Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A New Biofuels Technology Blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of...

2

Biofuels technology blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

3

A New Biofuels Technology Blooms in Iowa  

ScienceCinema (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don;

2013-05-29T23:59:59.000Z

4

A New Biofuels Technology Blooms in Iowa  

SciTech Connect (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don

2010-01-01T23:59:59.000Z

5

Video: A New Biofuels Technology Blooms in Iowa  

Broader source: Energy.gov [DOE]

Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

6

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

7

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

8

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

9

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

10

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network [OSTI]

@ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

11

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

12

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

13

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

14

Conversion Technologies for Advanced Biofuels - Bio-Oil Production...  

Energy Savers [EERE]

Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

15

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement...

16

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network [OSTI]

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

17

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

18

Biomass and Biofuels: Technology and Economic Overview (Presentation)  

SciTech Connect (OSTI)

Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

Aden, A

2007-05-23T23:59:59.000Z

19

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network [OSTI]

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

20

Technology Roadmap Biofuels for Transport  

E-Print Network [OSTI]

that we are now on; low-carbon energy technologies will play a crucial role in the energy revolution

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Invitation/Program Technology Watch Day on Future Biofuels  

E-Print Network [OSTI]

Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

22

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

23

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Energy Savers [EERE]

Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

24

Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

25

A New Biofuels Technology Blooms in Iowa | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishing forAAEIA'sNewA New

26

Workshop on Conversion Technologies for Advanced Biofuels - Bio...  

Broader source: Energy.gov (indexed) [DOE]

Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

27

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network [OSTI]

the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

28

Biofuels  

ScienceCinema (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-23T23:59:59.000Z

29

Biofuels  

SciTech Connect (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-02T23:59:59.000Z

30

United Nations Conference on Trade and Development Biofuel production technologies  

E-Print Network [OSTI]

................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

31

Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Site environmental protection --Site waste management -Site sustainability --Site pollution prevention Operations -Business diversity -Technology transfer -Procurement -Human...

32

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

33

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network [OSTI]

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

34

Biofuels  

SciTech Connect (OSTI)

As David Rotman states in his article on biofuels, the conversion of biomass to liquid fuel is energy intensive--just like the conversion of coal or any other solid fuel to liquid fuel. That implies that the quantity of liquid fuel from biomass and the carbon dioxide released in the production process strongly depend upon the energy source used in the conversion process. Each year, the United States could produce about 1.3 billion tons of renewable biomass for use as fuel. Burning it would release about as much energy as burning 10 million barrels of diesel fuel per day. If converted to ethanol, the biomass would have the energy value of about five million barrels of diesel fuel per day. The remainder of the energy would be used by the biomass-to-liquids conversion plant. If a nuclear reactor or other energy source provides the energy for the biomass-to-liquids plants, the equivalent of over 12 million barrels of diesel fuel can be produced per day. If our goal is to end oil imports and avoid greenhouse-gas releases, we must combine biomass and nuclear energy to maximize biofuels production.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

35

World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)  

SciTech Connect (OSTI)

Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

Bain, R. L.

2007-12-01T23:59:59.000Z

36

III. Commercial viability of second generation biofuel technology27  

E-Print Network [OSTI]

bioenergy28 production in 2005 was less that 1 EJ and global oil consumption in 2005 was 190 EJ. Under to introduce a large cellulosic biofuels industry without dramatically disturbing agricultural markets. If unrestricted bioenergy trade is allowed, we project that the main biofuels producers would be Africa, Latin

37

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

38

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

39

How do firms promote stability in an evolving technological system? : The case of second generation biofuels in Norway.  

E-Print Network [OSTI]

??This thesis aims to increase the understanding of the formative phase of an evolving technological innovation system (TIS) related to second generation (2G) biofuels in… (more)

Blomberg, Line Elisabeth

2008-01-01T23:59:59.000Z

40

PNNL delivers expertise, technology to biofuels start-up, InEnTec  

ScienceCinema (OSTI)

Initially through its Entrepreneurial Leave of Absence Program, PNNL gives biofuels innovators a start in opening up a new business based on technology developed for incinerating waste on the Hanford Site. Today, the companies Plasma Enhanced Melters are in operation around the world converting organic waste into valuable, clean fuels.

None

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)  

ScienceCinema (OSTI)

Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

Khanna, Madhu

2011-04-26T23:59:59.000Z

42

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about biofuel impacts...

43

Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

also supply a source of renewable jet fuel required by recent European Union aviation emission regulations. "We plan to move quickly to make a bolt-on technology easily accessible...

44

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect (OSTI)

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

45

Can feedstock production for biofuels be sustainable in California?  

E-Print Network [OSTI]

tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

46

E-Print Network 3.0 - advancing biofuels technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crops Federal Initiative Accomplishments Summary: Lignocellulosic Biofuels from New Bioenergy Crops Federal Initiative Accomplishments 2009 Lead... , is developing a...

47

Biofuels Market Opportunities  

Broader source: Energy.gov [DOE]

Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

48

E-Print Network 3.0 - assessing biofuel crop Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541040990370.pdf 12;BiofuelsBiofuels: Technology, Markets and Policies: Technology, Markets... and Policies Debate on biofuels needs to distiguish between - ... Source:...

49

Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to...

50

biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

51

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

52

Algal Biofuels Strategy Workshop - Fall Event | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fall Event Algal Biofuels Strategy Workshop - Fall Event The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels...

53

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

54

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

Massachusetts at Amherst, University of

55

Vehicle Technologies Office Merit Review 2014: Performance of...  

Broader source: Energy.gov (indexed) [DOE]

Performance of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen...

56

Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

Massachusetts at Amherst, University of

57

EMSL - biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

58

World Biofuels Study  

SciTech Connect (OSTI)

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01T23:59:59.000Z

59

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

60

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - algal biofuels ponds Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 3 Introduction slide 2 Biofuels and Algae Markets, Systems, Summary: of Algal Biofuels and Products Phase 1: 2010 For High Value...

62

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

63

The Impact of Biofuel Mandates on Land Use Suhail Ahmad  

E-Print Network [OSTI]

The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

64

Unintended Environmental Consequences of a Global Biofuels Program  

E-Print Network [OSTI]

Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

Melillo, Jerry M.

65

Algal Biofuel Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeas

66

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

67

Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

68

Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report  

SciTech Connect (OSTI)

The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

2011-05-15T23:59:59.000Z

69

Bioproducts: Enabling Biofuels and Growing the Bioeconomy  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Katy Christiansen and Nichole Fitzgerald, AAAS Fellows, Bioenergy Technologies Office, U.S. Department of Energy

70

Biofuels Information Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

71

Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum  

E-Print Network [OSTI]

9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

72

Biofuels: A Solution for Climate Change  

SciTech Connect (OSTI)

Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

Woodward, S.

1999-10-04T23:59:59.000Z

73

Biofuels: Project summaries  

SciTech Connect (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

74

Biofuels and Transportation  

E-Print Network [OSTI]

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

75

of Biofuels Sustainable Feedstocks  

E-Print Network [OSTI]

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

76

Analysis of advanced biofuels.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

77

DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise  

Broader source: Energy.gov [DOE]

Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

78

Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels  

E-Print Network [OSTI]

Biomass from Cyanobacteria:Opportunities for the Proposed Algae Biotechnology and Biofuels CLOSED DUE TO ALGAE BLOOM AND GENERAL ADVISORY REMAINS FOR HILLS CREEK RESERVOIR August 2, 2002 Larison. For the entire Reservoir, one should avoid high con centrations of blue-green algae both on the water surface

Tullos, Desiree

79

Biofuel Economics  

SciTech Connect (OSTI)

As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.

Klein-Marcuschamer, Daniel; Holmes, Brad; Simmons, Blake; Blanch, Harvey

2011-07-15T23:59:59.000Z

80

Biofuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Biomass Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels....

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Economics of Current and Future Biofuels  

SciTech Connect (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

82

SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production  

E-Print Network [OSTI]

REVIEW AND SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either for biofuel productivity and resilience. We argue that a community engineering approach that manages

83

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1  

E-Print Network [OSTI]

NextSTEPS White Paper: Four-Page Summary Three Routes Forward for Biofuels1: Incremental forward for biofuels and their associated technologies. We seek to: · Highlight policy incentives that encourage certain types of biofuel innovation. · Spotlight the distinctions between the routes in terms

California at Davis, University of

84

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford and Paul Westerhoff  

E-Print Network [OSTI]

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford, BioresourceTechnology, 102(2), 1697-1703. Biomass Composition Biofuel Processing Anion Exchange Microwave depletion indicate that future energy must come from biofuel. Biodiesel from photosynthetic microorganisms

Hall, Sharon J.

85

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainbility and Competitiveness Evolution Technologies can Provide Bespoke Industrial Enzymes: Application to Biofuels L. Fourage1 , J: Application to Biofuels -- Enzymatic hydrolysis of lignocellulose is one of the major bottlenecks

Paris-Sud XI, Université de

86

Modeling plankton dynamics during a Prymnesium parvum bloom: The importance of inflows and allelopathic relationships on bloom dynamics  

E-Print Network [OSTI]

Harmful algal blooms' global amplification has driven research on growth characteristics and instigating mechanisms. These blooms prosper under diverse environmental conditions, creating challenges identifying bloom initiation. The haptophyte...

Hewitt, Natalie Case

2012-07-16T23:59:59.000Z

87

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network [OSTI]

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

88

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

89

Cassava, a potential biofuel crop in China  

E-Print Network [OSTI]

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

90

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

91

Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

Not Available

2010-10-01T23:59:59.000Z

92

Support to Biofuels in Latin America and the Caribbean  

Broader source: Energy.gov [DOE]

Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho, Lead Energy Specialist, Inter-American Development Bank

93

NREL: Energy Analysis - Aaron Bloom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of Aaron Bloom

94

National Algal Biofuels Technology Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA CNathan Dexter About

95

Sandia's Biofuels Program  

SciTech Connect (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-22T23:59:59.000Z

96

The President's Biofuels Initiative  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

97

Sandia's Biofuels Program  

ScienceCinema (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-24T23:59:59.000Z

98

Wind versus Biofuels for Addressing Climate, Health, and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29T23:59:59.000Z

99

Wind vs. Biofuels: Addressing Climate, Health and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Professor Mark Jacobson

2007-01-29T23:59:59.000Z

100

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bioproducts and Biofuels – Growing Together!  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

102

BioFuels Atlas Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioFuels Atlas Kristi Moriarty NREL May 12, 2011 NATIONAL RENEWABLE ENERGY LABORATORY Introduction * BioFuels Atlas is a first-pass visualization tool that allows users to explore...

103

BioFuels Atlas (Presentation)  

SciTech Connect (OSTI)

Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

Moriarty, K.

2011-02-01T23:59:59.000Z

104

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

105

Thermal blooming experiments. Final report  

SciTech Connect (OSTI)

The goals of this program were to design an experiment for determining the effect of stimulated thermal Brillouin scattering (STBS) on single pulse laser propagation and to establish the ability of both a wave optics code and of linearized theory to predict the results of the experiment accurately. The second goal is particularly important because no experimental verification of analytical tools currently in use for single pulse high power laser propagation is available. When a high power laser propagates through the atmosphere, a small fraction of the laser energy is absorbed, creating acoustic waves that may move a significant distance transverse to the propagation direction during the pulse. Such waves lead to the well-known t{sup 3}-blooming refractive-index variations. When such blooming is sufficiently strong, the induced refractive-index alters the intensity profile of the beam farther along the propagation path. This altered intensity profile induces a somewhat different refractive-index profile that may reinforce the path-integrated t{sup 3} blooming. This self-enhancement may be called near-forward stimulated thermal Brillouin scattering (STBS). The design effort described here was carried out much like the proposed experimental program, which calls for the interaction of experimental work with analytical theory and with a wave optics code, A linearized theory of STBS was developed. Results from this theory were compared to output from a wave optics propagation code for several well defined sets of operating conditions. Once good agreement between theory and code simulation was obtained for these test conditions, the theory was used to define and operating regime for a laboratory scale thermal blooming experiment that would provide information relevant to high power laser propagation. A conceptual design for this experiment was then generated and, finally, and experimental set-up, including diagnostics, was proposed.

Not Available

1990-05-01T23:59:59.000Z

106

Danielle Goldtooth Paper #6 -Biofuels  

E-Print Network [OSTI]

Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

Lega, Joceline

107

Biofuels in Oregon and Washington  

E-Print Network [OSTI]

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

108

The Ecological Impact of Biofuels  

E-Print Network [OSTI]

The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

Kammen, Daniel M.

109

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

110

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

111

Biofuel impacts on water.  

SciTech Connect (OSTI)

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

2011-01-01T23:59:59.000Z

112

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network [OSTI]

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

113

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

SciTech Connect (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

114

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

115

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

116

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

117

Supply Chain Sustainability Analysis of Three Biofuel Pathways  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

2013-11-01T23:59:59.000Z

118

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

119

Complexity and Systems Biology of Microbial Biofuels  

E-Print Network [OSTI]

Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

Rand, David

120

Mathematical modelling and simulation of biofuel cells.  

E-Print Network [OSTI]

??Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in… (more)

Osman, Mohamad Hussein

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

122

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

123

BioFuels Atlas Presentation  

Broader source: Energy.gov [DOE]

Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

124

Government policy and corporate strategy in managing risk and uncertainty on technology deployment and development in the regulated market in the UK - a study of biofuels   

E-Print Network [OSTI]

Technological change when a large social technology is under the processes of deployment and development are complex and uncertain. In this dynamic context, risks and uncertainties (R&U) incurred are unavoidable, which ...

Chew, Boon Cheong

2012-06-26T23:59:59.000Z

125

Slab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung,a  

E-Print Network [OSTI]

transport fuel demands with current biodiesel production technology from these feedstocks would require moreSlab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung are a promising feedstock for sustainable biofuel production. At present, however, there are a number

Erickson, David

126

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

127

Biofuels in Minnesota: A Success Story  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story August 5, 2010 Ralph Groschen, Sr. Ag Marketing Specialist Christina Connelly, Biofuels Manager 1980s set the stage MN had lowe corn...

128

Overview of Governor's Biofuels Coalition and Updates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Governor's Biofuels Coalition and Updates Stacey Simms Governor's Energy Office Biofuels and Local Fuels Program Colorado will have the infrastructure on line when advanced...

129

Researching profitable and sustainable biofuels | Department...  

Broader source: Energy.gov (indexed) [DOE]

Researching profitable and sustainable biofuels Researching profitable and sustainable biofuels November 2, 2010 - 2:00pm Addthis Lindsay Gsell Great Lakes Bioenergy Research...

130

Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

131

The President's Biofuels Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

132

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

133

Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected from - Biofuels) Jump

134

Algal Biofuels Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal Biofuels

135

Biofuels | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm assembly BiofilmBiofuels

136

NREL: Learning - Biofuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuels Basics This

137

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latent curingBiofuels

138

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the Economic

139

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect (OSTI)

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-08-19T23:59:59.000Z

140

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect (OSTI)

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets  

E-Print Network [OSTI]

May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

Noble, James S.

142

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and  

E-Print Network [OSTI]

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

Hill, Wendell T.

143

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

144

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

145

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network [OSTI]

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

146

Socio-economic dynamics of biofuel  

E-Print Network [OSTI]

i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

147

LIHD biofuels: toward a sustainable future  

E-Print Network [OSTI]

LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

Palmer, Michael W.

148

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

149

Nebraska shows potential to produce biofuel crops  

Broader source: Energy.gov [DOE]

Researchers are searching for ways to change how American farmers and consumers think about biofuels.

150

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

151

Can biofuels justify current transport policies?  

E-Print Network [OSTI]

with increasing GHG (greenhouse gas) intensity (tar sand, oil shale, etc.) · Biofuels increased consumption

152

Graz University of Technology International Sustainability Partnerships  

E-Print Network [OSTI]

. This includes not only technological development (with companies pioneering innovative solutions for biofuel technology providers for renewable energy under the umbrella of ECO World Styria which encompasses 150

153

Energy To Grow We are leveraging technology to develop the  

E-Print Network [OSTI]

technology officer. #12;Biofuels ­ fuels produced from renewable biomass resources ­ encompass biodiesel#12;Energy To Grow We are leveraging technology to develop the ultimate biofuel. by Stacey Simon Biofuels business unit within Chevron Technology Ventures LLC (CTV), in partnership with Global Downstream

National Oceanography Centre, Southampton

154

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

155

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

Yu, Wei

2014-01-01T23:59:59.000Z

156

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

Fortman, J.L.

2011-01-01T23:59:59.000Z

157

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

158

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

159

Biofuels in Minnesota: A Success Story | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story Biofuels in Minnesota: A Success Story This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the...

160

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

162

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

163

Genetic and biotechnological approaches for biofuel crop improvement.  

E-Print Network [OSTI]

Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

Vega-Sánchez, Miguel E; Ronald, Pamela C

2010-01-01T23:59:59.000Z

164

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

165

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

Dunlop, Mary

2012-01-01T23:59:59.000Z

166

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

167

Algal Biofuels Strategy Spring Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

168

International Trade of Biofuels (Brochure)  

SciTech Connect (OSTI)

In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

Not Available

2013-05-01T23:59:59.000Z

169

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development  

E-Print Network [OSTI]

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

Minnesota, University of

170

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

171

Making Algal Biofuel Production More Efficient, Less Expensive  

Office of Energy Efficiency and Renewable Energy (EERE)

Tiny algae can play a big role in tackling America's energy challenges. Recent scientific breakthroughs and projects, funded by the Energy Department’s Bioenergy Technologies Office, have resulted in a number of advancements that are helping make algal biofuel more cost competitive and widely available.

172

Impact of cetane improvers on ignition delay times of several alternative biofuels  

SciTech Connect (OSTI)

Biofuel technology could be approaching one of its greatest development milestones--being accepted as a standard item on new vehicle technology. In particular, the Partnership for a New Generation Vehicle (PNGV) lists the evaluation and possible utilization of alternative fuels as one of the technological focuses to be evaluated by the year 2000. Synergy 2010, Ford`s newest Taurus model concept car, includes the use of a 20:1 compression-ratio, compression-ignition (CI) engine as the preferred engine. The preferred fuels include diesel, gasoline, and methanol. Cetane improvers make methanol fuel practical with a 20:1 compression ratio engine such as that proposed with Synergy 2010 and are a key technology for biofuel success. CI engines have a high probability of becoming the preferred engines for PNGV vehicles since CI engines are 20% to 30% more efficient than spark-ignition engines. In addition, CI engines allow a wider range of viable biofuels to be used. This paper is on the impact of cetane improvers on methanol and other biofuels. Fuels are evaluated through ignition delay time studies in a constant volume combustor. Ignition delay times measured at several temperatures and with biofuels of different compositions provide much more data than conventional cetane numbers and provide an understanding which is essential to engineer biofuels for the best possible performance in new engines. Ignition delay times are reported for several biofuels including mixtures containing biodiesel, methanol, and syrup.

Suppes, G.J. [Univ. of Kansas, Lawrence, KS (United States); Bryan, M.; Chen, Z. [and others

1996-12-31T23:59:59.000Z

173

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

174

Biofuels Impact on DPF Durability  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

175

Introduction slide 2 Biofuels and Algae Markets, Systems,  

E-Print Network [OSTI]

Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

176

From Biomass to Biofuels: NREL Leads the Way  

SciTech Connect (OSTI)

This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

Not Available

2006-08-01T23:59:59.000Z

177

Methods for the economical production of biofuel from biomass  

DOE Patents [OSTI]

Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

2013-04-30T23:59:59.000Z

178

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network [OSTI]

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

179

BETO Announces June Webinar: Algal Biofuels Consortium Releases...  

Broader source: Energy.gov (indexed) [DOE]

June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

180

Brazil’s Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term?  

Broader source: Energy.gov [DOE]

Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Brazil’s Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Artur Milanez, Manager of Biofuels Department, Brazilian Development Bank

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network [OSTI]

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

182

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these  

E-Print Network [OSTI]

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

Hill, Wendell T.

183

Harmful Algal Blooms & Muck What's the Difference?  

E-Print Network [OSTI]

. Microcystis blooms have been found in western Lake Erie, Saginaw Bay, western Lake Michigan, and inland type. However, both represent significantly different species. Unlike green algae such as Cladophora, blue-green algae is technically not an algae, but is a bacteria known as cyanobacteria

184

Burgess Shale: Cambrian Explosion in Full Bloom  

E-Print Network [OSTI]

4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

Hagadorn, Whitey

185

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

186

Legislating Biofuels in the United States (Presentation)  

SciTech Connect (OSTI)

Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

Clark, W.

2008-07-01T23:59:59.000Z

187

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

188

Algal Biofuels Research Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

189

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

Broader source: Energy.gov [DOE]

For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

190

Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges  

SciTech Connect (OSTI)

The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

2008-02-28T23:59:59.000Z

191

Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels  

E-Print Network [OSTI]

thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

Achyuthan, Komandoor

2014-01-01T23:59:59.000Z

192

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

193

School of Engineering and Science Algae Biofuels  

E-Print Network [OSTI]

School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

Fisher, Frank

194

Biofuels and bio-products derived from  

E-Print Network [OSTI]

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

195

Liquid Biofuels Strategies and Policies in selected  

E-Print Network [OSTI]

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

196

Biofuels and indirect land use change  

E-Print Network [OSTI]

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

197

How sustainable are current transport biofuels?  

E-Print Network [OSTI]

How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

198

Legislating Biofuels in the United States  

E-Print Network [OSTI]

Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

199

Oil To Biofuels Case Study Objectives  

E-Print Network [OSTI]

Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

Auerbach, Scott M.

200

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production  

E-Print Network [OSTI]

regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

Ngan, Chew Yee

2014-01-01T23:59:59.000Z

202

Estimates of US biofuels consumption, 1990  

SciTech Connect (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

203

Shipboard Fuel Cell Biofuel Introduction  

E-Print Network [OSTI]

Update FuelCell Energy (Frank Wolak) 1230 PNNL SOFC Power Systems Update PNNL (Larry Chick) 1300 PEM Lessons Learned · System Generic Concepts (PEM, HT PEM, MCFC, SOFC) · Shipboard Fuel Cell CharacteristicsShipboard Fuel Cell ­ Biofuel Introduction: This program will demonstrate a shipboard fuel cell

204

Conversion Technologies for Advanced Biofuels - Carbohydrates Production  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activities on DOE3-1Program

205

Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activities on DOE3-1ProgramDepartment of

206

Biomass and Biofuels Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien,Biological Imaging by Soft

207

Cross-cutting Technologies for Advanced Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment|Criticality Safety Criticality

208

Algae Biofuels Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|

209

Algal Biofuel Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|atp3.org 1 John A. McGowen PhD, PMP

210

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s)Department of Energy1

211

Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading  

E-Print Network [OSTI]

]. However, studies on suitability of various biomass feedstocks and development of efficient and carbon-neutral technologies for biomass-to- biofuel conversion may be required to meet this demand. Biomass for fuel production ranges from food and oil crops...

Maguyon, Monet

2013-12-02T23:59:59.000Z

212

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

213

Biological research survey for the efficient conversion of biomass to biofuels.  

SciTech Connect (OSTI)

The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

2007-01-01T23:59:59.000Z

214

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF  

E-Print Network [OSTI]

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

215

Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms  

SciTech Connect (OSTI)

Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

2014-03-30T23:59:59.000Z

216

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

217

#LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT  

Broader source: Energy.gov [DOE]

Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

218

Biofuels Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel

219

Heartland Biofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A Permit ApplicationHeartland Biofuel Jump

220

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTIONBioethanolBiofuels

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cobalt Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogix IncCobalt Biofuels

222

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

223

Engineering of bacterial methyl ketone synthesis for biofuels  

E-Print Network [OSTI]

ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

Goh, Ee-Been

2012-01-01T23:59:59.000Z

224

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

225

NextSTEPS White Paper: Three Routes Forward for Biofuels  

E-Print Network [OSTI]

NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

California at Davis, University of

226

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

227

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

Fortman, J. L.

2010-01-01T23:59:59.000Z

228

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network [OSTI]

sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

229

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

Yu, Wei

2014-01-01T23:59:59.000Z

230

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

231

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

Dunlop, Mary

2012-01-01T23:59:59.000Z

232

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

233

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

Yu, Wei

2014-01-01T23:59:59.000Z

234

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

235

Assessing the environmental sustainability of biofuels  

E-Print Network [OSTI]

Biosolids, such as woodpellets or forestry waste, and biogas, produced by anaerobic 44 digestion of biomass, are used primarily for electricity generation and heating, whereas 45 liquid biofuels provide drop-in fuels that can be used directly... /supply have led to preferred practices. 49 Interestingly, within the EU, the current laws controlling the production and use of liquid 50 biofuels are more stringent than for solid biomass and biogas. Liquid biofuels are regulated 51 both by the EU Fuel...

Kazamia, Elena; Smith, Alison G.

2014-09-30T23:59:59.000Z

236

Pathways for Algal Biofuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology to Market »PathPathways

237

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

238

Certification and Regulation of Trade in Biofuels.  

E-Print Network [OSTI]

??The recent increase in biofuel production and trade has raised concerns about environmental and other impacts, and has prompted some governments to initiate measures to… (more)

Thomson, Vivien

2012-01-01T23:59:59.000Z

239

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

240

Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine  

SciTech Connect (OSTI)

PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - algal blooms connecting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is Lake St. Clair. The Zebra Mussel Connection: Harmful Algal Blooms... Bay and Lake Erie. Saginaw Bay has experienced blooms most summers since 1992. Lake Erie has......

242

E-Print Network 3.0 - aeruginosa bloom collected Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 3 Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data Summary: aeruginosa blooms have...

243

E-Print Network 3.0 - aeruginosa natural bloom Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology 4 Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data Summary: aeruginosa blooms have...

244

Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

245

California: Advanced 'Drop-In' Biofuels Power the Navy's Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

246

Fueling the Navy's Great Green Fleet with Advanced Biofuels ...  

Broader source: Energy.gov (indexed) [DOE]

Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes...

247

Sustainability Opportunities and Challenges of the Biofuels Industry.  

E-Print Network [OSTI]

??Liquid biofuels are being produced to displace fossil fuels for transportation, with bioethanol and biodiesel being the primary biofuels produced for this purpose in the… (more)

França, Cesar; Maddigan, Kate

2005-01-01T23:59:59.000Z

248

Algal Biofuels Strategy: Report on Workshop Results and Recent...  

Energy Savers [EERE]

Algal Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply...

249

California: Cutting-Edge Biofuels Research and Entrepreneurship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

250

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

251

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full...

252

Biofuels and Barbecue Chips: Small Business Develops Process...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

253

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing...

254

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

255

Nanotechnology and algae biofuels exhibits open July 26 at the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

256

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Broader source: Energy.gov (indexed) [DOE]

Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the...

257

Microbial who-done-it for biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

258

Growing Energy - How Biofuels Can Help End America's Oil Dependence...  

Broader source: Energy.gov (indexed) [DOE]

Growing Energy - How Biofuels Can Help End America's Oil Dependence Growing Energy - How Biofuels Can Help End America's Oil Dependence America's oil dependence threatens our...

259

Advanced and Cellulosic Biofuels and Biorefineries: State of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

260

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

Fortman, J.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

262

Seeing Toxic Algae Before it Blooms By Steve Ress  

E-Print Network [OSTI]

Seeing Toxic Algae Before it Blooms By Steve Ress Researchers at the University of Nebraska of toxic blue-green algae before the bacteria that produce it can grow into a full-scale bloom. Now UNL and monitor in real-time, the water-borne agents that can cause toxic blue- green algae to flourish and become

Nebraska-Lincoln, University of

263

Toxic Algal Blooms in a Changing Coastal Ocean  

E-Print Network [OSTI]

warming Royal Society, 2005 How will global change affect harmful algal blooms and toxin production? #12 2011, Mendocino county, CA Gonyaulax spinifera #12;Ocean acidification Global;Warming favors dinoflagellate blooms Cloern et al. 2005, GRL 32 #12;Dinoflagellate range extensions

Rohs, Remo

264

New membranes could speed the biofuels conversion process and reduce cost  

ScienceCinema (OSTI)

ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

Hu, Michael

2014-08-06T23:59:59.000Z

265

New membranes could speed the biofuels conversion process and reduce cost  

SciTech Connect (OSTI)

ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

Hu, Michael

2014-07-23T23:59:59.000Z

266

Agave: a biofuel feedstock for arid and semi-arid environments  

SciTech Connect (OSTI)

Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

2011-05-31T23:59:59.000Z

267

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

268

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network [OSTI]

Biodiesel Ethanol & Biodiesel No known biofuels program North America: RFS2 & LCFS implementation Growth for Ethanol and at a smaller scale for Biodiesel Source: Hart Energy's Global Biofuels Center Supply Total Demand Ethanol Biodiesel MillionLiters 2010 2015 2020 · Ethanol demand represents 73

269

Producing biofuels using polyketide synthases  

DOE Patents [OSTI]

The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-04-16T23:59:59.000Z

270

ECCO Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E BiofuelsMitigationECBECCO

271

Biofuels International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels AmericaIndiana

272

Border Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder Biofuels Jump to:

273

Acciona Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2Abrams,Acciona Biofuels Jump to:

274

WHEB Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane JumpWHEB Biofuels Jump to:

275

Sandia National Laboratories: Research: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act Solar TestNationalBiofuels Overcoming

276

Sandia National Laboratories: Biofuels Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the

277

Near-zero emissions combustor system for syngas and biofuels  

SciTech Connect (OSTI)

A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

278

Vehicle Technologies Office: Improving Biodiesel and Other Fuels...  

Energy Savers [EERE]

Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems....

279

Conversion Technology and the San Jose Zero Waste Initiative...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Production Technologies Pathways for Algal Biofuels...

280

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Special Seminar Realizing the Full Potential of Algal Biofuels  

E-Print Network [OSTI]

of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

Garfunkel, Eric

282

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

Levinson, David M.

283

US Biofuels Baseline and impact of extending the  

E-Print Network [OSTI]

June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

Noble, James S.

284

Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities  

E-Print Network [OSTI]

Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

285

Scrap biofuels targets and focus on improved public transport  

E-Print Network [OSTI]

Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

286

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network [OSTI]

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

287

VIEWLS Final recommendations report Shift Gear to Biofuels  

E-Print Network [OSTI]

VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

288

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

289

EPA and RFS2: Market Impacts of Biofuel Mandate  

E-Print Network [OSTI]

July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

Noble, James S.

290

Global Biofuel Use, 1850-2000.  

SciTech Connect (OSTI)

This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

2007-05-30T23:59:59.000Z

291

As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply  

E-Print Network [OSTI]

SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

Reisslein, Martin

292

Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

Not Available

2011-12-01T23:59:59.000Z

293

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect (OSTI)

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01T23:59:59.000Z

294

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

Seguin, Charles

2012-01-01T23:59:59.000Z

295

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network [OSTI]

of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

296

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

297

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

298

Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels  

E-Print Network [OSTI]

a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

Hart, Quinn James

2014-01-01T23:59:59.000Z

299

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network [OSTI]

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

300

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

Morrow, III, William R.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization  

E-Print Network [OSTI]

enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

Garcia, David Ernest

2013-01-01T23:59:59.000Z

302

Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production  

E-Print Network [OSTI]

carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

Hollister, E.B.

2012-01-01T23:59:59.000Z

303

Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli  

E-Print Network [OSTI]

metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

2012-01-01T23:59:59.000Z

304

For switchgrass cultivated as biofuel in California, invasiveness limited by several steps  

E-Print Network [OSTI]

United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

2013-01-01T23:59:59.000Z

305

Switchgrass is a promising, high-yielding crop for California biofuel  

E-Print Network [OSTI]

both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

2011-01-01T23:59:59.000Z

306

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

E-Print Network [OSTI]

fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

Wohlbach, Dana J.

2011-01-01T23:59:59.000Z

307

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

Dunlop, Mary

2012-01-01T23:59:59.000Z

308

Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.  

E-Print Network [OSTI]

fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

2013-01-01T23:59:59.000Z

309

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

310

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

311

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network [OSTI]

Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

Goyal, Garima

2011-01-01T23:59:59.000Z

312

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

Seguin, Charles

2012-01-01T23:59:59.000Z

313

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

314

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

315

Case Study of Phytoplankton Blooms in Serangoon Harbor of Singapore  

E-Print Network [OSTI]

the dynamics of algal blooms. Physical and biogeochemical water column sampling were carried out using Acoustic, the pollution content of urban discharge changes. This discharge may lead to inhospitable conditions around

Patrikalakis, Nicholas M.

316

Is Bloom's Taxonomy Appropriate for Computer Colin G. Johnson  

E-Print Network [OSTI]

Is Bloom's Taxonomy Appropriate for Computer Science? Colin G. Johnson Computing Laboratory University of Kent Canterbury, Kent, CT2 7NF England C.G.Johnson@kent.ac.uk Ursula Fuller Computing

Kent, University of

317

Drivers and Food Web Effects of Gonyostomum semen Blooms  

E-Print Network [OSTI]

. semen has increased between 1995 and 2010, especially in southern Sweden. Bloom incidence and total animals feeding on low-quality resources may reduce the food quality for planktivorous fish. Instead

318

How sustainable biofuel business really is? : Today's issues on biofuel production.  

E-Print Network [OSTI]

??Demand for biofuels has skyrocketed during the recent years. While high price of oil might have been the main driver for this phenomenon, the risen… (more)

Kollanus, Iris-Maria

2013-01-01T23:59:59.000Z

319

Biofuels in the European Union : Analysis of the Development of the Common Biofuels Policy.  

E-Print Network [OSTI]

??Biofuels are increasingly being promoted as substitute fuels in the transport sector. Many countries are establishing support measures for the production and use of such… (more)

Haugsbř, Miriam Sřgnen

2012-01-01T23:59:59.000Z

320

Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling  

SciTech Connect (OSTI)

The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

Newes, E.; Inman, D.; Bush, B.

2011-01-01T23:59:59.000Z

322

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

323

Biofuels grant..........................3 Urban design video.................3  

E-Print Network [OSTI]

· Biofuels grant..........................3 · Urban design video.................3 A monthly report represent- ing regional organizations, local governments, and regulatory agencies. TIRP is intended, and fostering collaboration between government and academia. Dawn Spanhake, CTS assistant director of program

Minnesota, University of

324

Overview of Governor's Biofuels Coalition and Updates  

Broader source: Energy.gov [DOE]

At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

325

Future of Liquid Biofuels for APEC Economies  

SciTech Connect (OSTI)

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01T23:59:59.000Z

326

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect (OSTI)

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

327

Biofuels Report Final | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuelBiofuels

328

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

329

Biofuel Production Initiative at Claflin University Final Report  

SciTech Connect (OSTI)

For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

Chowdhury, Kamal

2011-07-20T23:59:59.000Z

330

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

331

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

332

BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

333

Production cost and supply chain design for advanced biofuels.  

E-Print Network [OSTI]

??The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly… (more)

Li, Yihua

2013-01-01T23:59:59.000Z

334

Metabolic Engineering of oleaginous yeast for the production of biofuels  

E-Print Network [OSTI]

The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

Tai, Mitchell

2012-01-01T23:59:59.000Z

335

Biofuels News, Spring/Summer 2001, Vol. 4, No. 2  

SciTech Connect (OSTI)

Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

Tuttle, J.

2001-07-13T23:59:59.000Z

336

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

Dunlop, Mary

2012-01-01T23:59:59.000Z

337

From Processing Juice to Producing Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

338

The Farmer's Conundrum: Income from Biofuels or Protect the Soil...  

Broader source: Energy.gov (indexed) [DOE]

The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

339

Michigan Technological University is an equal opportunity educational institution/equal opportunity employer. Michigan Tech Wood to Wheels Laboratories  

E-Print Network [OSTI]

transportation biofuel starting with wood biomass using an integrated set of laboratory-scale experiments Gain a more complete understanding of the sustainability issues surrounding biofuels produced from forest of biofuels coupled with advanced technologies as methods to meet future CAFE, CO2, and emissions regulations

340

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J. L.

2010-01-01T23:59:59.000Z

342

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

jet engines. Recently, there have been several reports of efforts to engineer microorganisms to produce advanced biofuels

Dunlop, Mary

2012-01-01T23:59:59.000Z

343

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

344

Sustainability for the Global Biofuels Industry Minimizing Risks...  

Broader source: Energy.gov (indexed) [DOE]

Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

345

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Energy Savers [EERE]

Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript....

346

Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom  

E-Print Network [OSTI]

Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and ...

Penn, Kevin

347

Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms  

E-Print Network [OSTI]

The onset of phytoplankton blooms in late winter, early spring has been traditionally associated with the shoaling of the mixed layer above a critical depth. Here we show that the onset of a bloom can also be triggered by ...

Taylor, John R.

2011-01-01T23:59:59.000Z

348

Deep Water Mixing Prevents Harmful Algal Bloom Formation: Implications for Managed Fisheries Refugia  

E-Print Network [OSTI]

bloom initiation and development, they are benign to other aspects of the lower food web and environment. The results from using deep lake water to suppress harmful algal blooms indicate this may be a promising management approach and further studies...

Hayden, Natanya Jeanne

2012-10-19T23:59:59.000Z

349

REVIEW PAPER Microalgae as second generation biofuel. A review  

E-Print Network [OSTI]

REVIEW PAPER Microalgae as second generation biofuel. A review Nirbhay Kumar Singh & Dolly Wattal not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several biofuel has been known for several years and is frequently modified and upgraded. In view of this

Boyer, Edmond

350

II. Greenhouse gas markets, carbon dioxide credits and biofuels17  

E-Print Network [OSTI]

15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

351

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network [OSTI]

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

352

International Symposium Transport and Air Pollution Session 6: Biofuels 2  

E-Print Network [OSTI]

1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

Paris-Sud XI, Université de

353

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP  

E-Print Network [OSTI]

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

Wildermuth, Mary C

354

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

355

USDA Biofuels Strategic Production Report June 23, 2010  

E-Print Network [OSTI]

USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

356

Biofuels' Time of Transition Achieving high performance in a world  

E-Print Network [OSTI]

Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

Kammen, Daniel M.

357

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network [OSTI]

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

358

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network [OSTI]

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

359

Global biofuel drive raises risk of eviction for African farmers  

E-Print Network [OSTI]

Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

360

Global Biofuel Production and Food Security: Implications for Asia Pacific  

E-Print Network [OSTI]

Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Global Assessments and Guidelines for Sustainable Liquid Biofuel  

E-Print Network [OSTI]

Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

362

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad  

E-Print Network [OSTI]

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

363

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

364

Metabolic Engineering for Improved Biofuel Yield in a Marine  

E-Print Network [OSTI]

Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

Petta, Jason

365

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR  

E-Print Network [OSTI]

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

Pennycook, Steve

366

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production  

E-Print Network [OSTI]

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

367

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network [OSTI]

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

Boyer, Edmond

368

Nottingham Business School Biofuels Market and Policy Governance  

E-Print Network [OSTI]

a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising numberNottingham Business School Biofuels Market and Policy Governance The last decade has seen triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

Evans, Paul

369

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced

Dunlop, Mary

370

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

371

Biofuel Feedstock Assessment for Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18T23:59:59.000Z

372

AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA  

SciTech Connect (OSTI)

The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

Sherman, S.; French, T.

2010-02-03T23:59:59.000Z

373

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,  

E-Print Network [OSTI]

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

374

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System  

E-Print Network [OSTI]

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps to Sargent BCH NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102 Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102.5 Miles West Bay #12;Aransas Bay

375

Development of Hyperspectral remote sensing capability for the early detection and monitoring of Harmful Algal Blooms  

E-Print Network [OSTI]

Blooms (HABs) in the western basin of Lake Erie and Saginaw Bay in Lake Huron. The HABs can be very of Harmful Algal Blooms (HABs) in the Great Lakes John Lekki1 , Robert Anderson2 , Quang-Viet Nguyen3 Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two

376

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with  

E-Print Network [OSTI]

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent) In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak blooms in Lake Erie. extreme precipitation events | climate change | aquatic ecology | Microcystis sp

377

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3  

E-Print Network [OSTI]

Eutrophication and harmful algal blooms: A scientific consensus J. Heisler a,3 , P.M. Glibert b between water quality and eutrophication and the occurrence of harmful algal blooms (HABs). This meeting in revised form 21 January 2008 Accepted 1 August 2008 Keywords: Eutrophication Harmful algal blooms HABs

Cochlan, William P.

378

National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

Not Available

2010-06-01T23:59:59.000Z

379

Physical Mechanisms Driving Harmful Algal Blooms Along the Texas Coast  

E-Print Network [OSTI]

. To understand the stochastic nature of HABs along the TLS, historical data of bloom occurrences from 1996 to present were compared with NOAA station PTAT2 wind, sea-level pressure, air and water temperature data and NCEP NARR-A sea-level pressure data...

Ogle, Marcus 1982-

2012-12-12T23:59:59.000Z

380

Annemarie Fraser, Paul Palmer, Anthony Bloom University of Edinburgh  

E-Print Network [OSTI]

in the North Coal and animals are the dominant sources in the South Methane sources will be further refined the Australian methane budget Source: NOAA Actual readings De-seasonalized data #12;Sept. 30, 2010 2 Sources of methane Palmer and Bloom, 2010 #12;Sept. 30, 2010 3 Australian methane budget in GEOS-Chem West Tropics

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Phytoplankton blooms and fish recruitment rate: Effects of spatial distribution  

E-Print Network [OSTI]

Phytoplankton blooms and fish recruitment rate: Effects of spatial distribution V. N. Biktashev a consider the spatio-temporal dynamics of a spatially-structured generalisa- tion of the phytoplankton-zooplankton-fish. In particular, we study the dependence of the fish recruitment on carrying capacities of the plankton subsystem

Biktashev, Vadim N.

382

Ohio Sea Grant Fact Sheets Harmful Algal Blooms  

E-Print Network [OSTI]

are not addressed in this fact sheet. Lyngbya bloom on Maumee Bay near Toledo. Microcystis Dr.TomBridgeman,UniversityofToledo,LakeErie cyanobacterium in Ohio's Lake Erie waters Anabaena · Colonies of hair-like filaments that can be planktonic the atmosphere using specialized, teardrop-shaped cells · A recent invader to Ohio's Lake Erie waters and Buckeye

383

Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)  

SciTech Connect (OSTI)

When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities, particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.

Wiley, Julie G.; Manke, Kristin L.

2012-01-02T23:59:59.000Z

384

Biofuel Feedstock Inter-Island Transportation  

E-Print Network [OSTI]

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

385

Method for Removing Precipitates in Biofuel  

Energy Innovation Portal (Marketing Summaries) [EERE]

At ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50–90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected by visual inspection....

2010-12-08T23:59:59.000Z

386

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network [OSTI]

Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

387

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

Lewis, Sarah M

2014-01-01T23:59:59.000Z

388

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

Lewis, Sarah M

2014-01-01T23:59:59.000Z

389

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

included. As technologies to produce biodiesel from varyinginitial technology and lifetime operating costs Biodiesel (biodiesel usage through 2020 reveals a relatively small biofuel content in future diesel trucks, there are policy and technology

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

390

Biofuels from Sorghum: Plant-based Sesquiterpene Biofuels  

SciTech Connect (OSTI)

PETRO Project: Chromatin will engineer sweet sorghum—a plant that naturally produces large quantities of sugar and requires little water—to accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatin’s proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plants—similar to the way in which it currently stores sugar—and can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.

None

2012-01-01T23:59:59.000Z

391

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

392

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production  

SciTech Connect (OSTI)

The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

2013-02-19T23:59:59.000Z

393

Investigator Title Technology  

E-Print Network [OSTI]

Production of Biobutanol as a Biofuel Advanced/ Alternative Energy $353,521 $548,698 6 $35,000 $150,000 $100 Vehicle Technology Advanced/ Alternative Energy Metrics Not Yet Available Sahai, Yogeshwar Development of Cost Effective MEA and DBFC Advanced/ Alternative Energy Metrics Not Yet Available Alsdorf, Doug ORSP

394

Fran Berman Creating Technology  

E-Print Network [OSTI]

for Research Rensselaer Polytechnic Institute #12;Fran Berman What is the potential impact of Global Warming? What plants work best for biofuels? Can we accurately predict market outcomes? "Science is more, and Technology Matter #12;Fran Berman Foundation for a Better World Computers for the Third World Mary Lou Jepsen

Varela, Carlos

395

Biofuel Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel Conversion

396

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLC Jump to:

397

Raven Biofuels International Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus Power Ltd Jump to: navigation,Raven Biofuels

398

Continental Biofuels Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturn toContinental Biofuels

399

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

400

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network [OSTI]

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

402

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

403

Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

2008-01-01T23:59:59.000Z

404

Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends  

E-Print Network [OSTI]

of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

Rajagopal, Deepak

2011-01-01T23:59:59.000Z

405

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

406

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic  

E-Print Network [OSTI]

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

Zhao, Huimin

407

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

408

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

409

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

Morrow, III, William R.

2013-01-01T23:59:59.000Z

410

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

Seguin, Charles

2012-01-01T23:59:59.000Z

411

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

412

http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf...  

Broader source: Energy.gov (indexed) [DOE]

http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrice...

413

Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels  

E-Print Network [OSTI]

in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

Gray, Matthew

414

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation  

E-Print Network [OSTI]

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

McCarl, Bruce A.

415

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

416

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

417

Alternative Energy Science and Policy: Biofuels as a Case Study.  

E-Print Network [OSTI]

??This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to… (more)

Ammous, Saifedean H.

2011-01-01T23:59:59.000Z

418

An industry analysis of the South African biofuels industry.  

E-Print Network [OSTI]

??Biofuels have been used as an energy source for heating and cooking since the beginning of time. However, recent changes in the demand for energy,… (more)

Cilliers, Bronwyn Lee

2012-01-01T23:59:59.000Z

419

Biofuels Sustainability Certification Schemes: Challenges, Feasibility and Possible Approaches.  

E-Print Network [OSTI]

??The focus of this research is to develop and apply an analytical framework for evaluating the effectiveness and practicability of sustainability certification schemes for biofuels,… (more)

Visconti, Gloria and#60;1971and#62

2010-01-01T23:59:59.000Z

420

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

Fortman, J. L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biofuels in South Africa : factors influencing production and consumption.  

E-Print Network [OSTI]

?? Interest in the biofuels industry in South Africa is driven largely by high oil prices and a strain on energy resources and logistics. This… (more)

Chambers, David

2010-01-01T23:59:59.000Z

422

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

423

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

424

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices Michael J. Lance and Todd J. Toops Oak Ridge National Laboratory June 20 th , 2014 PM055 This presentation does not contain any...

425

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

426

Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

427

Assessing Impact of Biofuel Production on Regional Water Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the...

428

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

429

The Science Behind Cheaper Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

430

Vietnam-Status and Potential for the Development of Biofuels...  

Open Energy Info (EERE)

Vietnam-Status and Potential for the Development of Biofuels and Rural Renewable Energy AgencyCompany Organization: Asian Development Bank Sector: Energy Focus Area: Renewable...

431

Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery  

Broader source: Energy.gov (indexed) [DOE]

Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

432

Whole Turf Algae to biofuels-final-sm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass...

433

Environmental impact Assessments – sufficient to verify sustainable biofuels?.  

E-Print Network [OSTI]

??The European Union requires that 10% of the energy in the transport sector shall come from renewable sources by 2020. In addition, biofuels used for… (more)

Englund, Oskar

2010-01-01T23:59:59.000Z

434

The impacts of biofuels production in rural Kansas: local perceptions.  

E-Print Network [OSTI]

??This dissertation examines the discourse of biofuels development in Kansas as promoted by rural growth machines. Corn-based ethanol production capacity and use in the United… (more)

Iaroi, Albert

2013-01-01T23:59:59.000Z

435

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

Fortman, J. L.

2010-01-01T23:59:59.000Z

436

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel Markets  

E-Print Network [OSTI]

U.S. Baseline Briefing Book Projections for Agricultural and Biofuel, biofuel, government cost and farm income projections in this report were prepared by the team at FAPRIMU

Noble, James S.

437

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into  

E-Print Network [OSTI]

Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

Paris-Sud XI, Université de

438

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness  

E-Print Network [OSTI]

D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

Paris-Sud XI, Université de

439

E-Print Network 3.0 - advanced biofuels production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

440

E-Print Network 3.0 - advanced biofuel production Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomass supply, . . . how much land? Future Biofuel Production... Program Section 9005: Bioenergy Program for Advanced Biofuels ... Source: Gray, Matthew - Department of...

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sustainable Liquid Biofuels in New Zealand: Can Sustainability Standards Help Distinguish the Good from the Bad?.  

E-Print Network [OSTI]

??Concerns surrounding the environmental and social impacts of biofuel production have led to the rapid development of biofuel sustainability assessment schemes internationally. The New Zealand… (more)

Grimmer, Natalie

2009-01-01T23:59:59.000Z

442

Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction .  

E-Print Network [OSTI]

??Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As… (more)

Lee, Leebong

2014-01-01T23:59:59.000Z

443

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

Seguin, Charles

2012-01-01T23:59:59.000Z

444

A literature review of the market effects of federal biofuel policy and recommendations for future policy.  

E-Print Network [OSTI]

??The United States has had a federal biofuels policy since the 1970s. The purpose of this policy was to help the development of a biofuel… (more)

Ayers, Alex

2012-01-01T23:59:59.000Z

445

OAS Support for the Implementation of the US-Brazil Biofuels...  

Open Energy Info (EERE)

Implementation of the US-Brazil Biofuels Bilateral Agreement Jump to: navigation, search Name OAS Support for the Implementation of the US-Brazil Biofuels Bilateral Agreement...

446

The grass is half-full : new biofuels from field to wheel ; New biofuels from field to wheel .  

E-Print Network [OSTI]

??The current biofuels market in the United States is dominated by ethanol made from corn. But corn ethanol has limitations that will prevent it from… (more)

Moseman, Andrew (Andrew Garet)

2008-01-01T23:59:59.000Z

447

E-Print Network 3.0 - algal bloom species Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology 59 Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data Summary: with water temperature ....

448

E-Print Network 3.0 - algal bloom detection Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology 29 Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data Summary: , p. 43-61. In M. Kahru...

449

Economic Assessment ofEconomic Assessment of BiofuelBiofuel Support PoliciesSupport Policies  

E-Print Network [OSTI]

Changecomparedtobaseline #12;Impact ofImpact of biofuelbiofuel support removal on biodiesel production,support removal on biodiesel production, 20132013--2017 average2017 average -40% -20% 0% 20% Changecomparedtobaseline;Policy IssuesPolicy Issues · How far does biofuel production and consumption in OECD countries depend

450

ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*  

E-Print Network [OSTI]

1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center for Advanced Process Decision-making; Department of Chemical Engineering Carnegie Mellon University, Pittsburgh amount of water consumption [18]. 2nd generation biofuels try to overcome these problems by using non

Grossmann, Ignacio E.

451

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network [OSTI]

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels strategies. Advances in both areas in turn strongly depend on the progress in developing high- throughput

Singh, Anup

452

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network [OSTI]

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol species (sizes from a few- a few hundred µm) (Wikipedia, 2008) #12;How is ethanol produced from corn

Blouin-Demers, Gabriel

453

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

SciTech Connect (OSTI)

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01T23:59:59.000Z

454

The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities  

SciTech Connect (OSTI)

The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

2013-02-11T23:59:59.000Z

455

Traffic lights for crop-based biofuels  

E-Print Network [OSTI]

attention to reputational risk, and finding markets, as consumer lobby groups demand greater transparency about where and how products are produced. As Hatcher [13] notes, “losing the trust of stakeholders can be fatal”. Nobody wants algae or cellulosic... 4(4), e5261 (2009). 10 Shi AZ, Koh LP, Tan HTW. The biofuel potential of municipal solid waste. GCB Bioenergy 1(5), 317-320 (2009). 11 Kuzovkina YA, Quigley MF. Willows Beyond Wetlands: Uses of Salix L. Species for Environmental Projects. Water...

Phalan, Ben

456

E Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E Biofuels LLC Jump to:

457

Argonaut BioFuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz Jump to:Argonaut BioFuels Jump to:

458

Biofuels America Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels America Inc

459

Biofuels Power Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels

460

Borger Biofuels LLLP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder BiofuelsOpenBorger

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Novare Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny JumpNationalNovare Biofuels Inc Jump

462

Pan Am Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPTAct YearBiofuels Inc Jump to:

463

ASAlliances Biofuels Defunct | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to:ASAlliances Biofuels

464

Amereco Biofuels Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place:AlwitraAmberley,Amereco Biofuels Corp Jump

465

Biofuels - Biomass Feedstock - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research at Brazil

466

Biofuels: Anywhere, anytime | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuel Research atThe photosynthetic

467

Winning the Biofuel Future | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3WindowsBiofuel Future

468

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

469

Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2  

SciTech Connect (OSTI)

Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

None

2010-08-01T23:59:59.000Z

470

Genome-Enabled Advancement of Biomass to Biofuel Technology  

SciTech Connect (OSTI)

Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don�t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

Patrick O'Mullan, PhD

2010-11-11T23:59:59.000Z

471

Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)  

SciTech Connect (OSTI)

The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

Not Available

2009-03-01T23:59:59.000Z

472

DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYGStrategicSite to September

473

Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehiclesornl.gov Morgan

474

Five Harvesting Technologies are Making Biofuels More Competitive in the  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs FindofMathematician EmmyMarketplace

475

Vehicle Technologies Office: Biofuels End-Use Research | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport | Departmentand TestingEnergy

476

Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshop on Condensing Heating

477

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the ChallengeWorkshop on Condensing

478

Conversion Technologies for Advanced Biofuels Â… Bio-Oil Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering NewisSecurityPART

479

Conversion Technologies for Advanced Biofuels Â… Bio-Oil Upgrading  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering NewisSecurityPARTUpgrading Report-Out Webinar

480

Conversion Technologies for Advanced Biofuels Â… Carbohydrates Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering NewisSecurityPARTUpgrading Report-Out

Note: This page contains sample records for the topic "biofuels technology blooms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Conversion Technologies for Advanced Biofuels Â… Carbohydrates Upgrading  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering NewisSecurityPARTUpgrading Report-OutUpgrading

482

Video: Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015MayoXML Bookmark

483

Conversion Technologies for Advanced Biofuels - Bio-Oil Production |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activities on DOE3-1Program Managers

484

Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activities on DOE3-1Program ManagersDepartment

485

Cross-cutting Technologies for Advanced Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site | Department of EnergytoRev. 1) |NREL

486

Biomass and Biofuels Technologies Available for Licensing - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergy Department to Renewable

487

UPDATED: Energy Department Announces New Advance in Biofuel Technology |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track| Department of Energy

488

Los Alamos technology strikes a chord with algal biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail of a martian mysteryNew'monster'

489

Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|SindhuDepartment ofoflynda.comof EnergyDecisions

490

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|SindhuDepartment ofoflynda.comof EnergyDecisionsBryna

491

NREL: Technology Transfer - Discovering Drop-In Biofuels to Leverage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther Federal AgencyTransformation

492

Technology Roadmap: Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County, NewTechnologiekontor Bremerhaven TKBBiofuels

493

Technology Roadmap: Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County, NewTechnologiekontor Bremerhaven

494

National Algal Biofuels Technology Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNV Energy RFPNat i o N a l PaAlgal

495

Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities |ImprovedMaterials

496

the impact of industrial biofuels on people and global hunger Meals per gallon  

E-Print Network [OSTI]

the impact of industrial biofuels on people and global hunger Meals per gallon #12;Contents Executive summary 2 Chapter 1: Introduction 6 Chapter 2: Industrial biofuels ­ the context 8 What's driving the EU industrial biofuel boom? 9 Chapter 3: What's wrong with industrial biofuels? 12 Industrial

497

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008)  

E-Print Network [OSTI]

BEE 4900/AEM 6900. Biofuels: The Economic and Environmental Interactions (offered Spring 2008 and Economics of BioFuels. Questions addressed include the environmental and economic impacts of biofuel use and whether the use of biofuels justifies public policy intervention. The class will consist of a colloquium

Walter, M.Todd

498

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation  

E-Print Network [OSTI]

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

499

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department of Agricultural Economics  

E-Print Network [OSTI]

Biofuels `101'Michael Wilcox, Dayton Lambert and Kelly Tiller Assistant Professors, Department vehicle emissions. Biofuels Non-petroleum sources of transportation fuels include natu- ral gas (2.2 percent) and biofuels (1.1 percent). While used in small amounts now, demand for biofuels (ethanol

Grissino-Mayer, Henri D.

500

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login | Register | Shopping Cart  

E-Print Network [OSTI]

Biofuels in Africa May Help Achieve Global Goals, Experts Say | Worldwatch Institute Login Contact Us Sign Up for e-mail updates Home » Online Features » e2 - Eye on Earth Biofuels in Africa May for developing biofuels from sugar cane and other crops. Photo by Steve McNicholas Africa can use the biofuels