Powered by Deep Web Technologies
Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sandia National Laboratories: Techno-Economic Modeling, Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsTechno-Economic Modeling, Analysis, and Support Techno-Economic Modeling, Analysis, and Support This project provides subject-matter expertise in economic and technological...

2

Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)  

SciTech Connect (OSTI)

In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

2014-10-01T23:59:59.000Z

3

Techno-Economic Analysis of Biofuels Production Based on Gasification  

SciTech Connect (OSTI)

This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

2010-11-01T23:59:59.000Z

4

Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization  

E-Print Network [OSTI]

Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization a stochastic programming approach to the techno-economic analysis of a wind farm coupled with a pumped storage

Victoria, University of

5

A review of techno-economic modeling methodology for a wood-to-ethanol process  

SciTech Connect (OSTI)

Techno-economic modeling has been a valuable tool in directing and assessing the research and development efforts for biomass-to-ethanol processes. In developing a techno-economic model of a {open_quotes}generic{close_quotes} wood-to-ethanol process, we decided to follow a three-pronged design approach. This initially consisted of a detailed review of the current definition and technical maturity of the process, which concluded that the process remains complex and immature. More recently, we have critically assessed/compared two inherited models, and examined the historical and current trends in modeling design. We confirmed that process complexity and immaturity, in association with the capabilities of the available modeling tools and the ease with which they can be used, influenced the design and implementation of past models. We have discussed these influences with reference to our own model development decisions. For example, on review of two inherited techno-economic models, we decided that our new model would require a greater degree of flexibility in its structure and user interface. 16 refs., 9 figs.

Gregg, D.J.; Saddler, J.N. [Univ. of British Columbia, Vancouver (Canada)

1997-12-31T23:59:59.000Z

6

Biofuels Techno-Economic Models | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVentures JumpGermany:BigStates) Jump

7

Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty  

E-Print Network [OSTI]

Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic ...

Vicari, Kristin Jenise

8

Telecommunications Networks Planning and Evaluation with Techno-Economic Criteria  

E-Print Network [OSTI]

Telecommunications Networks Planning and Evaluation with Techno-Economic Criteria Dimitris: Techno-economic Analysis, Telecommunications, Demand Forecast, Real Options, Game Theory, Investments in this paper). Techno-economic methodology The techno-economic evaluation of the case studies has been carried

Kouroupetroglou, Georgios

9

Techno-Economics & Life Cycle Assessment (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

Dutta, A.; Davis, R.

2011-12-01T23:59:59.000Z

10

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network [OSTI]

Ogden models use capital cost estimates from Skovholt’s 1993are below average but estimate capital costs that are abovediameter, it estimates capital cost below the average.

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

11

Algal Biofuels Techno-Economic Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o

12

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network [OSTI]

Costs to Estimate Hydrogen Pipeline Costs,” UCD-ITS-RR-04-predict the costs of hydrogen pipelines, all of the modelspredict the costs of hydrogen pipelines, all of the models

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

13

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles  

E-Print Network [OSTI]

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

Victoria, University of

14

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

SciTech Connect (OSTI)

A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

2010-06-01T23:59:59.000Z

15

Economics of Current and Future Biofuels  

SciTech Connect (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

16

Techno-economic and behavioural analysis of battery electric, hydrogen  

E-Print Network [OSTI]

conducts a techno-economic study on hydrogen fuel cell electric vehicles (FCV), battery electric vehicles (BEV) and hydrogen fuel cell plug-in hybrid electric vehicles (FCHEV) in the UK using cost predictions reforming methane in 2030. Keywords: Fuel cell vehicle; electric vehicle; hybrid vehicle; hydrogen

17

Techno-economic Performance Evaluation of Compressed Air  

E-Print Network [OSTI]

PNNL-22235 Techno-economic Performance Evaluation of Compressed Air Energy Storage in the Pacific of Compressed Air Energy Storage in the Pacific Northwest BP McGrail JE Cabe CL Davidson FS Knudsen DH Bacon MD air energy storage (CAES) in the unique geologic setting of inland Washington and Oregon. The basic

18

Sandia National Laboratories: techno-economic model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSL George Wang's Invited Talk

19

Sandia National Laboratories: techno-economic modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSL George Wang's Invited

20

Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels  

SciTech Connect (OSTI)

). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ACM-enabled satellite triple play over DVB-S2: A techno-economic study  

E-Print Network [OSTI]

1 ACM-enabled satellite triple play over DVB-S2: A techno-economic study N. Anastasiadou1 , G looks at the techno-economic perspectives of the use of DVB-S2 and its unique feature, Adaptive Coding and Modulation (ACM) in the provision of satellite triple play. For this study, current market economic data were

22

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network [OSTI]

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

23

GPON and EP2P: A Techno-Economic Study Sergio Ricciardi, Germn Santos-Boada, Davide Careglio, Jordi Domingo-Pascual  

E-Print Network [OSTI]

1 GPON and EP2P: A Techno-Economic Study Sergio Ricciardi, Germán Santos-Boada, Davide Careglio. This paper surveys the two technologies and evaluates them from a quantitative techno-economic point of view technologies and provide a techno-economic study to identify advantages and drawbacks of the two solutions. II

Politècnica de Catalunya, Universitat

24

Techno-Economic Analysis of Indian Draft Standard Levels for RoomAir Conditioners  

SciTech Connect (OSTI)

The Indian Bureau of Energy Efficiency (BEE) finalized its first set of efficiency standards and labels for room air conditioners in July of 2006. These regulations followed soon after the publication of levels for frost-free refrigerators in the same year. As in the case of refrigerators, the air conditioner program introduces Minimum Efficiency Performance Standards (MEPS) and comparative labels simultaneously, with levels for one to five stars. Also like the refrigerator program, BEE defined several successive program phases of increasing stringency. In support of BEE's refrigerator program, Lawrence Berkeley National Laboratory (LBNL) produced an analysis of national impacts of standards in collaboration with the Collaborative Labeling and Standards Program (CLASP). That analysis drew on LBNL's experience with standards programs in the United States, as well as many other countries. Subsequently, as part of the process for setting optimal levels for air conditioner regulations, CLASP commissioned LBNL to provide support to BEE in the form of a techno-economic evaluation of air conditioner efficiency technologies. This report describes the methodology and results of this techno-economic evaluation. The analysis consists of three components: (1) Cost effectiveness to consumers of efficiency technologies relative to current baseline. (2) Impacts on the current market from efficiency regulations. (3) National energy and financial impacts. The analysis relied on detailed and up-to-date technical data made available by BEE and industry representatives. Technical parameters were used in conjunction with knowledge about air conditioner use patterns in the residential and commercial sectors, and prevailing marginal electricity prices, in order to give an estimate of per-unit financial impacts. In addition, the overall impact of the program was evaluated by combining unit savings with market forecasts in order to yield national impacts. LBNL presented preliminary results of these analyses in May 2006, at a meeting of BEEs Technical Committee for Air Conditioners. This meeting was attended by a wide array of stakeholder, including industry representatives, engineers and consumer advocates. Comments made by stakeholders at this meeting are incorporated into the final analysis presented in this report. The current analysis begins with the Rating Plan drafted by BEE in 2006, along with an evaluation of the market baseline according to test data submitted by manufacturers. MEPS, label rating levels, and baseline efficiencies are presented in Section 2. First, we compare Indian MEPS with current standards in other countries, and assess their relative stringency. Baseline efficiencies are then used to estimate the fraction of models likely to remain on the market at each phase of the program, and the impact on market-weighted efficiency levels. Section 3 deals with cost-effectiveness of higher efficiency design options. The cost-benefit analysis is grounded in technical parameters provided by industry representatives in India. This data allows for an assessment of financial costs and benefits to consumers as a result of the standards and labeling program. A Life-Cycle Cost (LCC) calculation is used to evaluate the impacts of the program at the unit level, thus providing some insight into the appropriateness of the levels chosen, and additional opportunities for further ratcheting. In addition to LCC, we also calculate payback periods, cost of conserved energy (CCE), and return on investment (ROI). Finally, Section 4 covers national impacts. This is an extension of unit level estimates in the two previous sections. Extrapolation to the national level depends on a forecast of air conditioner purchases (shipments), which we describe here. Following the cost-benefit analysis, we construct several efficiency scenarios including the BEE plan, but also considering further potential for efficiency improvement. These are combined with shipments through a stock accounting model in order to forecast air conditioner energy consumption in each sc

McNeil, Michael A.; Iyer, Maithili

2007-03-01T23:59:59.000Z

25

Sandia National Laboratories: Techno-Economic Modeling, Analysis, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCES Sandia Researchers WinTVA Consortium

26

Sandia National Laboratories: JBEI Updates Techno-Economic Modeling Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind and Water Power Programfor

27

Watershed Modeling for Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

28

A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES  

SciTech Connect (OSTI)

A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

2013-03-15T23:59:59.000Z

29

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

30

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

SciTech Connect (OSTI)

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

31

Pathways to Hydrocarbon Biofuels: Update on the Office's Techno-Economic Analysis Efforts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology to Market

32

Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis  

SciTech Connect (OSTI)

This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

2012-07-01T23:59:59.000Z

33

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

34

Sandia National Laboratories: PV Reliability & Performance Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

35

Sandia National Laboratories: Performance Modeling Workshop Presentati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

36

Techno-economic analysis of corn stover fungal fermentation to ethanol  

SciTech Connect (OSTI)

This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi to identify promising opportunities, and the research needed to achieve them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. In addition, filamentous fungi are applied in multi-organism and consolidated process configurations. Organism performance and technology readiness are categorized as near-term (<5 years), mid-term (5-10 years), and long-term (>10 years) process deployment. The results of the analysis suggest that the opportunity for fungal fermentation exists for lignocellulosic ethanol production.

Meyer, Pimphan A.; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.

2013-11-01T23:59:59.000Z

37

Sandia National Laboratories: 2013 PV Performance Modeling Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

38

Sandia National Laboratories: Tutorial on PV System Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

39

Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems  

SciTech Connect (OSTI)

Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

Jifeng Zhang; Jean Yamanis

2007-09-30T23:59:59.000Z

40

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading  

SciTech Connect (OSTI)

A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

2014-09-15T23:59:59.000Z

42

Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

Zhu, Yunhua; Jones, Susanne B.

2009-04-01T23:59:59.000Z

43

Supply Chain Sustainability Analysis of Three Biofuel Pathways  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

2013-11-01T23:59:59.000Z

44

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect (OSTI)

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

45

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect (OSTI)

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

46

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

Dunlop, Mary

2012-01-01T23:59:59.000Z

47

Biofuels  

ScienceCinema (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-23T23:59:59.000Z

48

Biofuels  

SciTech Connect (OSTI)

Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

Kalluri, Udaya

2014-05-02T23:59:59.000Z

49

Mathematical modelling and simulation of biofuel cells.  

E-Print Network [OSTI]

??Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in… (more)

Osman, Mohamad Hussein

2013-01-01T23:59:59.000Z

50

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production  

E-Print Network [OSTI]

Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

51

Multiphase Flow Modeling of Biofuel Production Processes  

SciTech Connect (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

52

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

53

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

SciTech Connect (OSTI)

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01T23:59:59.000Z

54

Biofuels  

SciTech Connect (OSTI)

As David Rotman states in his article on biofuels, the conversion of biomass to liquid fuel is energy intensive--just like the conversion of coal or any other solid fuel to liquid fuel. That implies that the quantity of liquid fuel from biomass and the carbon dioxide released in the production process strongly depend upon the energy source used in the conversion process. Each year, the United States could produce about 1.3 billion tons of renewable biomass for use as fuel. Burning it would release about as much energy as burning 10 million barrels of diesel fuel per day. If converted to ethanol, the biomass would have the energy value of about five million barrels of diesel fuel per day. The remainder of the energy would be used by the biomass-to-liquids conversion plant. If a nuclear reactor or other energy source provides the energy for the biomass-to-liquids plants, the equivalent of over 12 million barrels of diesel fuel can be produced per day. If our goal is to end oil imports and avoid greenhouse-gas releases, we must combine biomass and nuclear energy to maximize biofuels production.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

55

Techno-economic modelling of CO2 capture systems for Australian industrial sources.  

E-Print Network [OSTI]

??Australia is recognising that carbon capture and storage (CCS) may be a feasible pathway for addressing increasing levels of CO2 emissions. This thesis presents a… (more)

Ho, Minh Trang Thi

2007-01-01T23:59:59.000Z

56

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

57

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

58

A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels  

E-Print Network [OSTI]

This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

Pearlson, Matthew Noah

2011-01-01T23:59:59.000Z

59

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

60

Model estimates food-versus-biofuel trade-off  

E-Print Network [OSTI]

D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Techno-economic Optimization of Integrating Wind Power into Constrained Electric Networks  

E-Print Network [OSTI]

into a generation mixture with a large percentage of coal capacity can increase emissions for moderate wind load leveling technique, ensuring that generation meets demand in every period. The current research generation sources, while remaining within the network's operating constraints. The model minimizes

Victoria, University of

62

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J. S.; Pesaran, A.

2013-01-01T23:59:59.000Z

63

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services: Preprint  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J.; Pesaran, A.

2013-03-01T23:59:59.000Z

64

Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J.; Pesaran, A.

2014-08-01T23:59:59.000Z

65

Techno-economic and risk evaluation of a thermal recovery project  

SciTech Connect (OSTI)

Field production data were studied, to derive an overall energy balance for the steamflood, to calculate the steamflood capture efficiency and predict future steamflood performance. Heat-losses due to produced fluids were also calculated. Predicted production schedules from the model were history-matched with field production data The reservoir parameters (porosity, {phi}, net thickness, h{sub n}, initial oil saturation, S{sub oi}, and residual oil saturation, S{sub or}) were evaluated statistically using both Gaussian and triangular distributions. These resulted in distributed recovery predictions. The Gaussian distributions behaved as predicted; but of great importance, the skewed triangular distributions also behaved in much the same manner. The results fit closely with predictions using logical formulas to predict expected values, peak values and standard variations of recoveries. This result is important, for it indicates that complete Monte-Carlo simulations may not be necessary. All steamflood calculations were carried out using a PC-based spreadsheet program. The major results were as follows: The capture efficiency of the Wilmington steamflood was calculated at 60%. This is an acceptable value, taking into account the reservoir geometry and history. The calculated heat balance showed high heat-loss to adjacent formations and through produced fluids. Of the cumulative heat injected at the time of the study, 21% had been lost to vertical conduction and 21% through produced fluids. Predicted production schedules indicated that up to 43% of the oil in place (at steamflood initiation) could be recovered by the steamflood.

Joshi, S.; Brigham, W.E.; Castanier, L.M.

1997-07-01T23:59:59.000Z

66

Refinement of weed risk assessments for biofuels using Camelina sativa as a model species  

E-Print Network [OSTI]

Refinement of weed risk assessments for biofuels using Camelina sativa as a model species Philip B and Environmental Sciences, Montana State University, PO Box 173120, Bozeman, MT 59717-3120, USA Summary 1. Biofuel. However, concerns have been raised on the invasiveness of biofuel feedstocks. Estimating invasion

Peterson, Robert K. D.

67

A model for improving microbial biofuel production using a synthetic feedback loop  

SciTech Connect (OSTI)

Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

2011-07-14T23:59:59.000Z

68

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network [OSTI]

research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

69

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network [OSTI]

gas industry for enhanced oil recovery (EOR), predicting thegas industry for enhanced oil recovery (EOR), predicting the

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

70

Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030  

SciTech Connect (OSTI)

This study�¢����s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

2012-12-21T23:59:59.000Z

71

Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity  

E-Print Network [OSTI]

aquifers and in gas and oil reservoirs. The properties shownRepresentative Range of Oil Reservoir Properties [8] Tablenatural reservoirs, for example, saline aquifers and oil and

McCollum, David L; Ogden, Joan M

2006-01-01T23:59:59.000Z

72

Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas – A Techno-Economic Analysis  

SciTech Connect (OSTI)

This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealed that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.

Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.; Dagle, Robert A.; Palo, Daniel R.

2012-08-01T23:59:59.000Z

73

Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis  

SciTech Connect (OSTI)

This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

2012-08-01T23:59:59.000Z

74

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

75

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

76

Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings  

SciTech Connect (OSTI)

The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing most of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.

Oladosu, Gbadebo A [ORNL; Msangi, Siwa [International Food and Policy Research Institute (IFPRI)

2013-01-01T23:59:59.000Z

77

Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)  

SciTech Connect (OSTI)

This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

Not Available

2011-10-01T23:59:59.000Z

78

Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France and  

E-Print Network [OSTI]

1 Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France Introduction Renewable energy sources such as biomass and biofuels are increasingly being seen as important of biofuels on the final consumption of energy in transport should be 10%. The long-term target is to reduce

Boyer, Edmond

79

Biofuels and water quality: challenges and opportunities for simulation modeling  

SciTech Connect (OSTI)

Quantification of the various impacts of biofuel feedstock production on hydrology and water quality is complex. Mathematical models can be used to efficiently evaluate various what if scenarios related to biofeedstock production and their impacts on hydrology and water quality at various spatial and temporal scales. Currently available models, although having the potential to serve such purposes, have many limitations. In this paper, we review the strengths and weaknesses of such models in light of short- and long term biofeedstock production scenarios. The representation of processes in the currently available models and how these processes need to be modified to fully evaluate various complex biofeedstock production scenarios are discussed. Similarly, issues related to availability of data that are needed to parameterize and evaluate these models are presented. We have presented a vision for the development of decision support tools and ecosystem services that can be used to make watershed management decisions to minimize any potentially adverse environmental impacts while meeting biofeedstock demands. We also discuss a case study of biofeedstock impact simulation in relation to watershed management policy implications for various state and federal agencies in the USA.

Engel, Bernard A. [Purdue University; Chaubey, Indrajeet [Purdue University; Thomas, Mark [Purdue University; Saraswat, Dharmendra [University of Arkansas; Murphy, Patrick [Purdue University; Bhaduri, Budhendra L [ORNL

2010-01-01T23:59:59.000Z

80

Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites  

SciTech Connect (OSTI)

Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae, biofuels, resource assessment, geographic information systems, techno-economics

Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

2014-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

82

Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels  

E-Print Network [OSTI]

a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

Hart, Quinn James

2014-01-01T23:59:59.000Z

83

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

84

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

85

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

86

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

SciTech Connect (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

87

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

SciTech Connect (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

88

Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling  

SciTech Connect (OSTI)

The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

Newes, E.; Inman, D.; Bush, B.

2011-01-01T23:59:59.000Z

89

Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change  

E-Print Network [OSTI]

due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

2015-01-01T23:59:59.000Z

90

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel  

E-Print Network [OSTI]

Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

91

NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

techno-economic analysis, and analytical method harmonization. Optimization of Biogas Production from Algal Residues via Anaerobic Digestion NREL, together with Washington...

92

biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

93

Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends  

E-Print Network [OSTI]

of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

Rajagopal, Deepak

2011-01-01T23:59:59.000Z

94

The Role Of Modeling Assumptions And Policy Instruments in Evaluating The Global Implications Of U.S. Biofuel Policies  

SciTech Connect (OSTI)

The primary objective of current U.S. biofuel law the Energy Independence and Security Act of 2007 (EISA) is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of the biofuel policy have centered on the global social and environmental implications of its potential land use effects. In particular, there is an ongoing debate about whether indirect land use change (ILUC) make biofuels a net source, rather sink, of carbon emissions. However, estimates of ILUC induced by biofuel production and use can only be inferred through modeling. This paper evaluates how model structure, underlying assumptions, and the representation of policy instruments influence the results of U.S. biofuel policy simulations. The analysis shows that differences in these factors can lead to divergent model estimates of land use and economic effects. Estimates of the net conversion of forests and grasslands induced by U.S. biofuel policy range from 0.09 ha/1000 gallons described in this paper to 0.73 ha/1000 gallons from early studies in the ILUC change debate. We note that several important factors governing LUC change remain to be examined. Challenges that must be addressed to improve global land use change modeling are highlighted.

Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL

2010-01-01T23:59:59.000Z

95

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

Lewis, Sarah M

2014-01-01T23:59:59.000Z

96

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

Lewis, Sarah M

2014-01-01T23:59:59.000Z

97

Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach  

SciTech Connect (OSTI)

Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

2010-11-15T23:59:59.000Z

98

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

2010-01-01T23:59:59.000Z

99

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

Biofuels are a promising form of alternative energy that may replace existing fuel sources such as gasoline, jet

Dunlop, Mary

2012-01-01T23:59:59.000Z

100

A model for improving microbial biofuel production using a synthetic feedback loop  

E-Print Network [OSTI]

cell However, the fuel synthesis stage can be limited by the fact that biofuels are often toxic to microbial

Dunlop, Mary

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model  

SciTech Connect (OSTI)

The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

2012-06-01T23:59:59.000Z

102

Review of Optimization Models for Integrated Process Water Networks and their Application to Biofuel Processes  

E-Print Network [OSTI]

to Biofuel Processes Ignacio E. Grossmann1, Mariano Martín2 and Linlin Yang1 1Department Chemical Engineering of these techniques to biofuel plants, which are known to consume large amounts of water. Introduction. Although water stress [1]. Since chemical, petroleum, and especially biofuel processes consume significant amounts

Grossmann, Ignacio E.

103

Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective  

SciTech Connect (OSTI)

The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

2013-12-01T23:59:59.000Z

104

EMSL - biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

105

Biofuel and Bioenergy implementation scenarios  

E-Print Network [OSTI]

and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costsBiofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André

106

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics  

SciTech Connect (OSTI)

Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

Sokhansanj, Shahabaddine [ORNL; Mani, Sudhagar [University of Georgia; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-01-01T23:59:59.000Z

107

Techno-economics of Renewables Rangan Banerjee  

E-Print Network [OSTI]

, Additional Cost #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean/Not Commercial (Total grid connected Small Hydro Power Classification - based on Capacity -Micro less connected Heads as low as 3 m viable 1997 660 GW 2600TWh Hydro (23 GW 90 TWh small

Banerjee, Rangan

108

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

Delucchi, Mark

2006-01-01T23:59:59.000Z

109

Using System Dynamics to Model the Transition to Biofuels in the United States  

SciTech Connect (OSTI)

Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

2008-01-01T23:59:59.000Z

110

Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy  

E-Print Network [OSTI]

be as simple as hydrogen or methane or as complicated as sugars. Compared with conventional fuel cells, biofuel,4,5 Enzymes immobilized at the right orientation are necessary to optimize the electron transfer efficiency

Brolo, Alexandre G.

111

World Biofuels Study  

SciTech Connect (OSTI)

This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

Alfstad,T.

2008-10-01T23:59:59.000Z

112

Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint  

SciTech Connect (OSTI)

Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.

Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

2008-06-01T23:59:59.000Z

113

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

114

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

115

Biofuel impacts on water.  

SciTech Connect (OSTI)

Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

2011-01-01T23:59:59.000Z

116

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

Delucchi, Mark

2006-01-01T23:59:59.000Z

117

Biofuels | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

118

Biofuels Information Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

119

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

Seguin, Charles

2012-01-01T23:59:59.000Z

120

Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies  

SciTech Connect (OSTI)

This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

First-principles flocculation as the key to low energy algal biofuels processing.  

SciTech Connect (OSTI)

This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne Mary; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O'Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi [Arizona State University, Mesa, AZ; Hu, Qiang [Arizona State University, Mesa, AZ; Amendola, Pasquale [Arizona State University, Mesa, AZ; Reynoso, Monica [Arizona State University, Mesa, AZ; Sommerfeld, Milton [Arizona State University, Mesa, AZ

2012-09-01T23:59:59.000Z

122

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

123

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect (OSTI)

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01T23:59:59.000Z

124

Biofuels and Transportation  

E-Print Network [OSTI]

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

125

of Biofuels Sustainable Feedstocks  

E-Print Network [OSTI]

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

126

Biofuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Biomass Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels....

127

Biofuels Market Opportunities  

Broader source: Energy.gov [DOE]

Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

128

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion  

SciTech Connect (OSTI)

The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels.

E. Meeks; A. U. Modak; C.V. Naik; K. V. Puduppakkam; C. Westbrook; F. N. Egolfopoulos; T. Tsotsis; S. H. Roby

2009-07-01T23:59:59.000Z

129

A Techno-Economic Assessment of Hydrogen Production by  

E-Print Network [OSTI]

.0 Resource Assessment of Biomass Feedstocks 1.1 Bagasse, Sw itch Grass, and Nut Shell Availability and Cost 1

130

Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 |

131

Techno-economic Analysis of PEM Electrolysis for Hydrogen Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | PEM Electrolysis for

132

Wiki-based Techno Economic Analysis of a Lignocellulosic Biorefinery -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWho do IWhyWhy:

133

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network [OSTI]

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

134

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect (OSTI)

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

135

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

136

Cassava, a potential biofuel crop in China  

E-Print Network [OSTI]

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

137

The Future of Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

138

Sandia's Biofuels Program  

SciTech Connect (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-22T23:59:59.000Z

139

The President's Biofuels Initiative  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

140

Sandia's Biofuels Program  

ScienceCinema (OSTI)

Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

2014-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

142

Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes  

E-Print Network [OSTI]

Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

Landis, Doug

143

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

144

Bioproducts and Biofuels – Growing Together!  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

145

BioFuels Atlas Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BioFuels Atlas Kristi Moriarty NREL May 12, 2011 NATIONAL RENEWABLE ENERGY LABORATORY Introduction * BioFuels Atlas is a first-pass visualization tool that allows users to explore...

146

Algal Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to...

147

BioFuels Atlas (Presentation)  

SciTech Connect (OSTI)

Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

Moriarty, K.

2011-02-01T23:59:59.000Z

148

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

149

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

Eggert, Anthony

2007-01-01T23:59:59.000Z

150

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

151

Danielle Goldtooth Paper #6 -Biofuels  

E-Print Network [OSTI]

Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

Lega, Joceline

152

Biofuels in Oregon and Washington  

E-Print Network [OSTI]

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

153

The Ecological Impact of Biofuels  

E-Print Network [OSTI]

The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

Kammen, Daniel M.

154

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

155

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

156

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

157

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

158

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network [OSTI]

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

159

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

160

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network [OSTI]

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

162

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

163

Complexity and Systems Biology of Microbial Biofuels  

E-Print Network [OSTI]

Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

Rand, David

164

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

165

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

166

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

167

BioFuels Atlas Presentation  

Broader source: Energy.gov [DOE]

Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

168

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

169

Biofuels in Minnesota: A Success Story  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story August 5, 2010 Ralph Groschen, Sr. Ag Marketing Specialist Christina Connelly, Biofuels Manager 1980s set the stage MN had lowe corn...

170

Overview of Governor's Biofuels Coalition and Updates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Governor's Biofuels Coalition and Updates Stacey Simms Governor's Energy Office Biofuels and Local Fuels Program Colorado will have the infrastructure on line when advanced...

171

Researching profitable and sustainable biofuels | Department...  

Broader source: Energy.gov (indexed) [DOE]

Researching profitable and sustainable biofuels Researching profitable and sustainable biofuels November 2, 2010 - 2:00pm Addthis Lindsay Gsell Great Lakes Bioenergy Research...

172

Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...  

Broader source: Energy.gov (indexed) [DOE]

Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

173

The President's Biofuels Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

174

Biofuels: Project summaries  

SciTech Connect (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

175

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

176

Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected from - Biofuels) Jump

177

Algal Biofuels Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o fBtuIdeasAlgal Biofuels

178

Biofuels | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm assembly BiofilmBiofuels

179

NREL: Learning - Biofuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuels Basics This

180

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latent curingBiofuels

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the Economic

182

Sandia National Laboratories: Solar Glare Hazard Analysis Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

183

Sandia National Laboratories: NuMAD v2.0 FAQ's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

184

Sandia National Laboratories: PV Systems Reliability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

185

Sandia National Laboratories: Goal 1: Degradation Study of Components...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

186

Sandia National Laboratories: Blade Reliability Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

187

Sandia National Laboratories: Rotating Platform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

188

Sandia National Laboratories: 2013 Inverter Reliability Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

189

Sandia National Laboratories: Power Towers for Utilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

190

Sandia National Laboratories: PV Arc-Fault and Ground Fault Detection...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

191

Sandia National Laboratories: Rotor Aerodynamic Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

192

Sandia National Laboratories: Transmission Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

193

Sandia National Laboratories: SWiFT Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

194

Sandia National Laboratories: Distribution Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

195

Sandia National Laboratories: Wind and Water Materials and Structures...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

196

Sandia National Laboratories: Inverter Reliability Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

197

Sandia National Laboratories: Advanced Research & Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

198

Sandia National Laboratories: 2013 O&M Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

199

Sandia National Laboratories: Tutorial on FMEA Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

200

Sandia National Laboratories: Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Concentrated Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

202

Sandia National Laboratories: Central Receiver Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

203

Sandia National Laboratories: Past Market Transformation Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

204

Sandia National Laboratories: Goal 2: Development of Prognostics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

205

Sandia National Laboratories: Wake Imaging Measurement System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

206

Sandia National Laboratories: Utility Operations and Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

207

Sandia National Laboratories: Simulating Turbine-Turbine Interaction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

208

Sandia National Laboratories: Blade Materials and Substructures...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

209

Sandia National Laboratories: Test Site Operations & Maintenance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

210

Sandia National Laboratories: Siting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

211

Sandia National Laboratories: Reliability, O&M, Standards Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

212

Sandia National Laboratories: 2013 PV Systems Symposium Details  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

213

Sandia National Laboratories: CSP Industry Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

214

Sandia National Laboratories: Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

215

Sandia National Laboratories: Manufacturing Supply Chain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

216

Sandia National Laboratories: Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

217

U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets  

E-Print Network [OSTI]

May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

Noble, James S.

218

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and  

E-Print Network [OSTI]

Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

Hill, Wendell T.

219

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

220

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network [OSTI]

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Socio-economic dynamics of biofuel  

E-Print Network [OSTI]

i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

222

LIHD biofuels: toward a sustainable future  

E-Print Network [OSTI]

LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

Palmer, Michael W.

223

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

224

Nebraska shows potential to produce biofuel crops  

Broader source: Energy.gov [DOE]

Researchers are searching for ways to change how American farmers and consumers think about biofuels.

225

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

226

Can biofuels justify current transport policies?  

E-Print Network [OSTI]

with increasing GHG (greenhouse gas) intensity (tar sand, oil shale, etc.) · Biofuels increased consumption

227

Analysis of advanced biofuels.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

228

Queen's researchers receive $3.4 million boost  

E-Print Network [OSTI]

to address some process and techno-economic inefficiencies that may make the microalgae cultivation for the production of biofuels and bioproducts feasible in Canada." The research will provide a range of benefits

Ellis, Randy

229

Biomass Supply for a Bioenergy  

E-Print Network [OSTI]

Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

230

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect (OSTI)

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

231

United Nations Conference on Trade and Development Biofuel production technologies  

E-Print Network [OSTI]

................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

232

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

233

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

Yu, Wei

2014-01-01T23:59:59.000Z

234

Can feedstock production for biofuels be sustainable in California?  

E-Print Network [OSTI]

tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

235

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

Fortman, J.L.

2011-01-01T23:59:59.000Z

236

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

237

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

238

Biofuels in Minnesota: A Success Story | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels in Minnesota: A Success Story Biofuels in Minnesota: A Success Story This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the...

239

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

240

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Genetic and biotechnological approaches for biofuel crop improvement.  

E-Print Network [OSTI]

Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

Vega-Sánchez, Miguel E; Ronald, Pamela C

2010-01-01T23:59:59.000Z

242

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

243

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

Dunlop, Mary

2012-01-01T23:59:59.000Z

244

A New Biofuels Technology Blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of...

245

Algal Biofuels Strategy Spring Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

246

International Trade of Biofuels (Brochure)  

SciTech Connect (OSTI)

In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

Not Available

2013-05-01T23:59:59.000Z

247

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development  

E-Print Network [OSTI]

New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

Minnesota, University of

248

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network [OSTI]

O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

249

Biofuels Impact on DPF Durability  

Broader source: Energy.gov (indexed) [DOE]

Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

250

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

251

DOE Office of Indian Energy Foundational Course: Assessing Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Visualization Group Project Lead: Nate Blair Nate.Blair@nrel.gov Complete System Techno-Economic Modeling Technologies in SAM 18 Photovoltaics Concentrating PV Solar Water...

252

NREL: Biomass Research - Michelle L. Reed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Technologies (BAT) team. She provides compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

253

Introduction slide 2 Biofuels and Algae Markets, Systems,  

E-Print Network [OSTI]

Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

254

From Biomass to Biofuels: NREL Leads the Way  

SciTech Connect (OSTI)

This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

Not Available

2006-08-01T23:59:59.000Z

255

Methods for the economical production of biofuel from biomass  

DOE Patents [OSTI]

Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

2013-04-30T23:59:59.000Z

256

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network [OSTI]

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

257

BETO Announces June Webinar: Algal Biofuels Consortium Releases...  

Broader source: Energy.gov (indexed) [DOE]

June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

258

Experimental and Modeling Studies of the Characteristics of Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for...

259

IOL: Africa's big plans for biofuel Africa's big plans for biofuel  

E-Print Network [OSTI]

IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

260

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these  

E-Print Network [OSTI]

Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

Hill, Wendell T.

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

262

The Triple Helix Model and the Meta-Stabilization of Urban Technologies in Smart Cities  

E-Print Network [OSTI]

The Triple Helix model of university-industry-government relations can be generalized from a neo-institutional model of networks to a neo-evolutionary model of how three selection environments operate upon one another. The neo-evolutionary model enables us to appreciate both organizational integration in university-industry-government relations and differentiation among functions like the generation of intellectual capital, creation of wealth, and their attending legislation. The specification of innovation systems in terms of nations, sectors, cities, and regions can then be formulated as empirical questions: is synergy generated among functions in networks of relations? This Triple Helix model enables us to study the knowledge base of an urban economy in terms of a trade-off between locally stabilized and (potentially locked-in) trajectories versus the techno-economic and cultural development regimes which work with one more degree of freedom at the global level. The meta-stabilizing potentials of urban tec...

Leydesdorff, Loet

2010-01-01T23:59:59.000Z

263

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

264

Legislating Biofuels in the United States (Presentation)  

SciTech Connect (OSTI)

Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

Clark, W.

2008-07-01T23:59:59.000Z

265

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

266

A New Biofuels Technology Blooms in Iowa  

ScienceCinema (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don;

2013-05-29T23:59:59.000Z

267

A New Biofuels Technology Blooms in Iowa  

SciTech Connect (OSTI)

Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

Mathisen, Todd; Bruch, Don

2010-01-01T23:59:59.000Z

268

Algal Biofuels Research Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-08-01T23:59:59.000Z

269

Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels  

E-Print Network [OSTI]

thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

Achyuthan, Komandoor

2014-01-01T23:59:59.000Z

270

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

271

School of Engineering and Science Algae Biofuels  

E-Print Network [OSTI]

School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

Fisher, Frank

272

Biofuels and bio-products derived from  

E-Print Network [OSTI]

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

273

Liquid Biofuels Strategies and Policies in selected  

E-Print Network [OSTI]

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

274

Biofuels and indirect land use change  

E-Print Network [OSTI]

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

275

How sustainable are current transport biofuels?  

E-Print Network [OSTI]

How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

276

Legislating Biofuels in the United States  

E-Print Network [OSTI]

Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

277

Oil To Biofuels Case Study Objectives  

E-Print Network [OSTI]

Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

Auerbach, Scott M.

278

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production  

E-Print Network [OSTI]

regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

Ngan, Chew Yee

2014-01-01T23:59:59.000Z

279

Estimates of US biofuels consumption, 1990  

SciTech Connect (OSTI)

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

280

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network [OSTI]

@ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Shipboard Fuel Cell Biofuel Introduction  

E-Print Network [OSTI]

Update FuelCell Energy (Frank Wolak) 1230 PNNL SOFC Power Systems Update PNNL (Larry Chick) 1300 PEM Lessons Learned · System Generic Concepts (PEM, HT PEM, MCFC, SOFC) · Shipboard Fuel Cell CharacteristicsShipboard Fuel Cell ­ Biofuel Introduction: This program will demonstrate a shipboard fuel cell

282

Effects of Biofuel Policies on World Food Insecurity -- A CGE Analysis  

E-Print Network [OSTI]

). However, the worldwide biofuel production was still very limited in 2004. Therefore, there is not any biofuel sectors represented in the GTAP7 database. The bio-energy component needs to be added when studying the biofuel-related issues (Kretschmer... and Peterson 2010). 17 Major current CGE models with bio-energy components include the MIT EPPA model (Gurgel et al. 2007, Reilly and Paltsev 2007)), DART, GREEN, USAGE (Dixon et al. 2007), WorldScan (Boeters et al. 2008, WorldScan 1999), IFPRI IMPACT...

Lu, Jiamin

2012-02-14T23:59:59.000Z

283

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF  

E-Print Network [OSTI]

YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

284

E85/b20 for I-65 AND BEYOND: Putting BioFuels in Your Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

project following close with TN. IN reached out to AL to complete the corridor. IN biofuels successes-model for other states INDIANA June 2006 OED applied for the grant. In May...

285

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

286

#LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT  

Broader source: Energy.gov [DOE]

Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

287

Biofuels Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel

288

Heartland Biofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A Permit ApplicationHeartland Biofuel Jump

289

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTIONBioethanolBiofuels

290

Cobalt Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogix IncCobalt Biofuels

291

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network [OSTI]

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

292

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

293

Engineering of bacterial methyl ketone synthesis for biofuels  

E-Print Network [OSTI]

ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

Goh, Ee-Been

2012-01-01T23:59:59.000Z

294

Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

2008-01-01T23:59:59.000Z

295

NextSTEPS White Paper: Three Routes Forward for Biofuels  

E-Print Network [OSTI]

NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

California at Davis, University of

296

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

Eggert, Anthony

2007-01-01T23:59:59.000Z

297

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

Fortman, J. L.

2010-01-01T23:59:59.000Z

298

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

Massachusetts at Amherst, University of

299

Plant and microbial research seeks biofuel production from lignocellulose  

E-Print Network [OSTI]

sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

Bartley, Laura E; Ronald, Pamela C

2009-01-01T23:59:59.000Z

300

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

Yu, Wei

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

302

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

Dunlop, Mary

2012-01-01T23:59:59.000Z

303

The Economics of Trade, Biofuel, and the Environment  

E-Print Network [OSTI]

prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

Hochman, Gal; Sexton, Steven; Zilberman, David D.

2010-01-01T23:59:59.000Z

304

High biofuel production of Botryococcus braunii using optimized cultivation strategies  

E-Print Network [OSTI]

2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

Yu, Wei

2014-01-01T23:59:59.000Z

305

The effect of biofuel on the international oil market  

E-Print Network [OSTI]

that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

306

Biofuels technology blooms in Iowa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

307

Assessing the environmental sustainability of biofuels  

E-Print Network [OSTI]

Biosolids, such as woodpellets or forestry waste, and biogas, produced by anaerobic 44 digestion of biomass, are used primarily for electricity generation and heating, whereas 45 liquid biofuels provide drop-in fuels that can be used directly... /supply have led to preferred practices. 49 Interestingly, within the EU, the current laws controlling the production and use of liquid 50 biofuels are more stringent than for solid biomass and biogas. Liquid biofuels are regulated 51 both by the EU Fuel...

Kazamia, Elena; Smith, Alison G.

2014-09-30T23:59:59.000Z

308

Impact of cetane improvers on ignition delay times of several alternative biofuels  

SciTech Connect (OSTI)

Biofuel technology could be approaching one of its greatest development milestones--being accepted as a standard item on new vehicle technology. In particular, the Partnership for a New Generation Vehicle (PNGV) lists the evaluation and possible utilization of alternative fuels as one of the technological focuses to be evaluated by the year 2000. Synergy 2010, Ford`s newest Taurus model concept car, includes the use of a 20:1 compression-ratio, compression-ignition (CI) engine as the preferred engine. The preferred fuels include diesel, gasoline, and methanol. Cetane improvers make methanol fuel practical with a 20:1 compression ratio engine such as that proposed with Synergy 2010 and are a key technology for biofuel success. CI engines have a high probability of becoming the preferred engines for PNGV vehicles since CI engines are 20% to 30% more efficient than spark-ignition engines. In addition, CI engines allow a wider range of viable biofuels to be used. This paper is on the impact of cetane improvers on methanol and other biofuels. Fuels are evaluated through ignition delay time studies in a constant volume combustor. Ignition delay times measured at several temperatures and with biofuels of different compositions provide much more data than conventional cetane numbers and provide an understanding which is essential to engineer biofuels for the best possible performance in new engines. Ignition delay times are reported for several biofuels including mixtures containing biodiesel, methanol, and syrup.

Suppes, G.J. [Univ. of Kansas, Lawrence, KS (United States); Bryan, M.; Chen, Z. [and others

1996-12-31T23:59:59.000Z

309

Biofuels: Review of Policies and Impacts  

E-Print Network [OSTI]

modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

Janda, Karel; Kristoufek, Ladislav; Zilberman, David

2011-01-01T23:59:59.000Z

310

Certification and Regulation of Trade in Biofuels.  

E-Print Network [OSTI]

??The recent increase in biofuel production and trade has raised concerns about environmental and other impacts, and has prompted some governments to initiate measures to… (more)

Thomson, Vivien

2012-01-01T23:59:59.000Z

311

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

312

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

313

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

Andress, Comparison of Ethanol Fuel Cycles in the GHG ModelsD. Pimentel, “Ethanol Fuels: Energy Balance, Economics, andUsing Corn Stover for Fuel Ethanol,” Journal of Industrial

Delucchi, Mark

2006-01-01T23:59:59.000Z

314

Lifecycle Analyses of Biofuels  

E-Print Network [OSTI]

switchgrass, and wood; biodiesel from soy No model per se;Diesel (crude oil) (g/mi) Biodiesel (SD100 (soy)) Ethanol (switchgrass, and wood; biodiesel from soybeans; methanol,

Delucchi, Mark

2006-01-01T23:59:59.000Z

315

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

316

Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

317

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement...

318

California: Advanced 'Drop-In' Biofuels Power the Navy's Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

319

Fueling the Navy's Great Green Fleet with Advanced Biofuels ...  

Broader source: Energy.gov (indexed) [DOE]

Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes...

320

Sustainability Opportunities and Challenges of the Biofuels Industry.  

E-Print Network [OSTI]

??Liquid biofuels are being produced to displace fossil fuels for transportation, with bioethanol and biodiesel being the primary biofuels produced for this purpose in the… (more)

França, Cesar; Maddigan, Kate

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Algal Biofuels Strategy: Report on Workshop Results and Recent...  

Energy Savers [EERE]

Algal Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply...

322

California: Cutting-Edge Biofuels Research and Entrepreneurship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

323

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

324

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full...

325

Conversion Technologies for Advanced Biofuels - Bio-Oil Production...  

Energy Savers [EERE]

Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

326

Algal Biofuels Strategy Workshop - Fall Event | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fall Event Algal Biofuels Strategy Workshop - Fall Event The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels...

327

Biofuels and Barbecue Chips: Small Business Develops Process...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

328

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing...

329

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

330

Nanotechnology and algae biofuels exhibits open July 26 at the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

331

National Alliance for Advanced Biofuels and Bioproducts Synopsis...  

Broader source: Energy.gov (indexed) [DOE]

Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the...

332

Microbial who-done-it for biofuels | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

333

Growing Energy - How Biofuels Can Help End America's Oil Dependence...  

Broader source: Energy.gov (indexed) [DOE]

Growing Energy - How Biofuels Can Help End America's Oil Dependence Growing Energy - How Biofuels Can Help End America's Oil Dependence America's oil dependence threatens our...

334

Advanced and Cellulosic Biofuels and Biorefineries: State of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

335

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

Fortman, J.L.

2011-01-01T23:59:59.000Z

336

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

337

Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century  

SciTech Connect (OSTI)

Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

2014-02-01T23:59:59.000Z

338

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

339

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

340

Bioproducts: Enabling Biofuels and Growing the Bioeconomy  

Broader source: Energy.gov [DOE]

Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Katy Christiansen and Nichole Fitzgerald, AAAS Fellows, Bioenergy Technologies Office, U.S. Department of Energy

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network [OSTI]

Biodiesel Ethanol & Biodiesel No known biofuels program North America: RFS2 & LCFS implementation Growth for Ethanol and at a smaller scale for Biodiesel Source: Hart Energy's Global Biofuels Center Supply Total Demand Ethanol Biodiesel MillionLiters 2010 2015 2020 · Ethanol demand represents 73

342

Producing biofuels using polyketide synthases  

DOE Patents [OSTI]

The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

2013-04-16T23:59:59.000Z

343

ECCO Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuval County, Texas:E BiofuelsMitigationECBECCO

344

Biofuels International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source HistoryBarriersBiofuels AmericaIndiana

345

Border Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder Biofuels Jump to:

346

Acciona Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2Abrams,Acciona Biofuels Jump to:

347

WHEB Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane JumpWHEB Biofuels Jump to:

348

Sandia National Laboratories: Research: Biofuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act Solar TestNationalBiofuels Overcoming

349

Sandia National Laboratories: Biofuels Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuels Assessing the

350

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

351

Special Seminar Realizing the Full Potential of Algal Biofuels  

E-Print Network [OSTI]

of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

Garfunkel, Eric

352

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

Levinson, David M.

353

US Biofuels Baseline and impact of extending the  

E-Print Network [OSTI]

June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

Noble, James S.

354

Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities  

E-Print Network [OSTI]

Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

355

Scrap biofuels targets and focus on improved public transport  

E-Print Network [OSTI]

Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

356

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network [OSTI]

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

357

VIEWLS Final recommendations report Shift Gear to Biofuels  

E-Print Network [OSTI]

VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

358

EPA and RFS2: Market Impacts of Biofuel Mandate  

E-Print Network [OSTI]

July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

Noble, James S.

359

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

360

Global Biofuel Use, 1850-2000.  

SciTech Connect (OSTI)

This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

2007-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply  

E-Print Network [OSTI]

SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

Reisslein, Martin

362

Techno-economic analysis of renewable energy source options for a district heating project  

SciTech Connect (OSTI)

With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [University of British Columbia, Vancouver

2009-09-01T23:59:59.000Z

363

Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners  

E-Print Network [OSTI]

the current cost of production of 3.5 Rs per kWh. It isthe average cost of production to be 3.50 Rs. per kWh, or $the cost of production significantly at 4.80 Rs. per kWh. As

McNeil, Michael A.; Iyer, Maithili

2008-01-01T23:59:59.000Z

364

A techno-economic plant- and grid-level assessment of flexible CO2 capture.  

E-Print Network [OSTI]

??Carbon dioxide (CO?) capture and sequestration (CCS) at fossil-fueled power plants is a critical technology for CO? emissions mitigation during the transition to a sustainable… (more)

Cohen, Stuart Michael, 1984-

2012-01-01T23:59:59.000Z

365

Techno-Economic Analysis of Scalable Coal-based Fuel Cells  

SciTech Connect (OSTI)

Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO2 recycling unit.

Chuang, Steven

2014-08-31T23:59:59.000Z

366

NEW METHOD AND SOFTWARE FOR MULTI-VARIABLE TECHNO-ECONOMIC DESIGN OPTIMIZATION OF CSP PLANTS  

E-Print Network [OSTI]

for design optimization of solar thermal power plants. Thereby, optimization potential can be discovered to a 50 MWel parabolic trough power plant using thermal oil as heat transfer fluid (HTF), a molten salt, parabolic trough 1. Motivation (Introduction) Today, designs of solar thermal power plants are developed

Ábrahám, Erika

367

Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass  

E-Print Network [OSTI]

the cost of the production of hydrogen from three candidate biomass feedstocks and identify the barriers

368

Techno-economic assessment of electric steelmaking through the year 2000  

SciTech Connect (OSTI)

This paper presents a critical review of the outlook for electric steelmaking including an assessment of existing and potential electric arc furnace (EAF) capacity. Suggested areas of development to minimize energy consumption and optimize output are also featured. 20 figs.; 62 tabs.

Bosley, J. J.; Clark, J. P.; Dancy, T. E.; Fruehan, R. J.; McIntyre, E. H.

1987-07-01T23:59:59.000Z

369

Techno-Economic Design Tools Used in Selecting Industrial Energy Recovery Systems  

E-Print Network [OSTI]

's design, performance, and initial installed cost. A flexible investment analyses is procedure forms the basis of the economic evaluation; payback period (in years) and percent of return on investment are calculated for competing alternative heat recovery...

Hanus, N.

1982-01-01T23:59:59.000Z

370

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services (Presentation)  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) could significantly reduce the nation's gasoline consumption and greenhouse gas emissions rates. However, both the upfront cost and the limited range of the vehicle are perceived to be deterrents to the widespread adoption of BEVs. A service provider approach to marketing BEVs, coupled with a battery swapping infrastructure deployment could address both issues and accelerate BEV adoption. This presentation examines customer selection, service usage statistics, service plan fees and driver economics. Our results show it is unlikely that a battery swapping service plan will be more cost-effective than ownership of a conventional vehicle. A battery swapping service plan may be a more cost-effective solution than a directly owned BEV for some single-vehicle, high-mileage consumers. However, other factors not considered in this analysis could decrease the viability of such a service.

Neubauer, J.; Pesaran, A.

2013-05-01T23:59:59.000Z

371

Techno-Economic Analysis of Traditional Hydrogen Transmission and Distribution Options  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | DepartmentTraditional

372

Safety and Techno-Economic Analysis of Solvent Selection for Supercritical Fischer-Tropsch Synthesis Reactors  

E-Print Network [OSTI]

of the fixed-bed reactor, among other disadvantages, is that the reaction is very exothermic, which is a concern in terms of safety hazards and also in terms of cost of heat removal. With the slurry reactor, a problem is that in the liquid media... at different lengths.4 After the reaction takes place, the amount of carbon monoxide consumed decreases and carbon dioxide is produced as a side product.9 The FTS reaction is an extremely exothermic process, which represents serious challenges...

Hamad, Natalie

2012-02-14T23:59:59.000Z

373

Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture  

E-Print Network [OSTI]

Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

Hong, Jongsup

2009-01-01T23:59:59.000Z

374

4.1.1.50 High Level Techno-Economic Analysis of Innovative Technology Concepts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5SUMMARIES | DepartmentAPRIL

375

Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners  

E-Print Network [OSTI]

Standard Levels for Room Air Conditioners Michael A. McNeilFigure 1 – MEPS for 1.5 ton Window Air Conditioners – 1994-4 Figure 2 – Air Conditioner Test Data and Rating Plan -

McNeil, Michael A.; Iyer, Maithili

2008-01-01T23:59:59.000Z

376

Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy  

SciTech Connect (OSTI)

This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

Oladosu, Gbadebo A [ORNL

2012-01-01T23:59:59.000Z

377

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

Seguin, Charles

2012-01-01T23:59:59.000Z

378

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

E-Print Network [OSTI]

of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

Kuk Lee, Sung

2010-01-01T23:59:59.000Z

379

The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance  

E-Print Network [OSTI]

JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

2010-01-01T23:59:59.000Z

380

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network [OSTI]

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - assessing biofuel crop Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541040990370.pdf 12;BiofuelsBiofuels: Technology, Markets and Policies: Technology, Markets... and Policies Debate on biofuels needs to distiguish between - ... Source:...

382

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

Morrow, III, William R.

2013-01-01T23:59:59.000Z

383

The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization  

E-Print Network [OSTI]

enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

Garcia, David Ernest

2013-01-01T23:59:59.000Z

384

Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production  

E-Print Network [OSTI]

carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

Hollister, E.B.

2012-01-01T23:59:59.000Z

385

Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli  

E-Print Network [OSTI]

metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

2012-01-01T23:59:59.000Z

386

For switchgrass cultivated as biofuel in California, invasiveness limited by several steps  

E-Print Network [OSTI]

United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

2013-01-01T23:59:59.000Z

387

Switchgrass is a promising, high-yielding crop for California biofuel  

E-Print Network [OSTI]

both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

2011-01-01T23:59:59.000Z

388

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production  

E-Print Network [OSTI]

fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

Wohlbach, Dana J.

2011-01-01T23:59:59.000Z

389

Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.  

E-Print Network [OSTI]

fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

2013-01-01T23:59:59.000Z

390

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network [OSTI]

Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

Goyal, Garima

2011-01-01T23:59:59.000Z

391

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

Seguin, Charles

2012-01-01T23:59:59.000Z

392

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

393

Biofuels: A Solution for Climate Change  

SciTech Connect (OSTI)

Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

Woodward, S.

1999-10-04T23:59:59.000Z

394

How sustainable biofuel business really is? : Today's issues on biofuel production.  

E-Print Network [OSTI]

??Demand for biofuels has skyrocketed during the recent years. While high price of oil might have been the main driver for this phenomenon, the risen… (more)

Kollanus, Iris-Maria

2013-01-01T23:59:59.000Z

395

Biofuels in the European Union : Analysis of the Development of the Common Biofuels Policy.  

E-Print Network [OSTI]

??Biofuels are increasingly being promoted as substitute fuels in the transport sector. Many countries are establishing support measures for the production and use of such… (more)

Haugsbø, Miriam Søgnen

2012-01-01T23:59:59.000Z

396

Energy 101: Feedstocks for Biofuels and More  

Broader source: Energy.gov [DOE]

See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

397

Biofuels grant..........................3 Urban design video.................3  

E-Print Network [OSTI]

· Biofuels grant..........................3 · Urban design video.................3 A monthly report represent- ing regional organizations, local governments, and regulatory agencies. TIRP is intended, and fostering collaboration between government and academia. Dawn Spanhake, CTS assistant director of program

Minnesota, University of

398

Overview of Governor's Biofuels Coalition and Updates  

Broader source: Energy.gov [DOE]

At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

399

Future of Liquid Biofuels for APEC Economies  

SciTech Connect (OSTI)

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01T23:59:59.000Z

400

Biofuels Report Final | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuelBiofuels

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

402

The implementation of the triple helix model of industry-university-government relations in Puerto Rico to promote knowledge-based regional economic development  

E-Print Network [OSTI]

Puerto Rico, an island in the Caribbean, has long sought to develop a high-tech economy and has struggled in the process. Two initiatives, Puerto Rico TechnoEconomic Corridor (PRTEC) and the Eastern Central Technological ...

Ramos-Maltés, Ana Lorena

2010-01-01T23:59:59.000Z

403

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

404

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

Electricity CNG F-T Diesel Bio-Diesel Methanol Ethanol (1)bio) Carbon Emissions (MMTCe/year) Ethanol Use (Quads) Biofuel Gasoline/DieselBio) Ethanol Use (Quads) Carbon Index (MMTCe/Quad) Biofuel Gasoline/Diesel

Eggert, Anthony

2007-01-01T23:59:59.000Z

405

BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results  

Office of Energy Efficiency and Renewable Energy (EERE)

Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

406

Production cost and supply chain design for advanced biofuels.  

E-Print Network [OSTI]

??The U.S. government encourages the development of biofuel industry through policy and financial support since 1978. Though first generation biofuels (mainly bio-based ethanol) expand rapidly… (more)

Li, Yihua

2013-01-01T23:59:59.000Z

407

Unintended Environmental Consequences of a Global Biofuels Program  

E-Print Network [OSTI]

Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

Melillo, Jerry M.

408

Metabolic Engineering of oleaginous yeast for the production of biofuels  

E-Print Network [OSTI]

The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

Tai, Mitchell

2012-01-01T23:59:59.000Z

409

Video: A New Biofuels Technology Blooms in Iowa  

Broader source: Energy.gov [DOE]

Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

410

Biofuels News, Spring/Summer 2001, Vol. 4, No. 2  

SciTech Connect (OSTI)

Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

Tuttle, J.

2001-07-13T23:59:59.000Z

411

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

Dunlop, Mary

2012-01-01T23:59:59.000Z

412

From Processing Juice to Producing Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

413

The Farmer's Conundrum: Income from Biofuels or Protect the Soil...  

Broader source: Energy.gov (indexed) [DOE]

The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

414

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network [OSTI]

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

415

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J.L.

2011-01-01T23:59:59.000Z

416

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

bio-diesel is favored in several European countries, ethanol dominates the majority of the world biofuel market,

Fortman, J. L.

2010-01-01T23:59:59.000Z

417

Biomass and Biofuels: Technology and Economic Overview (Presentation)  

SciTech Connect (OSTI)

Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

Aden, A

2007-05-23T23:59:59.000Z

418

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

jet engines. Recently, there have been several reports of efforts to engineer microorganisms to produce advanced biofuels

Dunlop, Mary

2012-01-01T23:59:59.000Z

419

World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)  

SciTech Connect (OSTI)

Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

Bain, R. L.

2007-12-01T23:59:59.000Z

420

Spectral optical properties of selected photosynthetic microalgae producing biofuels  

E-Print Network [OSTI]

Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sustainability for the Global Biofuels Industry Minimizing Risks...  

Broader source: Energy.gov (indexed) [DOE]

Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

422

Sustainability for the Global Biofuels Industry: Minimizing Risks...  

Energy Savers [EERE]

Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript....

423

The Impact of Biofuel Mandates on Land Use Suhail Ahmad  

E-Print Network [OSTI]

The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

424

REVIEW PAPER Microalgae as second generation biofuel. A review  

E-Print Network [OSTI]

REVIEW PAPER Microalgae as second generation biofuel. A review Nirbhay Kumar Singh & Dolly Wattal not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several biofuel has been known for several years and is frequently modified and upgraded. In view of this

Boyer, Edmond

425

II. Greenhouse gas markets, carbon dioxide credits and biofuels17  

E-Print Network [OSTI]

15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

426

Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum  

E-Print Network [OSTI]

9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

427

California Policy Should Distinguish Biofuels by Differential Global Warming Effects  

E-Print Network [OSTI]

California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

Kammen, Daniel M.

428

International Symposium Transport and Air Pollution Session 6: Biofuels 2  

E-Print Network [OSTI]

1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

Paris-Sud XI, Université de

429

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP  

E-Print Network [OSTI]

FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

Wildermuth, Mary C

430

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

431

USDA Biofuels Strategic Production Report June 23, 2010  

E-Print Network [OSTI]

USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

432

Biofuels' Time of Transition Achieving high performance in a world  

E-Print Network [OSTI]

Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

Kammen, Daniel M.

433

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network [OSTI]

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

434

September 2010 FAPRI-MU US Biofuels, Corn Processing,  

E-Print Network [OSTI]

September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

Noble, James S.

435

Invitation/Program Technology Watch Day on Future Biofuels  

E-Print Network [OSTI]

Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

436

Global biofuel drive raises risk of eviction for African farmers  

E-Print Network [OSTI]

Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

437

Global Biofuel Production and Food Security: Implications for Asia Pacific  

E-Print Network [OSTI]

Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

438

Global Assessments and Guidelines for Sustainable Liquid Biofuel  

E-Print Network [OSTI]

Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

439

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad  

E-Print Network [OSTI]

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

440

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Metabolic Engineering for Improved Biofuel Yield in a Marine  

E-Print Network [OSTI]

Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

Petta, Jason

442

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR  

E-Print Network [OSTI]

ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

Pennycook, Steve

443

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices  

E-Print Network [OSTI]

Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

Boyer, Edmond

444

Nottingham Business School Biofuels Market and Policy Governance  

E-Print Network [OSTI]

a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising numberNottingham Business School Biofuels Market and Policy Governance The last decade has seen triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

Evans, Paul

445

Engineering microbial biofuel tolerance and export using efflux pumps  

E-Print Network [OSTI]

REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced

Dunlop, Mary

446

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

447

Biofuel Feedstock Assessment for Selected Countries  

SciTech Connect (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18T23:59:59.000Z

448

Scientific Analysis Is Essential to Assess Biofuel Policy Effects  

SciTech Connect (OSTI)

Land-use change (LUC) estimated by economic models has sparked intense international debate. Models estimate how much LUC might be induced under prescribed scenarios and rely on assumptions to generate LUC values. It is critical to test and validate underlying assumptions with empirical evidence. Furthermore, this modeling approach cannot answer if any specific indirect effects are actually caused by biofuel policy. The best way to resolve questions of causation is via scientific methods. Kim and Dale attempt to address the question of if, rather than how much, market-induced land-use change is currently detectable based on the analysis of historic evidence, and in doing so, explore some modeling assumptions behind the drivers of change. Given that there is no accepted approach to estimate the global effects of biofuel policy on land-use change, it is critical to assess the actual effects of policies through careful analysis and interpretation of empirical data. Decision makers need a valid scientific basis for policy decisions on energy choices.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Dale, Virginia H [ORNL; McBride, Allen [ORNL

2011-01-01T23:59:59.000Z

449

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,  

E-Print Network [OSTI]

Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

450

Analyzing Impact of Intermodal Facilities on Design and Management of Biofuel Supply Chain  

SciTech Connect (OSTI)

The impact of an intermodal facility on location and transportation decisions for biofuel production plants is analyzed. Location decisions affect the management of the inbound and outbound logistics of a plant. This supply chain design and management problem is modeled as a mixed integer program. Input data for this model are location of intermodal facilities and available transportation modes, cost and cargo capacity for each transportation mode, geographical distribution of biomass feedstock and production yields, and biomass processing and inventory costs. Outputs from this model are the number, location, and capacity of biofuel production plants. For each plant, the transportation mode used, timing of shipments, shipment size, inventory size, and production schedule that minimize the delivery cost of biofuel are determined. The model proposed in this research can be used as a decision-making tool for investors in the biofuels industry since it estimates the real cost of the business. The state of Mississippi is considered as the testing grounds for the model.

Eksioglu, Sandra D [ORNL; Li, Song [ORNL; Zhang, Shu [Mississippi State University (MSU); Petrolia, Daniel [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

2010-09-01T23:59:59.000Z

451

Pilot Scale Integrated Biorefinery for Producing Ethanol from Hybrid Algae: Cooperative Research and Development Final Report, CRADA Number CRD-10-389  

SciTech Connect (OSTI)

This collaboration between Algenol Biofuels Inc. and NREL will provide valuable information regarding Direct to Ethanol technology. Specifically, the cooperative R&D will analyze the use of flue gas from industrial sources in the Direct to Ethanol process, which may demonstrate the potential to significantly reduce greenhouse gas emissions while simultaneously producing a valuable product, i.e., ethanol. Additionally, Algenol Biofuels Inc. and NREL will develop both a techno-economic model with full material and energy balances and an updated life-cycle analysis to identify greenhouse gas emissions relative to gasoline, each of which will provide a better understanding of the Direct to Ethanol process and further demonstrate that it is a breakthrough technology with varied and significant benefits.

Pienkos, P. T.

2013-11-01T23:59:59.000Z

452

National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)  

SciTech Connect (OSTI)

Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

Not Available

2010-06-01T23:59:59.000Z

453

Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Vimmerstedt, L. J.; Bush, B.; Peterson, S.

2012-05-01T23:59:59.000Z

454

Biofuel Feedstock Inter-Island Transportation  

E-Print Network [OSTI]

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

455

Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough  

E-Print Network [OSTI]

the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

456

Method for Removing Precipitates in Biofuel  

Energy Innovation Portal (Marketing Summaries) [EERE]

At ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50–90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected by visual inspection....

2010-12-08T23:59:59.000Z

457

National Geo-Database for Biofuel Simulations and Regional Analysis  

SciTech Connect (OSTI)

The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the practices. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided initial simulation results on the potential of annual and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

2012-04-01T23:59:59.000Z

458

Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products  

E-Print Network [OSTI]

Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

Achyuthan, Komandoor

2013-01-01T23:59:59.000Z

459

Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production  

E-Print Network [OSTI]

For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

2009-01-01T23:59:59.000Z

460

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Global Biofuels Modeling and Land Use  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatialSession)

462

Efficient Algorithms for Infrastructure Networks: Planning Issues and Economic Impact  

E-Print Network [OSTI]

down description of the techno-economic model Efficient Algorithms for Infrastructure Networks: Planning Issues and Economic Impact Frank and Economic Impact Academisch Proefschrift ter verkrijging van de graad van Doctor aan de Vrije Universiteit

van der Mei, Rob

463

Growth in Biofuels Markets: Long Term Environmental and Socioeconomic Impacts (Final Report)  

SciTech Connect (OSTI)

Over the last several years increasing energy and petroleum prices have propelled biofuels and the feedstocks used to produce them, to the forefront of alternative energy production. This growth has increased the linkages between energy and agricultural markets and these changes around the world are having a significant effect on agricultural markets as biofuels begin to play a more substantial role in meeting the world's energy needs. Biofuels are alternatively seen as a means to reduce carbon emissions, increase energy independence, support rural development and to raise farm income. However, concern has arisen that the new demand for traditional commodities or alternative commodities which compete for land can lead to higher food prices and the environmental effects from expanding crop acreage may result in uncertain changes in carbon emissions as land is converted both in the US and abroad. While a number of studies examine changes in land use and consumption from changes in biofuels policies many lack effective policy representation or complete coverage of land types which may be diverted in to energy feedstock production. Many of these biofuels and renewable energy induced land use changes are likely to occur in developing countries with at-risk consumers and on environmentally sensitive lands. Our research has improved the well known FAPRI-MU modeling system which represents US agricultural markets and policies in great detail and added a new model of land use and commodity markets for major commodity producers, consumers and trade dependent and food insecure countries as well as a rest of the world aggregate. The international modules include traditional annual crop lands and include perennial crop land, pasture land, forest land and other land uses from which land may be drawn in to biofuels or renewable energy feedstock production. Changes in calorie consumption in food insecure countries from changes in renewable energy policy can also be examined with a calorie module that was developed. The econometric model development provides an important tool to examine the indirect but important and potentially substantial secondary effects of the use of agricultural land as an input into renewable energy production including changes in greenhouse gas production and calorie consumption. With the expansion of biofuels support and consumption as well as proposals for similar support of biomass electricity the research and tools developed remain at the forefront of renewable energy policy analysis.

Seth D. Meyer; Nicholas Kalaitzandonakes

2010-12-02T23:59:59.000Z

464

Biofuel Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel Conversion

465

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuels LLC Jump to:

466

Raven Biofuels International Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus Power Ltd Jump to: navigation,Raven Biofuels

467

Continental Biofuels Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturn toContinental Biofuels

468

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

469

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

470

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network [OSTI]

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

471

Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels  

E-Print Network [OSTI]

75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

Gopal, Anand Raja

2011-01-01T23:59:59.000Z

472

Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis  

E-Print Network [OSTI]

Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

2008-01-01T23:59:59.000Z

473

Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler  

E-Print Network [OSTI]

Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

Massachusetts at Amherst, University of

474

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

475

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic  

E-Print Network [OSTI]

Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

Zhao, Huimin

476

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network [OSTI]

conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

477

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

478

Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries  

E-Print Network [OSTI]

impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

Morrow, III, William R.

2013-01-01T23:59:59.000Z

479

Essays on the Economics of Climate Change, Biofuel and Food Prices  

E-Print Network [OSTI]

optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

Seguin, Charles

2012-01-01T23:59:59.000Z

480

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...  

Broader source: Energy.gov (indexed) [DOE]

Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

Note: This page contains sample records for the topic "biofuels techno-economic models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf...  

Broader source: Energy.gov (indexed) [DOE]

http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrices.pdf http:www.energy.govmediaF...BiofuelsLowerGasPrice...

482

Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels  

E-Print Network [OSTI]

in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

Gray, Matthew

483

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation  

E-Print Network [OSTI]

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

McCarl, Bruce A.

484

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

485

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

of interest is the carbon intensity of the transportationthis scenario. The carbon intensity is defined here as thebetween the biofuels carbon intensity and the total

Eggert, Anthony

2007-01-01T23:59:59.000Z

486

Alternative Energy Science and Policy: Biofuels as a Case Study.  

E-Print Network [OSTI]

??This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to… (more)

Ammous, Saifedean H.

2011-01-01T23:59:59.000Z

487

An industry analysis of the South African biofuels industry.  

E-Print Network [OSTI]

??Biofuels have been used as an energy source for heating and cooking since the beginning of time. However, recent changes in the demand for energy,… (more)

Cilliers, Bronwyn Lee

2012-01-01T23:59:59.000Z

488

Biofuels Sustainability Certification Schemes: Challenges, Feasibility and Possible Approaches.  

E-Print Network [OSTI]

??The focus of this research is to develop and apply an analytical framework for evaluating the effectiveness and practicability of sustainability certification schemes for biofuels,… (more)

Visconti, Gloria and#60;1971and#62

2010-01-01T23:59:59.000Z

489

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

Fortman, J. L.

2010-01-01T23:59:59.000Z

490

Biofuels in South Africa : factors influencing production and consumption.  

E-Print Network [OSTI]

?? Interest in the biofuels industry in South Africa is driven largely by high oil prices and a strain on energy resources and logistics. This… (more)

Chambers, David

2010-01-01T23:59:59.000Z

491

Transportation Biofuels in the USA Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

492

Transportation Biofuels in the US A Preliminary Innovation Systems Analysis  

E-Print Network [OSTI]

that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

Eggert, Anthony

2007-01-01T23:59:59.000Z

493

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices Michael J. Lance and Todd J. Toops Oak Ridge National Laboratory June 20 th , 2014 PM055 This presentation does not contain any...

494

Navigating Roadblocks on the Path to Advanced Biofuels Deployment  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

495

Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

496

Assessing Impact of Biofuel Production on Regional Water Resource...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the...

497

Assessments of biofuel sustainability: air pollution and health impacts  

E-Print Network [OSTI]

costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

Tsao, Chi-Chung

2012-01-01T23:59:59.000Z

498

The Science Behind Cheaper Biofuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

499

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Energy Savers [EERE]

Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

500

Vietnam-Status and Potential for the Development of Biofuels...  

Open Energy Info (EERE)

Vietnam-Status and Potential for the Development of Biofuels and Rural Renewable Energy AgencyCompany Organization: Asian Development Bank Sector: Energy Focus Area: Renewable...