National Library of Energy BETA

Sample records for biofuels solar product

  1. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  2. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cutting Biofuel Production Costs Working to use sunlight to convert biomass to biofuels, ... bioderived alcohols to benzaldehyde, toluene, and the zero-emission biofuel hydrogen. ...

  3. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  4. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Cost of Production Advanced Biofuels Cost of Production Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. PDF icon aviation_biofuels_haq.pdf More Documents & Publications A Review of DOE Biofuels Program DOE Perspectives on Advanced Hydrocarbon-based Biofuels Pathways for Algal Biofuels

  5. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  6. Production of Advanced Biofuels via Liquefaction - Hydrothermal...

    Office of Scientific and Technical Information (OSTI)

    Title: Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 This report provides detailed reactor designs and capital costs, ...

  7. Kreido Biofuels formerly Gemwood Productions | Open Energy Information

    Open Energy Info (EERE)

    Kreido Biofuels formerly Gemwood Productions Jump to: navigation, search Name: Kreido Biofuels (formerly Gemwood Productions) Place: Camarillo, California Zip: 93012 Product:...

  8. Metabolomics of Clostridial Biofuel Production

    SciTech Connect (OSTI)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars (xylose or arabinose) to C. acetobutylicum revealed that, as expected, glucose was preferred, with the pentose sugar selectively assimilated into the pentose phosphate pathway (PPP). Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among these pentose sugars, with arabinose utilized preferentially over xylose. Pentose catabolism occurred via the phosphoketolase pathway (PKP), an alternative route of pentose catabolism that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate. Taken collectively, these findings reveal two hierarchies in Clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP. Thus, in addition to massively expanding the available data on Clostridial metabolism, we identified three key regulatory points suitable for targeting in future bioengineering efforts: phosphofructokinase for enhancing fermentation, the pyruvate-oxaloacetate node for controlling solventogenesis, and the phosphoketolase reaction for driving pentose catabolism.

  9. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... nutrients are among the largest costs in cultivating algae for biofuel production. ...

  10. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  11. Harnessing Biotechnology to Accelerate Advanced Biofuels Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Harnessing Biotechnology to Accelerate Advanced Biofuels Production Harnessing Biotechnology to Accelerate Advanced Biofuels Production April 12, 2016 - 10:13am Addthis Improving Access to Energy-Rich Sugars. Ning Sun is part of a team of researchers in the Energy Department's Joint BioEnergy Institute (JBEI) Deconstruction Division exploring methods to pretreat biomass. | Image courtesy of JBEI Improving Access to Energy-Rich Sugars. Ning Sun is part of a team of

  12. Second-Generation Biofuels from Multi-Product Biorefineries Combine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Sustainability With Environmental Sustainability | Department of Energy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Breakout Session 3B-Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic

  13. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  14. DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Maps, and More | Department of Energy Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10, 2014 - 3:25pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically

  15. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  16. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. PDF icon ctab_webinar_bio_oils_production.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  17. Wastewater Reclamation and Biofuel Production Using Algae | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels Wastewater Reclamation and Biofuel Production Using Algae Tryg Lundquist, Associate Professor, California Polytechnic State University, San Luis Obispo PDF icon lundquist_bioenergy_2015.pdf More Documents & Publications CX-009557: Categorical Exclusion Determination 2013 Peer Review Presentations-Algae ATP3

  18. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  19. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability May ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  20. From pandemic preparedness to biofuel production: Tobacco finds...

    Office of Scientific and Technical Information (OSTI)

    funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 ... applications in synthetic biology, biofuels production and industrial enzyme production. ...

  1. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  2. Efflux Pumps to Increase Microbial Tolerance and Biofuel Production -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Efflux Pumps to Increase Microbial Tolerance and Biofuel Production Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Engineering microbial biofuel tolerance and export using efflux pumps (356 KB) Technology Marketing Summary Aindrila Mukhopadhyay, Jay Keasling, and Mary Dunlop at the Joint BioEnergy Institute (JBEI) have

  3. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  4. Benefits of Biofuel Production and Use in New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Dairy waste can support advanced biofuel production, including algae cultivation for ... These can be used in all vehicles without engine modifications. LANL SNL Innovative ...

  5. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May Wu, ANL, 81512 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. PDF icon wuwebinar.pdf More Documents & Publications ...

  6. Benefits of Biofuel Production and Use in Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 120 million gallons of biodiesel in 2013. Expanding biofuel production ... R&D Cookstove Woody and herbaceous biomass Design a cookstove for woody and herbaceous ...

  7. A model for improving microbial biofuel production using a synthetic...

    Office of Scientific and Technical Information (OSTI)

    using a synthetic feedback loop Citation Details In-Document Search Title: A model for improving microbial biofuel production using a synthetic feedback loop Cells use ...

  8. Synthetic biology for microbial production of lipid-based biofuels...

    Office of Scientific and Technical Information (OSTI)

    Synthetic biology for microbial production of lipid-based biofuels Citation Details In-Document Search This content will become publicly available on October 22, 2017 Title: ...

  9. Benefits of Biofuel Production and Use in Michigan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2012, Michigan consumed more than 21 times more petroleum than it produced. Biofuels offer a sustainable strategy to narrow the gap between energy consumption and production. ...

  10. Integrating the Production of Biofuels and Bioproducts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrating the Production of Biofuels and Bioproducts Integrating the Production of Biofuels and Bioproducts April 28, 2016 - 11:25am Addthis Non-food biomass such as the crop residue (the leftover material from crops like stalks, leaves, and husks of corn plants following harvest) pictured above can be converted to biofuels as well as high-value products such as plastics, chemicals, and fertilizers. Non-food biomass such as the crop residue (the leftover material from crops like

  11. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  12. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  13. From pandemic preparedness to biofuel production: Tobacco finds its

    Office of Scientific and Technical Information (OSTI)

    biotechnology niche in North America (Journal Article) | DOE PAGES From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America Title: From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation

  14. Making Algal Biofuel Production More Efficient, Less Expensive | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Algal Biofuel Production More Efficient, Less Expensive Making Algal Biofuel Production More Efficient, Less Expensive January 10, 2014 - 1:08pm Addthis Researchers at the Energy Department's Pacific Northwest National Laboratory have developed an innovative process that turns algae into bio-crude in less than 60 minutes. Watch the video above to see how the process works. | Video courtesy of Pacific Northwest National Laboratory Colleen Ruddick Senior Technical Research Analyst

  15. Microorganisms to Speed Production of Biofuels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microorganisms to Speed Production of Biofuels Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL developed microorganisms that can quickly overcome the resistance of biomass to breakdown, and improved both the cost and efficiency of the biofuel conversion process.DescriptionConventional biomass pretreatment methods release sugars, weak acids, and metabolic by-products that slow down or even stop fermentation, resulting in slower

  16. Exploring the Optimum Role of Natural Gas in Biofuels Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Exploring the Optimum Role of Natural Gas in Biofuels Production Exploring the Optimum Role of Natural Gas in Biofuels Production Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute PDF icon b13_bush_1-d.pdf More Documents & Publications 2013 Peer Review Presentations-Gasification Bioenergy Technologies Office Conversion R&D Pathway: Syngas

  17. A model for improving microbial biofuel production using a synthetic

    Office of Scientific and Technical Information (OSTI)

    feedback loop (Journal Article) | SciTech Connect A model for improving microbial biofuel production using a synthetic feedback loop Citation Details In-Document Search Title: A model for improving microbial biofuel production using a synthetic feedback loop Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native

  18. Genes for Xylose Fermentation, Enhanced Biofuel Production in Yeast -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Genes for Xylose Fermentation, Enhanced Biofuel Production in Yeast Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryEfficient fermentation of cellulosic feedstocks is an essential step in the production of biofuel from plant materials. Glucose and xylose are the two most abundant monomeric carbohydrates found in hemicellulose. Saccharomyces cerevisiae, the yeast most commonly used for industrial fermentation, is

  19. Tolerance engineering in bacteria for the production of advanced biofuels

    Office of Scientific and Technical Information (OSTI)

    and chemicals (Journal Article) | SciTech Connect Journal Article: Tolerance engineering in bacteria for the production of advanced biofuels and chemicals Citation Details In-Document Search Title: Tolerance engineering in bacteria for the production of advanced biofuels and chemicals Authors: Mukhopadhyay, Aindrila Publication Date: 2015-08-01 OSTI Identifier: 1250601 Grant/Contract Number: AC02-05CH11231 Type: Published Article Journal Name: Trends in Microbiology Additional Journal

  20. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect (OSTI)

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  1. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  2. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  3. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  4. ECCO Biofuels | Open Energy Information

    Open Energy Info (EERE)

    ECCO Biofuels Jump to: navigation, search Name: ECCO Biofuels Place: Texas Sector: Biofuels Product: ECCO Biofuels manufactures biodiesel production facilities as well as produces...

  5. Algae-Based Biofuels: Applications and Co-Products | Open Energy...

    Open Energy Info (EERE)

    Algae-Based Biofuels: Applications and Co-Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Algae-Based Biofuels: Applications and Co-Products AgencyCompany...

  6. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  7. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  8. Designer synthetic media for studying microbial-catalyzed biofuel production

    Office of Scientific and Technical Information (OSTI)

    Open Access Designer synthetic media for studying microbial- catalyzed biofuel production Xiaoyu Tang 1* , Leonardo da Costa Sousa 2 , Mingjie Jin 2 , Shishir PS Chundawat 2,3 , Charles Kevin Chambliss 4 , Ming W Lau 2 , Zeyi Xiao 5 , Bruce E Dale 2 and Venkatesh Balan 2* Abstract Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic

  9. WHEB Biofuels | Open Energy Information

    Open Energy Info (EERE)

    WHEB Biofuels Jump to: navigation, search Name: WHEB Biofuels Place: London, United Kingdom Sector: Biofuels Product: Ethanol producer that also invests in emerging biofuels...

  10. West Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: West Biofuels Place: California Sector: Biofuels Product: West Biofuels LLC is a 2007 start-up company based in California with funding...

  11. LC Biofuels | Open Energy Information

    Open Energy Info (EERE)

    LC Biofuels Jump to: navigation, search Name: LC Biofuels Place: Richmond, California Sector: Biofuels Product: Biofuels producer that owns and operatres a 1.3m facility in...

  12. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Rusni Biofuels Place: Andhra Pradesh, India Sector: Biofuels Product: Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

  13. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Border Biofuels Jump to: navigation, search Name: Border Biofuels Place: Melrose, United Kingdom Zip: TD6 OSG Sector: Biofuels Product: Biofuels business which went into...

  14. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  15. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  16. Methods and materials for deconstruction of biomass for biofuels production

    DOE Patents [OSTI]

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  17. Conversion Technologies for Advanced Biofuels … Bio-Oil Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Report-Out Webinar February 9, 2012 David Dayton, Ph.D. RTI International Energy Efficiency & Renewable Energy eere.energy.gov 2 Dr. David C. Dayton Director, Chemistry and Biofuels Center for Energy Technology RTI International 2007 - present RTI International 1993 - 2007 National Renewable Energy Laboratory 1991-1993 U.S. Army Research Laboratory * Ph.D., Biochemistry, University of Texas Health Science Center at San Antonio, 2000 * B.S., Biochemistry, cum laude, Washington

  18. Benefits of Biofuel Production and Use in Missouri

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental benefit 60% greenhouse gas reduction ... For more information on the economic benefits of biofuels for Missouri, ... the greatest chance of impact on commercial biofuel ...

  19. Lipid Extraction from Wet-Algae for Biofuel Production - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Lipid Extraction from Wet-Algae for Biofuel Production University of Colorado Contact CU About This Technology Technology Marketing SummaryThere is a growing interest in algal biofuels; however, current methods of a thermal separation process for solvent mixtures involve concomitant issues and increased energy consumption. A research team at the University of Colorado

  20. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  1. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  2. Assessing Impact of Biofuel Production on Regional Water Resource Use and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability | Department of Energy Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Dr. May Wu, ANL, 8/15/12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. PDF icon wu_webinar.pdf More Documents & Publications Achieving Water-Sustainable Bioenergy Production 2013 Peer Review Presentations-Analysis and

  3. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  4. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  7. Environmental indicators for sustainable production of algal biofuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Efroymson, Rebecca A.; Dale, Virginia H.

    2014-10-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as themore » growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Ultimately, use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.« less

  8. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann; Dale, Virginia H

    2014-01-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  9. Imagine Tomorrow: Student Competition Leads to Innovative Biofuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Montana to develop creative, well-researched solutions to complex energy challenges. ... by using solar panels and four 85-liter tanks to cultivate algae for biofuel production. ...

  10. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  11. EV Solar Products | Open Energy Information

    Open Energy Info (EERE)

    Solar Products Jump to: navigation, search Logo: EV Solar Products Name: EV Solar Products Address: 2655 N. Highway 89 Place: Chino Valley, Arizona Zip: 86323 Sector: Solar...

  12. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

  13. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Bio-Oil Upgrading | Department of Energy Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading May 6, 2015 - 11:29am Addthis Battelle’s hydrotreatment system converts bio-oil into biofuel. Photo courtesy of Battelle. Battelle's hydrotreatment system converts bio-oil into biofuel. Photo courtesy of Battelle. Battelle-a nonprofit research and

  14. International Coastal Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Coastal Biofuels Jump to: navigation, search Name: International Coastal Biofuels Place: Tazewell, Virginia Zip: 24651 Sector: Biofuels Product: International Coastal Biofuels is a...

  15. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  16. Blackhawk Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. Mid America Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  19. US Canadian Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Canadian Biofuels Inc Jump to: navigation, search Name: US Canadian Biofuels Inc. Place: Green Bay, Wisconsin Zip: 54313 Sector: Biofuels Product: US Canadian Biofuels Inc is the...

  20. Best Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  1. Northwest Missouri Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  2. Endicott Biofuels II LLC | Open Energy Information

    Open Energy Info (EERE)

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  3. Empire Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  4. Momentum Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Momentum Biofuels Inc Jump to: navigation, search Name: Momentum Biofuels Inc Place: League City, Texas Zip: 77573 Sector: Biofuels Product: Momentum Biofuels, a Texas-based...

  5. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2015 Peer Review Presentations-Algal Feedstocks Algal Biofuels Strategy Workshop - Spring Event ATP3 Algae Testbed Public-Private Partnership

  6. Benefits of Biofuel Production and Use in California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (based on 2011 survey by the Bureau of Labor Statistics) navy.milsubmit... State policies recognize the social, economic, and environmental benefits of biofuels. ...

  7. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research is required on increasing solvent yields. Dark fermentation of algal biomass can also produce hydrogen, but, as for other fermentations, only at low yields. Hydrogen can also be generated by algae in the light, however, this process has not yet been demonstrated in any way that could be scaled up and, in any event, Dunaliella, is not known to produce hydrogen. In response to nutrient deficiency (nitrogen or silicon), some microalgae accumulate neutral lipids which, after physical extraction, could be converted, via transesterification with methanol, to biodiesel. Nitrogen-limitation does not appear to increase either cellular lipid content or lipid productivity in Dunaliella. Results from life cycle energy analyses indicate that cultivation of microalgal biomass in open raceway ponds has a positive energy output ratio (EOR), approaching up to 10 (i.e., the caloric energy output from the algae is 10 times greater than the fossil energy inputs), but EOR are less than 1 for biomass grown in engineered photobioreactors. Thus, from both an energetic as well as economic perspective, only open ponds systems can be considered. Significant long-term R&D will be required to make microalgal biofuels processes economically competitive. Specifically, future research should focus on (a) the improvement of biomass productivities (i.e., maximizing solar conversion efficiencies), (b) the selection and isolation of algal strains that can be mass cultured and maintained stably for long periods, (c) the production of algal biomass with a high content of lipids, carbohydrates, and co-products, at high productivity, (d) the low cost harvesting of the biomass, and (e) the extraction and conversion processes to actually derive the biofuels. For Dunaliella specifically, the highest potential is in the co-production of biofuels with high-value animal feeds based on their carotenoid content.

  8. Godavari Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Godavari Biofuel Jump to: navigation, search Name: Godavari Biofuel Place: Maharashtra, India Product: Holds license to produce ethanol. References: Godavari Biofuel1 This...

  9. Biofuels International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Biofuels International Place: Indiana Sector: Biofuels Product: Pittsburgh based biofuels project developer presently developing a...

  10. SG Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...

  11. Algenol Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Algenol Biofuels Jump to: navigation, search Name: Algenol Biofuels Place: Bonita Springs, Florida Zip: 34135 Sector: Biofuels, Carbon Product: Algenol is developing a process for...

  12. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  13. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Shirke Biofuels Jump to: navigation, search Name: Shirke Biofuels Place: India Product: Indian biodiesel producer. References: Shirke Biofuels1 This article is a stub. You can...

  14. Bently Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Bently Biofuels Jump to: navigation, search Name: Bently Biofuels Place: Minden, Nevada Zip: 89423 Product: Biodiesel producer in Nevada. References: Bently Biofuels1 This...

  15. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect (OSTI)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  16. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

  17. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  18. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  19. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  20. Benefits of Biofuel Production and Use in Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2013. Investments in Minnesota biofuels could keep those dollars in the state to stimulate economic development and add to the state's 75,000+ jobs in green goods and services. ...

  1. Benefits of Biofuel Production and Use in Nebraska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae, energy crops, and urban wastes are among the other sustainable biomass resources ... The Farm to Fly 2.0 initiative aims to develop a commercially viable aviation biofuel ...

  2. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  3. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  4. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  5. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect (OSTI)

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  6. SeQuential Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  7. Electricity production using solar energy

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  8. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen; Kwon, Ho-young; Wander, Michelle M.; Wang, Michael

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  9. New Leaf Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: New Leaf Biofuel Address: 1380 Garnet Place: San Diego, California Zip: 92109 Region: Southern CA Area Sector: Biofuels Product: Collects...

  10. Continental Biofuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    Continental Biofuels Corporation Jump to: navigation, search Name: Continental Biofuels Corporation Place: Dallas, Texas Zip: 75240 Sector: Biofuels Product: Dallas-based company...

  11. Biofuels Power Corp | Open Energy Information

    Open Energy Info (EERE)

    Power Corp Jump to: navigation, search Name: Biofuels Power Corp Place: The Woodlands, Texas Zip: 77380 Sector: Biofuels, Renewable Energy Product: Biofuels Power Corp produces and...

  12. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  13. BP Biofuels Brasil | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Brasil Jump to: navigation, search Name: BP Biofuels Brasil Place: Campinas, Sao Paulo, Brazil Zip: 13025-320 Sector: Biofuels Product: Brazil based BP subsidiary focused...

  14. Amereco Biofuels Corp | Open Energy Information

    Open Energy Info (EERE)

    Amereco Biofuels Corp Jump to: navigation, search Name: Amereco Biofuels Corp Place: Phoenix, Arizona Zip: 85028 Sector: Biofuels Product: Amereco pursues technologies that...

  15. Greenergy Biofuels Limited | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...

  16. Aaditya Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aaditya Biofuels Ltd Jump to: navigation, search Name: Aaditya Biofuels Ltd. Place: Gujarat, India Product: Gujarat-based biodiesel producer. References: Aaditya Biofuels Ltd.1...

  17. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  18. Raven Biofuels International Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuels International Corporation Jump to: navigation, search Name: Raven Biofuels International Corporation Place: Paramus, New Jersey Zip: 07652-1236 Sector: Biofuels Product:...

  19. What Biofuel Production Can Learn from the Zoo: Michelle A. O'Malley |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) What Biofuel Production Can Learn from the Zoo: Michelle A. O'Malley News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.11.16 What Biofuel Production Can Learn from the Zoo:

  20. Energy Department Announces $10 Million for Technologies to Produce Advanced Biofuel Products from Biomass

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $10 million in funding to advance the production of advanced biofuels, substitutes for petroleum-based feedstocks, and bioproducts made from renewable, non-food-based biomass, such as agricultural residues and woody biomass.

  1. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10, ...

  2. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  3. Michigan Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Michigan Biofuel Place: Lupton, Michigan Product: Michigan-based manufacturer of biodiesel processors and related equipment. Coordinates:...

  4. Vercipia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Vercipia Biofuels Jump to: navigation, search Name: Vercipia Biofuels Place: Highlands County, Florida Product: Florida-based JV owning existing intellectual property and...

  5. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Piedmont Biofuels Place: Chatham County, North Carolina Product: Community coop producing biodiesel in small scale to cope with Chatham...

  6. Greenlight Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Greenlight Biofuels Place: Charlottesville, Virginia Product: Charlottesville-based company that develops, builds, owns and operates...

  7. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Mint Biofuels Place: Pune, Maharashtra, India Zip: 412 111 Product: Maharashtra-based biodiesel producer. Coordinates: 18.52671,...

  8. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  9. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Acciona Biofuels Jump to: navigation, search Name: Acciona Biofuels Place: Pamplona, Spain Zip: 31002 Product: A subsidiary of Acciona Energia, that specialises in the...

  10. Optimum Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  11. FUMPA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    FUMPA Biofuels Jump to: navigation, search Name: FUMPA Biofuels Place: Redwood Falls, MN, Minnesota Product: Biodiesel producer based in Redwood Falls, Minnesota. References: FUMPA...

  12. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Yokayo Biofuels Jump to: navigation, search Name: Yokayo Biofuels Place: Ukiah, California Zip: 95482 Product: California-based biodiesel producer and distributor with operations...

  13. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Keystone Biofuels Jump to: navigation, search Name: Keystone Biofuels Place: Shiremanstown, Pennsylvania Product: Biodiesel producer that runs a 3.7m liter plant in Pennsylvania....

  14. Riksch Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  15. Austin Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Austin Biofuels Jump to: navigation, search Name: Austin Biofuels Place: Austin, Texas Product: Supplies pure and blended biodiesel to all of Texas. It has benefited from support...

  16. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  17. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  18. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  19. CPS Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CPS Biofuels Jump to: navigation, search Name: CPS Biofuels Place: Cary, North Carolina Zip: 27513 Sector: Biofuels Product: R&D company that is developing a new process to produce...

  20. Solar Thermochemical Production of Fuels

    SciTech Connect (OSTI)

    Wegeng, Robert S.; TeGrotenhuis, Ward E.; Mankins, John C.

    2007-06-25

    [Abstract] If cost and efficiency targets can be achieved, Solar Thermochemical Plants – occupying a few square kilometers each – can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in imports of foreign petroleum and emissions of carbon dioxide. This paper describes the results of a comparative evaluation of various solar thermochemical approaches for producing chemical fuels. Common to each approach is the concentration of solar and/or other radiant energy so that high temperature heat is provided for thermochemical processes including chemical reactors, heat exchangers and separators. The study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); the effect of combusting natural gas or concentrating beamed radiant energy from an orbiting platform (e.g., space solar power) as supplemental energy sources that support high plant capacity factors; and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer-Tropsch fuels) as the Solar Fuel product of the plant.

  1. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher; Mouttaki, Housna; Lee, Yong-Jin; Goodwin, Lynne A.; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Tice, Hope; Saunders, Elizabeth H; Detter, J. Chris; Han, Cliff; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy; Henrissat, Bernard; HE, Qiang; Lawson, Paul A.; Tanner, Ralph S.; Lynd, Lee R; Wiegel, Juergen; Fields, Dr. Matthew Wayne; Arkin, Adam; Schadt, Christopher Warren; Stevenson, Bradley S.; McInerney, Michael J.; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Ding, Shi-You; Himmel, Michael E; Taghavi, Safiyh; Rubin, Edward M.; Zhou, Jizhong

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  2. Advanced Solar Products | Open Energy Information

    Open Energy Info (EERE)

    Products Jump to: navigation, search Name: Advanced Solar Products Place: Flemington, New Jersey Zip: 8822 Product: New Jersey-based PV systems installer and project developer....

  3. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  4. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  5. Benefits of Biofuel Production and Use in Kansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    help maintain soil health, create another income stream for rural communities, and improve ... Central location facilitates distribution of products to new markets in the U.S. Why ...

  6. Algal Biofuels | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels NREL is developing technologies and helping prepare a new generation workforce to enable the commercialization of algal biofuels. Photo of bright green algae in flasks in fluid inside a lit, metallic grow chamber. We are focused on understanding the current cost for algal biofuels production and using that information to identify and develop cost reduction strategies. Our work is distributed across the entire value chain from production strain identification to biofuel and bioproducts

  7. Bioenergy & Biofuels Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY &amp; BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY &amp; BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  8. Single, Key Gene Discovery Could Streamline Production of Biofuels

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- A team of researchers at the Department of Energy’s BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a...

  9. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model, which is anchored by high-value Omega-3s, permits the profitable production of crude oil & animal feed at market- competitive prices based on current yields, current ...

  10. Conergy Inc formerly Dankoff Solar Products Inc | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Conergy Inc (formerly Dankoff Solar Products Inc) Place: Santa Fe, New Mexico Zip: NM 87507 Sector: Solar Product: Dankoff Solar Products is a...

  11. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir; Chambliss, Charles; Lau, Ming W; Xiao, Zeyi; Dale, Bruce E; Balan, Venkatesh

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore » SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.« less

  12. Designer synthetic media for studying microbial-catalyzed biofuel production

    SciTech Connect (OSTI)

    Tang, Xiaoyu [Biogas Inst. of Ministry of Agriculture, Chengdu (China); da Costa Sousa, Leonardo [Michigan State Univ., East Lansing, MI (United States); Jin, Mingjie [Michigan State Univ., East Lansing, MI (United States); Chundawat, Shishir [Michigan State Univ., East Lansing, MI (United States); State Univ. of New Jersey, Piscataway, NJ (United States); Chambliss, Charles [Baylor Univ., Waco, TX (United States); Lau, Ming W [Michigan State Univ., East Lansing, MI (United States); Xiao, Zeyi [Sichuan Univ., Chengdu (China); Dale, Bruce E [Michigan State Univ., East Lansing, MI (United States); Balan, Venkatesh [Michigan State Univ., East Lansing, MI (United States)

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.

  13. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    SciTech Connect (OSTI)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung; Mueller, Steffen; Wander, Michelle M.

    2016-01-01

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.

  14. Conversion Technologies for Advanced Biofuels … Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Report-Out Webinar February 9, 2012 Mike Ladisch, Ph.D. Purdue University Energy Efficiency & Renewable Energy eere.energy.gov 2 Michael R. Ladisch Distinguished Professor and Director Department of Agricultural and Biological Engineering Laboratory of Renewable Resources Engineering http://engineering.purdue.edu/LORRE CTO, Mascoma Corporation http://www.mascoma.com 1978 - present, Professor at Purdue University; 2007 - present, CTO Mascoma Corporation B.S.ChE, Chemical Engineer,

  15. Enhanced Production of Biofuel Precursors in Microalgae - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  16. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect (OSTI)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  17. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  18. lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  20. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  1. PPC Worley and Independence Biofuels JV | Open Energy Information

    Open Energy Info (EERE)

    Worley and Independence Biofuels JV Jump to: navigation, search Name: PPC, Worley and Independence Biofuels JV Place: Pennsylvania Sector: Biofuels Product: JV between PPC, Worley...

  2. Los Alamos technology strikes a chord with algal biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of...

  3. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  4. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  5. Understanding and engineering enzymes for enhanced biofuel production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  6. Patriot BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  7. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  8. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  9. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  10. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  11. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    SciTech Connect (OSTI)

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC's proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a "Cow Power" biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont's pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

  12. TrendSetter Solar Products Inc aka Trendsetter Industries formerly...

    Open Energy Info (EERE)

    TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

  13. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect (OSTI)

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  14. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect (OSTI)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  15. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  16. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. As plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  17. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and regulatory aspects of algal biofuel production * Timetable Timetable - ... required Makeup water (evaporation) Engine testing CO CO 2 avail ilability and t d ...

  18. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Concentrating Solar Power: A Systems Analysis Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar ...

  19. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and identifies the critical path challenges to the commercial potential of each cycle. PDF icon Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical ...

  20. Biofuel Authority Rajasthan | Open Energy Information

    Open Energy Info (EERE)

    Authority Rajasthan Jump to: navigation, search Name: Biofuel Authority Rajasthan Place: Jaipur, Rajasthan, India Zip: 302005 Sector: Biofuels Product: Jaipur-based local body to...

  1. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  2. Biofuel Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Energy Corporation Address: 1600 Broadway Place: Denver, Colorado Zip: 80202 Region: Rockies Area Sector: Biofuels Product: Ethanol producer Website: bfenergy.com...

  3. Central Texas Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  4. Enhanced Biofuels Technologies India | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Technologies India Jump to: navigation, search Name: Enhanced Biofuels & Technologies India Place: Coimbatore, Tamil Nadu, India Zip: 641 029 Product: Tamil Nadu-based...

  5. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  6. Ultimate Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  7. US Biofuels Inc USB | Open Energy Information

    Open Energy Info (EERE)

    Inc USB Jump to: navigation, search Name: US Biofuels, Inc (USB) Place: Delaware Sector: Biofuels Product: A Delaware corporation and a wholly owned subsidiary of Australian...

  8. Biofuels America Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels America Inc Jump to: navigation, search Name: Biofuels America Inc Place: Memphis, Tennessee Zip: 38126 Product: Tennessee-based company that has proposed building a...

  9. Independence Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Independence Biofuels Inc Place: Middletown, Pennsylvania Zip: 17057 Sector: Renewable Energy, Vehicles Product: Provides clean,...

  10. Carolina Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  11. Flambeau River Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  12. US Biofuels Ltd Ohio | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Ltd Ohio Jump to: navigation, search Name: US Biofuels Ltd (Ohio) Place: Columbus, Ohio Zip: 43215 Product: Builder of a bioethanol plant in Richmond, OH. References: US...

  13. Greenlight Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Greenlight Biofuels Ltd. Place: Texas Product: Texas-based biodiesel producer. References: Greenlight Biofuels Ltd.1 This article is a stub....

  14. Biofuels of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  15. Welsh Biofuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  16. Middle Georgia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Georgia Biofuels Jump to: navigation, search Name: Middle Georgia Biofuels Place: East Dublin, Georgia Zip: 31027 Product: Georgia-based biodiesel producer. References: Middle...

  17. ASAlliances Biofuels Defunct | Open Energy Information

    Open Energy Info (EERE)

    ASAlliances Biofuels Defunct Jump to: navigation, search Name: ASAlliances Biofuels (Defunct) Place: Dallas, Texas Product: Former JV formed to construct three large-scale ethanol...

  18. Greenleaf Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  19. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  20. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  1. Midwestern Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  2. United Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: United Biofuels Inc Place: Plover, Wisconsin Zip: 54467 Sector: Biomass Product: Wisconsin-based manufacturer and distributor of...

  3. India Biofuels Company IBFC | Open Energy Information

    Open Energy Info (EERE)

    IBFC Jump to: navigation, search Name: India Biofuels Company (IBFC) Place: Madhya Pradesh, India Product: India-based company that intends to develop biofuel feedstock...

  4. Memphis Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  5. Verde Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Verde Biofuels Inc Place: Fountain Inn, South Carolina Product: The company is a biodiesel producer and distributor. References:...

  6. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  7. Borger Biofuels LLLP | Open Energy Information

    Open Energy Info (EERE)

    Borger Biofuels LLLP Jump to: navigation, search Name: Borger Biofuels LLLP Place: Borger, Texas Product: Developing a 110m gallon ethanol plant in Borger, Texas. Coordinates:...

  8. CREDA HPCL Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CREDA HPCL Biofuels Jump to: navigation, search Name: CREDA-HPCL Biofuels Place: Raipur, India Zip: 492001 Sector: Renewable Energy Product: Indian-based joint venture between...

  9. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  10. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  11. SG BioFuels | Open Energy Information

    Open Energy Info (EERE)

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  12. Sun Biofuels SBF | Open Energy Information

    Open Energy Info (EERE)

    Biofuels SBF Jump to: navigation, search Name: Sun Biofuels (SBF) Place: London, Greater London, United Kingdom Zip: W8 7LP Product: London-based jatropha and biofuel project...

  13. SunBelt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    SunBelt Biofuels Jump to: navigation, search Logo: SunBelt Biofuels Name: SunBelt Biofuels Place: Soperton, Georgia Zip: 30457 Sector: Biomass Product: Freedom Giant Miscanthus...

  14. Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation...

    Open Energy Info (EERE)

    China Zip: 518055 Sector: Solar Product: Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems....

  15. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  16. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  17. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less

  18. US Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Name: US Biofuels Place: Rome, Georgia Product: Biodiesel producer based in Georgia References: US Biofuels1 This article is a stub. You can help OpenEI by expanding it. US...

  19. Hampton Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Hampton Biofuels Place: New York, New York Zip: 10017 Product: A start-up looking to develop a biodiesel plant in upstate New York....

  20. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

  1. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. PDF icon ctab_webinar_crosscutting.pdf More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  2. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore » employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  3. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    SciTech Connect (OSTI)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.

  4. Made in Minnesota Solar Energy Production Incentive

    Broader source: Energy.gov [DOE]

    Since January 2014, The Department of Commerce (DOC) has administered the Made in Minnesota Solar Energy Production Incentive pursuant to H.F. 729, which was enacted in May 2013. Systems must be ...

  5. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  6. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  7. Sources of biomass feedstock variability and the potential impact on biofuels production

    SciTech Connect (OSTI)

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; Tumuluru, Jaya Shankar; Li, Chenlin

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by an order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.

  8. Sources of biomass feedstock variability and the potential impact on biofuels production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; Tumuluru, Jaya Shankar; Li, Chenlin

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by anmore » order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.« less

  9. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is engaged in several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process Novel Microalgal Production ...

  10. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  11. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Ferry, James G.; Wood, Thomas K.; Maranas, Costas D.

    2016-01-17

    Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions,more » adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.« less

  12. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  13. Biofuels Basics

    Broader source: Energy.gov [DOE]

    Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research...

  14. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M

    2012-06-07

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  15. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Centers Seminars Solar energy news Video All links Links to online ... Mission of the Center for Bio-inspired Solar Fuel production at Arizona State ...

  16. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with knowledge to construct better water oxidation catalysts for solar fuel production. ... Designing an artificial leaf that uses solar energy to convert water cheaply and ...

  17. Solar thermochemical fuel production. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 14 SOLAR ENERGY; BIOMASS; GASIFICATION; LIQUID FUELS; OXIDES; PRODUCTION; REDOX REACTIONS; SOLAR ...

  18. Biofuels Task Force.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... is not geo- graphically oriented for transportation from biofuel production centers. ... ethanol concentration exceeds a critical level thus possibly clogging engine fi lters. ...

  19. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  20. Heartland Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Heartland Biofuel Place: Flora, Indiana Product: Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates: 32.54209,...

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap ...

  2. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  3. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    SciTech Connect (OSTI)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  4. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards on the Biomass Program. PDF icon nist_haq.pdf More Documents & Publications Technology Pathway Selection Effort DOE Perspectives on Advanced Hydrocarbon-based Biofuels Advanced Biofuels Cost of Production

  5. BioFuel Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  6. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  7. PowerSHIFT Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: PowerSHIFT Biofuels LLC Place: Wyoming Product: Focused on biodiesel plants and power generation facilities in the US. References:...

  8. Deadwood Biofuels LLC Kramer Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Deadwood Biofuels LLC Kramer Energy Group Jump to: navigation, search Name: Deadwood Biofuels LLC (Kramer Energy Group) Place: Rapid City, South Dakota Zip: 57709 Product: South...

  9. Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...

  10. Seattle Biodiesel aka Seattle BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Seattle Biodiesel aka Seattle BioFuels Jump to: navigation, search Name: Seattle Biodiesel (aka Seattle BioFuels) Place: Seattle, Washington Sector: Renewable Energy Product:...

  11. Mission Biofuels India Pvt Ltd MBIPL | Open Energy Information

    Open Energy Info (EERE)

    Biofuels India Pvt Ltd MBIPL Jump to: navigation, search Name: Mission Biofuels India Pvt Ltd (MBIPL) Place: Mumbai, Maharashtra, India Zip: 400076 Sector: Wind energy Product:...

  12. HERO BX formerly Lake Erie Biofuels | Open Energy Information

    Open Energy Info (EERE)

    HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name: HERO BX (formerly Lake Erie Biofuels) Place: Erie, Pennsylvania Product: Pennsylvania-based project developer...

  13. AE Biofuels Inc formerly Marwich II Ltd | Open Energy Information

    Open Energy Info (EERE)

    Marwich II Ltd Jump to: navigation, search Name: AE Biofuels Inc. (formerly Marwich II Ltd.) Place: West Palm Beach, Florida Zip: 33414 Sector: Biofuels Product: Marwich II, Ltd....

  14. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle's new process substantially reduces the cost and risk of biofuel production and helps make ...

  15. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative for achieving higher and more reliable biofuel productivity at reduced costs. ... Utilizing a pulsed, thin turbulent flow across the field, biofuel feedstock is produced at ...

  16. Mapping biofuel field: A bibliometric evaluation of research output

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starbuck Downes, C. Meghan; Boeing, Wiebke; Deng, Shuguang; Ivey, Shanna; Khandan, Nirmal; Schaub, Tanner; Unc, Adrian; Van Voorhies, Wayne; Lammers, Pete

    2013-08-14

    Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.

  17. Development of the University of Washington Biofuels and Biobased...

    Office of Scientific and Technical Information (OSTI)

    the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program. ...

  18. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  19. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  20. A New Biofuels Technology Blooms in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Biofuels Technology Blooms in Iowa A New Biofuels Technology Blooms in Iowa Addthis Description Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate

  1. Gem BioFuels | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  2. Synergy Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: Synergy Biofuels LLC Place: Dryden, Virginia Zip: 24243 Product: Developing a 3m gallon (11.4m litre) biodiesel facility in Lee...

  3. E Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Biofuels LLC Jump to: navigation, search Name: E-Biofuels LLC Place: Fishers, Indiana Zip: 46038 Product: Indiana-based biodiesel producer. Coordinates: 43.01397, -77.471829...

  4. Pan Am Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Am Biofuels Inc Jump to: navigation, search Name: Pan-Am Biofuels Inc Place: Park City, Utah Zip: 84068 Product: Utah-based jatropha oil feedstock producer. References: Pan-Am...

  5. Pinnacle Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Inc Jump to: navigation, search Name: Pinnacle Biofuels, Inc. Place: Crossett, Arkansas Zip: 71635 Product: Pinnacle owns and operates a 37.9mLpa (10m gallon) capacity...

  6. Argonaut BioFuels | Open Energy Information

    Open Energy Info (EERE)

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  7. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  8. Genesis Solar Singapore formerly STP Production | Open Energy...

    Open Energy Info (EERE)

    search Name: Genesis Solar Singapore (formerly STP Production) Place: Singapore Product: Thin-film silicon PV company in Singapore, in which a 75% stake was bought by Genesis...

  9. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation PDF icon graham_bioenergy_2015.pdf More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  10. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  11. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  12. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  13. Bioproducts to Enable Biofuels Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  14. Biofuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Image Biofuels from Algae: Algae is widely touted as one of the next ... 10 billion gallons in 2009, representing 9 percent of the nation's gasoline supply. ...

  15. C2 Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: C2 Biofuels Place: Atlanta, Georgia Product: Ethanol production from cellulose. Coordinates: 33.748315, -84.391109 Show Map Loading...

  16. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  17. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  19. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect (OSTI)

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companies?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team??s home.

  20. FACTSHEET: Energy Department Investments in Biofuels Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the

  1. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  2. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  3. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  4. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gust, Director of the Center for Bio-Inspired Solar Fuel Production, presented a lecture for high school students titled "Towards Artificial Photosynthesis and Alternative Energy". ...

  5. Mission | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mission of the Center for Bio-Inspired Solar Fuel Production (BISfuel) is to construct a ... drawn from the fundamental concepts that underlie photosynthetic energy conversion. ...

  6. Center publications | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... capable of generating solar fuel, Photosynthesis ... technology for sustainable energy transformation, AIP Conf. ... Photo-induced hydrogen production in a helical peptide ...

  7. Center for Bio-inspired Solar Fuel Production Personnel | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Bio-inspired Solar Fuel Production Personnel Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center ...

  8. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Kwan Graduate student Subtask 3 project: "Protein Film Electrochemistry for the Investigation of Redox Enzymes" Related links: Patrick Kwan explores solar fuel production

  9. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. PDF icon ctab_webinar_carbohydrates_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  10. Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Biofuels and Biofuel Blends Robert McCormick Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies May 16, 2013 Project ID: FT003 This ...

  11. Solar Thermochemical Hydrogen Production Research (STCH)

    SciTech Connect (OSTI)

    Perret, Robert

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  12. Beetles, Biofuel, and Coffee

    SciTech Connect (OSTI)

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  13. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  14. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  15. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  16. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task Descriptions Center for Bio-Inspired Solar Fuel Production Central to design of a complete system for solar water oxidation and hydrogen production is incorporation of synthetic components inspired by natural systems into one operational unit. The research effort of the Center is naturally divided into the following subtasks: Subtask 1. Total systems analysis, assembly and testing The solar water splitting device consists of four subsystems, each of which is being investigated by one of the

  17. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  18. Comparative genomics of xylose-fermenting fungi for enhanced biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Citation Details In-Document Search Title: Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from

  19. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    SciTech Connect (OSTI)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  20. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  1. Great Lakes Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  2. Consolidated Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Consolidated Biofuels Inc Place: McKinney, Texas Zip: 75071 Product: Chicago based producer of biodiesel. Coordinates: 33.19895,...

  3. Biofuels Media Ltd | Open Energy Information

    Open Energy Info (EERE)

    Media Ltd Jump to: navigation, search Name: Biofuels Media Ltd. Place: London, Greater London, United Kingdom Zip: W6 0HX Product: London-based conference organiser Coordinates:...

  4. Energy Department Requests Information on Biofuels & Bioproducts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    multi-user facilities for biofuels and bio-based products, chemicals, and intermediates, including synthesis gas, cellulosic sugars, bio-oil, hydrogen, biogas, and methane. ...

  5. Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production November 20, 2014 - 12:16pm ...

  6. Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Rapid Solar-Thermal Conversion of Biomass to Syngas Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. University of Colorado Contact CU About This Technology Technology Marketing Summary The invention provides processes that perform biomass gasification or pyrolysis for production of hydrogen, synthesis gas, liquid fuels, or other

  7. Biofuels are Helping Your Pocketbook and Our Environment

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet describes some of the financial and environmental benefits of biofuels and dispells myths about ethanol production.

  8. Tropical Soil Bacterium Frees Plant Sugars for Biofuels | U.S...

    Office of Science (SC) Website

    As part of research to improve biofuel production processes, ... abundant, and nonfood energy source that could be used to make sustainable and economically feasible biofuels. ...

  9. A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2013-03-15

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

  10. Video: A New Biofuels Technology Blooms in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video: A New Biofuels Technology Blooms in Iowa Video: A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels could help the United States produce billions of gallons of cellulosic biofuels over the coming decade. It will also

  11. Contact information | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email: alexander.melkozernov@asu.edu Phone: (480) 965-1548 Fax: (480) 965-5927 Mailing address (US mail): Center for Bio-Inspired Solar Fuel Production Arizona State University ...

  12. Sandia Energy Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nhanced-sandia-sintef-collaborationfeed 0 Lignin-Feasting Microbe Holds Promise for Biofuels http:energy.sandia.govlignin-feasting-microbe-holds-promise-for-biofuels http:...

  13. Market Drivers for Biofuels

    Broader source: Energy.gov [DOE]

    This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February, 2013, by Brian Duff.

  14. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE ...

  15. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  16. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  17. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Algae Biofuels Co-Location Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore » requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  19. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  20. Celsys BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Celsys BioFuels Inc Jump to: navigation, search Name: Celsys BioFuels Inc. Place: Indiana Product: Celsys was formed in 2006 to commercialise cellulosic ethanol technology that was...

  1. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  2. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    PrairieFire BioFuels Cooperative Jump to: navigation, search Name: PrairieFire BioFuels Cooperative Place: Madison, Wisconsin Zip: 53704 Product: A member-owned cooperative which...

  3. Harvest BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels LLC Jump to: navigation, search Name: Harvest BioFuels LLC Place: Addison, Texas Zip: TX 75001 Product: Setting up corn-based ethanol plants. Coordinates: 38.477365,...

  4. Tomorrow BioFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow BioFuels LLC Jump to: navigation, search Name: Tomorrow BioFuels LLC Place: Cranston, Rhode Island Zip: 2921 Product: Rhode Island-based algae-to-fuel technology...

  5. BlueEarth Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueEarth Biofuels LLC Jump to: navigation, search Name: BlueEarth Biofuels LLC Place: Hawaii Zip: 96813 Sector: Renewable Energy Product: Developer of power and renewable-energy...

  6. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  7. Biofuels - Biomass Feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's process enables an agricultural combine to separate multiple products , e.g. agricultural residue, grain, etc. in a single pass across a field. The remaining material will pass through a secondary thresher separate internodal stem from the plant material and then passed to baler. The crops or

  8. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  9. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOE Patents [OSTI]

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  10. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  11. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    SciTech Connect (OSTI)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  12. Nanocluster production for solar cell applications

    SciTech Connect (OSTI)

    Al Dosari, Haila M.; Ayesh, Ahmad I.

    2013-08-07

    This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.68.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I{sub SC}), open circuit voltage (V{sub OC}), fill factor, and efficiency (?) were obtained under light source with an intensity of 30 mW/cm{sup 2}. A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency.

  13. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  14. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  15. Cobalt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name: Cobalt Biofuels Address: 500 Clyde Avenue Place: Mountain View, California Zip: 94043 Region: Bay Area...

  16. Solix Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name: Solix Biofuels Address: 430 B. North College Ave Place: Fort Collins, Colorado Zip: 80524 Region: Rockies Area...

  17. EERE Success Story-Biofuels and Barbecue Chips: Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... courtesy of Quinn Dombrowski, Flickr creative commons license. Plant Products a ... chemicals, and fertilizers. Integrating the Production of Biofuels and Bioproducts

  18. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... courtesy of Quinn Dombrowski, Flickr creative commons license. Plant Products a ... chemicals, and fertilizers. Integrating the Production of Biofuels and Bioproducts

  19. biomass-to-biofuels transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass-to-biofuels transformation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  20. Department of Energy Announces up to $12 Million in Investments to Support Development and Production of Drop-In Biofuels

    Broader source: Energy.gov [DOE]

    In support of the Obama Administration's comprehensive efforts to strengthen U.S. energy security, U.S. Energy Secretary Steven Chu today announced up to $12 million to fund three small-scale projects in Illinois, Wisconsin, and North Carolina that aim to commercialize novel conversion technologies to accelerate the development of advanced, drop-in biofuels and other valuable bio-based chemicals.

  1. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  2. Bioproducts to Enable Biofuels Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts to Enable Biofuels Workshop Bioproducts to Enable Biofuels Workshop The Bioenergy Technologies Office (BETO) hosted the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Denver, Colorado. BETO collected information from key industry, university, and national laboratory stakeholders regarding the challenges associated with the coproduction of biomass-derived chemicals and products alongside biofuels. The following are topic areas of interest covered at the workshop:

  3. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Issues and Trends Release date: October 15, 2012 (updated October 18, 2012 for cellulosic production and October 23, 2012 for RSF2 volume clarification) Highlights Biofuels is a collective term for liquid fuels derived from renewable sources, including ethanol, biodiesel, and other renewable liquid fuels. This report focuses on ethanol and biodiesel, the most widely available biofuels. From 2009 to the middle of 2012, the U.S. biofuels industry increased its output and prepared to meet

  4. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. PDF icon ibr_portfolio_overview.pdf More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  5. Converting solar-photovoltaic power into exportable products

    SciTech Connect (OSTI)

    Oman, H.

    1997-12-31

    Nations, states, and even communities must generate exportable products that earn money for buying needed imports. Exports have ranged from tourist services to hardwood logs. Fertile land, with irrigation water and fertilizer, grows exportable food. On the other hand a hot dry desert with no mineral resources presents a challenge to its occupants. Solar power could be generated and exported, but that requires construction of expensive transmission lines which are in service only when the sun shines. Among new options is a solar-powered plant that recovers zinc from the zinc oxide produced during discharge of zinc-air electric-vehicle batteries. A hectare-size solar-power plant with 30-percent efficient solar cells can in eight hours recover enough zinc to power 36,000 /km (22,000 miles) of travel in lightweight 4-passenger electric vehicles. A by-product could be renewable fuel for use by local residents in electric bicycles. One oriented solar panel, 10 meters by 10 meters in size, with 30-percent efficient solar cells, could in one day deliver enough energy for traveling 14,700 km (9176 miles) on bicycles. This by far exceeds the travel distance that could be obtained in one day by riding on an animal that is pastured on a s0-by-10 meter area.

  6. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  7. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  8. The Science | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science The Science The need for a continuous energy supply and energy requirements for transportation necessitates technology for storage of energy from sunlight in fuel, as well as conversion to electricity. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the

  9. USDA Feedstocks and Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D. Director Office of Energy Policy and New Uses Aviation Biofuels Workshop Co-sponsored by: US DOE, FAA, and CAAFI Washington, DC November 27, 20012 USDA Feedstocks and Biofuels ...

  10. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  11. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  12. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  13. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  14. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  15. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  16. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be used to improve two seemingly unrelated products: biofuels and barbecue potato chips. ... industry, including those used in barbecue potato chips and other smoky flavored foods. ...

  17. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  18. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation ... resources has catalyzed numerous research endeavors that focus on developing ...

  19. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pathways for "drop-in" hydrocarbon fuel since 2012, after successfully ... Cost and Risk of Biofuel Production from Bio-Oil Upgrading EERE Success Story-Refining ...

  20. http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf PDF icon http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf More Documents & Publications Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Biofuels & Greenhouse Gas Emissions: Myths versus Facts Ethanol: Producting Food, Feed, and Fuel

  1. Wind vs. Biofuels: Addressing Climate, Health and Energy

    SciTech Connect (OSTI)

    Professor Mark Jacobson

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  2. Wind versus Biofuels for Addressing Climate, Health, and Energy

    SciTech Connect (OSTI)

    Jacobson, Mark Z.

    2007-01-29

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  3. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  4. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or “clearing house” for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  5. EERE Success Story—DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel

    Broader source: Energy.gov [DOE]

    A microorganism found in heated freshwater pools may hold the key to more efficient, cost-effective biofuel production.

  6. DOE-Funded Research on Bacterial Enzyme Could Lead to Cheaper Biofuel

    Broader source: Energy.gov [DOE]

    A microorganism found in heated freshwater pools may hold the key to more efficient, cost-effective biofuel production.

  7. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  8. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuel Technologies Slide 1

  9. NREL: Learning - Biofuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics This video provides an overview of NREL research on converting biomass to liquid fuels. Text Version Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly

  10. BiofuelsReportFinal

    Energy Savers [EERE]

    Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries THE NATIONAL SCIENCE FOUNDATION AMERICAN CHEMICAL SOCIETY THE ...

  11. Winning the Biofuel Future

    Broader source: Energy.gov [DOE]

    A research team at the Energy Department's BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels.

  12. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - At-C. Data Availability across the Supply Chain - Im-H Availability of Biofuels ... creating an easy to use tool 6 Management Approach APPROACH * Provide unbiased, ...

  13. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for ...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  15. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  16. Propel Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Propel Biofuels Jump to: navigation, search Name: Propel Biofuels Address: 4444 Woodland Park Ave North Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector:...

  17. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  18. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect (OSTI)

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  19. Research project aims to create affordable biofuels by 2019

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affordable biofuels by 2019 Research project aims to create affordable biofuels by 2019 Los Alamos National Laboratory, in collaboration with the Colorado School of Mine and Reliance Industries, has received nearly $9 million in funding from the DOE for Producing Algae and Co-Products for Energy (PACE). August 16, 2015 A Los Alamos National Laboratory project with the Colorado School of Mines and Reliance Industries enhances algal biofuels sustainability. A Los Alamos National Laboratory project

  20. Medical and biofuel advances possible with new gene regulation tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical and biofuel advances possible with new gene regulation tool Medical and biofuel advances possible with new gene regulation tool The key is a tunable switch made from a small non-coding RNA molecule that could have value for medical and even biofuel production purposes. August 20, 2015 Scientists at Los Alamos National Laboratory have manufactured molecular "dimmer" switches to control cellular metabolism with exquisite precision. The research has potential widespread

  1. The Science Behind Cheaper Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science Behind Cheaper Biofuels The Science Behind Cheaper Biofuels August 15, 2011 - 11:50am Addthis Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial

  2. Transgenic Lignin Easier to Break Down for Biofuel - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Transgenic Lignin Easier to Break Down for Biofuel Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignocellulosic biomass is a very desirable feedstock for biofuel production. If the fermentation process could be optimized, conversion of this biomass could yield 25 to 50 billion gallons of ethanol or other biofuels per year. Yet lignocellulose is composed of tough lignin, cellulose and hemicelluloses that resist breakdown. This

  3. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctab_webinar_bio_oils_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presnentations-Plenaries

  4. Supply Chain Sustainability Analysis of Three Biofuel Pathways (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Supply Chain Sustainability Analysis of Three Biofuel Pathways Citation Details In-Document Search Title: Supply Chain Sustainability Analysis of Three Biofuel Pathways The Department of Energy's (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth

  5. Performance of Biofuels and Biofuel Blends | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft003_mccormick_2012_o.pdf More Documents & Publications Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  6. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  7. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  8. Publications by year | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... capable of generating solar fuel, Photosynthesis ... technology for sustainable energy transformation, AIP Conf. ... Photo-induced hydrogen production in a helical peptide ...

  9. Center for Bio-Inspired Solar Fuel Production | An Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photosynthetic system for solar-powered production of fuels such as hydrogen via water splitting. ... wherein synthetic antennas supply energy from light to the reaction centers, ...

  10. About the Center for Bio-Inspired Solar Fuel Production | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Center for Bio-Inspired Solar Fuel Production Center Objective The Science Center ... drawn from the fundamental concepts that underlie photosynthetic energy conversion. ...

  11. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  12. Solar electric thermal hydronic (SETH) product development project

    SciTech Connect (OSTI)

    Stickney, B.L.; Sindelar, A.

    2000-10-01

    Positive Energy, Inc. received a second Technology Maturation and Commercialization Project Subcontract during the 1999 round of awards. This Subcontract is for the purpose of further aiding Positive Energy, Inc. in preparing its Solar Electric Thermal Hydronic (SETH) control and distribution package for market introduction. All items of this subcontracted project have been successfully completed. This Project Report contains a summary of the progress made during the SETH Development Project (the Project) over the duration of the 1999 Subcontract. It includes a description of the effort performed and the results obtained in the pursuit of intellectual property protection and development of product documentation for the end users. This report also summarizes additional efforts taken by and for the SETH project outside of the Subcontract. It presents a chronology of activities over the duration of the Subcontract, and includes a few selected sample copies of documents offered as evidence of their success.

  13. Moving bed reactor for solar thermochemical fuel production

    DOE Patents [OSTI]

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  14. Biofuels News, Vol. 3, No. 1 (Spring/Summer 2000)

    SciTech Connect (OSTI)

    Brown, H.

    2000-08-15

    This is the Newsletter for DOE Biofuels Program. Articles are presented on collection and use of corn stover for bioethanol production, the state workshop program on ethanol, and a subcontract to Genencor for improvement of cellulase enzyme production.

  15. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  16. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  17. Category:Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

  18. Novare Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name: Novare Biofuels Inc Address: 2983 Sterling Ct Place: Boulder, Colorado Zip: 80301 Region: Rockies...

  19. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  20. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Arizona, April 19-20, 2012. The conference featured student talks and poster presentations on the broad range of activities in solar fuels, solar electric, and energy policy.

  1. Bisfuel Logo | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BISfuel is abbreviation of Bio-Inspired Solar Fuels BIS is a prefix or suffix designating the second instance of a thing, which symbolizes bio-inspired solar fuels as an artificial ...

  2. Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

  3. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  4. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  5. Designer synthetic media for studying microbial-catalyzed biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Designer synthetic media for studying microbial-catalyzed biofuel production Citation Details In-Document Search Title: Designer synthetic media for studying microbial-catalyzed biofuel production Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains

  6. Algae Raceway to speed path to biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Raceway to speed path to biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  7. Advanced Biofuels Processing and Demonstration Unit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Processing and Demonstration Unit - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  8. Assessing the Economic Potential of Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Economic Potential of Advanced Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  9. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  10. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  11. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  12. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  13. DOE to Invest up to $24 Million for Breakthrough Solar Energy Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Million for Breakthrough Solar Energy Products DOE to Invest up to $24 Million for Breakthrough Solar Energy Products August 12, 2008 - 2:40pm Addthis Twelve Industry Teams Partner with DOE to Advance Integration of Solar Energy Systems into Electrical Grid WASHINGTON - U.S. Department of Energy (DOE) Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy John Mizroch announced today that DOE will invest up to $24 million in Fiscal Year 2008

  14. "PBS NEWSHOUR" covers new technique that may make solar panel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    less expensive "PBS NEWSHOUR" covers new technique that may make solar panel production less expensive "PBS NEWSHOUR" covers new technique that may make solar panel production less expensive Scientists have developed a more efficient method of creating the material that makes solar panels work, according to a report published this week, which researchers say could be key to creating clean global energy in the future. April 24, 2015 image description Scientists Aditya

  15. EERE Success Story-California: Cutting-Edge Biofuels Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Entrepreneurship Provide a Proving Ground | Department of Energy Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground EERE Success Story-California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013 - 12:00am Addthis The Advanced Biofuels Process Demonstration Unit (ABPDU) at DOE's Lawrence Berkeley National Laboratory provides state-of-the-art facilities for advanced biofuels and bioproducts production to create efficient

  16. Solar Grade Silicon from Agricultural By-products

    SciTech Connect (OSTI)

    Richard M. Laine

    2012-08-20

    In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200 C in an environmentally benign process to adjust SiO2:C ratios to those needed in EA

  17. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect (OSTI)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  18. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  19. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    SciTech Connect (OSTI)

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  20. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into biofuels and coproducts. We help research technologies that will enable the production of cost-competitive hydrocarbon fuels and products from algal biomass in support of the goals of the U.S. Department of Energy's (DOE's) Bioenergy

  1. Mimicking Photosynthesis for Production of Solar Fuels | U.S...

    Office of Science (SC) Website

    At right is the chemical structure of the artificial analog of PSII. In this molecule, the ... complexes termed photosystems capture solar energy and convert it to chemical energy. ...

  2. Petra Fromme | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolving complex in Photosystem II. This subtask also investigates integration of the artificial oxygen evolving complex (aOEC) in the complete bioinspired solar conversion system. ...

  3. Nevada Plant Adds Jobs, Moves America Forward in Solar Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Plant Adds Jobs, Moves America Forward in Solar ... It's always exciting when efforts to move new energy ... 188 Million for Small Business Technology Commercialization

  4. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  5. solar art | OpenEI Community

    Open Energy Info (EERE)

    Art Generates Renewable Energy Beautifully biofuel art clean energy lagi land art generator initiative local utility grid public art Renewable Energy solar art wind art...

  6. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  7. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown almost anywhere, don't need to be fed and actually remove pollution from the air. algae Squeezing Power from Pond Scum Near industrial plants on undesirable land, scientists raise algae that suck up harmful exhaust and thrive in the non-drinkable wastewater. algae Why Algae? Algae produce at least 32 times more oil than

  8. E3 BioFuels | Open Energy Information

    Open Energy Info (EERE)

    E3 BioFuels Place: Shawnee, Kansas Zip: 66218 Product: Owns a 90.9m litres-a-year ethanol plant in Nebraska; an anaerobic digester generates all the biogas needed to operate...

  9. Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production November 20, 2014 - 12:16pm Addthis In this episode of 90 Seconds of Discovery, Catalysis Scientist Robert Weber explains why bio-oil often gunks up during refining. Knowledge gained from this research could improve methods for refining biofuel. Researchers at Pacific Northwest National

  10. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  11. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media about Center 5 Jun 2014 Solar energy: Springtime for the artificial leaf by Jessica Marshall: June 6 issue of Nature Magazine in a News Feature article highlights research ...

  12. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

  13. Biofuels and Food Security. A report by the High Level Panel...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT...

  14. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  15. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  16. Fungible and Compatible Biofuels

    Broader source: Energy.gov [DOE]

    The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals, and with a special focus on biofuels, which may come into increased usage in the future. Addressing these barriers is necessary to allow the more widespread utilization and distribution of biofuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. By identifying these barriers early, for fuels not currently in widespread use, they can be addressed in related research and development. These barriers can be classified into several categories, including operating practice, regulatory, technical, and acceptability barriers. Possible solutions to these issues are discussed, including compatibility evaluation, changes to biofuels, regulatory changes, and changes in the distribution system or distribution practices. No actual experimental research has been conducted in the writing of this report, but results are used to develop recommendations for future research and additional study as appropriate.

  17. EFRC 501 - Fall 2013 | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Photoeletrochemical Solar Cell Ryan Trovitch Sep 10 ... Films of ZrxTi1-xO2 for Energy Applications Don Seo Oct 8 ... to Hydrogen Production: Modeling the Hydrogenase Enzyme. ...

  18. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority

    Broader source: Energy.gov [DOE]

    This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle.

  19. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  20. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect (OSTI)

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  1. Video: Biofuel technology at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video: Biofuel technology at Argonne Share Topic Energy Energy sources Renewable energy Bioenergy Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas

  2. A solar box cooker for mass production in East Africa

    SciTech Connect (OSTI)

    Funk, P.A.; Wilcke, W.F.

    1992-12-31

    A solar box cooker produced in Tanzania, East Africa with indigenous materials is described. When compared to a commercially produced glass and cardboard one, it was found to perform as well. Heat transfer through each major component of the cooker is presented. The smallest losses were through the walls of the box. The greatest losses were observed in the cover system.

  3. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Fuel production complex (Subtask 3) During the evening session on October 29. Subtask 3 leader Giovanna Ghirlanda opens an evening session on hydrogen production catalysts ...

  4. Bugs, Microbes, Biofuels, and Coffee (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Bugs, Microbes, Biofuels, and Coffee Citation Details In-Document Search Title: Bugs, Microbes, Biofuels, and Coffee Berkeley Lab scientist Javier A. Ceja-Navarro discusses how his team is learning to utilize microbes that live inside the digestive tracts of insects for pest control, improved agriculture, and energy production. Authors: Ceja-Navarro, Javier A. Publication Date: 2015-07-14 OSTI Identifier: 1208864 Resource Type: Other Research Org: LBNL (Lawrence Berkeley National

  5. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND

    Office of Scientific and Technical Information (OSTI)

    RECOMMENDATIONS (Technical Report) | SciTech Connect FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS Citation Details In-Document Search Title: FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY, AND RECOMMENDATIONS × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  6. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. PDF icon thermochemical_four_pager.pdf More Documents & Publications 2013 Peer Review

  7. Supply Chain Sustainability Analysis of Three Biofuel Pathways (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Supply Chain Sustainability Analysis of Three Biofuel Pathways Citation Details In-Document Search Title: Supply Chain Sustainability Analysis of Three Biofuel Pathways × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A

  8. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  9. Tarryn Miller: Fueling biofuel's promise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source,

  10. San Antonio spurs increase in solar energy production

    Broader source: Energy.gov [DOE]

    They might always remember the Alamo, but such tourist attractions aren’t the only thing spurring growth in San Antonio — this Texas city is incorporating solar power into its diversified energy portfolio. In June, CPS Energy — the country’s largest municipally owned energy company (meaning profits contribute to the city’s annual budget) — signed a 20-year Power Purchase Agreement to develop a solar project using SunCatcher power systems. These large, concave bowls look like large satellite dishes. Not only will these systems help power Texas, but also they are designed to take advantage of tried-and-true automotive supply chains in the U.S. Rust Belt, using stamped sheet metal, which could help bring new life to manufacturers there.

  11. 5 boro biofuel | Open Energy Information

    Open Energy Info (EERE)

    boro biofuel Jump to: navigation, search Logo: 5 boro biofuel Name: 5 boro biofuel Address: 100 maiden lane Place: New York, New York Zip: 10035 Region: Northeast - NY NJ CT PA...

  12. U.S. Demonstrates Production of Fuel for Missions to the Solar System and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond | Department of Energy Demonstrates Production of Fuel for Missions to the Solar System and Beyond U.S. Demonstrates Production of Fuel for Missions to the Solar System and Beyond December 22, 2015 - 10:09am Addthis News Media Contact (202) 586-4940 DOENews@hq.doe.gov The first U.S. production in nearly 30 years of a specialized fuel to power future deep space missions has been completed by researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Tennessee.

  13. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  14. National Algal Biofuels Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Renewable Energy that is Development Path Toward a Executive Summary v CONVERSION .........3 1.2 A History of Domestic Algal Biofuels Development ...

  15. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  16. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  17. Renewable Energy Concepts Solar Inc REC Solar | Open Energy Informatio...

    Open Energy Info (EERE)

    Concepts Solar Inc REC Solar Jump to: navigation, search Name: Renewable Energy Concepts Solar Inc (REC Solar) Place: San Luis Obispo, California Zip: 93401 Sector: Solar Product:...

  18. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    SciTech Connect (OSTI)

    Ermanoski, I.

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. Herein, the material and energy requirements in two-step solar-thermochemical cyclesare considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  19. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  20. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roy et al (2012) Photo-induced hydrogen production in a helical peptide incorporating a ... PCC 6803 works bidirectionally with a bias to H2 production, J Am Chem Soc, 133, ...

  1. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D PDF icon USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer...

  2. Oxford Solar | Open Energy Information

    Open Energy Info (EERE)

    Oxford Solar Jump to: navigation, search Name: Oxford Solar Place: Randolph, New Jersey Zip: 7869 Sector: Solar Product: Oxford Solar provides solar energy consulting and...

  3. Akeena Solar | Open Energy Information

    Open Energy Info (EERE)

    Akeena Solar Jump to: navigation, search Logo: Akeena Solar Name: Akeena Solar Address: 16005 Los Gatos Blvd. Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Solar...

  4. Adobe Solar | Open Energy Information

    Open Energy Info (EERE)

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  5. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  6. Tejas Solares | Open Energy Information

    Open Energy Info (EERE)

    Tejas Solares Jump to: navigation, search Name: Tejas Solares Place: Spain Sector: Solar Product: Tejas Solares is a Spain-based company focused on providing solar solutions for...

  7. SBM Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: SBM Solar Place: North Carolina Sector: Solar Product: SBM Solar is a solar panel manufacturer based in North Carolina. References: SBM Solar1 This article is...

  8. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  9. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam Bratis, Ph.D. NREL Energy Efficiency & Renewable Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics  growth, harvesting, delivery Analysis  economic, life-cycle, resource assessment Catalysis  design, characterization, testing Separations  contaminant removal, product recovery Dr. Adam Bratis Biomass Program Manager National Renewable Energy Laboratory

  10. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * End: Dec. 2015 * Percent complete: 65% Barriers addressed It-F: Engine not Optimized for Biofuel Im-H: Availability of Biofuels Distribution Infrastructure It-I: ...

  11. Polo Nacional de Biocombustiveis Brazilian Biofuels Programme...

    Open Energy Info (EERE)

    Nacional de Biocombustiveis Brazilian Biofuels Programme Jump to: navigation, search Name: Polo Nacional de Biocombustiveis (Brazilian Biofuels Programme) Place: Piracicaba (SP),...

  12. Pure Biofuels Corporation formerly Metasun Enterprises Inc |...

    Open Energy Info (EERE)

    Pure Biofuels Corporation formerly Metasun Enterprises Inc Jump to: navigation, search Name: Pure Biofuels Corporation (formerly Metasun Enterprises Inc) Place: Beverly Hills,...

  13. Mercurius Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Mercurius Biofuels LLC Jump to: navigation, search Name: Mercurius Biofuels LLC Address: 3190 Bay Road Place: Ferndale, Washington Zip: 98248 Region: Pacific Northwest Area Sector:...

  14. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Algal Biofuels Strategy Proceedings from the November 19-20, 2013, Workshop Mesa, ... Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State University on ...

  15. A Changing Market for Biofuels and Bioproducts

    Energy Savers [EERE]

    ... Chance, Executive Vice President, Engineering, Algenol - Daniel Cummings, President, POET-DSM Advanced Biofuels - Jim Lane, Editor and Publisher, Biofuels Digest - Michael McAdams, ...

  16. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous ...

  17. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  18. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect (OSTI)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.

  19. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  20. Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From

  1. Energy Department Announces $13.4 Million to Develop Advanced Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy .4 Million to Develop Advanced Biofuels and Bioproducts Energy Department Announces $13.4 Million to Develop Advanced Biofuels and Bioproducts October 9, 2014 - 11:48am Addthis The Energy Department announced today up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass. These products not only will help reduce carbon emissions, but also

  2. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of...

  3. WATT Production of Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Place: Chorzow, Poland Product: Established in 1998, the company produces sun collectors for domestic, small scale, use. Coordinates: 50.26386, 18.936605 Show Map...

  4. Giovanna Ghirlanda | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associate Professor Giovanna Ghirlanda serves as a Subtask Leader of Subtask 3- Fuel Production and as a member of Subtask 2 - Water Splitting. Major research efforts are centered ...

  5. Dalvin Mendez | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dalvin Mendez Graduate student Subtask 4 project: "Synthesis and characterization of dyes for use as photosensitizers to drive water oxidation and hydrogen production

  6. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  7. Sun Shine Solar | Open Energy Information

    Open Energy Info (EERE)

    Shine Solar Jump to: navigation, search Logo: Sun Shine Solar Name: Sun Shine Solar Place: Norwich, United Kingdom Sector: Solar Product: Solar energy products Phone Number: 01508...

  8. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  9. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; François, David; Berdahl, Paul; Kirchstetter, Thomas W.; Destaillats, Hugo; Levinson, Ronnen

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. Amore » second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and metal products. New product-specific formulas can be used to estimate provisional aged solar reflectance from initial solar reflectance pending measurement of aged solar reflectance. The appropriate value of soiling resistance varies by product type and is selected to attain some desired overprediction rate for the formula. The correlations for shingle products presented in this paper should not be used to predict aged solar reflectance or estimate provisional aged solar reflectance because the data set is too small and too limited in range of initial solar reflectance.« less

  10. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  11. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers’ attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A “multi-method” or “mixed method” research methodology was employed for each case study.

  12. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  13. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  14. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  15. Algal Biofuel Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Technologies Algal Biofuel Technologies At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Al Darzins (National Renewable Energy Laboratory) provided an update on the status of technologies to produce biofuels from Algae. PDF icon darzins_20081106.pdf More Documents & Publications Algae Biofuels Technology The Current State of Technology for Cellulosic Ethanol The Promise and Challenge of Algae as Renewable Sources of Biofuels

  16. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Video Library 31 Mar 2014 EFRC Creative Potential: Thinking Out of the Box Professor Petra Fromme is one of the Bisfuel Principal Investigators. "...Real advantage of the Center is that we have so many creative people working on different aspects of the process, on the hydrogen production catalysts, water splitting catalysts, on developing artificial antennas and reaction centers ... 17 Mar 2014 Rational Design of Artificial Metal-Based Enzymes Giovanna Ghirlanda is one of the EFRC

  17. Ana Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biosynthesis (Journal Article) | SciTech Connect An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine

  18. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  19. Pretreatment Methods for Biomass Conversion into Biofuels and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers National Renewable Energy...

  20. Advanced Drop-In Biofuels Initiative Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drop-In Biofuels Initiative Agenda Advanced Drop-In Biofuels Initiative Agenda Agenda for the Advanced Drop-In Biofuels Initiative Industry Roundtable PDF icon ...