermentation

Zhu Zongqiang; Cheng Guanwen; Zhu Yinian; Zeng Honghu; Wei Rongrong; Wei Caichun

2011-02-01T23:59:59.000Z

52

Anaerobic Co-Digestion on Dairies in Washington State  

E-Print Network (OSTI)

1 Anaerobic Co-Digestion on Dairies in Washington State The solid waste handling permit exemption W This factsheet briefly reviews the role of co-digestion within anaerobic digestion (AD), explains the potential Digestion and the Role of Co-Digestion Anaerobic digestion is increasingly used to treat livestock manure

Collins, Gary S.

53

Tumble-mix anaerobic digestion of dry beef manure  

SciTech Connect

Anaerobic digestion of beef manure at an influent total solids concentration of 26% was demonstrated using an innovative tumble-mix fermenter. At an organic loading rate of 4.7 kg VS m-/sup 3/ d-/sup 1/ and a 23% VS influent concentration, a 54% volatile solids reduction was achieved. The average biogas production was 1.37 m/sup 3/ m-/sup 3/ d-/sup 1/ with a gas quality of 54% CH/sub 4/.

Kottwitz, D.; Schulte, D.D.

1982-12-01T23:59:59.000Z

54

Biogas production from a systems analytical perspective.  

E-Print Network (OSTI)

??Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental and waste management policy. Interest in… (more)

Berglund, Maria

2006-01-01T23:59:59.000Z

55

Potential of Floriculture Residue For Biogas Production.  

E-Print Network (OSTI)

??Production of methane reach biogas through anaerobic digestion of organic material provides versatile carrier of renewable energy, as methane can be used in replacement for… (more)

TAMRAT, ASNAKE

2008-01-01T23:59:59.000Z

56

Alternative Fuels Data Center: Biogas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biogas to someone by Biogas to someone by E-mail Share Alternative Fuels Data Center: Biogas on Facebook Tweet about Alternative Fuels Data Center: Biogas on Twitter Bookmark Alternative Fuels Data Center: Biogas on Google Bookmark Alternative Fuels Data Center: Biogas on Delicious Rank Alternative Fuels Data Center: Biogas on Digg Find More places to share Alternative Fuels Data Center: Biogas on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Renewable Natural Gas (Biogas) Biogas-also known as biomethane, swamp gas, landfill gas, or digester gas-is the gaseous product of anaerobic digestion (decomposition without oxygen) of organic matter. In addition to providing electricity and heat, biogas is useful as a vehicle fuel. When processed to purity standards,

57

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

58

Simulation, optimization and instrumentation of agricultural biogas plants.  

E-Print Network (OSTI)

??During the last two decades, the production of renewable energy by anaerobic digestion (AD) in biogas plants has become increasingly popular due to its applicability… (more)

Wolf, Christian

2013-01-01T23:59:59.000Z

59

Experimental co-digestion of corn stalk and vermicompost to improve biogas production  

SciTech Connect

Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

Chen Guangyin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zheng Zheng, E-mail: zzhenghj@fudan.edu.c [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Yang Shiguan [National Engineering Laboratory of Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Fang Caixia; Zou Xingxing; Luo Yan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

60

Community-Scale Anaerobic Digesters Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Scale Anaerobic Digesters Webinar Community-Scale Anaerobic Digesters Webinar Community-Scale Anaerobic Digesters Webinar April 16, 2013 1:00PM MDT Webinar This free webinar will be held on April 16, 2013, from 1-2:15 p.m. Mountain Daylight Time. It will provide information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. Implementing Anaerobic Digestion in San Jose's Integrated Processing Infrastructure This presentation will provide background on San Jose, California's, leading-edge program using the nation's first commercial-scale, high solids dry fermentation anaerobic digestion system to process commercial organics from more than 8,000 businesses in the city. Phase one of the Zero Waste

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Co-digestion of cattle manure with food waste and sludge to increase biogas production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

2012-10-15T23:59:59.000Z

62

Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease  

SciTech Connect

Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

Wan Caixia; Zhou Quancheng; Fu Guiming [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States)

2011-08-15T23:59:59.000Z

63

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

Weaver, P.F.

1989-08-25T23:59:59.000Z

64

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

Weaver, Paul F. (Golden, CO)

1990-01-01T23:59:59.000Z

65

Apparatus for the anaerobic digestion of natural organic waste  

Science Conference Proceedings (OSTI)

The title system consists of a feed tank, from which sewage is provided to a digester tank at an adjustable continuous weight, in which the sewage is anaerobically digested. The gas produced in the anaerobic digester is collected at the top and pumped to a diffuser at the bottom of the digester. The supernatent from the treated sewage is transferred to an outlet tank, and sludge is removed from the bottom of the digester tank.

Hawkes, D.L.; Horton, R.; Stafford, D.A.

1980-11-11T23:59:59.000Z

66

Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor  

SciTech Connect

A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

Nopharatana, Annop [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150 (Thailand); Pullammanappallil, Pratap C. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Clarke, William P. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia)], E-mail: billc@cheque.uq.edu.au

2007-07-01T23:59:59.000Z

67

Organic pollutants in Swiss compost and digestate.  

E-Print Network (OSTI)

??Composting (aerobic treatment of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing significance… (more)

Brändli, Rahel Christine

68

Organic pollutants in Swiss compost and digestate.  

E-Print Network (OSTI)

??Composting (aerobic treatment of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing significance… (more)

Brändli, Rahel Christine

2006-01-01T23:59:59.000Z

69

Co-digestion of sewage sludge with glycerol to boost biogas production  

Science Conference Proceedings (OSTI)

The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 {sup o}C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 {+-} 36 ml CH{sub 4}/d before the addition of glycerol and 2353 {+-} 94 ml CH{sub 4}/d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate ({mu}{sub max}) and the saturation constant (K{sub S}) of glycerol were 0.149 {+-} 0.015 h{sup -1} and 0.276 {+-} 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.

Fountoulakis, M.S., E-mail: mfountoul@steg.teiher.g [School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion (Greece); Petousi, I.; Manios, T. [School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion (Greece)

2010-10-15T23:59:59.000Z

70

List of Anaerobic Digestion Incentives | Open Energy Information  

Open Energy Info (EERE)

Anaerobic Digestion Incentives Anaerobic Digestion Incentives Jump to: navigation, search The following contains the list of 285 Anaerobic Digestion Incentives. CSV (rows 1 - 285) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Job Stimulus Program (Ohio) Industry Recruitment/Support Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government

71

Anaerobic Digester Gas-to-Electricity Rebate and Performance...  

Open Energy Info (EERE)

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive Incentive Type State Rebate Program Applicable Sector Agricultural, Commercial, Industrial, Institutional,...

72

Biogas in the United Kingdom & Sweden - A Technological Innovation System Based Analysis.  

E-Print Network (OSTI)

?? The production of biogas via anaerobic digestion is an effective technology for converting organic waste into renewable fuel. Using the Technological Innovation System (TIS)… (more)

Gordon, Niall

2011-01-01T23:59:59.000Z

73

An environmental assessment of recovering methane from municipal solid waste by anaerobic digestion  

Science Conference Proceedings (OSTI)

The development of an experimental process which produces synthetic natural gas (SNG) or biogas by anaerobic digestion of municipal solid waste (MSW) is evaluated. This technology, if implemented, would be utilized in lieu of incineration or directly landfilling waste. An environmental assessment describing the principal impacts associated with operating the MSW anaerobic digestion process is presented. Variations in process configurations provide for SNG or electricity production and digester residue incineration, composting, or landfilling. Four process configuration are compared to the conventional solid waste disposal alternative of mass burn incineration and landfilling. Emissions are characterized, effluents quantified, and landfill areas predicted. The quantity of SNG and electricity recovered, and aluminum and ferrous metals recycled is predicted along with the emissions and effluents avoided by recovering energy and recycling metals. Air emissions are the primary on-site concern with the anaerobic digestion process. However, when compared to mass burn incineration, the projected particulate emissions for the anaerobic digestion process range from 2.9 {times} 10{sup {minus}6} to 2.6 {times} {sup 10{minus}5} pounds per ton of waste vs. 3.3 {times} 10{sup {minus}5} pounds per ton for mass burn. SO{sub 2}, NO{sub x}, and PCCD emissions have a similar relationship.

O'Leary, P.R.

1989-01-01T23:59:59.000Z

74

Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system  

Science Conference Proceedings (OSTI)

The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

Kheradmand, S. [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Sartaj, M. [Department of Civil Engineering, Isfahan University of Technology, Isfahan 841568311 (Iran, Islamic Republic of)

2010-06-15T23:59:59.000Z

75

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of  

E-Print Network (OSTI)

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of Particulate Matter R degradation, chemostat, models, growth rate, equilibrium, bistability. 1. INTRODUCTION Anaerobic digestion, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction

Paris-Sud XI, Université de

76

Intermediate-scale high-solids anaerobic digestion system operational development  

DOE Green Energy (OSTI)

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

Rivard, C.J.

1995-02-01T23:59:59.000Z

77

Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano  

SciTech Connect

Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

Alvarez, Rene [IIDEPROQ, UMSA, Plaza del Obelisco 1175, La Paz (Bolivia)], E-mail: Rene.alvarez@iideproq.org; Liden, Gunnar [Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund (Sweden)

2008-07-01T23:59:59.000Z

78

Anaerobic Digestion Process Identification Using Recurrent Neural Network Model  

Science Conference Proceedings (OSTI)

This paper proposes the use of a Recurrent Neural Network Model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical ... Keywords: Recurrent neural network model, backpropagation learning, decentralized model, centralized model, system identification, anaerobic digestion bioprocess

Rosalba Galvan-Guerra; Ieroham S. Baruch

2007-11-01T23:59:59.000Z

79

Anaerobic Digestion and Combined Heat and Power Study  

DOE Green Energy (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz

2011-12-30T23:59:59.000Z

80

Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel  

E-Print Network (OSTI)

The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors operated in the batch mode at 35°C. The secondary objective was to evaluate two sources of glycerol as co-substrates for AD to determine if different processing methods for the glycerol had an effect on CH? production. The biogas yields were higher for co-digestion than for digestion of wastewater alone, with average yields at 1 atmosphere and 0°C of 0.555 and 0.540 L (g VS added)?¹, respectively. Another set of results showed that the glycerol from an on-farm biodiesel operation had a CH? yield of 0.702 L (g VS added)?¹, and the glycerol from an industrial/commercial biodiesel operation had a CH? yield of 0.375 L (g VS added)?¹. Therefore, the farm glycerol likely had more carbon content than industrial glycerol. It was believed that the farm glycerol had more impurities, such as free fatty acids, biodiesel and methanol. In conclusion, anaerobic co-digestion of chicken processing wastewater and crude glycerol was successfully applied to produce biogas rich in CH?.

Foucault, Lucas Jose

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effect of Trace Elements on Anaerobic Digestion of Coking Wastewater  

Science Conference Proceedings (OSTI)

The pretreatment of coking wastewater using ASBR was conducted at 35? in this paper. The addition of trace elements to the anaerobic reactor has positive effect on the anaerobic treatment of coking wastewater, but too much or too little of it will ... Keywords: trace elements, anaerobic digestion, coking wastewater

Yu-ying Li; Bing Li

2009-10-01T23:59:59.000Z

82

Assessment of Biogas-Fueled Electric Power Systems  

Science Conference Proceedings (OSTI)

This report provides an assessment of technologies, opportunities, and markets for generation of electricity from biogas sources. Topics covered include sources of biogas; typical characteristics of biogas as produced from various waste products; engines and associated equipment to convert biogas to electricity; electrical design and connection issues; and markets for heat and power produced by biogas to electricity systems. The report describes the process of anaerobic digestion for converting organic w...

2004-03-31T23:59:59.000Z

83

A study of biogas digesters as an animal waste management tool on livestock farming systems in Fiji.  

E-Print Network (OSTI)

??Ever since 1976, livestock farmers in Fiji have been intrigued about biogas digesters as an animal waste management measure, but the concept has never evolved… (more)

Tukana, Andrew

2005-01-01T23:59:59.000Z

84

Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

Rivard, C. J.

1995-02-01T23:59:59.000Z

85

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES  

E-Print Network (OSTI)

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES Simeonov, I variables of anaerobic digestion processes. For this purpose, different mathematical models of anaerobic on a pilot-scale anaerobic bioreactor with computer monitoring system. Key words: Anaerobic digestion

Paris-Sud XI, Université de

86

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-Print Network (OSTI)

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

87

Cascade Fuzzy Logic Controller for an Anaerobic Digester  

Science Conference Proceedings (OSTI)

A cascade controller is introduced for operating Up flow Anaerobic Sludge Blanket (UASB) digesters efficiently. The Upper-level controller is a Fuzzy Logic Controller (FLC) and the Lower-level controller is a conventional PI controller. The inner loop ...

Albino Martinez-Sibaja; Ruben Posada-Gomez; Alejandro Alvarado-Lassman; Angel Sebastia-Cortes

2007-09-01T23:59:59.000Z

88

Anaerobic Digestion of Food Waste?recycling Wastewater  

Science Conference Proceedings (OSTI)

Food waste?recycling (FWR) wastewater was evaluated as feedstock for two?stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two?stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10–25 days. In the acidogenic reactor

Gyuseong Han; Seung Gu Shin; Juntaek Lim; Minho Jo; Seokhwan Hwang

2010-01-01T23:59:59.000Z

89

Effect of alkaline pretreatment on anaerobic digestion of solid wastes  

Science Conference Proceedings (OSTI)

The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

Lopez Torres, M. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)], E-mail: matilde.lopez@cnic.edu.cu; Espinosa Llorens, Ma. del C. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)

2008-11-15T23:59:59.000Z

90

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digester Gas-to-Electricity Rebate and Performance Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Tribal Government Savings Category Bioenergy Maximum Rebate Total Incentive: $2 million (combined production and capacity incentives) Fixed Base + Capacity Incentive: varies, limited to the total maximum incentive of $2 million minus the applicable performance incentive Program Info Funding Source RPS surcharge; NYPA Expiration Date 01/31/2013 State New York Program Type State Rebate Program Rebate Amount Fixed Base Incentive: varies Capacity Incentive: varies Production Incentive: $0.025/kWh production payment for new systems for up

91

Anaerobic digestion as a waste disposal option for American Samoa  

DOE Green Energy (OSTI)

Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

Rivard, C

1993-01-01T23:59:59.000Z

92

Isolation of High-Efficient Low-Temperature Methanogen and Comparation on Flora in Anaerobic Fermentation Production Biogas  

Science Conference Proceedings (OSTI)

With the Hun gate anaerobic techniques, a low-temperature methanogen strain was isolated from sludge in De Qing Alpine region from Tibet, named XZF21. The colony is white, not transparent, Gram-negative, uses formate as the substrate forCH4 formation, ... Keywords: methane, purification, sludge, anaerobic fermentation, biogas

Fan Tingting; Wang Jinhua; Lei Yanmin; Liu Siying; Wang Zhi; Wang Yongze

2011-02-01T23:59:59.000Z

93

Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

Liu Zhanguang; Zhou Xuefei [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhang Yalei, E-mail: zhangyalei2003@163.com [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu Hongguang [Institute of Modern Agricultural Science and Engineering, National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092 (China)

2012-01-15T23:59:59.000Z

94

Single stage anaerobic digester at Tarleton State University. Final report  

DOE Green Energy (OSTI)

The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

Not Available

1980-01-01T23:59:59.000Z

95

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions  

SciTech Connect

Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

Kim, Dong-Hoon [Wastes Energy Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1, Duckmyoung-dong, Yuseong-gu, Daejeon (Korea, Republic of)

2011-09-15T23:59:59.000Z

96

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS OF PARTICULATE MATTER  

E-Print Network (OSTI)

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS-SupAgro MISTEA, 2 p. Viala 34060 Montpellier, France, fekih@supagro.inra.fr Introduction. Anaerobic digestion, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction

Paris-Sud XI, Université de

97

Reduction of Antibiotic-Resistant Bacteria Present in Food Animal Manures by Composting and Anaerobic Digestion  

E-Print Network (OSTI)

and Anaerobic Digestion Frederick C. Michel, Food, Agricultural, and Biological Engineering Zhongtang Yu, Animal concluded that both anaerobic digestion and composting--especially at elevated temperatures--are effective effectiveness of anaerobic digestion and composting at high temperatures is of interest to industry

Jones, Michelle

98

Optimizing the anaerobic digestion of microalgae in a coupled Terence Bayen  

E-Print Network (OSTI)

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen , Francis by light and an anaerobic digester. The mathematical model for the dynamics of the reactors takes for sustainable energy production [2]. Anaerobic digestion can be applied to recover the energy stored

Recanati, Catherine

99

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Abstract The Anaerobic Digestion Model N°1 (ADM1., 2005). Anaerobic digestion process involves many interactions between species that may not all have

100

Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes$  

E-Print Network (OSTI)

Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes in simulation. Keywords: Anaerobic digestion, biotechnology, steady state analysis, $ This work was supported the phenomenologic behavior of anaerobic digestion systems following the idea that all the available information

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Research review paper1 Anaerobic digestion of microalgae as a necessary step to make3  

E-Print Network (OSTI)

1 Research review paper1 2 Anaerobic digestion of microalgae as a necessary step to make3 of residual biomass and the17 high amounts of fertilizers must be considered. Anaerobic digestion is a key and concentrate methane is discussed.31 32 33 Keywords: anaerobic digestion, microalgae, biochemical methane

102

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-Print Network (OSTI)

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM, Singapore 639798 (E-mail: jwlim3@e.ntu.edu.sg) Abstract The anaerobic digestion of brown water (BW), food in a decentralized reactor via anaerobic digestion. The bio-methane potential of these substrates at different feed

Paris-Sud XI, Université de

103

IMPROVING BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF DIFFERENT SUBSTRATES.  

E-Print Network (OSTI)

?? Global energy demand is rapidly increasing. In contrast, fossil fuel reserves are decreasing. Today, one of the major challenge is energy supply for the… (more)

Ertem, Funda Cansu

2011-01-01T23:59:59.000Z

104

Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide  

Science Conference Proceedings (OSTI)

Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

Ghaly, A.E.; Ramkumar, D.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Biological Engineering Dept.

1999-07-01T23:59:59.000Z

105

Factors controlling pathogen destruction during anaerobic digestion of biowastes  

SciTech Connect

Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

Smith, S.R. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)]. E-mail: s.r.smith@imperial.ac.uk; Lang, N.L. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheung, K.H.M. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Spanoudaki, K. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

2005-07-01T23:59:59.000Z

106

Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Warith, Mostafa [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Hamoda, Mohamed [Department of Environmental Technology and Management, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Kennedy, Kevin J. [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada)

2012-01-15T23:59:59.000Z

107

Economic implications of anaerobic digesters on dairy farms in Texas  

E-Print Network (OSTI)

Historically, air and water have been considered common property resources and, therefore, over utilized as waste receptors. Dairy waste is a leading environmental concern in the North Bosque River watershed in Texas. Changing societal attitudes are forcing dairies and policymakers to balance environmental concerns with farm profitability. Dairies are entering a realm filled with technologies to combat waste concerns. Anaerobic digester technology may play a role in helping dairies balance profit and the environment. Digesters capture methane from livestock waste and transform it into electricity which can be sold to utilities or used on-farm. Because a digester facility is confined, air and water pollution can be reduced. Technological advancement and institutional factor changes allowing the sale of on-farm produced electricity and green power requirements have increased the economic feasibility of digesters. The study of the economic implications of anaerobic digesters for Texas dairies provides producers and policymakers with information to make good decisions concerning adoption and subsidization of this technology. At the beginning of this study, no digesters were operating in Texas. Dairies operating digesters in four states, therefore, were interviewed on-site to provide necessary data. The expected net present value, E(NPV), of a plug-flow digester is negative with and without selling electricity, indicating it should not be constructed based strictly on its financial contribution. At the current electricity-selling price, digesters are less economically feasible than current waste management strategies, lagoons, even after considering potential environmental penalties. However, selling electricity and capturing by-product heat for cost savings makes the digester's E(NPV) less negative than lagoons. The E(NPV) of a covered lagoon digester is positive. This indicates digesters are a potentially feasible waste management strategy. For plug-flow digesters to show a positive E(NPV), the selling price needs to be approximately 82.38% higher than the current price. The breakeven selling price is 12% higher than the current price. Below the breakeven price, lagoons have a larger E(NPV) than plug-flow digesters, therefore making lagoons the preferred waste management strategy. Results suggest changes in rules and technology efficiency make digesters economically competitive with current waste management systems.

Jackson, Randy Scott, Jr.

2003-05-01T23:59:59.000Z

108

doi:10.1128/mBio.00159-11. mBio.Methanogenic Wastewater Digester Aggregates  

E-Print Network (OSTI)

portion of the TVS readily decomposes and forms biogas under anaerobic conditions. The remainder is gener solids content of the feedstock. Cow manure slurry at 5% solids content released up to 30% more biogas in a mesophilic anaerobic digester with an HRT of 28 d. Biogas yields ranged between 0.65 and 0.86 m3 kg-1 VS

Lovley, Derek

109

A mass transfer model of ammonia volatilisation from anaerobic digestate  

SciTech Connect

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

Whelan, M.J., E-mail: m.j.whelan@cranfield.ac.u [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Everitt, T.; Villa, R. [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

2010-10-15T23:59:59.000Z

110

April 16, 2013 Webinar: Community-Scale Anaerobic Digesters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 16, 2013 Webinar: Community-Scale Anaerobic Digesters April 16, 2013 Webinar: Community-Scale Anaerobic Digesters April 16, 2013 Webinar: Community-Scale Anaerobic Digesters This webinar was held April 16, 2013, and provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's (FCPC) anaerobic digester project. Download the presentations below, watch the webinar (WMV 125 MB), or view the text version. Find more CommRE webinars. Implementing Anaerobic Digestion in San Jose's Integrated Processing Infrastructure This presentation provided background on San Jose, California's, leading-edge program using the nation's first commercial-scale, high solids dry fermentation anaerobic digestion system to process commercial organics

111

Anaerobic digestion of livestock manures: A current opportunities casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

Lusk, P.D.

1995-08-01T23:59:59.000Z

112

Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance  

Science Conference Proceedings (OSTI)

A 750,000 l digester located in Roppen/Austria was studied over a 2-year period. The concentrations and amounts of CH{sub 4}, H{sub 2}, CO{sub 2} and H{sub 2}S and several other process parameters like temperature, retention time, dry weight and input of substrate were registered continuously. On a weekly scale the pH and the concentrations of NH{sub 4}{sup +}-N and volatile fatty acids (acetic, butyric, iso-butyric, propionic, valeric and iso-valeric acid) were measured. The data show a similar pattern of seasonal gas production over 2 years of monitoring. The consumption of VFA and not the hydrogenotrophic CH{sub 4} production appeared to be the limiting factor for the investigated digestion process. Whereas the changes in pH and the concentrations of most VFA did not correspond with changes in biogas production, the ratio of acetic to propionic acid and the concentration of H{sub 2} appeared to be useful indicators for reactor performance. However, the most influential factors for the anaerobic digestion process were the amount and the quality of input material, which distinctly changed throughout the year.

Illmer, P. [University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck (Austria)], E-mail: Paul.Illmer@uibk.ac.at; Gstraunthaler, G. [Abfallbeseitigungsverband Westtirol, Breite Mure, A-6426 Roppen (Austria)

2009-01-15T23:59:59.000Z

113

Biogas-Fueled Electric Power: An Assessment of Systems and Technologies  

Science Conference Proceedings (OSTI)

This report summarizes the practice of generating electric power from biogas, a mixture of methane and carbon dioxide with trace contaminants, produced as a byproduct of biological treatment of organic waste under anaerobic (no oxygen) conditions. Biogas is commonly produced during treatment of municipal solid waste in sealed landfills and anaerobic digestion of wastewater treatment plant sludge, animal manure, and organic industrial waste. Power generation from biogas is distributed generation as it is ...

2005-05-24T23:59:59.000Z

114

Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

Nayono, Satoto E. [Department of Civil Engineering, Yogyakarta State University, Campus UNY Karangmalang Yogyakarta 55281 (Indonesia); Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Winter, Josef, E-mail: josef.winter@iba.uka.d [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Gallert, Claudia [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany)

2010-10-15T23:59:59.000Z

115

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

E-Print Network (OSTI)

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns

Columbia University

116

Sludge storage lagoon biogas recovery and use  

SciTech Connect

The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1991-07-01T23:59:59.000Z

117

Anaerobic Digesters in the Agricultural Sector: A Distributed Energy Resources Market Assessment  

Science Conference Proceedings (OSTI)

Regulatory pressure is creating a need for agricultural animal operations to better handle animal organic waste products. One option available to dairies, hog farms, and other operations to address these challenges is to develop anaerobic digesters. A by-product of anaerobic digesters is a methane rich gas that can be used for electric power generation and/or meeting thermal needs. This report explores the market potential for anaerobic digesters in the agricultural sector, and the role that electric pow...

2004-12-15T23:59:59.000Z

118

Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion  

E-Print Network (OSTI)

in large amounts in coal and natural gas processing, petroleum industries, biogas production, and sewage

119

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community- A Case Study  

Energy.gov (U.S. Department of Energy (DOE))

Presented by Jason Rieth, Industrial Construction Executive at Miron Construction at the April 16, 2013, Community-Scale Anaerobic Digesters CommRE Webinar.

120

Treatment program of organic matter by anaerobic digestion and composting (PTMOBC) (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Program for processing of organic matter by anaerobic digestion and composting (PTMOBC) provides financial assistance to municipalities and the private sector for the installation of...

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Anaerobic digestion analysis model: User`s manual  

DOE Green Energy (OSTI)

The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

Ruth, M.; Landucci, R.

1994-08-01T23:59:59.000Z

122

Deploying anaerobic digesters: Current status and future possibilities  

DOE Green Energy (OSTI)

Unmanaged pollutants from putrescible farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only provides pollution prevention but can also convert a disposal problem into a new profit center. This report is drawn from a special session of the Second Biomass Conference of the Americas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Lusk, P. [International Energy Agency, Paris (France); Wheeler, P. [ETSU (United Kingdom); Rivard, C. [National Renewable Energy Lab., Golden, CO (United States)

1996-01-01T23:59:59.000Z

123

On differential algebraic decision methods for the estimation of anaerobic digestion models  

Science Conference Proceedings (OSTI)

Monitoring and control of anaerobic digestion of organic wastes by microorganisms are parts of actual world efforts to preserve environment. The anaerobic digestion is a biochemical process in which microorganisms (or bacteria) biodegrade organic matters ... Keywords: characteristic set, differential algebra, differential algebraic decision methods, dynamic systems, observability, software sensors

Elena Chorukova; Sette Diop; Ivan Simeonov

2007-07-01T23:59:59.000Z

124

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design-Builder's Perspective: Anaerobic Digestion Design-Builder's Perspective: Anaerobic Digestion Forest County Potawatomi Community - A Case Study Presented by Jason Rieth, P.E., LEED AP BD + C Industrial Construction Executive Miron Construction Co., Inc. 715.841.4029 | jason.rieth@miron-construction.com * Overview of the FCPC Renewable Generation Facility

125

PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF GNOTOXENIC MICE.  

E-Print Network (OSTI)

SUMMARY PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF « GNOTOXENIC » MICE. INHIBITORY EFFECT ON SHIGELLA FLEXNERI Various strains of strictly anaerobic bacteria of holoxenic animals, were implanted in the digestive tract of axenic mice. The in vivo production of VFA

Recanati, Catherine

126

Dynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion  

E-Print Network (OSTI)

of the estimator performance. I. Introduction Anaerobic digestion is a biotechnological process with a promisingDynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion S. Diop1 and I. Simeonov2 Abstract-- The paper proposes an observability anal- ysis and estimation

127

Centralized Indirect Control of an Anaerobic Digestion Bioprocess Using Recurrent Neural Identifier  

Science Conference Proceedings (OSTI)

The paper proposed to use a Recurrent Neural Network Model (RNNM) and a dynamic Backpropagation learning for centralized identification of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment ... Keywords: Recurrent neural network model, anaerobic digestion bioprocess, backpropagation learning, distributed parameter system, sliding mode control, systems identification, wastewater treatment bioprocess

Ieroham S. Baruch; Rosalba Galvan-Guerra; Boyka Nenkova

2008-09-01T23:59:59.000Z

128

High Solid Anaerobic Co-digestion Pilot Scale Experiment of Kitchen Waste and Cow-dung  

Science Conference Proceedings (OSTI)

Under mesophilic condition (37°C), a bench-scale experiment based on high solid anaerobic digestion process was conducted in a fed-batch single phase reactor. The result shows: (1) According to gas production and ph value change, there are mainly ... Keywords: Kitchen waste, Cow-dung, High solid, Anaerobic co-digestion, Pilotsate

Lei Feng; Yan Chen; Rundong Li; Jie Xu

2012-05-01T23:59:59.000Z

129

Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: High shear Wet Granulation  

E-Print Network (OSTI)

Ã?Ã? Ã? Ã?Ã?Ã? Ã? Ã?Ã? Alternative method for producing organic fertiliser from anaerobic digestion liquor.M. Walker, Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone method for producing organic fertiliser from Anaerobic Digestion liquor and limestone powder: High Shear

Paxton, Anthony T.

130

Can we assess the model complexity for a bioprocess ? Theory and example of the anaerobic digestion process  

E-Print Network (OSTI)

Can we assess the model complexity for a bioprocess ? Theory and example of the anaerobic digestion the bioreactor. This provides the dimension of K. The method is applied to data from an anaerobic digestion can be obtained with 2 biomasses. Keywords Anaerobic digestion; Bioreactors; Modelling; Nonlinear

Paris-Sud XI, Université de

131

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED MANURE AS NUTRIENT AND WATER SUPPLY  

E-Print Network (OSTI)

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED. The nutrients in anaerobically digested manure are sufficient for yeast fermentation, which means that the cost at 121o C was chosen as the most suitable method for pretreating anaerobically digested manure. Moreover

132

Two-phase anaerobic digestion within a solid waste/wastewater integrated management system  

SciTech Connect

A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

De Gioannis, G. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy); Diaz, L.F. [CalRecovery, Inc., 2454 Stanwell Drive, Concord, California 94520 (United States); Muntoni, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)], E-mail: amuntoni@unica.it; Pisanu, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)

2008-07-01T23:59:59.000Z

133

State Level Incentives for Biogas-Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

LEVEL INCENTIVES LEVEL INCENTIVES FOR BIOGAS-FUEL CELL PROJECTS Norma McDonald Vice Chair, American Biogas Council North American Sales Manager, Organic Waste Systems, Inc. www.americanbiogascouncil.org FIGURES * FOUNDED IN 1988 * SALES: $25-35 MILLION * 75 EMPLOYEES ACTIVITIES * BIOGAS CONSULTANCY & SUPPORT * BIODEGRADATION TESTING AND WASTE MANAGEMENT CONSULTANCY * DESIGN & CONSTRUCTION OF ANAEROBIC DIGESTION PLANTS FOR ORGANIC WASTE AND RESIDUALS * NO FORMAL STATE CHAPTERS - YET * MEMBER DRIVEN EFFORTS * LOCAL "TOUCH" IS ESSENTIAL * REAPPLY BEST PRACTICES/POLICIES * PROMOTE/ADVOCATE FOR POLICY PARITY FOR BIOGAS www.americanbiogascouncil.org DYNAMICS SHAPING STATE INCENTIVES * BUDGET WOES, ARRA FUNDS NOW RUNNING OUT

134

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

135

Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge  

Science Conference Proceedings (OSTI)

A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

1982-01-01T23:59:59.000Z

136

Biogas project advances in California  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) has given a `thumbs up` rating to the high solids anaerobic digester project which is designed to produce biogas. The Sacramento Municipal Utility District (SMUD), the local utility, is considering the use of biogas to run a fuel cell pilot project. The designs for the three digesters are state-of-the-art, with each containing a horizontal trough measuring 120 feet long, 32 feet wide and 22 feet tall. NREL was asked by the PIA to review the mixing method in the digesters and analyze the overall potential success of the operation. The design employs a redundant system for foam removal from the digester gas, and has provisions to remove moisture from the biogas. However, there are no systems specified to reduce hydrogen sulfide levels. Since hydrogen sulfide is known to be corrosive, it may be destructive to the ultimate use as biogas in fuel cells. A suggested remedy from NREL is to add redundant iron sponge systems to remove hydrogen sulfide gases. A redundant system would allow regenerating one while the other is in service. In general, the lab found the design offers low construction costs, relative ease of operation, and a reasonably high level of anticipated success in operation. Therefore, NREL recommends proceeding with the current digester design plans, once the modifications as indicated are made.

Wittrup, L. [Sacramento Municipal Utility District, CA (United States)

1995-04-01T23:59:59.000Z

137

Why Sequencea Biogas-Producing Microbial Community?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Biogas-Producing Microbial Community? a Biogas-Producing Microbial Community? The world population is steadily growing, and so is the amount of waste produced by human activity. For example, an estimated 236 million tons of municipal solid waste are produced annually in the U.S., 50% of which is biomass. At the same time, energy sources are rapidly depleting. Converting organic waste to renewable biofuel by anaerobic digestion hence represents one appealing option to mitigate this problem. Biogas is a natural by-product of the decomposition of organic matter in an oxygen-free environment and comprises primarily methane and carbon dioxide. This naturally occurring process has been known for more than a century. More recently, it has been gaining importance as more efficient anaerobic digestion technologies have been developed to treat and recover energy (in

138

Sludge storage lagoon biogas recovery and use. Volume 2  

Science Conference Proceedings (OSTI)

The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1991-07-01T23:59:59.000Z

139

Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester  

Science Conference Proceedings (OSTI)

In this paper, the development of a computational fluid dynamics (CFD) model to simulate the mechanical mixing of sewage sludge at laboratory scale is reported. The paper recommends a strategy for modelling mechanically mixed sewage sludge at laboratory ... Keywords: Biogas, CFD, Digestion, Energy, Non-Newtonian fluid, Sewage sludge, Turbulence

J. Bridgeman

2012-02-01T23:59:59.000Z

140

Simulation of chemical reaction fronts in anaerobic digestion of solid waste  

Science Conference Proceedings (OSTI)

A case study for parallelisation of a code for a nonlinear system of evolution equations is presented. It describes the propagation of reaction fronts in anaerobic waste digestion. These occur as a consequence of heterogeneous initial distributions of ...

Hermann J. Eberl

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy  

E-Print Network (OSTI)

Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria ...

Zaks, David P. M.

142

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city  

E-Print Network (OSTI)

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal and processes on composting and anaerobic digestion are compiled, showing the versatility and multivariable of the compost. In addition, anaerobic decomposition followed by vermicomposting is pointed as one of the best

Wisconsin-Milwaukee, University of

143

Analysis of the Changing Microbial Phase in an Underground River Anaerobic Digestion Reactor  

Science Conference Proceedings (OSTI)

The underground river anaerobic fermentation system was adopted in this experiment was that a pipeline buried underground just like an underground river. The hydrolysis, acidification and degradation of initial fermentation were carried out when raw ... Keywords: underground river anaerobic digestion reactor, microbial phase, methane-producing bacteria, dominant bacteria

Bingbing Li; Xiao Bo; Zhiquan Hu

2009-10-01T23:59:59.000Z

144

Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use  

Science Conference Proceedings (OSTI)

In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

Govasmark, Espen, E-mail: espen.govasmark@bioforsk.no [Norwegian Institute for Agricultural and Environmental Research - Soil and Environment, Fredrik A. Dahlsvei 20, NO-1432 Aas (Norway); Staeb, Jessica [Universitaet Stuttgart, Institut fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Abteilung Hydrochemie, Bandtaele 2, D-70569 Stuttgart (Buesnau) (Germany); Holen, Borge [Norwegian Institute for Agricultural and Environmental Research - Plant Health, Hogskoleveien 7, NO-1432 Aas (Norway); Hoornstra, Douwe [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland); Nesbakk, Tommy [Mjosanlegget AS, Roverudmyra Miljostasjon, Asmarkveien 301, NO-2600 Lillehammer (Norway); Salkinoja-Salonen, Mirja [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland)

2011-12-15T23:59:59.000Z

145

1190 J. ENVIRON. QUAL., VOL. 26, JULY-AUGUST 1997 Proc. lnt. Symp. on Anaerobic Digestion of Soild Waste, Venice,  

E-Print Network (OSTI)

1190 J. ENVIRON. QUAL., VOL. 26, JULY-AUGUST 1997 Proc. lnt. Symp. on Anaerobic Digestion of Soild USSR. Chemosphere 26:401-417. Orlygsson, J., F.P. Houwen, and B.H. Svensson. 1993. Anaerobic

Fischlin, Andreas

146

Biogas yield performance with co-digestion of pig manure and slaughterhouse wastes.  

E-Print Network (OSTI)

?? Utilization of renewable energy is an important component of the current sustainable global energy strategy. Currently, biogas is considered one of the most economic… (more)

Mamun, Abdulla

2010-01-01T23:59:59.000Z

147

Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A, GRAETZ, AND K. R. REDDY2  

E-Print Network (OSTI)

Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A to produce CH4 or added to soil directly as an amendment.In this study, fresh and anaerobically digested digested plant biomass in soil. J. En- viron. Qual. 16:25-28. Anaerobic digestion of organic materials

Florida, University of

148

High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

Bolzonella, David, E-mail: david.bolzonella@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Cavinato, Cristina, E-mail: cavinato@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Fatone, Francesco, E-mail: francesco.fatone@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Pavan, Paolo, E-mail: pavan@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Cecchi, Franco, E-mail: franco.cecchi@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy)

2012-06-15T23:59:59.000Z

149

Long-term anaerobic digestion of food waste stabilized by trace elements  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

Zhang Lei, E-mail: wxzyfx@yahoo.com [Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Jahng, Deokjin, E-mail: djahng@mju.ac.kr [Department of Environmental Engineering and Biotechnology, Myongji University, San 38-2, Namdong, Cheoin-Gu, Yongin, Gyeonggi-Do 449-728 (Korea, Republic of)

2012-08-15T23:59:59.000Z

150

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

synthetic natural gas (SNG) via anaerobic decomposition byof algal substrate for an SNG process involves increasingof characteristics for SNG production. Limiting factors in

Haven, Kendall F.

2011-01-01T23:59:59.000Z

151

Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion  

Science Conference Proceedings (OSTI)

Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35?°C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four?blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel?Bulkley model

Evangelina S. Morel; José A. Hernández?Hernándes; Juan M. Méndez?Contreras; Denis Cantú?Lozano

2008-01-01T23:59:59.000Z

152

Guidebook on biogas development  

Science Conference Proceedings (OSTI)

This guidebook covers the practical aspects of small-scale biogas development suitable for use in rural areas in developing countries, especially those of the ESCAP region. It is intended that all aspects of biogas are covered so that someone with no knowledge of the subject can, with confidence, design, build, operate and maintain a biogas plant. Information on biogas technology in China is also included. Chapters cover: the biogas process; factors effecting gas-plant design and operation; the classification and design principles of plants; design, size and site selection; the construction of digesters; gas holders and pipes; household gas appliances and their use; starting and operating a biogas digester; servicing and safety; improving gas-plant performance; commercial uses of biogas; the effluent and its uses, biogas-plant development programmes; community plants; and economics. In the annexes, designs for biogas plants of the fixed-dome, bag and floating gas-holder type are presented. 9 references.

Not Available

1980-01-01T23:59:59.000Z

153

On-farm biogas systems information dissemination project. Final report  

SciTech Connect

The purpose of this project was to study how farmers manage anaerobic digesters on three New York State dairy farms. Two years of data collected were from both plug-flow and tower-type mixed-flow digesters at regular intervals over a three-year period revealed that the financial return from the energy produced by a biogass system in the late 1980`s is marginal. Little difficulty was experienced in operation of the anaerobic digester; however, several farms utilizing congeneration to convert biogas into electricity and heat suffered from not applying maintenance to the congenerator in a timely fashion.

Campbell, J.K.; Koelsch, R.K.; Guest, R.W.; Fabian, E.

1997-03-01T23:59:59.000Z

154

Biogas, compost and fuel cells  

Science Conference Proceedings (OSTI)

A pilot project now under development in Folsom, California, incorporates an anaerobic digestion/aerobic composting process that could eventually supply enough biogas to a fuel cell. The Sacramento Municipal Utility District (SMUD) has two fuel cells in operation and is participating in the research project. Recently, the California Prison Industry Authority (PIA) began operating a processing facility at the Folsom prison, designed for 100 tons/day of mixed waste from the City of Folsom. The 35,000 square foot Correctional Resource Recovery Facility (CRRF) uses minimum security inmates from Folsom`s Return to Custody Facility to manually separate recyclables and compostable materials from the waste stream. The PIA will be using a new technology, high solids anaerobic digestion, to compost the organic fraction (representing approximately 60 to 70 percent of the waste stream). Construction began in June on a 40-foot wide by 120-foot long and 22-foot deep anaerobic digester. Once the vessel is operational in 1995, the composting process and the gradual breakdown of organic material will produce biogas, which SMUD hopes to use to power an adjacent two megawatt fuel cell. The electricity generated will serve SMUD customers, including the waste facility and nearby correctional institutions. 1 fig.

Wichert, B.; Wittrup, L.; Robel, R. [Sacramento Municipal Utility District, CA (United States)

1994-08-01T23:59:59.000Z

155

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

156

Production and sale of energy and nutrients from a multi-farm digester  

Science Conference Proceedings (OSTI)

An investor-owned anaerobic digestion system was designed to process the wastes from several dairy farms totalling 900 cows. The resulting biogas will fuel a 97 KW engine-generator producing both electricity for sale to the utility, and waste heat for digester heating and supplemental greenhouse heating. The digested solids and liquids will be marketed as nursery soil and fertilizer, respectively.

Williams, D.W.; Howard, K.; Orrett, E.

1986-01-01T23:59:59.000Z

157

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis Mairet2 and Pierre Martinon3 and Matthieu Sebbah4  

E-Print Network (OSTI)

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis the production of methane in a bioreactor coupling an anaerobic digester and a culture of micro-algae limited as an attractive alternative for sustainable energy production [2]. Anaerobic digestion can be applied to convert

Paris-Sud XI, Université de

158

Biogas Potential on Long Island, New York: A Quantification Study  

Science Conference Proceedings (OSTI)

Biogas is the product of anaerobic digestion of waste, whether occurring spontaneously in landfills or under controlled conditions in digesters. Biogas is viewed as an important energy source in current efforts to reduce the use of fossil fuels and dependency on imported resources. Several studies on the assessment of biogas potential have been made at regional, national, and global scales. However, because it is not economically feasible to transport biogas feedstock over long distances, it is more appropriate to consider local waste sources for their potential to produce biogas. An assessment of the biogas potential on Long Island, based on the review of local landfills, wastewater treatment plants, solid waste generation and management, and agricultural waste, found that 234 x 10{sup 6} m{sup 3} of methane (CH{sub 4}) from biogas might be harvestable, although substantial barriers for complete exploitation exist. This number is equivalent to 2.52 TW-h of electricity, approximately 12% of fossil fuel power generation on Long Island. This work can serve as a template for other areas to rapidly create or approximate biogas potentials, especially for suburban U.S. locations that are not usually thought of as sources of renewable energy.

Mahajan, D.; Patel, S.; Tonjes, D.

2011-08-25T23:59:59.000Z

159

Operational characteristics of anaerobic digesters at selected municipal wastewater treatment facilities in the United States  

DOE Green Energy (OSTI)

Bench-scale and pilot plant studies at PNL have shown that powdered activated carbon is effective in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency. To evaluate the applicability of this technology to digesters in the United States, digester operating characteristics at 60 facilities were surveyed and the number of stressed digesters estimated. The results show that although median values of the operating parameters conformed with those of a well-operated digester, 30% of the digesters surveyed were stressed with regard to at least one important parameter. Of the 30 largest treatment plants in the U.S., 7 fell into this category. Digester gas production and usage were then examined to determine the importance of methane off-gas as an energy source. A conservative estimate is that the gas produced nationally represents a heating value of about 2.36 x 10/sup 13/ Btu/year with a present value of $40 million. Of this amount, an estimated 75% is used either onsite or sold. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity. The other 25% is flared and the energy value lost. The present value of the flared gas is about $10 million/year. Natural gas prices are projected to increase 150% over the next 7 years. If the present utilization ratio continues, the flared gas will be worth approximately $27 million in 1985. Presently, digester gas is mainly used for process heating and operating equipment. The technical and economic feasibility of recovering digester gas for electrical power generation, onsite equipment operation, and sales to other consumers (utilities, private companies) should be thoroughly investigated. If fuel gas recovery and utilization are found to be desirable, consideration should be given to expanding and upgrading anaerobic digester facilities in the U.S.

Spencer, R.R.; Wong, A.L.; Coates, J.A.; Ahlstrom, S.B.

1978-12-01T23:59:59.000Z

160

Compost filters for H/sub 2/S removal from anaerobic digestion and rendering exhausts  

Science Conference Proceedings (OSTI)

A system for the disposal of anaerobic digester gas from meat waste treatment plants has been developed as an alternative to atmospheric disposal. Hydrogen sulfide waste gases are filtered through by-product compost. Operation and effectiveness of such a treatment process are detailed. (2 diagrams, 5 references, 4 tables)

Rands, M.B.; Cooper, D.E.; Woo, C.; Fletcher, G.C.; Rolfe, K.A.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Manual of procedures for the operation of bench-scale anaerobic digesters  

DOE Green Energy (OSTI)

The successful operation of any laboratory-scale biological system is often a difficult and frustrating experience. This is especially true when dealing with the anaerobic digestion process. Because of the stringent environmental requirements associated with anaerobic digesters, efficient operation of bench-scale units requires rigid monitoring and control. The purpose of this manual is to present the methods and procedures which are followed in bench-scale anaerobic digestion studies at Pacific Northwest Laboratory (PNL). Among the topics discussed are operating parameters, a description of the experimental system, typical digestion substrates, operational procedures, analytical techniques, and safety considerations. The document serves as a technical guide to PNL personnel assigned to a U.S. Department of Energy sponsored program evaluating the effect of powdered activated carbon on the anaerobic digestio of sewage sludge. It should be noted that the methods described in this manual do not necessarily represent the best or only means of conducting the research. They are merely procedures that have been found to be successful at PNL. It is hoped that this information may be useful to other researchers who are contemplating or pursuing bench-scale studies of their own.

Spencer, R.R.

1978-12-01T23:59:59.000Z

162

Water as a leaching medium for hydrolysis of sorghum in anaerobic digestion systems  

Science Conference Proceedings (OSTI)

Laboratory experiments were conducted to determine the effect of using water to leach hydrolysis products from sorghum used as an anaerobic digestion feedstock. The pH of the leachate had no effect on the cumulative COD measured in the leachate. Milling the sorghum with a three roll mill prior to leaching appeared to slightly increase the hydrolysis of structural carbohydrates in the sorghum.

Egg, R.; Coble, C.G.

1986-01-01T23:59:59.000Z

163

Methanogenic Population Dynamics during Start-Up of Anaerobic Digesters Treating Municipal Solid Waste  

E-Print Network (OSTI)

Abstract: An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37°C) and thermophilic (55°C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect U.S. production rates. The design organic loading rate was 3.1 kg volatile solids/m 3 /day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a

Biosolids; Matt E. Griffin; Katherine D. Mcmahon; Roderick I. Mackie; Lutgarde Raskin

1997-01-01T23:59:59.000Z

164

Biogas From Municipal WWTPs: Fuel Cells Viewed as a Value Proposition  

NLE Websites -- All DOE Office Websites (Extended Search)

From Municipal WWTPs From Municipal WWTPs Fuel Cells Viewed as a Value Proposition Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 12, 2012 WWTP Anaerobic Digestion * Common method of processing sludge to reduce volume of solids & volatile content * Reduces sludge disposal cost & increases outlets for disposal * Since motivation is disposal rather than digester gas (DG) production, the DG is available at no cost * This is unlike many other organic waste digestion facilities, where the energy project must bear cost of the digester(s) WWTP Anaerobic Digestion * WWTP anaerobic digesters require heat * Typically a portion of the DG is used to produce steam or hot water to provide the heat * The heat required varies seasonally,

165

Enhancement of methane production in the anaerobic digestion of sewage sludges  

DOE Green Energy (OSTI)

The effect of powdered activated carbon on stressed anaerobic digesters utilizing a sewage sludge substrate was evaluated. The addition of carbon resulted in increased methanee production and greater process stability. The degree of enhancement appeared to be proportional to carbon concentration over the dose range studied (500-10,000 mg/l). A maximum increase in methane production of about 150% was observed at the highest carbon dose. The effect of 1500 mg/l carbon, 4000 mg/l coal, and 4000 mg/l flyash on relatively unstressed digesters was also examined. Units using a sewage sludge substrate were operated at 10 and 20 day SRT's. A 12% increase in methane production was observed in a carbon dosed digester functioning at a 10 day detention time. Enhancement was not evident with carbon at a 20 day SRT. No significant improvement in methane production was obtained in any of the digesters using coal or flyash as additives. Using the experimental data, a technique was developed for estimating the efficiencies of the methane forming and acid forming steps in the anaerobic digestion process. The results indicated that in stressed systems both stages of the digestion process were enhanced by the addition of powdered carbon. In the relatively unstressed systems, when enhancement did occur, only the scid forming step was affected. This information will supplement current research at determining the mechanism(s) by which carbon enhances the digestion process.Based on the results of this study, it appears that the benefits of carbon addition are greatest in stressed systems. Only very moderate increases in methane production would probably be attainable in well operating digesters. Coal and flyash do not seem to be effective in enhancing gas production in unstressed systems. However, their effectiveness has not been tested in stressed situations.

Spencer, R.R.

1978-05-10T23:59:59.000Z

166

Study of the operational conditions for anaerobic digestion of urban solid wastes  

SciTech Connect

This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

Castillo M, Edgar Fernando [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)]. E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia); Victor Arellano, A. [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)

2006-07-01T23:59:59.000Z

167

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report  

DOE Green Energy (OSTI)

Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

1980-08-01T23:59:59.000Z

168

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

169

Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion  

Science Conference Proceedings (OSTI)

This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio

W. Qiao; W. Wang; R. Xun

2008-01-01T23:59:59.000Z

170

Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and  

E-Print Network (OSTI)

#12;1 Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Background Microalgae a lower- value use and simpler processing approach representative of anaerobic digestion (AD) (Sialve et-in replacements of gasoline, diesel, and jet fuel (Jones & Mayfield, 2012; Regalbuto, 2009), and anaerobically

Collins, Gary S.

171

BioGas Energy Inc | Open Energy Information  

Open Energy Info (EERE)

BioGas Energy Inc BioGas Energy Inc Jump to: navigation, search Name BioGas Energy Inc Address 4509 Interlake Ave N # 222 Place Seattle, Washington Zip 98103 Sector Biomass Product Makes anaerobic digesters that convert manure into methane for fuel Website http://www.biogas-energy.com/s Coordinates 47.6163159°, -122.3463563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Performance evaluation of Janata and Deenbandhu biogas plants  

Science Conference Proceedings (OSTI)

Performance of the Janata and Deenbandhu fixed dome biogas plants for anaerobic digestion of dairy manure was evaluated under the conditions of a hilly region. In contrast to Janata, the Deenbandhu biogas plant was found to be not only cheaper on the basis of cost/m{sup 3} rated capacity of the plant, but it also produced more gas per unit of manure fed and per unit of digester volume in addition to maintaining a consistent rate of gas production during subsequent years from initial charging. The higher production of gas by 28.5% and 12.5% per kg of manure fed and 49.5% and 28.9% per m{sup 3} of digester volume was observed from this plant for highest 24 C and lowest 14 C digester temperatures of the plants for the months of July and December, respectively.

Kalia, A.K.; Kanwar, S.S. [H P Krishi Vishvavidyalaya, Palampur (India). Dept. of Agricultural Engineering

1996-04-01T23:59:59.000Z

173

Biogas Impurities and Cleanup for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Impurities and Cleanup for Fuel Cells Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 Biogas is the product of anaerobic decomposition of organic waste Municipal solid wastes (MSW)  For every 1 million tons of MSW: - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years - 1 MW of electricity 1 Sewage sludge/waste water (WWTP or ADG)  A typical WWTP processes 100 gallons per day (GD) for every person served - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater  100 kW of electricity 1 can be generated from 4.5 MGD of waste water Agricultural waste (i.e. dairy waste)  About 70-100 ft 3 /day of digester gas is produced

174

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Chanakya, H.N. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India)], E-mail: chanakya@astra.iisc.ernet.in; Sharma, Isha [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Ramachandra, T.V. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

2009-04-15T23:59:59.000Z

175

Study on the Methane Production Capacity and Energy Output of Different Temperatures during Anaerobic Digestion of Swine Manure  

Science Conference Proceedings (OSTI)

This study was carried out by experimenting with the self-manufactured digestion devices which were fed with swine manure as material with a domesticated inoculums added as yeast. The experiment was on the condition of 6.6% mass fraction of total solid, ... Keywords: anaerobic digestion, methane production capacity, temperature, energy, swine manure

Rong-rong Wei; Guan-wen Cheng; Jie-jun Luo; Liang Ling; Zong-qiang Zhu; Xu Shan; Wen-yuan Wei

2009-10-01T23:59:59.000Z

176

Casein whey as booster for anaerobic co-digestion of primary sludge : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Environmental Engineering.  

E-Print Network (OSTI)

??Spare capacity found in many municipal primary sludge digesters could be used to improve the biogas production through the addition of other organic waste. This… (more)

Güttler, Johanna

2012-01-01T23:59:59.000Z

177

Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system  

SciTech Connect

The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2008-07-01T23:59:59.000Z

178

Characterization of Biogas from Anaerobically Digested Dairy Waste for Energy Use .  

E-Print Network (OSTI)

??As the third largest dairy producer in the United States, New York is faced with the critical issue of agricultural waste management. The environmental impacts… (more)

Bothi, Kimberly L.

2007-01-01T23:59:59.000Z

179

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report  

DOE Green Energy (OSTI)

Anaerobic digestion of municipal waste has been demonstrated to be feasible in bench scale experiments by Pfeffer (1974). Approximately, 50% reduction in mass and production of 6000 ft/sup 3/ of gas/ton have been estimated. The gas composition is estimated to be 50% methane and 50% carbon monoxide. The technical and economic feasibility of anaerobic digestion with an ultimate objective of commercialization are discussed. A plant has been built at Pompano Beach, Florida on an existing shredding and landfill operation site. The plant design capacity is 100 tons/day. Two digesters have been constructed to be used in parallel. The process consists of primary shredding, metal separation, secondary shredding, air classification and digestion of light fraction. Sewage sludge was used to seed the initial mixture in the digester. The output slurry is vacuum filtered and the filter cake disposed on an existing landfill. The filtrate is recycled. Excess filtrate is sprayed on the landfill. At present the output gas is being flared. A flow chart for the plant is presented. It is imperative that environmental investigations be conducted on new energy technology prior to commercialization. A project was initiated to characterize all input and output streams and to assess the potential for ground water contamination by landfill disposal of effluents. Detailed chemical, biological and physical characterization efforts supported by leaching and modelling studies are being conducted to achieve the stated objectives. Some mutagenic studies were also conducted. The environmental investigations were started in August 1978. Sengupta et al (1979a) reported the first year's efforts.

Sengupta, S; Farooq, S; Gerrish, H P; Wong, K F; Daly, Jr, E L; Chriswell, C

1980-02-01T23:59:59.000Z

180

Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in Dairy Lagoons  

Science Conference Proceedings (OSTI)

This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was collected from a plugged flow digester, air-dried to Biochar was produced by slow pyrolysis in a barrel retort. The potential of biochar to reduce P in the anaerobic digester effluent (ADE) was assessed in small-scale filter systems through which the effluent was circulated. Biochar sequestered an average of 381 mg L?1 P from the ADE, and 4 g L?1 ADF was captured as a coating on the biochar. There was an increase of total (1.9 g kg?1), Olsen (763 mg kg?1), and water-extractable P (914 mg kg?1) bound to the biochar after 15 d of filtration. This accounted for a recovery of 32% of the P in the ADE. The recovered P on the biochar was analyzed using 31P nuclear magnetic resonance for P speciation, which confirmed the recovery of inorganic orthophosphate after liquid extraction of the biochar and the presence of inextractable Ca-P in the solid state. The inorganic phosphate was sequestered on the biochar through physical and weak chemical bonding. Results indicate that biochar could be a beneficial component to P reduction in the dairy system.

Streubel, Jason D.; Collins, Harold P.; Tarara, Julie M.; Cochran, Rebecca L.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Report on the design and operation of a full-scale anaerobic dairy manure digester. Final report  

DOE Green Energy (OSTI)

A full-scale anaerobic digester on the Monroe State Dairy Farm was operated and monitored for 24 months with funding provided by the United States Department of Energy, Fuels from Biomass Systems Branch. During the period of operation, operating parameters were varied and the impact of those changes is described. Operational experiences and system component performance are discussed. Internal digester mixing equipment was found to be unnecessary, and data supporting this conclusion are given. An influent/effluent heat exchanger was installed and tested, and results of the tests are included. Recommendations for digester design and operation are presented. Biological stability was monitored, and test results are given. Gas production rates and system net energy are analyzed. The economics of anaerobic digestion are evaluated based on various financing options, design scales, and expected benefits. Under many circumstances digesters are feasible today, and a means of analysis is given.

Coppinger, E.; Brautigam, J.; Lenart, J.; Baylon, D.

1979-12-01T23:59:59.000Z

182

The Potential of Anaerobic Digestion Technology to Treat Coffee Waste in Huatusco, Mexico.  

E-Print Network (OSTI)

??This research proposes a system that uses the waste generated by coffee processing to generate biogas and fertilizer, called AD-Coffee Waste System (AD-CWS). The biogas… (more)

Bombardiere, Ysabel Estrada

2006-01-01T23:59:59.000Z

183

Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge  

E-Print Network (OSTI)

Abstract: Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6 % (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. Int. J. Mol. Sci. 2012, 13 3023

Muhammad Hanif; Yoichi Atsuta; Koichi Fujie; Hiroyuki Daimon

2012-01-01T23:59:59.000Z

184

Liquidization of dewatered organic sludge and anaerobic treatment  

SciTech Connect

Dewatered sewage sludge was thermochemically liquidized at 175 {degrees}C and the liquidized sludge was separated by centrifugation to 58% (w/w) supernatant and 42% precipitate. The amount of proteins in the liquidized sludge slightly decreased through the liquidization process, however, that of lipids increased. The supernatant separated from the sludge liquidized with dewatered sewage sludge was successfully anaerobically digested. Biogas yield from the supernatant from dewatered sewage sludge at organic loading concentrations of 1.9-2.2 g VS/l during 9 days incubation was 440 ml/g-added VS and digestion ratio was 66% (w/w). Biogas yield in the case of dewatered sewage sludge was 257 ml/g-added VS and digestion ratio was 45%. Similar results were obtained in the case of the anaerobically digested with sewage sludge and dewatered sludge. Anaerobic digestion of the supernatants from the liquidized sludges resulted in high biogas productivity and high digestion ratio compared with these of the original sludges. Moreover, the precipitates contained lower moisture, therefore, they can be incinerated easier than the respective original sludges.

Sawayama, Shigeki; Inoue, Seiichi; Ogi, Tomoko [National Institute for Resources and Environment, Tsukuba, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

185

RECIPIENT:WA Department of Commerce STATE: WA PROJECT Van Dyk Dairy Anaerobic Digester  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of5 of5 RECIPIENT:WA Department of Commerce STATE: WA PROJECT Van Dyk Dairy Anaerobic Digester TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-EE0000139 GF0-10-604 Based on my review oftbe information concerning the proposed action, as NEPA CompUance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: cx, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution;

186

Understanding biogas generation. Technical paper  

SciTech Connect

Biogas is a by-product of the biological breakdown - under oxygen-free conditions - of organic wastes such as plants, crop residues, wood and bark residues, and human and animal manure. Biogas generators or digesters yield two products: the biogas itself, and a semi-solid by-product called effluent or sludge. Biogas systems are most popular for their ability to produce fuel from products that might otherwise be wasted-crop residues, manures, etc. The fuel is a flammable gas suitable for cooking, lighting, and fueling combustion engines. The digested waste--sludge--is a high quality ferterlizer.

Mattocks, R.

1984-01-01T23:59:59.000Z

187

Impact and abatement of siloxanes in the Bucklin Point WWTF anaerobic digestion process.  

E-Print Network (OSTI)

?? The biogas produced at the Bucklin Point Wastewater Treatment Facility contained a high concentration of siloxane compounds. A manufacturer of personal care products was… (more)

Wenskowicz, Barry

2011-01-01T23:59:59.000Z

188

Processing high solids concentration of municipal solid waste by anaerobic digester for methane production  

SciTech Connect

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile orangic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It is found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substances and high yeild of orangic acids are found to be 275/degree/C to 300/degree/C with the corresponding reaction time from 30 minutes to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5 to 2.0 days). 14 refs., 10 figs., 2 tabs.

Tsao, G.T.

1988-01-01T23:59:59.000Z

189

How China utilizes biogas in rural areas  

SciTech Connect

An outline is presented of how China utilizes biogas in rural areas. Already, 7,140,000 small biogas digesters have been built. Sichuan province has 4,160,000 digesters including about 20,000 large digesters which operate diesel engines to generate electricity. This is seen as the key area for further research and development. In rural areas, biogas is used principally for cooking and to power stationary units such as grinding mills, electric generators and crop driers.

Ji, M.

1981-05-01T23:59:59.000Z

190

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

to conventional anaerobic digestion systems used forly, was treated by anaerobic digestion to remove from 65 to

Ossio, Edmundo

2012-01-01T23:59:59.000Z

191

Shell structures for biogas plants  

Science Conference Proceedings (OSTI)

The shell structures designed for biogas plants of the fixed-dome type by the Bremen Overseas Research and Development Association are described. Biogas digesters of the design described have been successfully tested in Rwanda and India without structural or contractural problems.

Sasse, L.

1982-01-01T23:59:59.000Z

192

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network (OSTI)

1) during thermophilic anaerobic digestion for production ofa keen interest in anaerobic digestion as well, and it wasfor thermophilic anaerobic digestion, and should stimulate

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

193

RCM Digesters | Open Energy Information  

Open Energy Info (EERE)

RCM Digesters RCM Digesters Jump to: navigation, search Name RCM Digesters Place Berkeley, California Zip CA 94704 Product Manufactures anaerobic manure digesters which process animal waste into biogas. Coordinates 38.748315°, -90.334929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.748315,"lon":-90.334929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Climate balance of biogas upgrading systems  

SciTech Connect

One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

2010-01-15T23:59:59.000Z

195

Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance.

Lerm, S.; Kleyboecker, A. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Miethling-Graff, R. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Johann Heinrich von Thuenen Institut, Bundesforschungsinstitut fuer Laendliche Raeume, Wald und Fischerei Institut fuer Biodiversitaet, 38116 Braunschweig (Germany); Alawi, M.; Kasina, M.; Liebrich, M. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Wuerdemann, H., E-mail: wuerdemann@gfz-potsdam.de [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany)

2012-03-15T23:59:59.000Z

196

Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.

Kleyboecker, A.; Liebrich, M.; Kasina, M. [Microbial GeoEngineering, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Kraume, M. [Chemical and Process Engineering, Technical University Berlin, 10623 Berlin (Germany); Wittmaier, M. [Institute for Recycling and Environmental Protection, Bremen University of Applied Sciences, 28199 Bremen (Germany); Wuerdemann, H., E-mail: wuerdemann@gfz-potsdam.de [Microbial GeoEngineering, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany)

2012-06-15T23:59:59.000Z

197

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Alvarez-Gallego, C. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Romero Garcia, L.I. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain)

2012-03-15T23:59:59.000Z

198

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network (OSTI)

biogas/anaerobic_digestion/casestudy.pdf  Aycrigg, M.  (of biogas from  the anaerobic digestion of animal waste.  production through anaerobic digestion, or oil  extraction 

Casillas, Christian E.

2012-01-01T23:59:59.000Z

199

Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge  

Science Conference Proceedings (OSTI)

The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

2013-01-14T23:59:59.000Z

200

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biogas production from broiler manure, wastewater treatment plant sludge, and greenhouse waste by anaerobic co-digestion  

Science Conference Proceedings (OSTI)

Inappropriate management of organic wastes can cause serious damage to the environment by polluting water and air

2013-01-01T23:59:59.000Z

202

Janata biogas technology and fodder production  

Science Conference Proceedings (OSTI)

An effective bio-gas program leads to efficient use of cow dung for gas recovery and partial supplement to plant nutrient requirements. Bio-gas program leads to improvement in rural living including rural sanitation. The Janata biogas plant designed by the State Planning Institute, Lucknow, based on biogas technology, has proved to be efficient and economical. This book contains the various papers presented at the seminar held to review this technology. The various topics covered are: Status of Biogas Program in India; Role of Extension Agencies in Developing Program of Energy Utilization; Introduction to Drumless Biogas Plant; Principles and Application of Anaerobic Fermentation and Biogas Production, Operational System of Gobar Gas in Rural India; Complete Recycling of Cattle Shed Wastes through Biogas Plant; Chemical Composition of Cattle Excreta and Its Manurial Value; Profitability of Biogas Plant; Biogas Production from Various Organic Wastes; Performance of Janata Biogas Plant and Biogas Utilization in Appliances; Utilization of Solar Energy for Domestic Purposes; and Conservation of Forages. Plant requirements and cost estimates have been given for several units.

Neelakantan, S.

1981-01-01T23:59:59.000Z

203

Process and installation for simultaneously producing compost and biogas from organic waste  

Science Conference Proceedings (OSTI)

A process is described for the simultaneous treatment of solid or semi-solid organic waste and liquid organic waste with a view to the simultaneous production of compost and biogas, wherein the liquid organic waste is subjected to a liquid-solid separation. The liquid phase from this separation is subjected to anaerobic fermentation in at least one closed digester, the solid phase from the liquid-solid separation is mixed with the solid or semi-solid organic waste, and the resulting mixture is subjected to aerobic fermentation at the periphery of the digester and in contact therewith. Mud, clarified liquid and gas are respectively discharged from the digester whereas compost from the aerobic fermentation of the solid or semi-solid waste is recovered at the periphery of the digester wherein the digester is characterized by two superimposed compartments, an upper compartment at low pressure and a lower compartment at high pressure, the compartments communicating together through at least one lateral pipe and through a central siphon. A means is provided for lowering the pressure of the lower compartment when the liquid reaches a predetermined level therein. An installation is described for the simultaneous treatment of solid or semi-solid organic waste and liquid waste with a view to the simultaneous production of compost and biogas. This comprises: means for separating the liquid organic waste into a solid phase and a liquid phase; at least one closed digester; means for introducing the liquid phase into the digester; means for mixing the solid phase with the solid or semi-solid waste; means for bringing the resulting mixture to the periphery of the digester in contact therewith; and means for discharging respectively from the digester the gas which is formed therein by anaerobic fermentation and the sludges which are deposited therein.

Lebesgue, Y.; Zeana, A.

1986-12-30T23:59:59.000Z

204

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network (OSTI)

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied in Holland. Operations on wastewater from the processing of sugar beets have shown hydraulic retention times of less than 10 hours with reactor loadings of at least 10 Kg COD per m3 digester volume per day and purification efficiencies exceeding 90%. Biogas production is at a rate of about 1 therm (100000 BTU) per 10 Kg COD treated. A moderately sized (1000 m3) wastewater treatment plant processing the order of 10000 Kg COD per day will, therefore, produce the order of 1000 therms of energy per day while, at the same time, reducing the COD level in the effluent by an order of magnitude. The set of conditions required for efficient operation of this anaerobic process will be discussed. The process is unique in its mixed sludge bed approach allowing for tolerance of swings in Ph (6-8) at relatively low temperatures (32 C - 38 C) which can be readily achieved from most wastewater streams with little expenditure of additional energy. Sludge production is remarkably low, only about 5% of the COD loading, greatly alleviating disposal problems. These characteristics are conducive for the use of the anaerobic process to recover energy from a variety of wastewaters rich in carbohydrate-type substances as produced routinely as a by product of many types of food processing activities.

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

205

Feasibility study for anaerobic digestion of agricultural crop residues. Final report  

DOE Green Energy (OSTI)

This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-10-01T23:59:59.000Z

206

Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935  

DOE Green Energy (OSTI)

The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-07-31T23:59:59.000Z

207

Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste  

SciTech Connect

This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

Trzcinski, Antoine P., E-mail: a.trzcinski05@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom); Stuckey, David C., E-mail: d.stuckey@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom)

2011-07-15T23:59:59.000Z

208

Air Liquide - Biogas & Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquide - Biogas & Fuel Cells Liquide - Biogas & Fuel Cells â–  Hydrogen Energy â–  Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Integrated Concept Purified Biogas 3 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Non-Integrated Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2 purification Stationary Fuel Cells Direct Conversion Directed Biomethane 4 Air Liquide, world leader in gases for industry, health and the environment Biogas Sources in the US â–  Landfill gas dominates (~4,000 Nm3/h typical)

209

Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru)  

Science Conference Proceedings (OSTI)

Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

Ferrer, I. [Environmental Engineering Division, Department of Hydraulic Maritime and Environmental Engineering, Technical University of Catalonia (UPC), C/Jordi Girona 1-3, Modul D1, 08034 Barcelona (Spain); GIRO Technological Center, Rambla Pompeu Fabra 1, 08100 Mollet del Valles, Barcelona (Spain)], E-mail: ivet.ferrer@upc.edu; Gamiz, M. [Environmental Engineering Division, Department of Hydraulic Maritime and Environmental Engineering, Technical University of Catalonia (UPC), C/Jordi Girona 1-3, Modul D1, 08034 Barcelona (Spain); Almeida, M.; Ruiz, A. [Ciudad Saludable NLO, Av. Jorge Basadre 255, Of. 401, Lima 27 (Peru)

2009-01-15T23:59:59.000Z

210

A technoeconomic assessment of solar-assisted biogas systems  

Science Conference Proceedings (OSTI)

Biogas has been recognized as one of the best available renewable and decentralized sources of energy and organic fertilizer for a country like India. There is enough evidence to prove that temperature has a profound influence on the rate of biogas production. In temperate climates, where the winters are mild, solar energy systems can be effectively used to increase the temperature of the biogas digester to the desired level. This paper examines various techniques, such as a solar greenhouse on the biogas digester, a shallow solar pond water heater, insulation, and a heat exchanger, and their technoeconomic viability.

Bansal, N.K. (Centre of Energy Studies Indian Institute of Technology, Delhi Hauz Khas, New Delhi-110016 (IN))

1988-01-01T23:59:59.000Z

211

Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield  

SciTech Connect

The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratio of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of the slurries varied between 6:1 and 9:1. The Coefficient of Variation (CV) for 10 consecutive days of digestion was less than 10% indicating a steady state in all the digesters.

Itodo, I.N.; Awulu, J.O.

1999-12-01T23:59:59.000Z

212

Biogas from waste in Belgium  

SciTech Connect

This article describes plans for a dry anaerobic composting plant in Brecht, Belgium. The new plant will utilize dry conditions and thermophilic temperatures to produce an average of 6 to 8 volumes of biogas per volume of reactor per day could be produced from vegetable, fruit, garden and paper waste, and a soil amendment from the organic fraction of municipal solid waste according to researchers.

Not Available

1991-08-01T23:59:59.000Z

213

Xylose anaerobic conversion by open-mixed cultures  

Science Conference Proceedings (OSTI)

methane-rich biogas production. An alternative anaerobic process could aim for the production of intermediates in the methanogenic process from complex ...

214

Industry  

E-Print Network (OSTI)

Cornland, 2001), and anaerobic digestion of residues to DoBiogas, Natural Anaerobic gas digestion, Gasification Do Not

Bernstein, Lenny

2008-01-01T23:59:59.000Z

215

Hygiene aspects of the biogas process with emphasis on spore-forming bacteria.  

E-Print Network (OSTI)

??Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended… (more)

Bagge, Elisabeth

2009-01-01T23:59:59.000Z

216

Utvärdering av substrat för biogasproduktion; Evaluation of substrates for biogas production.  

E-Print Network (OSTI)

?? The purpose of this study was to evaluate the different substrates that enter the digestion on Sundet wastewater treatment plant for production of biogas.… (more)

Tiinus, My

2013-01-01T23:59:59.000Z

217

"just like fingernail and flesh": Community forestry, biogas, and environmental governmentality in Nepal.  

E-Print Network (OSTI)

??Community forestry and household biogas digesters that reduce firewood dependence for cooking are two complimentary and relatively successful programs in Nepal. Both have their roots… (more)

Barnhart, Shaunna

2012-01-01T23:59:59.000Z

218

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.  

SciTech Connect

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

Han, J.; Mintz, M.; Wang, M. (Energy Systems)

2011-12-14T23:59:59.000Z

219

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network (OSTI)

2007). A byproduct of anaerobic digestion is biogas whichthe byproduct of the anaerobic digestion of solids removedgas produced from anaerobic digestion at no cost. CalPower,

Thompson, Lisa

2010-01-01T23:59:59.000Z

220

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

methane derived from anaerobic digestion of biomass. † TWh =is often considered for anaerobic digestion, ethanol fermen-as a feedstock for anaerobic digestion to produce biogas (

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues  

E-Print Network (OSTI)

Abstract: Sisal leaf decortications residue (SLDR) is amongst the most abundant agroindustrial residues in Tanzania and is a good feedstock for biogas production. Pretreatment of the residue prior to its anaerobic digestion (AD) was investigated using a twostage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10 % (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25 % (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m 3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR.

Mutemi Muthangya; Anthony Manoni Msh; Amelia Kajumulo Kivaisi

2009-01-01T23:59:59.000Z

222

Parameter identification in dynamical models of anaerobic waste water treatment  

E-Print Network (OSTI)

remain the implementation of biogas, moving farms and implementing regulations, they could nevertheless priority on the growth of production. Two main measures are pro- moted: the development of biogas systems, of the VAC kind, usually owning a biogas digester and located outside the village. - semi-intensive "gia trai

Timmer, Jens

223

Micro-aeration for hydrogen sulfide removal from biogas.  

E-Print Network (OSTI)

??The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion.… (more)

Duangmanee, Thanapong

2009-01-01T23:59:59.000Z

224

Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report  

DOE Green Energy (OSTI)

The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

Hickey, R. [Science Applications International Corp., McLean, VA (United States)

1992-09-01T23:59:59.000Z

225

PolicyMatters Journal ENERGYANDENVIRONMENT  

E-Print Network (OSTI)

deployment. What Is Biogas? Biogas is produced by the anaerobic digestion or fermentation of biodegradable discusses biogas derived from the anaerobic digestion of dairy manure and the use of that biogas anaerobic digesters. Each of these dairies used the biogas produced by the digester to fuel a generator

Kammen, Daniel M.

226

May 2012Volunteer Volunteer 11  

E-Print Network (OSTI)

-Glutamic acid Anaerobic digestion mass Cellulose Biogas Bio oil Gasoline Diesel Butanol Dimethyl ether

Sharp, Kim

227

Thermoanaerobacteriaceae oxidize acetate in methanogenic rice field soil at 50Cemi_2289 2341..2354  

E-Print Network (OSTI)

on microbial community structure and biogas production in a laboratory-scale anaerobic digester. Bioresour

Lovley, Derek

228

BY BILL LONDON Building bridges. That summarizes David Lemak's  

E-Print Network (OSTI)

of underutilized dry biomass. Via anaerobic digestion and electri- cal generation of the collected biogas

Collins, Gary S.

229

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion  

E-Print Network (OSTI)

be accomplished through use of aerobic or anaerobic self digestion, but choice of digestion type in practice to predict aerobic and anaerobic digestion potential. Future Work: · The anaerobic reactors are still running sludge. It performs only slightly better than the unsonicated sludge in anaerobic digestion

Mountziaris, T. J.

230

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

mathematical model of the biogas process was formulated withKey words: bacteria, biogas process, hydrogen transfer,cellulose, anaerobic digestion, biogas process, bioreactors,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

231

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

derived from biomass, including biogas, biodiesel, ethanol,in the absence of oxygen environment to produce biogas.The biogas generated from anaerobic digestion of biosolids

FAN, XIN

2012-01-01T23:59:59.000Z

232

ENERGY RECOVERY COUNCIL WEEKLY UPDATE  

E-Print Network (OSTI)

. Anaerobic digestion produces two main products, biogas and a soil amendment. Biogas can be used, food waste collection programs, biogas usage for energy, available EPA resources and tools

Columbia University

233

Modeling of biogas generation in bioreactor landfills using neuro-fuzzy system  

Science Conference Proceedings (OSTI)

Biogas generation in anaerobic bioreactor landfills is modeled using the neuro-fuzzy system. The implemented inference system was an adaptive neuro-fuzzy inference system (ANFIS). The fuzzy logic controller featured a Multi-Input-Single-Output (MISO) ... Keywords: biogas generation, bioreactor landfills, neuro-fuzzy model

Mohamed S. Abdallah; Leta Fernandes; Mostafa A. Warith

2008-08-01T23:59:59.000Z

234

Utilisation of single added fatty acids by consortia of digester sludge in batch culture  

SciTech Connect

Inocula derived from an anaerobic digester were used to study (i) their potential for methane production and (ii) the utilisation rates of different short chain fatty acids (SCFAs) by the microbial community in defined media with mono-carbon sources (formic-, acetetic-, propionic-, butyric acid) in batch culture. It could be demonstrated that the microbial reactor population could be transferred successfully to the lab, and its ability to build up methane was present even with deteriorating biogas plant performance. Therefore, this reduction in performance of the biogas plant was not due to a decrease in abundance, but due to an inactivity of the microbial community. Generally, the physico-chemical properties of the biogas plant seemed to favour hydrogenotrophic methanogens, as seen by the high metabolisation rates of formate compared with all other carbon sources. In contrast, acetoclastic methanogenesis could be shown to play a minor role in the methane production of the investigated biogas plant, although the origin of up to 66% of methane is generally suggested to be generated through acetoclastic pathway.

Wagner, Andreas Otto, E-mail: Andreas.Wagner@uibk.ac.a [University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck (Austria); Gstrauntaler, Gudrun [Abfallbeseitigungsverband Westtirol, Breite Mure, A-6426 Roppen (Austria); Illmer, Paul [University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck (Austria)

2010-10-15T23:59:59.000Z

235

Biogas in Vietnam : a proposed business model in biogas sector.  

E-Print Network (OSTI)

??The purpose of this thesis was to discover a biogas opportunity in the Mekong Delta area in Vietnam. The discussed biogas production is derived from… (more)

Phan, Thi Thanh Thao

2011-01-01T23:59:59.000Z

236

Cayuga County Regional Digester - Vision Becomes Reality - Final Report  

Science Conference Proceedings (OSTI)

With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: a) Nearly 34% of this manure is produced on smaller farms. b) Digesters are expensive pieces of equipment and require attention and care. c) The on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area. The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus an

Kamyar V. Zadeh, Ph.D.; Blue Electron Technology Solutions International LLC

2013-03-12T23:59:59.000Z

237

RPSEA biogas report final  

NLE Websites -- All DOE Office Websites (Extended Search)

are bioconverted. 2. Identify organisms within microbial consortia associated with biogas generation from coal. 3. Characterize the influence of culture growth amendments and...

238

Biogas Production Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 12, 2012 Presentation...

239

Biogas and Cattle Organs.  

E-Print Network (OSTI)

?? A study has been conducted to assess the possibilities to introduce dead cattle organs as the raw material for biogas generation at the rural… (more)

Jamil, Adnan

2008-01-01T23:59:59.000Z

240

Gårdsbaserad biogas på Nya Skottorp.  

E-Print Network (OSTI)

?? Biogas is an expanding sector within the broad field of agriculture and animal production. Small-scale biogas offers local combined power and heating production and… (more)

Kalén, Jonas

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass Gasification and Methane Digester Property Tax Exemption...  

Open Energy Info (EERE)

Tax Incentive Applicable Sector Agricultural Eligible Technologies Anaerobic Digestion, Biomass, Thermal polyerization Active Incentive Yes Implementing Sector StateTerritory...

242

Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2013-01-15T23:59:59.000Z

243

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

244

Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

Moriarty, K.

2013-01-01T23:59:59.000Z

245

biogas | OpenEI  

Open Energy Info (EERE)

biogas biogas Dataset Summary Description Freedom Field is a not-for-profit organization formed to facilitate development and commercialization of renewable energy solutions. The organization has installed a variety of renewable energy generating technologies at their facility (located at Rock River Water Reclamation in Rockford, IL), with the intention of serving as a demonstration facility. The facility monitors data (at 5-minute intervals) from a weather station, 12.4 kW of PV panels (56 220-watt panels), a 10kW wind turbine (HAWT), a 1.2 kW wind turbine (VAWT), an absorption cooling system, and biogas burners. Source Freedom Field Date Released July 19th, 2011 (3 years ago) Date Updated Unknown Keywords biogas monitoring data PV radiance solar temperature

246

Biomass: Biogas Generator  

NLE Websites -- All DOE Office Websites (Extended Search)

waste for biogas production. Some feel that organic plant waste should be used for compost, and that manure should be used for fertilizer. They point out that a lot of natural...

247

Communal Polyethylene Biogas Systems.  

E-Print Network (OSTI)

?? In Lembang, a farming community on western Java, family-sized, plug-flow, polyethylene biogas systems fed with cow dung, are being used as an integrated solution… (more)

Stoddard, Isak

2010-01-01T23:59:59.000Z

248

IngnieriesEATN21 mars2000p2939  

E-Print Network (OSTI)

and aerobic digestion (A600). The biogas (high in methane) from anaerobic digestion is sent to the combustor from distillation, the concentrated syrup from the evaporator, and biogas from anaerobic digestion

Paris-Sud XI, Université de

249

An Interdisciplinary Study on Farm Based Biogas Production in Southern Brazil.  

E-Print Network (OSTI)

?? Today the use of anaerobic digestion technique emerges as an alternative to the conventional treatment method of pig slurry to the pig producers in… (more)

Hjort, Anders

2008-01-01T23:59:59.000Z

250

Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry  

E-Print Network (OSTI)

Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

Scampini, Amanda C

2010-01-01T23:59:59.000Z

251

Biogas production from Jatropha curcas press-cake  

Science Conference Proceedings (OSTI)

Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.

Staubmann, R.; Guebitz, G.M.; Lafferty, R.M. [Graz Technical Univ. (Austria)] [and others

1997-12-31T23:59:59.000Z

252

NSERC-Laflche Industrial Research Chair Advanced Anaerobic Treatment  

E-Print Network (OSTI)

. LANDFILL BIOREACTORS EXSITU ANAEROBIC DIGESTION Apply stand alone reactor technology to digest solidNSERC- Laflèche Industrial Research Chair Advanced Anaerobic Treatment Residuals to Energy R2E 6133. 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Digestion Time

Petriu, Emil M.

253

Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge  

E-Print Network (OSTI)

]. However, anaerobic digestion is not effective for nutrient removal and should be followed by a processLocation and chemical composition of microbially induced phosphorus precipitates in anaerobic different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic

Paris-Sud XI, Université de

254

List of publications 1. Sun, L., Mller, B. and Schnrer, A. (2013) Biogas production from wheat straw community  

E-Print Network (OSTI)

in a mesophilic anaerobic digester in response to increasing ammonia concentration. 26(4), 347-353. 13. Dererie, D., Schnürer, A. (2011) Conversion of phenols during anaerobic digestion of organic solid waste ­ a review of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic

255

Design and study of a risk management criterion for an unstable anaerobic wastewater  

E-Print Network (OSTI)

an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have steady-state to another. This is especially the case for the anaerobic digestion process: a more and more There exists numerous dynamical models for anaerobic digestion, from the basic ones considering only one

Bernard, Olivier

256

Updated guidebook on biogas development  

SciTech Connect

On the practical aspects of small-scale biogas development suitable for use in rural areas of developing countries reviews biogas development throughout the ESCAP region and examines each of the steps involved in developing and operating a biogas plant. It details both the process and the microbiology of biogas fermentation and analyses the factors affecting gas plant design and operation. Also covered are the classification and design principles of plants, design, site, and site selection; starting and operating a gas plant; servicing and safety; and efficient plant performance. Also considered are the commercial uses of biogas and possible use of effluent.

Not Available

1985-01-01T23:59:59.000Z

257

Long-term investigation of microbial fuel cells treating primary sludge or digested sludge  

E-Print Network (OSTI)

be comparable to anaerobic digesters. Direct electricity generation had a minor contribution to total energy potentially be used to polish the effluent from anaerobic digesters. Ã? 2013 Elsevier Ltd. All rights reserved, anaerobic digestion (AD) is generally preferred because of its cost- effectiveness and bioenergy production

258

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network (OSTI)

anaerobic digestion is biogas which contains 50–70 percentPlant collects this biogas and uses it in the cogeneration

Thompson, Lisa

2010-01-01T23:59:59.000Z

259

Bioenergy systems report. April 1984: innovations in biogas systems and technology  

Science Conference Proceedings (OSTI)

A comprehensive review of recent innovations in the design and operation of biogas systems is presented. The report contains information on about sixty distinct designs for biogas plants. These include plants designed for use by individual families, larger farm plants, plants used for the digestion of agroindustrial residues, and plants producing or recovering biogas from human wastes and residues. Some have been designed for use in developing countries; others have been used primarily in developed countries but may involve design elements that could be utilized in developing countries.

Mahin, D.B.

1984-04-01T23:59:59.000Z

260

Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor  

E-Print Network (OSTI)

in the biological wastewater treatment performance and stability. Anaerobic digestion can be conducted., 2004). Earlier studies investigating effect of temperature on the anaerobic digestion process have of the mesophilic anaerobic digestion were re- cently studied (Chae et al., 2008). Some of the studies were only

Qin, Wensheng

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

www.extension.ucdavis.edu/engineering Spring 2010  

E-Print Network (OSTI)

as an agricultural producer, consultant, decision maker or system reviewer to use anaerobic digestion of animal who specializes in anaerobic "oxygen-free" digestion, biogas energy utilization, energy conserva- tion featuring anaerobic digestion and highlighting instructor Doug Williams at www

Thomases, Becca

262

Archea Biogas N V | Open Energy Information  

Open Energy Info (EERE)

Biogas N V Jump to: navigation, search Name Archea Biogas N.V. Place Hessisch Oldendorf, Lower Saxony, Germany Zip 31840 Product Design, analysis, planning and construction of...

263

Biogas Direct LCC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Biogas Direct LCC Jump to: navigation, search Name Biogas Direct LCC Place Spring Green,...

264

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

energy costs. Anaerobic digesters work by allowing bacteria to break down the ... water is scarce, and helps to reduce the environmental impact of ...

265

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas http:energy.govnepadownloads...

266

Looking Ahead – Biofuels, H2, & Vehicles  

Biogas Lipids/ Oils. Gasification. Pyrolysis & Liquefaction Hydrolysis Wide Range of Biofuel Technologies * Blending Products Anaerobic Digestion Upgrading ...

267

Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG | Open  

Open Energy Info (EERE)

Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG Abwicklungsgesellschaft Biogas I AG Formerly Schmack Biogas AG Jump to: navigation, search Name Abwicklungsgesellschaft Biogas I AG (Formerly Schmack Biogas AG) Place Schwandorf, Bavaria, Germany Zip 92421 Product Germany-based company that specialises in biogas production technology. It provides turn-key biogas plants including project development, technical and biological commissioning. Coordinates 49.327703°, 12.108496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.327703,"lon":12.108496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network (OSTI)

. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic is devoted to the description of the model of the specific anaerobic digestion processA dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater

269

Captazione di biogas da discarica: analisi del biogas e scelta impiantistica ottimale.  

E-Print Network (OSTI)

??Studio della struttura e della costruzione di una discarica, con particolare attenzione alla problematica del biogas. Esame delle caratteristiche e della composizione del biogas e… (more)

Dal Pastro, Filippo

2011-01-01T23:59:59.000Z

270

Uppgradering av biogas med aska från trädbränslen; Upgrading of biogas using ash from wood fuels.  

E-Print Network (OSTI)

?? The Swedish production of biogas was 1,5 TWh 2011. About half of the production was used as vehicle fuels. The cost for upgrading biogas… (more)

Andersson, Johan

2013-01-01T23:59:59.000Z

271

Biogas Generation from a 2-Phase Sludge Treatment System  

Science Conference Proceedings (OSTI)

The degradation of sewage sludge in single stage and 2 phase anaerobic systems was investigated in bench-scale batch reactors. Average COD reduction efficiency in 2 phase system in this initial phase of the study was 4.5% (30 days HRT) and 3.3% (20 days ... Keywords: dge digestion, 2-phase, single stage, qPCR, microbial communities

Taranveer Singh Mann, Terence Goh, William Phay

2013-04-01T23:59:59.000Z

272

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently are particular in their assistance of either aerobic or anaerobic digestion. Direct samples of activated sludgeImpact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul

Mountziaris, T. J.

273

u.s. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...  

NLE Websites -- All DOE Office Websites (Extended Search)

will be redirected from the site retention lagoons and processed through the digester. Biogas from the anaerobic digester will be utilized on site to generate electricity. Two...

274

2011 Bioenergy Action Plan Prepared by the California Energy Commission for the  

E-Print Network (OSTI)

technology. Keywords Anaerobic digester, biogas, electricity production, manure management #12;4 Table................................................................................................................. 13 Biogas Use the flexibility to market their biogas or electricity as a commodity in a manner similar to how they manage

275

Economic viability of biogas technology  

SciTech Connect

Biogas has emerged as a suitable technology for providing alternative and additional sources of energy, especially for rural areas of developing countries. Although the experience gained in China and India established its technological success, social scientists are still involved in the controversial issue of its economic viability. The available literature presents very contradictory situations, ranging between the two extreme poles of high economic viability and nonviability. Such contradictory conclusions are derived since economic benefits from the technology are influenced by a number of factors. A review of the literature reveals that various factors are either not considered, or that the economics have been worked out assuming a very ideal situation, while biogas plants are operating under very different conditions. Using the coal replacement method even as coal is seldom used by villages is only a single example of this approach. In most of the developing countries, rural populations depend mainly on non-commercial fuels like firewood, dungcakes, agricultural wastes and leaves for cooking and heating purposes. Under the present technological limitations, biogas can most commonly be used for cooking and lighting. For testing the economic viability of biogas systems, a number of authors have considered the benefits in terms of savings in traditional fuels. But considering the actual thermal efficiency of different non-commercial fuel items, as well as biogas, it has still be be decided at what point of the market prices of fuel items that the biogas system becomes economically viable and remains viable. The present paper thus reviews different approaches adopted and suggested for working out the economics or the cost-benefit ratio of the biogas technology at the first stage, and then spells out the factors influencing the economic benefits of the technology under various situations, with the help of empirical

Agrawal, S.C.; Agrawal, S.; Khare, O.P.

1983-12-01T23:59:59.000Z

276

Investigation of microalgae cultivation and anaerobic codigestion of algae and sewage sludge for wastewater treatment facilities.  

E-Print Network (OSTI)

??The main goals of this research are to investigate the anaerobic digestibility of algae and to investigate the effects of growth media on the growth… (more)

Wang, Meng

2013-01-01T23:59:59.000Z

277

Introduction to biogas production on the farm  

Science Conference Proceedings (OSTI)

A number of farmers, ranchers, and engineers received support from the US Department of Energy Appropriate Technology Small Grants Program to design, construct, and demonstrate biogas production systems. Many of these projects generated more than just biogas; grantees' work and results have contributed to a growing body of information about practical applications of this technology. This publication was developed to share some of that information, to answer the basic questions about biogas production, and to lead farmers to more information. Section I introduces biogas and the various components of a biogas production system, discusses the system's benefits and liabilities, and provides a brief checklist to determine if biogas production may be applicable to an individual's particular situation. Section II features descriptions of four biogas projects of various sizes. Section III provides sources of additional information including descriptions of other biogas production projects.

Not Available

1984-03-01T23:59:59.000Z

278

Team Bug Bag Biogas For Nicaragua  

E-Print Network (OSTI)

Team Bug Bag Biogas For Nicaragua Project Recap The task for Team Bug Bag was to create for under $100 (USD), and be able to produce biogas that could boil water for a thirty minute time period

Demirel, Melik C.

279

Ruminant digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Ruminant digestion Ruminant digestion Name: hignell Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How long it takes for the digestive process to work in a ruminant? With the various chambers and would digestion take longer than in other mammals? Replies: A friend in animal nutrition is looking up an exact figure, but as he does, here are a few guidelines: Time of digestion largely depends on the type of food an animal ingests: CARNIVORES: short, uncomplicated digestive systems. They eat very high on the food chain (other animals), which provide food stuff which is relatively easy to digest. Hence, rapid digestion. OMNIVORES: medium length, medium complex digestive systems. We eat at all levels of the food chain, and so need a balanced system. Medium time of digestion (roughly 2-10 hours per meal, depending on proportions of carbohydrates, fats, proteins).

280

Stabilization of a nonlinear anaerobic wastewater treatment model  

Science Conference Proceedings (OSTI)

A nonlinear anaerobic digester model of wastewater treatment plants is considered. The stabilizability of the dynamic system is studied and a continuous stabilizing feedback, depending only on an on-line measurable variable, is proposed. Computer simulations ...

Neli S. Dimitrova; Mikhail I. Krastanov

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cooperative Approaches for Implementation of  

E-Print Network (OSTI)

;#12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while offering environmental benefits. Dairy farmer use of anaerobic digesters is not widespread due to various returns from energy and byproduct sales. Keywords: Anaerobic digestion, biogas, cooperatives, carbon

Laughlin, Robert B.

282

Biogas and Fuel Cells Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS AND FUEL CELLS WORKSHOP AGENDA BIOGAS AND FUEL CELLS WORKSHOP AGENDA National Renewable Energy Laboratory Research Support Facility, Beaver Creek Conference Room Golden, Colorado June 11-13, 2012 WORKSHOP OBJECTIVES: * Discuss current state-of-the art for biogas and waste-to-energy technologies for fuel cell applications. * Identify key challenges (both technical and non-technical) preventing or delaying the widespread near term deployment of biogas fuel cells projects. * Identify synergies and opportunities for biogas and fuel cell technologies. * Identify and prioritize opportunities to address the challenges, and determine roles and opportunities for both government and industry stakeholders. * Develop strategies for accelerating the use of biogas for stationary fuel cell power and/or

283

Quality and Usage of Biogas Digesters in Uganda.  

E-Print Network (OSTI)

?? Global concerns of climate change, increased greenhouse gas emissions and security of energy supply have accelerated the search for alternative energy sources both indeveloped… (more)

Lutaaya, Fred

2013-01-01T23:59:59.000Z

284

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation  

E-Print Network (OSTI)

to reduce volume, remove pathogens, and to gain energy. Anaerobic digestion is by far the most commonRemoval of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N treatment in a wastewater treatment plant. They therefore proceed directly to the anaerobic post treatment

285

An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet  

E-Print Network (OSTI)

and manages the problem. Keywords Anaerobic digestion, automation, control, fault detection and isolationAn integrated system to remote monitor and control anaerobic wastewater treatment plants through of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment

Bernard, Olivier

286

THE RUMEN ANAEROBIC FUNGI : COLONIZERS OF PLANT FIBRE Applied Biochemistry Division, DSIR, Palmerston North, New Zealand.  

E-Print Network (OSTI)

» fraction that the rumen anaerobic fungi are to be found. Digestion of cellulose and related plant fibrousTHE RUMEN ANAEROBIC FUNGI : COLONIZERS OF PLANT FIBRE T. BAUCHOP Applied Biochemistry Division, DSIR, Palmerston North, New Zealand. Large numbers of anaerobic phycomyce- tous fungi colonize plant

Recanati, Catherine

287

Biogas-fueled Distributed Generation  

Science Conference Proceedings (OSTI)

This report is a case study of the use of digester gas produced at two wastewater treatment plants in Omaha, NE to fuel electric power generators.

2005-09-29T23:59:59.000Z

288

Biogas and Biomass to Energy Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit...

289

Two Different Approaches to Funding Farm-Based Biogas Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Different Approaches to Funding Farm-Based Biogas Projects in Wisconsin and California Title Two Different Approaches to Funding Farm-Based Biogas Projects in Wisconsin and...

290

Roosevelt Biogas 1 Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Roosevelt Biogas 1 Biomass Facility Jump to: navigation, search Name Roosevelt Biogas 1 Biomass...

291

Biogas Purification: H2S Removal using Biofiltration.  

E-Print Network (OSTI)

??Biogas, composed principally of methane, has limited use in energy generation due to the presence of hydrogen sulphide (H2S). Biogas cannot be burned directly in… (more)

Fischer, Mary Elizabeth

2010-01-01T23:59:59.000Z

292

A New Method to Evaluate Hydrogen Sulfide Removal from Biogas.  

E-Print Network (OSTI)

??Hydrogen sulfide in biogas fuel increases the speed at which the system utilizing the biogas corrodes. This corrosion may be prevented by separating and removing… (more)

Martin, Jerry H II

2008-01-01T23:59:59.000Z

293

In Thai Binh province, communes have been previously identified with surpluses or deficits in  

E-Print Network (OSTI)

encouraged source separation for composting and biogas production through anaerobic digestion (Table 1, and a subsidy on biogas production from the anaerobic digestion of organic wastes. In Canada since 2000, only Scenario (Base Sce) assumes that all UOW will continue to be landfilled, but that 80% of their biogas

Paris-Sud XI, Université de

294

Deepening Treatment of the Low C/N Ratio Biogas Slurry at Mountainous Region Livestock Farming by Using Modified Two-Stage A/O System  

Science Conference Proceedings (OSTI)

The intensive and fast development of livestock farming with ecological pattern of raising¨Cbiogas¨Cirrigating is widely applied in China. After anaerobic fermentation the agricultural wastes can provides clean energy. However, there is problem by lacking ... Keywords: livestock farming, biogas slurry, low C/N ratio, deepening treatment

Wei-wei Yu; Zhi Zhang; Sheng-lan Bi; Shu-yang Li; Chao Liu

2011-02-01T23:59:59.000Z

295

Energy recovery from agroindustrial wastes with prevalently solute pollutants using fixed-bed anaerobic reactors  

Science Conference Proceedings (OSTI)

A process for anaerobic digestion of agroindustrial wastes containing mainly soluble pollutants was developed utilizing fixed-bed reactors. A pilot plant at a sugar refinery with two reactors in parallel, respectively of 10 and 50 m/sup 3/ operating volume, has functioned successfully in treating wastes produced in regenerating ion-exchange columns used to purify the sugar juices. With an hydraulic retention time (HRT) of less than one day, a maximum gas production of 11.5 volumes per operating volume of reactor per day was obtained together with a reduction of up to 80% of the biological oxygen demand for five days (BOD5), and volatile solids and up to 70% of the chemical oxygen demand (COD). The gas contained from 70 to 75% methane. On the basis of these results, a full-scale industrial plant was built which produced up to 7500 m/sup 3/ a day of biogas. The process has been found suitable for a large number of industrial wastes, especially when plants are seasonally operated.

Sanna, P.; Camilli, M.

1983-03-01T23:59:59.000Z

296

DOE Hydrogen Analysis Repository: Biogas Resources Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas Resources Characterization Biogas Resources Characterization Project Summary Full Title: Biogas Resources Characterization Project ID: 259 Principal Investigator: Ali Jalalzadeh-Azar Brief Description: This project intends to develop a cost-analysis tool based on the H2A Production model, collect global information system (GIS) / cost data, and perform techno-economic analyses of upgrading biogas and utilizing the resulting bio-methane. Keywords: Biogas; Bio-methane; Landfill; Dairy farm; Sewage treatment plant; Fuel cell Purpose Fuel cells operating on bio-methane or on hydrogen derived from bio-methane can mitigate energy and environmental issues and provide an opportunity for their commercialization. This project can provide valuable insights and information to the stakeholders-utilities, municipalities, and policy

297

Liquid membrane purification of biogas  

SciTech Connect

Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

1991-03-01T23:59:59.000Z

298

Biogas Production through the Syntrophic Acetate-Oxidising Pathway  

E-Print Network (OSTI)

Biogas Production through the Syntrophic Acetate-Oxidising Pathway Characterisation and Detection Uppsala 2012 #12;Acta Universitatis agriculturae Sueciae 2012:45 #12;Biogas production through 1.1 Aims of the thesis 12 2 Biogas production 15 2.1 Biogas production in Europe 16 2.2 Substrate

299

biogas for rural communities TD390 Supervised learning: Study report  

E-Print Network (OSTI)

0 biogas for rural communities TD390 Supervised learning: Study report Vaibhav Nasery Roll No. 08D highly successful rural biogas models wherein biogas is produced and utilized as a cooking fuel by the villagers. The two models studied are the Community Biogas plant established by SUMUL Dairy at Bhintbudrak

Sohoni, Milind

300

Operational experience from three full scale methane digesters  

Science Conference Proceedings (OSTI)

Three full scale anaerobic digesters are described and operational experience is discussed. The digesters are located in Monroe, Washington on a 200 head dairy; in Bartow, Florida on a 10,000 head feedlot; and in Bedford, Virginia on a 100 head dairy. 11 refs.

Coppinger, E.R.; Richter, M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Community Renewable Energy Deployment: Sacramento Municipal Utility...  

Open Energy Info (EERE)

photovoltaic installation along California Highway 50 and anaerobic digestion and biogas production at two separate dairies, at a wastewater treatment facility, and at a...

302

EA-1832: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact EA-1832: Finding of No Significant Impact Rainer Biogas LLC Community Anaerobic Manure Digester, Enumclaw, King County, Washington The U.S....

303

Kansas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 13, 2011 EA-1907: Finding of No Significant Impact Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas October 13, 2011 EA-1907: Final...

304

EA-1907: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact EA-1907: Finding of No Significant Impact Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas Based on the analysis in the Final EA and...

305

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stevenson 2010-2012 Westmoreland County, PA PA Green Energy Works Target Grant - Biogas - Native Energy Bio-Digestion-based Combined Heat & Power Install small anaerobic...

306

Farming Out Heat and Electricity through Biopower | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy State Energy Program Maas' biodigester: Creates electricity from the biogas produced through anaerobic digestion. Recycles dried, fibrous solids from the process...

307

Integrated Bioprocess for Carbon Dioxide Mitigation and Acidic ...  

Science Conference Proceedings (OSTI)

The process has versatility in that a portion of the harvested biomass can be anaerobically digested for energy rich biogas. Proceedings Inclusion? Definite: ...

308

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

309

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland County, PA PA Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project Install an anaerobic digester (12' diameter, 35' tall) to improve manure...

310

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010-2012 Franklin County, PA PA Green Energy Works Targeted Grant - Native Energy Biogas Project Install small anaerobic digester (less than 75' x 75'), solids separator, gas...

311

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newest biodigester at the Farm Power facility in Washington generates electricity from biogas created from bacteria's anaerobic digestion of cow manure. http:energy.govarticles...

312

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inal-environmental-assessment Download EA-1832: Final Environmental Assessment Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington http:energy.govnepa...

313

DOE Green Energy (R&D Results) Data Service | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

technical reports, STI, OSTI, DOE, renewable energy, hydroelectricity, biomass, biogas, anaerobic digestion Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes...

314

News Briefs  

Science Conference Proceedings (OSTI)

... new process and hardware design for the anaerobic digestion of organic wastes to produce methane-carbon dioxide (biogas) mixtures; Composite ...

1997-10-09T23:59:59.000Z

315

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

to include bio-product gasification, combustion, co-firing,anaerobic digestion and gasification (“biogas”) electricityfeasibility of gasification of willow and agricultural

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

316

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

finding-no-significant-impact Download EA-1832: Final Environmental Assessment Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington http:energy.govnepa...

317

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govnepadownloadscx-003108-categorical-exclusion-determination Page EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas This EA evaluates the environmental...

318

Fuel Cell Technologies Office: Technology Validation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

and heat. The hydrogen, heat, and power are pro- duced using anaerobically digested biogas from the municipal wastewater treatment plant in a high temperature molten carbon- ate...

319

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 12270 of 21,400 results. Download EA-1832: Final Environmental Assessment Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington http:energy.govnepa...

320

Methane Digester Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors  

Science Conference Proceedings (OSTI)

In this study we present a neural network model for predicting the methane fraction in landfill gas originating from field-scale landfill bioreactors. Landfill bioreactors were constructed at the Odayeri Sanitary Landfill, Istanbul, Turkey, and operated ... Keywords: Anaerobic digestion, Landfill gas, Leachate, Methane fraction, Modeling, Neural network

Bestamin Ozkaya; Ahmet Demir; M. Sinan Bilgili

2007-06-01T23:59:59.000Z

322

Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use.  

E-Print Network (OSTI)

networks, particle swarm optimization, wastewater treatment plant INTRODUCTION Anaerobic digestion ; Lettinga ). As a result of anaerobic digestion, methane and carbon dioxide rich biogas are produced are involved in the anaerobic digestion process (Batstone et al. ). Owing to the complexity of the anaerobic

Kusiak, Andrew

323

Community Renewable Energy Success Stories: Community-Scale Anaerobic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Scale Community-Scale Anaerobic Digesters (text version) Community Renewable Energy Success Stories: Community-Scale Anaerobic Digesters (text version) Below is the text version of the webinar titled "Community-Scale Anaerobic Digesters," originally presented on April 16, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from a very snowy National Renewable Energy Laboratory in Golden, Colorado. Thank you so much for joining us today. We're going to give folks a few minutes to call in and log on, but while we wait Devin will go over some logistics, and then we'll get started with

324

publication 442-881 This publication provides a general overview of anaero-  

E-Print Network (OSTI)

digester. Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas on the source of the organic matter and the management of the anaerobic digestion process, small amounts plan. Figure 1. Basic material flow in an anaerobic digestion system. Sources of organic matter

Liskiewicz, Maciej

325

Digestion Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion Simulations Digestion Simulations Name: Lisa Location: N/A Country: N/A Date: N/A Question: My 5th grade students are beginning an experiment next week and their hypothesis involves edibility(edibleness?). Is there a way to replicate the stomach in, say, a bottle?? Are there ways to test for edibleness(?) without actually ingesting the experiment yourself? Replies: I would not recommend the idea of a bottle stomach. The stomach digests only proteins anyway with HCl [pH 1.0] which is very, very strong acid that will burn seriously if in contact with skin. The intestine is just as much responsible for digestion of lipids [bile], carbohydrates and remaining proteins using enzymes, many of these you do not want to be handling, let alone purchase. As a high school teacher, I have lab exercises dealing with digestion, but I can not recommend any of these unless you are set up with a functional science laboratory and all the safety equipment necessary.

326

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

327

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in...

328

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

329

Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment  

SciTech Connect

This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

Sandoval Lozano, Claudia Johanna [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9A Carrera 27, Aptdo Aereo 678, Bucaramanga (Colombia)], E-mail: ceiam@uis.edu.co; Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9A Carrera 27, Aptdo Aereo 678, Bucaramanga (Colombia)

2009-02-15T23:59:59.000Z

330

Handbook for Utility Participation in Biogas-Fueled Electric Generation  

Science Conference Proceedings (OSTI)

Biogas is a methane-rich gas produced from the controlled biological degradation of organic wastes. Biogas is produced as part of the treatment of four general classes of wet waste streams: Wastewater Treatment Plant Sludge Animal Manure Industrial Wastes Municipal Solid Waste in Sealed Landfills. The high methane content of biogas makes it suitable for fueling electric power generation. As energy prices increase, generation of electric power form biogas becomes increasingly attractive and the number of ...

2007-12-17T23:59:59.000Z

331

Life Cycle Assessment of Biogas from Separated slurry  

E-Print Network (OSTI)

Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

332

5. oktober 2009 Precision control of biogas plants  

E-Print Network (OSTI)

5. oktober 2009 Precision control of biogas plants Final report Henrik B. Møller, Anders M. Nielsen: "Precision control of biogas plants", J. Nr. 33031-0028, funded by EUDP 2005. The final report consists. Danish summary of the results: Det har været formålet at udvikle drift og design af biogas anlæg med

333

Colonisation of the sheep rumen with polycentric anaerobic fungi isolated from cattle  

E-Print Network (OSTI)

Colonisation of the sheep rumen with polycentric anaerobic fungi isolated from cattle MW Phillips, GLR Gordon CSIRO Animal Production, Locked Bag 1, Blacktown, New South Wales 2148, Australia Anaerobic suggests that these organisms play an important role in the digestion of diets high in fibre (Gordon

Recanati, Catherine

334

Earthscan -Article http://www.earthscan.co.uk/news/printablearticle.asp?sp=&v=5&UAN=456 1 of 8 9/13/2005 1:12 PM  

E-Print Network (OSTI)

for processing the organic fraction of MSW to obtain biogas and a disposable digestate, a combination of liquor are feedstock, biogas yield and efficiency of utilization. The biogas produced can either support the process of the biogas and the energy required to heat the digestor). Anaerobic digestors are normally used

Columbia University

335

www.sciencemag.org SCIENCE VOL 330 26 NOVEMBER 2010 1181 POLICYFORUM  

E-Print Network (OSTI)

lighting Reduce generator capacity CFL installation Biogas Wind turbine Replace street light sensors Solar of diesel fuel with biogas. The biogas can be produced locally through anaerobic digestion of animal dung fossil fuel. Although community- scale biogas systems have had mixed success, often depending

Kammen, Daniel M.

336

Fuel Cells on Bio-Gas (Presentation)  

SciTech Connect

The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

Remick, R. J.

2009-03-04T23:59:59.000Z

337

Sustainable Urban Water Management James P. Heaney, Len Wright, and David Sample  

E-Print Network (OSTI)

ORIGINAL ARTICLE The structure of the bacterial and archaeal community in a biogas digester. Anaerobic fermentation of waste biomass not only gen- erates biogas fuel for cooking, lighting and heating biogas digesters at different scales and for different applications for treating rural wastes is well

Pitt, Robert E.

338

Livestock waste treatment systems of the future: A challenge to environmental quality, food safety, and sustainability. OECD Workshop  

E-Print Network (OSTI)

through aerobic processes or closed anaerobic digestion, but good management is critical. Biogas of ammonia in biogas plant digested manure that combines the anammox process with new material sciences environmental benefits and production of a clean, renewable fuel - the biogas - for multiple utilizations

Paris-Sud XI, Université de

339

Nd'ordre : ANNE 2011 THSE / UNIVERSIT DE RENNES 1  

E-Print Network (OSTI)

reduce envi- ronmentalrisk.ForsmallfarmsoftypeI,equipmentwith a storage pit for biogas wastewater seems of filtration/impreg- nation over straw at the outlet of the biogas digester could be imagined in order to reach this value with dry straw. The case of large pig farms Anaerobic digestion in biogas systems

Paris-Sud XI, Université de

340

Process for electric power production using a biogas  

Science Conference Proceedings (OSTI)

A process is described for the production of electric power with a biogas used as a fuel for an electric power producing combustion turbine which drives a generator. The turbine will accept such a biogas only at a temperature below a predetermined temperature, wherein a biomass is gasified to produce a hot stream of a biogas. The biogas is at temperatures of between about 650/sup 0/-875/sup 0/C and contains vaporized tar components and solid particulate matter. It is characterized in that: the hot stream of biogas, consisting essentially of a biogas, vaporized tars and solid particulate matter, has water injected thereto partially cool the biogas to a temperature below the predetermined temperature by vaporization of the water. However, the biogas is above a temperature at which the vaporized tars in the biogas would condense out of the stream; filtering the partially cooled biogas to remove the particulate matter; and directly charging the partially cooled, filtered biogas containing the vaporized water and vaporized tars to an electric power producing combustion turbine to produce electric power.

Archer, D.H.; Bauer, F.I.; Vidt, E.J.

1987-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Quebec Biogas Program (Quebec, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quebec Biogas Program (Quebec, Canada) Quebec Biogas Program (Quebec, Canada) Quebec Biogas Program (Quebec, Canada) < Back Eligibility Industrial Program Info Funding Source Government of Quebec State Quebec Program Type Grant Program Provider Bureau des changements climatiques, Ministère du Développement durable, de l'Environnement et des Parcs In 2005, the Quebec government adopted a regulation aimed to minimize the impact of biogas from landfills. The Regulation is in respect to landfills and incineration of residual materials, particularly those that bury more than 50,000 tons of waste per year, to capture the biogas ideally enhance or eliminate them. The Quebec government created the Biogas Program to financially support projects to capture or dispose of biogas from landfill sites not covered by

342

Preventing Biogas Generation in Low Level Waste  

Science Conference Proceedings (OSTI)

A number of U.S. utilities have experienced gassing in radwaste, with a few encountering the refusal and return of resin shipments from the Barnwell disposal site due to this problem. This report describes actions that can be taken to control and prevent biogas generation in waste containers and plant systems.

1998-09-30T23:59:59.000Z

343

Utilization of farm-produced biogas  

SciTech Connect

Utilization of biogas for production of heat and electricity is discussed on basis of tests of various types of components. The necessary conversions and readjustments of boilers and four types of engines (motor-generators) are reported. The amount of available energy and suitable generator size is related to herd size and mode of operation. 13 refs.

Persson, S.P.E.; Bartlett, H.D.

1981-01-01T23:59:59.000Z

344

Full scale field demonstration of unheated anaerobic contact stabilization. Project status report, October 1980-February 1981  

DOE Green Energy (OSTI)

The objective of the study reported here is to demonstrate that municipal sewage sludges can be anaerobically digested with little or no heating. To this end, two digesters at the Jackson Pike Wastewater Treatment Plant in Columbus, Ohio, have been converted to the anaerobic contact stabilization process. This, it is hoped, will permit positive and independent control of the solids retention time (SRT) in the system, so that solids may be retained long enough to ensure substantially complete digestion even at reduced temperatures. Digestion at a temperature of 71/sup 0/F and an SRT of 33 days produces results similar to digestion at a temperature of 91/sup 0/F and an SRT of 11 days. There is no evidence of impaired or unstable digestion at the lower temperature. (DMC)

Sykes, R.M.

1981-04-01T23:59:59.000Z

345

Ideal detonation characteristics of biogas-hydrogen and -hydrogen peroxide mixtures  

Science Conference Proceedings (OSTI)

This article reports the ideal detonation characteristics of various mixtures of biogas-hydrogen and biogas-hydrogen peroxide with air. The results obtained by the chemical equilibrium calculations reveal the fundamental improvement of the biogas detonation ... Keywords: bio-energy, biogas detonation, biogas utilization, equilibrium thermochemistry, hydrogen, hydrogen peroxide

Khalid M. Saqr; Hassan I. Kassem; Mohsin M. Sies; Mazlan A. Wahid

2010-07-01T23:59:59.000Z

346

Digestion time  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion time Digestion time Name: Don Mancosh Location: N/A Country: N/A Date: N/A Question: I have always given the rule of thumb in class that material we eat is with us for about 24 hours before exiting the body. The question arises about the time value of liquids. Getting a big coke prior to a 3 hour drive generally means that there will be a stop along the way. Is there a generalization made about liquids in the body similar to the one for solid food? Replies: A physician would give a better answer, but I hazard this: the only liquids which people consume (deliberately) in significant quantities are water, ethyl alcohol and various oils. Water and alcohol are absorbed on a time scale of seconds to minutes through the mouth, stomach and digestive tract. The oils are huge molecules, so I'd guess like any other greasy food they get absorbed in the upper digestive tract. Some of them, perhaps the longest and most nonpolar, are not absorbed at all --- cf. the old-time remedy of mineral oil for constipation --- so there should be some average time-before-what's-left-is-excreted such as you're looking for, and my (wild) guess is that it would not differ substantially from that for food. You can define an average lifetime in the body for alcohol, since the natural level is zero. Rough guidelines are widespread in the context of drunk driving laws. But this is not really possible for water. One's body is normally full up to the brim with water, and there's no way for the body to distinguish between water molecules recently absorbed and molecules that've been moping around since the Beatles split up. Thus the water entering the toilet bowl after the pit stop is not in general the same water as was in the big coke. If you were to consider for water just the average time between drinking and peeing, it would seem to depend strongly on how well hydrated the body was before the drink, and how much was drunk. During sustained heavy exertion in the sun and dry air one can easily drink a pint of water an hour without peeing at all. On the other hand, if one is willing to drink enough water fast enough, so as to establish a high excess of body water one can pee 8 ounces 15 minutes or less after drinking 8 ounces.

347

Proceedings of the 2012 Industrial and Systems Engineering Research Conference X. Wei and A. Kusiak  

E-Print Network (OSTI)

and is suitable for biogas production. Anaerobic digestion of sludge involves a process in which microorganisms break down biodegradable waste in the absence of oxygen [1, 2]. As a result of anaerobic digestion for modeling anaerobic digestion of primary sludge in a wastewater treatment plant [8]. The model

Kusiak, Andrew

348

Biotechnology Letters Vol 12 No 3 235-240 (1990) Received 25th January  

E-Print Network (OSTI)

Biotechnology Letters Vol 12 No 3 235-240 (1990) Received 25th January ANAEROBIC DIGESTION of processed municipal solid waste (MSW) to methane. The anaerobic digestion consortium was introduced to highM, and a biogas composition of 55%-60% methane. INTRODUCTION Economic evaluations of anaerobic digestion

California at Riverside, University of

349

RENEWABLE ENERGY SOURCES Antonia V. Herzog  

E-Print Network (OSTI)

Technologies and Applications 2.3.1. Combustion 2.3.2. Gasification 2.3.3. Anaerobic Digestion 2.3.4. Liquid. Anaerobic Digestion: Combustible gas called biogas produced from biomass through low temperature biological process of anaerobic (without air) digestion of organic material. Biomass: Organic, non-fossil material

Kammen, Daniel M.

350

Journal of Environmental Science and Health, Part A (2013) 48, 319330 Copyright C Taylor & Francis Group, LLC  

E-Print Network (OSTI)

polishing by a channelized macrophyte- dominated wetland and anaerobic digestion of the harvested phytomass. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic treatment processes. Keywords: Anaerobic co-digestion, aquatic weeds, biofuel, biogas, constructed wetland

Cohen, Michael F.

351

BioGas Project Applications for Federal Agencies and Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

352

Gender Mainstreaming Guide for the Africa Biogas Partnership Program | Open  

Open Energy Info (EERE)

Gender Mainstreaming Guide for the Africa Biogas Partnership Program Gender Mainstreaming Guide for the Africa Biogas Partnership Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Gender Mainstreaming Guide for the Africa Biogas Partnership Program Agency/Company /Organization: ENERGIA: International Network on Gender and Sustainability Energy Sector: Energy Focus Area: Renewable Energy, Biomass Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.energia.org/fileadmin/files/media/pubs/Guide%20on%20gender%20mains Gender Mainstreaming Guide for the Africa Biogas Partnership Program Screenshot References: Gender Mainstreaming Guide for the Africa Biogas Partnership Program[1] Overview "The Africa Biogas Partnership Programme (ABPP) is a six country initiative

353

Sludge digester  

SciTech Connect

A ballasted, gas-holding, liquid sludge digester is described comprising: a main liquid sludge tank having a bottom wall and upwardly projecting sidewall; a cover having a top and depending side skirt structure which telescopes with respect to the upwardly projecting sidewall of the main tank; ballast supported near the lower edge of said side skirt; a ballast-engaging, liquid-containing well joined to said sidewall of said main tank such that said cover provides a gas-tight seal when said ballast interacts with liquid in said well so as to be partially emerged or fully submerged in the liquid; liquid fill means interacting with said well to maintain a predetermined liquid level in the well when said ballast is at least partially emerged from the liquid in said well; and overflow means interacting with said well to maintain a predetermined liquid level in the well when said ballast is submerged in the liquid in the well.

Wight, J.L.; Cook, L.W.

1993-08-24T23:59:59.000Z

354

Biomass/Biogas | Open Energy Information  

Open Energy Info (EERE)

Biomass/Biogas Biomass/Biogas < Biomass Jump to: navigation, search Agricultural residues are defined as the residues from production of the following crops. * Corn * Wheat * Soybeans * Cotton * Sorghum * Barley * Oats * Rice * Rye * Canola * Beans * Peas * Peanuts * Potatoes * Safflower * Sunflower * Sugarcane * Flaxseed Forest residues are defined as logging residues and other removals. These include material already utilized as well as material that is disposed as waste. Logging residues are the unused portions of trees cut by logging (tops and branches) and left to be burned or decay in the woods. Other removals include trees removed as a part of thinning projects, land clearings, and forest health uses that are not directly associated with round wood product harvests. Primary mill residues include wood materials

355

Biogas Potential in the United States (Fact Sheet)  

SciTech Connect

Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

Not Available

2013-10-01T23:59:59.000Z

356

Biogas - future fuel for power plants  

Science Conference Proceedings (OSTI)

Current fuel cells mix natural gas with steam to release hydrogen, which enters the fuel cell and combines with oxygen in the air. This formation of water is a chemical reaction which releases energy and heat. SMUD already has two 200 kw fuel cells in operation. SMUD`s desire to use alternative and renewable fuel sources is prompting research into using biogas as a cogenerator.

NONE

1994-08-01T23:59:59.000Z

357

Biogas as a source of rural energy  

Science Conference Proceedings (OSTI)

The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

Kalia, A.K.

2000-01-01T23:59:59.000Z

358

Biogas engines for agricultural motor-generators  

SciTech Connect

Tests were run on biogas, natural gas and liquid fuel with four engines of 1.1 and 2.8 L displacement at 1800 rpm, intended for motor-generators. One engine was diesel engine modified to high compression spark-ignition. Optimum timing, fuel consumption and knocking were determined at various load levels between full load and idling. Considerable differences in efficiency were found. Recommendations are given on choice, equipment and operation. 13 refs.

Persson, S.P.E.; Bartlett, H.D.

1981-01-01T23:59:59.000Z

359

Treatment of Wine Distillery Wastewater Using an Anaerobic Moving Bed Biofilm Reactor with Low Density of Polyethylene Support  

Science Conference Proceedings (OSTI)

An anaerobic moving bed biofilm reactor filled with small and low density polyethylene support as biofilm carrier was operated to treat wine distillery wastewater for nearly 8 months. The support packed in the reactor is Bioflow 30 with density 0.92g/cm3 ... Keywords: Anaerobic digestion, moving bed biofilm reactor, low density polyethylene support, wine distillery wastewater

Chai Sheli; Rene Moletta

2010-03-01T23:59:59.000Z

360

Use of 18S-rRNA-targeted oligonucleotide probes for detection and quantification of anaerobic fungi  

E-Print Network (OSTI)

Use of 18S-rRNA-targeted oligonucleotide probes for detection and quantification of anaerobic fungi Clermont-Ferrand-Theix, 63122 Saint-Genès-Champanelle, France Strictly anaerobic fungi are natural the subject of numerous studies (Fonty and Joblin, 1991, in: Physio- logical aspects of digestion

Recanati, Catherine

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biogas yield and quality improvement and purification with natural minerals.  

E-Print Network (OSTI)

??Research goal and objective. To investigate the possibilities of the use of mineral raw materials of local origin for the purification of biogas produced from… (more)

?iutelyt?, R?ta

2013-01-01T23:59:59.000Z

362

Biogas production through the syntrophic acetate-oxidising pathway.  

E-Print Network (OSTI)

??Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the… (more)

Westerholm, Maria

2012-01-01T23:59:59.000Z

363

The private biogas sector in Tanzania: The companies are coming.  

E-Print Network (OSTI)

??Abstract Biogas is a form of renewable energy that can be used on a small scale. This is ideal for rural areas that are far… (more)

Dijkstra, A.

2012-01-01T23:59:59.000Z

364

BIOGAS PRODUCTION SYSTEM DESIGN FOR CONDOMINIUM AND ITS FEASIBILITY.  

E-Print Network (OSTI)

??The research is concerned with designing of Biogas Production System for Condominium and studying its Feasibility by crosschecking field survey and information from literatures. The… (more)

Bekele, Gaddisa

2011-01-01T23:59:59.000Z

365

Techno-socio-economic study of bio-gas plants  

Science Conference Proceedings (OSTI)

This study covers technological, social and economic aspects of the biogas program in Chitawan, Nepal. Many interesting facts are revealed which may be useful for future planning of Nepalese biogas programs. Concerning the social aspects, only big farmers (having more than 4 bighas of land and more than 10 domestic animals) were found to have biogas plants. No farmer who had a biogas plant was illiterate. As for the technical aspects of the total gas ovens used in the area, 66% were of BTI design. Most of the ovens were of 0.45-m/sup 3/ capacity. The life of BTI ovens was found to be shorter than the life of ovens of other companies. BTI ovens are not useful when farmers have to use a big pot for cooking. All farmers of the area were found to be convinced of the utility of the biogas plant. With regard to the economic aspects of using biogas plants, farmers were able to save 53% of the total expenditure which they had been spending for fuel. Wood consumption was reduced to 50% by using biogas. The internal rate of return of a 2.8-m/sup 3/ biogas plant was found to be 14% assuming that the plant would last for 20 years. Most of the farmers in the area did not have biogas plants. The main reason given was that there were not enough capital and cattle to begin such an operation.

Not Available

1981-01-01T23:59:59.000Z

366

Potential for biogas production fromslaughter houses residues in Bolivia.  

E-Print Network (OSTI)

?? Residues from slaughter houses offer an abundant resource in Bolivia. The residues can beused for biogas production with biofertilizer as a bi-product. These resources… (more)

Tesfaye Tefera, Tadious

2011-01-01T23:59:59.000Z

367

Pretreaments of Chinese Agricultural residues to increase biogas production.  

E-Print Network (OSTI)

?? Development of biological conversion of lignocellulosic biomass to biogas is one approach to utilize straw comprehensively. However, high lignin contents of lignocellulosic materials results… (more)

Wang, Yu

2010-01-01T23:59:59.000Z

368

Biogas and Biomass to Energy Grant Program (Illinois) | Open...  

Open Energy Info (EERE)

modified on December 6, 2012. Financial Incentive Program Place Illinois Name Biogas and Biomass to Energy Grant Program Incentive Type State Grant Program Applicable Sector...

369

Evaluation of magnetic biomass carriers for biogas production.  

E-Print Network (OSTI)

?? This thesis evaluates a novel technique to increase the active biomass inside continuously stirred tank biogas reactors with possible benefits of shorter retention times,… (more)

Moestedt Hellman, Jan

2013-01-01T23:59:59.000Z

370

Biogas upgrade through exhaust gas reforming process for use in CI engines.  

E-Print Network (OSTI)

??Biogas is not ideal for combustion in diesel engines mainly due to its low energy content. The upgrading of biogas into high quality syngas through… (more)

Lau, Chia Sheng

2012-01-01T23:59:59.000Z

371

Achieving Low Emissions from a Biogas Fuelled SI Engine Using a Catalytic Converter.  

E-Print Network (OSTI)

??A spark ignition engine was retrofitted to operate on biogas fuel. Biogas was synthetically generated through the mixing of various pure gases. The air-fuel ratio… (more)

Tadrous, Mark

2012-01-01T23:59:59.000Z

372

Mason and Enterprise Development under the Biogas Program in Vietnam: An Impact Study of the Effects of the Biogas Program.  

E-Print Network (OSTI)

??The research proposed to analyze the impact of a renewable energy project entitled ‘The Biogas Project Program for the department of Animal Husbandry and livestock… (more)

Schaart, I.G.

2010-01-01T23:59:59.000Z

373

Anaerobic thermophilic culture  

DOE Patents (OSTI)

A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01T23:59:59.000Z

374

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

375

Preventing Biogas Generation in Low Level Waste: Interim Report  

Science Conference Proceedings (OSTI)

This interim report describes actions that can be taken to control and prevent biogas generation in waste containers and plant systems. In addition, it describes additional work in progress that will form the basis for the final report. This research was undertaken in response to nuclear power stations experiencing biogas generation from plant systems and low level waste containers.

1997-11-11T23:59:59.000Z

376

Crop residue conversion to biogas by dry fermentation  

Science Conference Proceedings (OSTI)

A simple 'dry fermentation' process has been developed that may enable economical conversion of drier crop residues to biogas. Results from two years of process definition and scale-up to a 110 m/sup 3/ prototype show that biogas production rates exceeding those necessary to make the dry fermentor competitive have been achieved. 13 refs.

Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.J.; Jackson, D.A.; Kabrick, R.M.; Gottung, E.J.

1981-01-01T23:59:59.000Z

377

Co-generation of electricity and heat from biogas  

SciTech Connect

Biogas powered co-generation of electricity and hot water is being documented in a full scale demonstration with a 25 kW capacity system. The performance characteristics and effects of operating on biogas for 1400 hours are presented in this paper.

Koelsch, R.K.; Cummings, R.J.; Harrison, C.E.; Jewell, W.J.

1982-12-01T23:59:59.000Z

378

DOE Hydrogen Analysis Repository: Stranded Biogas Decision Tool for Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stranded Biogas Decision Tool for Fuel Cell Co-Production Stranded Biogas Decision Tool for Fuel Cell Co-Production Project Summary Full Title: Stranded Biogas Decision Tool for Fuel Cell Co-Production Project ID: 257 Principal Investigator: Michael Ulsh Brief Description: This project will explore the feasibility and utility of using stranded biogas resources in fuel cell co-production networks as well as lay the basis for development of analysis and decision-making tools for potential biogas sources and energy end-users to evaluate the economic feasibility of deploying these systems. Performer Principal Investigator: Michael Ulsh Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-3842 Email: michael.ulsh@nrel.gov Website: http://www.nrel.gov

379

Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

Jalalzadeh-Azar, A.

2010-10-18T23:59:59.000Z

380

Quantitative Analyses of Anaerobic Wastewater Treatment Processes  

E-Print Network (OSTI)

-generation biodiesel, ethanol, or biogas to the transport sector to be blended with fossil fuels. Still under

Timmer, Jens

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

21st European Symposium on Computer Aided Process Engineering ESCAPE 21 E.N. Pistikopoulos, M.C. Georgiadis and A.C. Kokossis (Editors)  

E-Print Network (OSTI)

of Past Competitors 10 | P a g e Biogas & Electric LLC University of California, Los Angeles 2010, Biogas & Electric LLC is commercializing a technology to significantly improve the anaerobic digestion gas that is 300 times more damaging to the atmosphere than CO2. In December, Biogas & Electric

Grossmann, Ignacio E.

382

Tri-Generation Success World's First Tri-Gen  

E-Print Network (OSTI)

station uses anaerobically digested biogas from the municipal wastewater treatment plant as the fuel SAE protocols for rapid 3-minute complete tank refueling. Gas or Biogas H2 is produced at anode Gas the versatility of fuel cells to utilize multiple feedstocks, such as biogas and natural gas, to produce power

383

DEDICATION Loyd Henry Forrest Jr.  

E-Print Network (OSTI)

samples are overwhelmingly in favor of AD technology. Keywords Anaerobic digester, biogas, electricity (and other organic matter) and produces methane, a biogas that can be captured and used to generate about by waste disposal, and it produces biogas, which is a source of renewable energy. Thus, AD can

384

Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ijhydene  

E-Print Network (OSTI)

of Great Lakes Wetland Invaders to Produce Biogas Erin Throop, Biology (2012), Center for Urban- ing the mechanical harvest of invasive species biomass with anaerobic digestion to produce biogas that P. australis yields significantly more biogas per unit biomass than T. x glau- ca, indicating its

Lovley, Derek

385

Biological sweetening of energy gases mimics in biotrickling filters Marc Fortuny a,c  

E-Print Network (OSTI)

: Hydrogen sulfide; Gas sweetening; Biotrickling filter; Desulfurization; Fuel gas; Biogas 1. Introduction in energy-rich gases such as biogas from anaerobic digesters which may contain H2S concentrations exceeding ones specifically developed for the removal of high concentra- tions of H2S from biogas or fuel gas

386

E-mail: ceas-adv@UWM.edu Website: www.uwm.edu/CEAS Phone: (414) 229-4667 MECHANICAL ENGINEERING  

E-Print Network (OSTI)

processes using two data sets obtained from different experimental setups. In both experiments only biogas concentrations are measurable. Yet in many ex- perimental settings only biogas production rate data is availableH, temperature, rH and biogas flow rate. The complexity of mathematical models of anaerobic digestion processes

Saldin, Dilano

387

Scientific Programme Monday, 23 April 2007  

E-Print Network (OSTI)

, anaerobic digestion could provide energy as biogas for a few high energy demanding industries within cities biogas which can replace natural gas, does not require the purchase of bulking agents and can deodorize world energy demand including that obtained from crude oil, the conversion of UFW into biogas represents

388

Microbiological aspects of methane production during pig manure storage DABERT Patrick, VEDRENNE Fabien, BRARD Camille and BELINE Fabrice  

E-Print Network (OSTI)

during 120-150 days at 30°C. During the simulated storage, biogas production was monitored by pressure (and / or inoculation) had little impact on biogas production. Raw slury Diluted slurry Diluted (biogas) anaerobic digesters, thus having a beneficial impact on methane production. Acknowledgements Part

Paris-Sud XI, Université de

389

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

The basic energy conversion system being considered in thisEnergy Fixation and Conversion with Algal Bacterial Systems/energy producer based on current methane prices. bility of a kelp to methane conversion system

Haven, Kendall F.

2011-01-01T23:59:59.000Z

390

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Note: This program is not currently accepting applications. Check back for updates regarding future solicitations.

391

Marine biomass system: anaerobic digestion and production of methane  

DOE Green Energy (OSTI)

Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

Haven, K.F.; Henriquez, M.; Ritschard, R.L.

1979-04-01T23:59:59.000Z

392

Biomass Program Perspectives on Anaerobic Digestion and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Recycling and Renewable Energy Facility And Recycles the Organics Quality Compost Effluent Liquid Fertilizer Landfill Daily Cover Retail Products Bio- remediation And...

393

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

flow from an on-site steam turbine to raise the kelp to 45°Ca 1200 Kw electric steam turbine/generator system. CapitalFinally, the waste steam stream from the turbine is used to

Haven, Kendall F.

2011-01-01T23:59:59.000Z

394

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

395

Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report  

DOE R&D Accomplishments (OSTI)

This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

Zinder, Stephen H.

2000-04-15T23:59:59.000Z

396

Cost Analysis and Evaluation of Syngas Synthesis through Anaerobic Digestion.  

E-Print Network (OSTI)

??Synthetic fuel, which is generated from syngas via Fischer – Tropsch synthesis, provides the world with an alternative for conventional fossil energy resources. Generating syngas… (more)

Tong, Yun

2012-01-01T23:59:59.000Z

397

Profile and perceptions of biogas as automobile fuel.  

E-Print Network (OSTI)

?? From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based… (more)

Larsson, Anneli

2008-01-01T23:59:59.000Z

398

Profile and Perceptions of Biogas as Automobile Fuel.  

E-Print Network (OSTI)

?? From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based… (more)

Larsson, Anneli

2008-01-01T23:59:59.000Z

399

Biogas and Biomass to Energy Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program Biogas and Biomass to Energy Grant Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Energy Sources Maximum Rebate Feasibility Studies: $2,500 Biogas to Energy Systems: $225,000 Biomass to Energy Systems: $500,000 Program Info Start Date 12/16/1997 State Illinois Program Type State Grant Program Rebate Amount Up to 50% of project cost Provider University of Illinois at Chicago '''The most recent application period closed April 30, 2012. Check the program web site for updates on future solicitations. ''' The Renewable Energy Resources Program (RERP) promotes the development of

400

An economic evaluation of community size biogas plants  

Science Conference Proceedings (OSTI)

Economic evaluation of community size biogas plants has been performed in terms of the cost of the gas produced from such systems. The analysis takes into account the initial investment, life time, interest rate, maintenance cost and operating cost. Numerical calculations corresponding to 8 biogas systems show that if the manure can be sold at a price of Rs. 100 per ton, the pay back period varies from 3 to 6 years.

Sharma, J.P.; Vasudevan, P.; Bansal, N.K.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Anaerobic thermophilic culture system  

DOE Patents (OSTI)

A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01T23:59:59.000Z

402

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

27 17. Anaerobic Digestion -29 18. Anaerobic Digestion - Municipal31 19. Anaerobic Digestion - Industrial

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

403

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network (OSTI)

using biofiltration to treat biogas prior to use to removeand fed with simulated biogas. Sucrose was used as the

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

404

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network (OSTI)

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

405

Biogas end-use in the European community  

Science Conference Proceedings (OSTI)

In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

Constant, M.; Naveau, H.; Nyns, E.J. (Unite de Genie Biologique, Universite Catholique de Louvain (BE)); Ferrero, G.L.

1989-01-01T23:59:59.000Z

406

Treatment of Mixed Wastewater of Slaughterhouse Wastewater and Biogas Slurry with Pilot Contact Oxidation System  

Science Conference Proceedings (OSTI)

In this paper, a pilot contact oxidation system was used to different mixing ratio wastewater of slaughterhouse wastewater and biogas slurry. The results showed that when the mixing ratio of slaughterhouse wastewater and biogas slurry was 19:1 and the ... Keywords: contact oxidation process, slaughterhouse wastewater and biogas slurry, COD removal, ammonia removal

Peng Li; Qun-Hui Wang; Jie Zhang; Tian-Long Zheng; Juan Wang

2012-05-01T23:59:59.000Z

407

Introduction to a Large-Scale Biogas Plant in a Dairy Farm  

Science Conference Proceedings (OSTI)

This article describes a large-scale biogas plant in a dairy farm located in the Tongzhou District of Beijing. It is has a treatment capacity of 30t manure and 30t wastewater per day, a total of 60t/d with a residence time of 20 days. Input material ... Keywords: Large scale biogas plant, CHP, Biogas storage within digestor

Xiaolin Fan; Zifu Li; Tingting Wang; Fubin Yin; Xin Jin

2010-12-01T23:59:59.000Z

408

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor  

E-Print Network (OSTI)

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor Zuerst. The adaptive controller was successlullytesteclover il pcriod of tu'o nonths at a biogas tower reuetoriu pilot are not applicable to the biogas tower reüctor.since a dontinatingf-eatureof the new reactol' prir-rciplc-is its

Knobloch,Jürgen

409

Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens  

E-Print Network (OSTI)

Proceedings of Healthy Buildings 2009 Paper 206 Risk assessment of biogas exposure in kitchens C to pollutants while using biogas for cooking was assessed following the methodology described by the US - National Research Council. Information of hazardous compounds and compositions of several biogas types were

Paris-Sud XI, Université de

410

Two Different Approaches to Funding Farm-Based Biogas Projects in  

E-Print Network (OSTI)

Two Different Approaches to Funding Farm-Based Biogas Projects in Wisconsin and California Kevin in developing biogas projects from livestock manure, but have targeted this renewable energy application the energy, economic, and environmental benefits of biogas systems and act as a catalyst for the development

411

Impact of Biogas Digesters on Health and Quality of Life Measures of Kenyan Farmwomen.  

E-Print Network (OSTI)

??Women living in rural Kenya rely on wood for cooking and are exposed to elevated amounts of wood smoke. The objective of this thesis was… (more)

Dohoo, Carolyn

2011-01-01T23:59:59.000Z

412

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

413

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

and animal production; and fossil fuel use in production andas a result of burning fossil fuels for production of feedcrops. 67 Fossil fuel burning and "land-use changes, which

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

414

Anaerobic treatment in decentralised and source ... - Springer  

Science Conference Proceedings (OSTI)

and biogas production provide good biomass- wastewater contact. Reductions of total COD from sewage up to 80–90% are reported. At tem- peratures above ...

415

Written for presentation at the 2007 ASABE Annual International Meeting  

E-Print Network (OSTI)

Abstract. Anaerobic digestion on the farm has been promoted for decades as an effective method to reduce pollution and produce fuel. However, because of the cost and the problems associated with anaerobic digestion of animal manures and the lack of return on the investment, there are relatively few digesters being installed in the United States. Most of the biogas produced by anaerobic digestion is used to generate electricity. Grid interconnect agreements require lengthy negotiations and are difficult to finalize. Usually the electrical rates received are below the cost of production because equipment for electrical generation is expensive to install and expensive to maintain. By showing that biogas can easily be used as a fuel in trucks and/or tractors, anaerobic digestion would be more attractive especially on smaller facilities. High fuel prices are starting to have a significant impact on the economic viability of farms. If farmers could produce there own fuel in the form of biogas the pay back time on an anaerobic digester system could be reduced significantly. This would also encourage the installation of more pollution preventing anaerobic digester systems. With the help from a Rural Development (USDA), grant, Utah State University has been operating a 1996 Chevy ton truck on biogas produced by their Induced Blanket Reactor (IBR) anaerobic digester. This presentation will report on the trucks performance over the past 8 months comparing the use of biogas with gasoline and natural gas. Data includes horse power tests, oil sampling, and emissions tests.

Carl S. Hansen Phd; Conly Hansen Phd; Greg Sullivan; Sponsored Asabe

2007-01-01T23:59:59.000Z

416

Exploitation of olive mill wastewater and liquid cow manure for biogas production  

SciTech Connect

Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {sup o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.

Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina; Zafiri, Constantina [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece); Kornaros, Michael, E-mail: kornaros@chemeng.upatras.g [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece)

2010-10-15T23:59:59.000Z

417

Department  

NLE Websites -- All DOE Office Websites (Extended Search)

system to produce process steam, and an anaerobic digestion system that would produce biogas for use at the biorefinery from the treatment of wastewater for use on-site. The...

418

Fuel Cell Rebate and Performance Incentive (New York) | Open...  

Open Energy Info (EERE)

with landfill gas, biogas, and anaerobic digester gas are retained by the owner. Program Budget Large Fuel Cells: 21 million (3.5 million annually through 2015) Small Fuel...

419

Turkey vs. human digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Turkey vs. human digestion Turkey vs. human digestion Name: wallyb Location: N/A Country: N/A Date: N/A Question: How is the digestive system of turkeys different from that of humans? Replies: Hmmm.. been a while since I had sophomore biology, so I can't completely answer this one, but I can say a few things. One, since turkeys are birds, and birds as a general rule have not had teeth for several million years at least, the turkey needs a way to mash up its food -- thus, the crop, which is essentially like another stomach: the turkey (and many other birds, for that matter) swallows small stones which serve in lieu of teeth, mashing up food via muscular action in the crop, from whence the "chewed" food moves on into the rest of the digestive tract. As for any other differences, I'll have to leave that to someone else with more ornithological experience...

420

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

422

State-of-the-art report on methane fermentation of biomass  

Science Conference Proceedings (OSTI)

Research and development on biogas have emphasized technologies for expediting natural methane generation from anaerobic digestion of biomass. This indepth study reviews the status of biogas technology in developing countries and assesses the feasibility and desirability of expanding biogas production. First, based on an extensive review of the literature, the principal technical, social, economic, and environmental issues associated with methane production from farm-and feedlot-scale biogas plants and from marine biomass, urban refuse, and landfill are delineated. The microbiological processes underlying anaerobic digestion and the influences of various environmental factors (e.g., mixing, heating, toxicity, pH, retention time, nutrients) on the digestion process are then described. Raw materials available for biogas, different biogas plant designs (e.g., Chinese, Indian, Philippine, and bag), and the maintenance, operation, and safety of biogas plants are discussed. Next, the composition, fuel value, and processing of biogas are examined; attention is also given to the uses of sludge by-products. The ecological, health, and sociocultural implications of constructing and operating biogas plants in developing countries are reviewed and the status of biogas technology is described. The authors conclude that in both developed and developing countries the energy value obtained through biogas generation is only slightly greater than the costs involved. Thus, a major factor in implementing biogas projects is reclamation of by-products for animal feed and fertilizer. In rural areas where kerosene is expensive and labor inexpensive, a very simple biogas system prod

Woods, S.L.; Vause, K.H.; Skrinde, R.T.

1980-09-01T23:59:59.000Z

423

The Design of the ADALINE Sensor of the Biogas Generator  

Science Conference Proceedings (OSTI)

The paper used the ADALINE (adaptive linear neuron) structure rotate-speed recognizing method and applies the adaptive linear neuron to the non-velocity sensor combined with actual application conditions. The simulation results are get from MATLAB simulating ... Keywords: Biogas generator, ADALINE, Non-velocity sensor

Zuo-Xun Wang; Ying-Chun Zhang; Gui-Juan Wang

2010-06-01T23:59:59.000Z

424

Anaerobic fermentation of simulated in-situ oil shale retort water  

DOE Green Energy (OSTI)

The feasibility of removing soluble organics from oil shale retort water by anaerobic digestion with methane production was experimentally investigated. The following conclusions were made. The retort water studied had to be pretreated to remove toxic and add deficient constituents before it could be successfully treated with the anaerobic fermentation process. Pretreatment included pH adjustment to 7, ammonia reduction, and nutrient addition. A digested sludge from a conventional municipal sewage treatment plant was successfully acclimated to the retort water studied. A major fraction of the organics in the retort water studied was stabilized by conversion to CH/sub 4/ and CO/sub 2/ using the anaerobic fermentation process. BOD/sub 5/ and COD removal efficiences were 76 to 80 percent. The effluent from anaerobic fermentation of the retort water studied (BOD/sub 5/ : 530 to 580 mg/l) may be suitable for treatment by conventional aerobic processes. The growth of the methane formers, which stabilize the organics, is nutrient limited in the retort water studied. The pretreatment of the retort water studied removed 49 percent of the BOD/sub 5/. This was probably due to the reduction in solubility of high molecular weight fatty acids at neutral pHs. A major component removed from the retort water studied during anaerobic fermentation was fatty acids. The long hydraulic residence time used in this study would not be used in practice.

Ossio, E.A.; Fox, J.P.; Thomas, J.F.; Poulson, R.E.

1977-11-01T23:59:59.000Z

425

Reading Comprehension - Digestion and Nutrition  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion and Nutrition Digestion and Nutrition 1. The pouchlike muscular organ that secretes acids and digestive enzymes is the _________ stomach esophagus intestines . 2. _________ saliva enzymes chime is the watery material that results form digestion in the stomach. 3. Iron, potassium, and iodine are _________ vitamins minerals amino acids . 4. The human body is about 60 percent _________ salt water nutrients . 5. The teeth break down food by _________ chemical digestion mechanical digestion . 6. _________ Teeth Your tongue Saliva in the mouth helps to chemically digest food. 7. _________ Mechanical digestion Chemical digestion takes place in the mouth, stomach, and small intestine with the help of chemicals called _________ amino acids vitamins enzymes . 8. Proteins are made up of smaller building blocks called _________

426

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

technologies Agricultural household biogas digesters (6-10m ) Large-scale biogas digesters Biomass gasifiersAgricultural household biogas digesters Large and medium-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

427

Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop Biogas and Fuel Cells Workshop Summary Report Proceedings from the Biogas and Fuel Cells Workshop Golden, Colorado June 11-13, 2012 Workshop Proceedings NREL/BK-5600-56523 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Biogas and Fuel Cells Workshop Summary Report Proceedings from the Biogas and Fuel Cells Workshop Golden, Colorado June 11-13, 2012 Prepared under Task No. H279.1710 Workshop Proceedings NREL/BK-5600-56523

428

Anxiety and Digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Anxiety and Digestion Anxiety and Digestion Name: Donna Location: N/A Country: N/A Date: N/A Question: Explain how anxiety may be responsible for slowing down the process of digestion Replies: Your body really has 2 nervous systems. One is the peripheral nervous system that controls how you move and think etc. the other is called the autonomic (not automatic) nervous system It controls all of your everyday functions such as your heart, your blood vessel diameter and your digestive system, etc. There are 2 divisions of the ANS. One is called the parasympathetic and the other is the sympathetic. The parasympathetic is your everyday division, and is usually in control. When you come upon a stressful or dangerous situation, your sympathetic division takes over. It gets you ready to "fight or flee". Some parts of your body are put on alert. Your blood vessels constrict in some areas and dilate in others to get blood flowing to areas that will help you in a dangerous situation and to get glucose (fuel) to those areas quickly. Your heart starts to beat faster to send blood to those areas quicker, your pupils dilate. Other parts of your body are put on hold; those that aren't needed in a danger situation. Your digestive system is one that is put on hold. When you are under stress, your body doesn't know whether you are in danger or not but acts like it is. So if you are under constant stress, your digestive system is affected.

429

Expanding the Use of Biogas with Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Biogas with Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 6/11/2012 Expanding the Use of Biogas with Fuel Cell Technologies U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Coal 21% Nuclear Energy 9% Industrial Residential & Commercial Petroleum 37% Natural Gas 25% Transportation Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 Fuel Cells can apply to diverse sectors Share of Energy Consumed by Major Sectors of the Economy, 2010 Electric Power 29% Residential 16% Commercial 13%

430

Farm scale biogas-fueled engine/induction generator system  

Science Conference Proceedings (OSTI)

A 3.6 liter spark ignition engine coupled to an induction generator produced 21 kW of electric power at 1260 rpm operating on biogas (55% methane, 45% carbon dioxide). Power output increased by 3.55 kW for a 10 rpm increase in shaft speed. Operating at over 16 kW output, power factor was greater than .8 and generator efficiency was greater than 85%. Engine operation is insensitive to small changes in spark advance. Recommended spark advance for a biogas engine is about 45/sup 0/. Minimum brake specific fuel consumption of 270 g CH/sub 4//kWh occurs at a manifold vacuum of 5 cmHg and an equivalence ratio in the range of .6 to .8.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

431

Optimization Online Digest -- August 2013  

E-Print Network (OSTI)

Optimization of running strategies based on anaerobic energy and variations of velocity. Amandine Aftalion, J. Frédéric Bonnans Convergence Analysis of DC ...

432

PalladianDigest Transportation  

E-Print Network (OSTI)

PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

Farritor, Shane

433

Thermal energy from a biogas engine/generator system  

SciTech Connect

A biogas fueled engine/generator equipped with heat recovery apparatus and thermal storage is described. The thermal energy is used to fuel a liquid fuel plant. Heat recovery is quantified and the static and dynamic performance of the thermal storage is described. At 1260 rpm the engine/generator produces 21 kW of electric power and 2500 kJ/min of thermal energy.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

434

Optimization Online Digest -- December 2012  

E-Print Network (OSTI)

Optimization Online Digest — December 2012. Applications ... Solving the integrated airline recovery problem using column-and-row generation. Stephen J  ...

435

Optimization Online Digest -- May 2013  

E-Print Network (OSTI)

Optimization Online Digest — May 2013. Applications — OR and Management Sciences Practical Multi-objective Programming Isaac Siwale Solution of ...

436

Optimization Online Digest -- September 2013  

E-Print Network (OSTI)

Optimization Online Digest — September 2013. Applications — OR and Management Sciences The Vehicle Platooning Problem: Computational Complexity and ...

437

Optimization Online Digest -- March 2013  

E-Print Network (OSTI)

Optimization Online Digest — March 2013. Applications — OR and Management Sciences Solution Methods for the Periodic Petrol Station Replenishment ...

438

Optimization Online Digest -- April 2010  

E-Print Network (OSTI)

Optimization Online Digest — April 2010. Applications — OR and Management Sciences Scheduling Flexible Maintenance Activities subject to Job-Dependent ...

439

“Costo del capitale e valutazione del rischio in investimenti in energie rinnovabili: il caso del biogas”.  

E-Print Network (OSTI)

??La tesi dopo aver discusso i modelli più importanti per la stima del costo del capitale, propone l'analisi industriale degli impianti a biogas. La terza… (more)

Simonetto, Stefano

2012-01-01T23:59:59.000Z

440

TECHNICAL AND ECONOMIC FEASIBILITY OF UPGRADING DAIRY MANURE-DERIVED BIOGAS FOR NATURAL GAS PIPELINE .  

E-Print Network (OSTI)

??The objective of this thesis was to evaluate the current technical and economical feasibility of processing dairy manure-derived biogas to natural gas quality for injection… (more)

Saikkonen, Kelly

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

GHG REDUCTION POTENTIAL OF BIOGAS RESOURCE UTILZATION IN HOLBÆK’S HEATING AND ELECTRICITY SECTOR.  

E-Print Network (OSTI)

??This project is set out to identify the GHG reduction potentials of the 3 identified biogas plants in the Holbæk municipality. The GHG reduction of… (more)

DAO, THI THU HUONG DIU

2013-01-01T23:59:59.000Z

442

Modeling and Experimental Analysis of Biogas in Diesel and Solid Oxide Fuel Cell Generators.  

E-Print Network (OSTI)

??Biogas is a green fuel generally produced by agricultural or household waste, whose range of applications has become wider and wider in recent years. The… (more)

Quesito, Francesco

2012-01-01T23:59:59.000Z

443

Evaluation of Cellruptor pre-treatment on biogas yield from various substrates.  

E-Print Network (OSTI)

?? In this thesis work, Cellruptor pre-treatment was evaluated in order to increase biogas yield. Initially, the effects of residence time (30, 60, 90, 120… (more)

Thiruvenkadam, Selvakumar

2011-01-01T23:59:59.000Z

444

Energikartläggning av biogasanläggningen, Kungsängens gård; Energy mapping at the biogas plant, Kungsängens gård.  

E-Print Network (OSTI)

?? The purpose of this thesis was to make an energy survey and quantify energy flows of individual unit operations associated with the biogas production… (more)

Andersson, Mats

2011-01-01T23:59:59.000Z

445

Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)  

DOE Green Energy (OSTI)

Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

Jalalzadeh-Azar, A.

2009-11-19T23:59:59.000Z

446

Land Use Planning to Promote Marine Conservation of Coral reef Ecosystems in Moorea, French Polynesia  

E-Print Network (OSTI)

Waste into Resource Anaerobic biogas tank Anaerobic pondsor tanks can capture biogas resulting from the degradationprocess. Biogas is produced in many countries for cook-

Timothy Duane

2006-01-01T23:59:59.000Z

447

Bio-Gas Technologies, LLC | Open Energy Information  

Open Energy Info (EERE)

Bio-Gas Technologies, LLC Bio-Gas Technologies, LLC Jump to: navigation, search Name Bio-Gas Technologies, LLC Address 2025 George St. Place Sandusky, Ohio Zip 44870 Sector Biomass, Renewable Energy, Wind energy Product Agriculture;Business and legal services;Consulting; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair;Manufacturing Phone number 419-663-8000 Website http://www.biogastech.com Coordinates 41.4369°, -82.747133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4369,"lon":-82.747133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Investigation of the use of biogas in a gas hob$$hand the feasibility of upgrading it on a household scale.  

E-Print Network (OSTI)

??Incldes abstract. The production and use of biogas on a household scale is becoming more common. The biogas is mainly used for lighting and cooking.… (more)

Trautmann, Christina.

2012-01-01T23:59:59.000Z

449

An EIE/Altener project Co-funded by the EU Commission  

E-Print Network (OSTI)

area was selected in order to have favorable preconditions for anaerobic digestion. In the particular Assessment of a Centralised co-digestion Plant hypothetically sited in Sparta, Laconia Peloponese, Greece, environmental and energy aspects of the biogas production by centralised co-digestion in selected areas of six

450

An EIE/Altener project Co-funded by the EU Commission  

E-Print Network (OSTI)

favorable preconditions for anaerobic digestion. In the particular case of France, the Aveyron, Midi Assessment of a Centralised co-digestion Plant hypothetically sited in Aveyron, Midi Pyrenees France June and energy aspects of the biogas production by centralised co-digestion in selected areas of six EU countries

451

Environmental Assessment for the Methane Energy and Agricultural Development Port of Tillamook Bay Dairy Digester Project Tillamook County, Oregon (01/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 ENVIRONMENTAL ASSESSMENT METHANE ENERGY and AGRICULTURAL DEVELOPMENT PORT of TILLAMOOK BAY DAIRY DIGESTER PROJECT TILLAMOOK COUNTY, OREGON January 2002 U.S. Department of Energy National Energy Technology Laboratory National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes to provide funds for the construction and start-up of a manure digester at the Port of Tillamook Bay (POTB) Industrial Park, Tillamook County, Oregon. If approved, DOE would provide funding to construct this dairy digester that would produce the following marketable products; 295 kW of electric power from biogas, hot water used to maintain the temperature of the digester, and about 30 cubic yards per year of solids for composting.

452

Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

Not Available

2013-01-01T23:59:59.000Z

453

Table of Contents - TMS  

Science Conference Proceedings (OSTI)

Biogas Production from Cassava Waste . ..... Biogas Digester with Built-in Solar Collector .......................................................................................................................1803.

454

VANDERBILTSENIOR DESIGN PROJECTS SCHOOL OF ENGINEERING  

E-Print Network (OSTI)

..............................................................................................9 Biogas to Electricity Conversion.................................................10 Design of Scalable Biogas Digester for the Developing World

Bordenstein, Seth

455

DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY  

SciTech Connect

Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

M.J. McInerney; M. Folmsbee; D. Nagle

2004-05-31T23:59:59.000Z

456

EA-1832: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment Final Environmental Assessment EA-1832: Final Environmental Assessment Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington This project is located in a rural area serving rural residents. It is a proposal to construct a farm based anaerobic digester for processing dairy manure and the production of electrical power in King County. Rainier Biogas LLC plans to install an anaerobic manure digester, a concrete receiving pit, a mechanical building with an attached fiber storage area. USDA Amended Class 1 Envionmental Assessment Attachment Environmental Assessment Adopted by DOE as the Final Environmental Assessment for Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington, DOE/EA-1832 (September 2010) More Documents & Publications

457

Energy Requirement Analysis of Large-Scale Biogas Project in High-Cold Region of China  

Science Conference Proceedings (OSTI)

The annual mean temperature is very low in high cold region of china. The insulating and heating measures on the basis of the energy requirement analysis of biogas project are needed to ensure the normal running of fermentation process. In this paper, ... Keywords: High-cold, Biogas, Fermentation, Heat

Yinsheng Yang; Lili Wang

2012-01-01T23:59:59.000Z

458

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

459

Optimization of Biogas Production with Computational Intelligence A Comparative Study ?  

E-Print Network (OSTI)

Biogas plants are reliable sources of energy based on renewable materials including organic waste. There is a high demand from industry to run these plants efficiently, which leads to a highly complex simulation and optimization problem. A comparison of several algorithms from computational intelligence to solve this problem is presented in this study. The sequential parameter optimization was used to determine improved parameter settings for these algorithms in an automated manner. We demonstrate that genetic algorithm and particle swarm optimization based approaches were outperformed by differential evolution and covariance matrix adaptation evolution strategy. Compared to previously presented results, our approach required only one tenth of the number of function evaluations. 1

Jörg Ziegenhirt; Thomas Bartz-beielstein; Oliver Flasch; Wolfgang Konen; Martin Zaefferer

2010-01-01T23:59:59.000Z

460

Postgraduate Programme Renewable Energy (PPRE) --Biogas Workshop --01. -04. Feb. 2010 --Oldenburg University --venue: TGO, Marie-Curie-Strae 1, 26129 Oldenburg Programme Part 1  

E-Print Network (OSTI)

Postgraduate Programme Renewable Energy (PPRE) -- Biogas Workshop -- 01. - 04. Feb. 2010 -- Oldenburg University -- venue: TGO, Marie-Curie-Stra�e 1, 26129 Oldenburg Programme Part 1: Domestic Biogas Biogas ­ Introduction: Relevance of biogas for Development (JL) 09:45 Coffee Break 10:00 From Waste

Damm, Werner

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network (OSTI)

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

462

Optimization Online Digest -- June 2012  

E-Print Network (OSTI)

Optimization Online Digest — June 2012. Applications — OR and ... A new warmstarting strategy for the primal-dual column generation method. Jacek Gondzio ...

463

Optimization Online Digest -- January 2013  

E-Print Network (OSTI)

Optimization Online Digest — January 2013. Applications — OR and Management Sciences A two-step optimization approach for job shop scheduling problem ...

464

Agricultural Economists  

E-Print Network (OSTI)

Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while offering environmental benefits. Dairy farmer use of anaerobic digesters is not widespread due to various challenges, including high costs and inadequate return. A cooperative approach could address the challenges through improved negotiating strength; technical assistance for digester design, installation, and operation; management and marketing services; and/or financial guidance and assistance. Cooperative efforts may allow milk producers to remain focused on milk production

Carolyn Betts Liebr; K. Charles Ling

2009-01-01T23:59:59.000Z

465

Anaerobic microbial dissolution of lead and production of organic acids  

DOE Patents (OSTI)

The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

Francis, A.J.; Dodge, C.; Chendrayan, K.

1986-02-28T23:59:59.000Z

466

Original article Digestibility, blood levels of nutrients  

E-Print Network (OSTI)

abomasal emptying of fat and probably protein. Apparent faecal nitrogen digestibility was lower ( P5 0 and render them very digestible. digestion / skin response / preruminant calf / soyabean / lupin Résumé

Recanati, Catherine

467

China energy, environment, and climate study: Background issues paper  

E-Print Network (OSTI)

uses of biomass, e.g. , biogas digesters, even allow returnhousehold- and village-scale biogas digesters throughoutincluding industrial-scale biogas cogeneration projects at

Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

2000-01-01T23:59:59.000Z

468

Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant  

Science Conference Proceedings (OSTI)

The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

Maranon, E. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain)]. E-mail: emara@uniovi.es; Castrillon, L. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, Y. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, E. [COGERSA, 33697 Serin, Gijon (Spain)

2006-07-01T23:59:59.000Z

469

Model calibration and validation for OFMSW and sewage sludge co-digestion reactors  

SciTech Connect

Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.

Esposito, G., E-mail: giovanni.esposito@unicas.it [Department of Mechanics, Structures and Environmental Engineering, University of Cassino, via Di Biasio 43, 03043 Cassino (Italy); Frunzo, L., E-mail: luigi.frunzo@unina.it [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples (Italy); Panico, A., E-mail: anpanico@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy); Pirozzi, F., E-mail: francesco.pirozzi@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy)

2011-12-15T23:59:59.000Z

470

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Biopower - Logging - Anaerobic digestion - Heat - Wood,offensive odors. Anaerobic digestion is widely usedstabilization. Anaerobic digestion uses microorganisms to

FAN, XIN

2012-01-01T23:59:59.000Z

471

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

of carbohydrates (anaerobic digestion) and liquefaction ofvia combustion or anaerobic digestion. The geographicmethane produced by anaerobic digestion and biodiesel

Lu, Xiaoming

2012-01-01T23:59:59.000Z

472

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

from biomass using anaerobic digestion or fermentativegas electricity anaerobic digestion electricity hydrogenproduced from anaerobic digestion. Landfill gas electricity

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

473

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

Commission. (2008). "Anaerobic Digestion." Retrieved AugustRENEWABLE / BIOMASS / ANAEROBIC DIGESTION /. CaliforniaResearch: Biomass - Anaerobic Digestion." Retrieved December

Lekov, Alex

2010-01-01T23:59:59.000Z

474

O'Brien Biogas IV LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

O'Brien Biogas IV LLC Biomass Facility O'Brien Biogas IV LLC Biomass Facility Jump to: navigation, search Name O'Brien Biogas IV LLC Biomass Facility Facility O'Brien Biogas IV LLC Sector Biomass Facility Type Landfill Gas Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Appropriate technology for rural India to produce biogas from vegetative wastes  

Science Conference Proceedings (OSTI)

Most of the huge amount (91%) of energy in rural India is used as domestic fuel. Forest wood constitutes half of this energy, which could be saved by providing an alternative kitchen fuel. Biogas provides the only viable alternative. While the basics of biogas production have been known for several decades, serious research efforts are required to evolve appropriate technology of biogas production for Indian villages. It is easy to design devices which work on the economy of large scale; it is a formidable task to achieve the same at down-to-earth level of economy. Considering the vast majority of small farmers, a cheap, manual, continuous fermentation straw gas plant is likely to offer appropriate technology. Efforts have continued since 1965 to develop such a plant: the latest model is quite competitive in all respects with the KVIC biogas plant, except for its stirring system. Efforts are being made to develop a suitable stirring system.

Goswami, K.P. (College of Agriculture, Gujarat Agricultural Univ., Anand (IN))

1989-01-01T23:59:59.000Z

476

Exploitation of biogas power plant—Clean Development Mechanism project, Vizelj, Serbia  

Science Conference Proceedings (OSTI)

This case study of biogas power plant is designed in accordance with the existing energy policy that recognizes producers of energy from renewable sources as producers with privileged status and guarantees the purchase of energy at subsidized prices. The investor company revised its own energy policy and aligned it with the priorities of sustainable energypolicy of Serbia. The paper presents an analysis of biogas power plant output (electrical and thermal energy)

Mirjana Golušin; Siniša Dodi?; Damjan Vu?urovi?; Aleksandar Ostoji?; Larisa Jovanovi?

2011-01-01T23:59:59.000Z

477

Economic evaluation of biogas as energy and fertilizer in rural northeast Thailand  

SciTech Connect

In the aftermath of the 1974 oil crisis, Thailand faces a complex problem: agriculture is characterized by low productivity, and an increasing burden is now being placed on national forest reserves as the primary source of fuel. The nation is forced to choose: land for forests and fuel, or land for agriculture and food. In either case, current levels of land use are having serious environmental consequences. Biogas has been proposed as a possible remedy to alleviate these problems. In this study, three sizes of biogas plants are studied to facilitate cost estimates, and two Thai villages provide case studies of actual applications. Then a stratified random sample of 60 households is selected from the two villages, based on economic class groupings. The central question is to inquire whether biogas is feasible and profitable for villages with differing characteristics, for different income groups within those villages, and whether technological viability is affected by plant size. The results show that there are increasing returns to scale for larger biogas plants; that the poorer village obtains more benefits per unit of output than the more modernized village; that the poorest households within each village have the highest potential gains from biogas. It is recommended that Thailand implement biogas technology in those regions and for those villages where benefit-cost analysis demonstrates its economic feasibility.

Sombuntham, S.

1982-01-01T23:59:59.000Z

478

DIGESTER FOR HIGH SOLIDS WASTE - Energy Innovation Portal  

... reactor is fluidically connected to the leachate storage tank to cycle the leachate in a fixed film environment for biogas production from solubilized organic ...

479

AMENDED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

x x 1 AMENDED CLASS 1 ENVIRONMENTAL ASSESSMENT ATTACHMENT SEPTEMBER 1, 2010 RAINIER BIOGAS LLC COMMUNITY ANAEROBIC MANURE DIGESTER 2 PROJECT DESCRIPTION Applicant's Name: Rainier Biogas LLC 20206 436 th St. Enumclaw, WA 98022 Project Title, Size, or Capacity: Anaerobic Digester to be located in Enumclaw, WA. Project Number/Case Number: 125029042 Location: The Rainier Biogas LLC site will be situated on property located at 43218 208 th Ave. SE, Enumclaw, WA 98022 Legal Description: Located on a tract of land identified as parcel ID 202006-9001 Project Description: This project is located in a rural area serving rural residents. It is a proposal to construct a farm based anaerobic digester for processing dairy manure

480

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

Digest Digest Jump to: navigation, search Name Biofuels Digest Address 801 Brickell Avenue Suite 900 Place Miami, Florida Zip 33131 Sector Services Product Information Year founded 2007 Number of employees 1-10 Phone number 786-393-8530 Website http://www.biofuelsdigest.com Coordinates 25.765653°, -80.190405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.765653,"lon":-80.190405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "biogas anaerobic digester" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DIGESTER GAS - FUEL CELL - PROJECT  

DOE Green Energy (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

482

A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau, F. Boret, O. Tretyakov, F. Bline, M. Balynska, R. Girault,  

E-Print Network (OSTI)

A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau, F 2012 (117) A GIS-BASED APPROACH FOR OPTIMIZING THE DEVELOPMENT OF COLLECTIVE BIOGAS PLANTS T. Bioteau of potential development of collective biogas plants in France, the use of Geographic Information Systems (GIS

483

Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany  

Science Conference Proceedings (OSTI)

The location of first generation processing plants for biogas using bulky inputs is a prominent example of locational decisions of plants that face high per unit transport costs of feedstock and simultaneously depend to a large extent on feedstock availability. ... Keywords: Biogas, Biomass transportation, Competitive facility location, Modelling, Transport costs

Ruth Delzeit; Wolfgang Britz; Karin Holm-Müller

2012-06-01T23:59:59.000Z

484

An Expert System to Estimate the Capacity of Harvesting Energy from Biogas and its Capacity in TRNC  

Science Conference Proceedings (OSTI)

In TRNC, the electricity is been obtained from fuel oil, which is most expensive production in the world. The aim of this research is to produce electricity from biogas to reduce the cost of electricity in TRNC. Our researches proved that the potential ... Keywords: Expert system, Biogas, Capacity determination

Hasan H. Onder

2009-12-01T23:59:59.000Z

485

A Case Study to Bottle the Biogas in Cylinders as Source of Power for Rural Industries Development in Pakistan  

E-Print Network (OSTI)

Abstract: Pakistan is one of the developing countries with very low energy consumption, correspondingly low standard of living and high population growth. The country is trying to improve its living standards by increasing its energy consumption and establishing appropriate industries. It has immense hydropower potential, which is almost untapped at the present time. Employment generation and poverty alleviation are the two main issues related with rural development. These issues can be tackled by rural industrialization using local resources and appropriate technologies. However, sufficient number of industries can not be set up in rural areas so far due to scarcity of energy supply i.e. electricity, diesel etc. Biogas, a renewable fuel may be able to fill the gap in energy availability in the rural areas. Biogas can supply energy near to biogas plant which makes it hindrance in its wide spread application and therefore mobility of biogas is must, which is achieved by bottling of biogas. Here a model is conceptualized to bottle the biogas in cylinders and then use it to power the rural industries. It is found that use of bottled biogas can save diesel of the worth US $ 147 in 12 hours and also generate employment for 12 persons. Key words: Employment rural industries biogas bottling

Syed Zafar Ilyas

2006-01-01T23:59:59.000Z

486

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

Sludge treatment to increase biogas production. Available atal. , no date) Use of biogas from anaerobic sludge digestionsludge are mass reduction, biogas production, and improved

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

487

Method to Produce Highly Digestible, Pretreated ...  

Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, ...

488

Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis  

Science Conference Proceedings (OSTI)

This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as a basis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize-biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures. (author)

Graebig, Markus; Fenner, Richard [Centre for Sustainable Development, Department of Engineering, University of Cambridge (United Kingdom); Bringezu, Stefan [Wuppertal Institute for Climate, Environment and Energy. P.B. 100480, 42004 Wuppertal (Germany)

2010-07-15T23:59:59.000Z

489

Siting Requirements for Anaerobic Lagoons (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute provides regulations for required distances between anaerobic lagoons and residences or public use areas. The separation distances may be waived or reduced with the agreement of the...

490

H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms  

SciTech Connect

The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs,