National Library of Energy BETA

Sample records for biofuels product developing

  1. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  2. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  3. United Nations Conference on Trade and Development Biofuel production technologies

    E-Print Network [OSTI]

    , prospects and implications for trade and development New York and Geneva, 2008 #12;ii Notes The designations ...................................... 17 4.2 Net energy balances

  4. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  5. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R; Mielenz, Jonathan R; Rodriguez Jr, Miguel; Thompson, Olivia A; Yang, Xiaohan; Yin, Hengfu

    2015-01-01

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  6. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):research seeks biofuel production from lignocellulose A keylignocellulosic biofuel production and highlight scientific

  7. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01

    extent of po- tential biofuel production in California areglobal increases in biofuel production have raised ques-for sustainable biofuel production. This discussion has been

  8. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    release from agro-biofuel production negates global warmingcultivation and biofuel production (www.lyxia.com).engineering for biofuel production: towards affordable

  9. Wastewater Reclamation and Biofuel Production Using Algae | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels...

  10. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  11. Metabolomics of Clostridial Biofuel Production

    SciTech Connect (OSTI)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars (xylose or arabinose) to C. acetobutylicum revealed that, as expected, glucose was preferred, with the pentose sugar selectively assimilated into the pentose phosphate pathway (PPP). Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among these pentose sugars, with arabinose utilized preferentially over xylose. Pentose catabolism occurred via the phosphoketolase pathway (PKP), an alternative route of pentose catabolism that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate. Taken collectively, these findings reveal two hierarchies in Clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP. Thus, in addition to massively expanding the available data on Clostridial metabolism, we identified three key regulatory points suitable for targeting in future bioengineering efforts: phosphofructokinase for enhancing fermentation, the pyruvate-oxaloacetate node for controlling solventogenesis, and the phosphoketolase reaction for driving pentose catabolism.

  12. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  13. Sustainable Production of Biofuels Rick Gustafson

    E-Print Network [OSTI]

    Brown, Sally

    Sustainable Production of Biofuels Rick Gustafson School of Environmental and Forest Sciences Electricity ­ co-product #12;Net emission #12;#12;ConclusionConclusion ·Regional Sustainable Biofuels Industry College of the Environment #12;Advanced Hardwood Biofuels Northwest http://ahb-nw.com/ #12;Sustainable

  14. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01

    TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

  15. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    sustainable  biofuel  production."  Ecotoxicology  Dimensions  in  Biofuel   Production.  Rome,  Italy,  UN  resource impact of biofuel production and trade By Kevin

  16. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  17. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  18. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  19. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

  20. Single, Key Gene Discovery Could Streamline Production of Biofuels...

    Energy Savers [EERE]

    Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON,...

  1. Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production

    E-Print Network [OSTI]

    Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production David F. Savage , Jeffrey through natural intermediates to final molecule is long, and biofuel production is perhaps the ultimate engineering, economic, political, and environmental realities. Are biofuels sustainable? Consider U

  2. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  3. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  4. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  5. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  6. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  7. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  8. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    E-Print Network [OSTI]

    Hollister, E.B.

    2012-01-01

    carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

  9. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01

    fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

  10. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    for Efficient Biofuel Production Using Yeast Consortium Afor Efficient Biofuel Production Using Yeast Consortium byConsortium for efficient biofuel production: A New Candidate

  11. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticloop that limits biofuel production. These toxic effects may

  12. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01

    to inform in vivo biofuel production optimization By Davidto inform in vivo biofuel production optimization by Davidability to increase biofuel production titers. Taking a step

  13. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01

    remodeling and biofuel production in Escherichia coli.JD: Advanced biofuel production in microbes. Biotechnol JJM, Gonzalez R: Biofuel production in Escherichia coli: the

  14. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    Hydrolysis and Biofuel Production. Industrial & EngineeringDegrade Lignocellulose for Biofuel Production A dissertationLignocellulose for Biofuel Production by Timothy David

  15. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01

    economically viable biofuel production, all aspects of thesemany challenges on biofuel production [1,3 ,28-30]. Some ofhigh-flux reactions. Biofuel production efforts can benefit

  16. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01

    expression. Microbial biofuel production is one area whereal. 2008). Typical biofuel production processes start withwith uncertainty in the biofuel production rate. Our ?ndings

  17. DOE Announces Additional Steps in Developing Sustainable Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Developing Sustainable Biofuels Industry DOE Announces Additional Steps in Developing Sustainable Biofuels Industry October 7, 2008 - 4:14pm Addthis Releases Results from...

  18. Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvani...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania August 6, 2010 - 2:00pm Addthis A...

  19. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    for Sustainable Biofuel Production. RSB, pages 1–29. [Birur2008b). Impact of Biofuel Production on World AgriculturalPolicies for Biofuel Production. Conservation Biology, 22(

  20. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  1. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01

    Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

  2. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01

    sp. used for fixation and biofuel produc- tion”, Journal ofas feedstocks for biofuel production: per- spectives andPhotobioreactors Used for Biofuel Production A dissertation

  3. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01

    metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

  4. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01

    enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

  5. Energy Policy 36 (2008) 15381544 Promoting biofuels: Implications for developing countries

    E-Print Network [OSTI]

    2008-01-01

    Energy Policy 36 (2008) 1538­1544 Promoting biofuels: Implications for developing countries Jo¨ rg 2008 Abstract Interest in biofuels is growing worldwide as concerns about the security of energy supply, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result

  6. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production

  7. USDA Biofuels Strategic Production Report June 23, 2010

    E-Print Network [OSTI]

    USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the field that can enhance various models for biofuel production, identify challenges and opportunities;USDA Biofuels Strategic Production Report June 23, 2010 2 Over the last 60 years, the percentage

  8. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    Criteria for Sustainable Biofuel Production. RSB, pages 1–and Tyner, W. (2008b). Impact of Biofuel Production on WorldClifford, P. (2009). Assessing Biofuel Crop Invasiveness: A

  9. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01

    of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

  10. Global Biofuel Production and Food Security: Implications for Asia Pacific

    E-Print Network [OSTI]

    Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

  11. Metabolic Engineering of oleaginous yeast for the production of biofuels

    E-Print Network [OSTI]

    Tai, Mitchell

    2012-01-01

    The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

  12. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-Print Network [OSTI]

    Quinn, Nigel

    microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

  13. Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems for biofuels production have

    E-Print Network [OSTI]

    for biofuels production have dramatically increased costs of fertilizer, seed, and feed grains. These increased

  14. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

  15. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01

    CO 2 Fixation and Biofuel Production Halil Berberoglu + ,2 mitigation and biofuel productions namely (i) Botryococcusfor CO 2 ?xation and biofuel production over the spectral

  16. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    availability for biofuel production. Environ. Sci. Technol.of land available for biofuel production. Environ. Sci.the Potential for Biofuel Production on Marginal Lands:

  17. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  18. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  19. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  20. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01

    pharmaceuticals by engineered microbes. Nat Chem Biol 2006,K, Dubchak IL, Arkin AP: The Microbes Online Web site forbiology in engineering microbes for biofuel production

  1. Design, Construction, and Implementation of Novel Biofuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Construction, and Implementation of Novel Biofuel Production Capabilities in Filamentous Fungi March 26, 2015 Technology Area Review Kenneth S. Bruno Pacific Northwest...

  2. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US for increasing biofuel production have already come under fire because of real and perceived threats.S. will be to ensure that bioenergy supplies meet sustainable production standards that include consideration

  3. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    EI, Liao JC. Direct biofuel production from carbon dioxide.for biohydrogen and biofuel production. Curr Opin Biotechnolin regulating the biofuel production gene. The system is

  4. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Gasch, Audrey P.

    Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Dana J. Wohlbacha creates specific challenges for microbial biofuel production from cellulosic material. Although engineered | transcriptomics Biofuel production from cellulosic material uses available sub- strates without competing

  5. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01

    fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,

  6. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect (OSTI)

    Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

    2010-10-01

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  7. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  8. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

  9. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01

    For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

  10. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel production systems using microalgae. Keywords Algae . Carbon sequestration . Biofuel . Biogas . Biohydrogen . Biomethane . Bioreactor. Lipid . Oil . Raceway pond . Triacylglycerides . Review Abbreviations BTL biomass

  11. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  12. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  13. Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization

    E-Print Network [OSTI]

    Collins, Gary S.

    Pretreatment for Cellulosic Ethanol Production: Technology and Energy Consumption Evaluation." BioresourceDiagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest production industry in the Northwest United States. One of NARA's goals is to develop a production process

  14. Impact of Projected Biofuel Production on Water Use and Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Projected Biofuel Production on Water Use and Water Quality March 27-29, 2015 Analysis and Sustainability WBS:4.2.1.10 May Wu Argonne National Laboratory This...

  15. Slab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung,a

    E-Print Network [OSTI]

    Angenent, Lars T.

    Slab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung are a promising feedstock for sustainable biofuel production. At present, however, there are a number to substantial interest in increasing biofuel production. Biofuels can be produced from a number of different

  16. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

  17. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

  18. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  19. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  20. Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity and season of harvest on cellulosic feedstock and

    E-Print Network [OSTI]

    Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity Station. #12;v Abstract Development of sustainable harvest strategies for cellulose-based biofuels nesting and cellulosic biofuel production. The objectives of this project were to- (1) determine

  1. Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

  2. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    SciTech Connect (OSTI)

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  3. Biochemical Production of Endophytic Yeast Biofuel: what and why

    E-Print Network [OSTI]

    Brown, Sally

    , local production of crops, CO2 reincorporation Degrade lands due to oil sand mining, drilling, exBiochemical Production of Endophytic Yeast Biofuel: what and why In the U.S., the debate about because the farms are growing corns (first generation) for fuel production instead of for human and animal

  4. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  5. China-Status and Potential for the Development of Biofuels and...

    Open Energy Info (EERE)

    biofuel development in the PRC; assess the implications of the biofuel program on food prices,crop diversification, land-use patterns, and farm restructuring; and derive policy...

  6. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  7. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  8. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01

    tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

  9. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  10. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  11. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    Makino K, Sawayama S: Bioethanol production from xylose bymaterial for biofuel production. Bioethanol produced from

  12. SYNTHESIS Industrial-strength ecology: trade-offs and opportunities in algal biofuel production

    E-Print Network [OSTI]

    for biofuel productivity and resilience. We argue that a community engineering approach that manages and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using

  13. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Impacts of land use change due to biofuel crops on carbon balance, bioenergy production that biofuel crops have much higher net pri- mary production (NPP) than soybean and wheat crops. When food). Global biofuel production has increased dramatically in the last decade, especially in United States

  14. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes-fold expansion of biofuel production (4), which will likely drive further expansion of corn area crops that compete with corn for land. Increased corn acreage for biofuel production has raised con

  15. Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic

    E-Print Network [OSTI]

    Zhao, Huimin

    Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter for cellulosic biofuel production (Hong and Nielsen, 2012; Sun et al., 2012). Unfortunately, wild type S

  16. Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse

    E-Print Network [OSTI]

    Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

  17. An assessment of biofuel use and burning of agricultural waste in the developing world

    E-Print Network [OSTI]

    Jacob, Daniel J.

    An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie 2003. [1] We present an assessment of biofuel use and agricultural field burning in the developing% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41

  18. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding inCustomer-Comments Sign In About |NationalCutting Biofuel

  19. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  20. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  1. Photobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R. Bruce Eldridge

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    Photobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R This review paper describes systems used to cultivate microalgae for biofuel production. It addresses general of biofuel. This paper also highlights the concept of combining open and closed systems and concludes

  2. Measurements and predictions of the radiation characteristics of biofuel-producing microorganisms

    E-Print Network [OSTI]

    Heng, Ri-Liang

    2015-01-01

    Biofuel Production frommicroalgal biofuel production [1]. . . . . . . . . . . . . .2 ?xation and biofuel production”, Journal of Quantitative

  3. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  4. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  5. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    None

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  6. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    standards for biofuel production make little economic sense.to biofuels. While the biofuel production and consumptionand further increases in biofuel production are driven pri-

  7. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  8. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

  9. Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development Jason W and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development. PLoS Genet 7(9): e1002219. doi:10

  10. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  11. An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich

    E-Print Network [OSTI]

    Jacob, Daniel J.

    -- -- An assessment of biofuel use and burning of agricultural waste in the developing world an assessment of biofuel use and agricultural field burning in the developing world. We used information from and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39

  12. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann; Dale, Virginia H

    2014-01-01

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  13. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  14. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  15. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  16. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  17. Microorganisms to Speed Production of Biofuels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms to Speed Production of Biofuels Oak Ridge

  18. BIOFUEL DEVELOPMENT AND LARGE-SCALE LAND DEALS IN SUB-SAHARAN AFRICA

    E-Print Network [OSTI]

    1 BIOFUEL DEVELOPMENT AND LARGE-SCALE LAND DEALS IN SUB-SAHARAN AFRICA GIORGIA GIOVANNETTI European.giovannetti@unifi.it ELISA TICCI University of Siena, ticci4@unisi.it Abstract Africa's biofuel potential over the last ten specifications. Key words: biofuels, land acquisitions, Poisson regression, Africa. JEL Codes: O13, F21, N57, Q24

  19. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  20. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore »production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  1. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading 

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02

    Increasing environmental concerns over greenhouse gas emissions, depleting petroleum reserves and rising oil prices has stimulated interest on biofuels production from biomass sources. This study explored on biofuels production from pyrolysis...

  2. Air China will conduct China's first biofuel test flight (photo: Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China

    E-Print Network [OSTI]

    Air China will conduct China's first biofuel test flight (photo: Boeing) Boeing announces major initiatives to develop, commercialize and fly sustainable jet biofuels in China Fri 28 May 2010 ­ Boeing a sustainable aviation biofuels industry in the country. The US aircraft manufacturer says the strategic

  3. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  4. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    New Biofuels by Overcoming Biomass Recalcitrance Henrik Vibeenergy stored in plant biomass. The papers in this volumefeedstocks development and biomass deconstruction. Keywords

  5. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    the biofuel production and consumption exhibited signi?cantBiofuels The biofuels production and consumption is closelysystem of the fuel production and consumption beginning with

  6. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    chain. Assume that biofuel production includes two stages:the ILUC of biofuel production in the LCA assessment. Theof their output to biofuel production. For simplicity, we

  7. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  8. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect (OSTI)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  9. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  10. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  11. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  12. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  13. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    E-Print Network [OSTI]

    Caiazzo, Fabio

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes ...

  14. at Western University From the production of biofuels, fuel cells and alternative forms of energy,

    E-Print Network [OSTI]

    Lennard, William N.

    at Western University From the production of biofuels, fuel cells and alternative forms of energy tailored nanotube- based materials for applications in such areas as fuel cells, batteries and sensing

  15. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive...

  16. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    sizable increases in biofuel production need not result ina reasonable level of biofuel production that avoids pushing26 Appendix A - Biofuel Production

  17. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research is required on increasing solvent yields. Dark fermentation of algal biomass can also produce hydrogen, but, as for other fermentations, only at low yields. Hydrogen can also be generated by algae in the light, however, this process has not yet been demonstrated in any way that could be scaled up and, in any event, Dunaliella, is not known to produce hydrogen. In response to nutrient deficiency (nitrogen or silicon), some microalgae accumulate neutral lipids which, after physical extraction, could be converted, via transesterification with methanol, to biodiesel. Nitrogen-limitation does not appear to increase either cellular lipid content or lipid productivity in Dunaliella. Results from life cycle energy analyses indicate that cultivation of microalgal biomass in open raceway ponds has a positive energy output ratio (EOR), approaching up to 10 (i.e., the caloric energy output from the algae is 10 times greater than the fossil energy inputs), but EOR are less than 1 for biomass grown in engineered photobioreactors. Thus, from both an energetic as well as economic perspective, only open ponds systems can be considered. Significant long-term R&D will be required to make microalgal biofuels processes economically competitive. Specifically, future research should focus on (a) the improvement of biomass productivities (i.e., maximizing solar conversion efficiencies), (b) the selection and isolation of algal strains that can be mass cultured and maintained stably for long periods, (c) the production of algal biomass with a high content of lipids, carbohydrates, and co-products, at high productivity, (d) the low cost harvesting of the biomass, and (e) the extraction and conversion processes to actually derive the biofuels. For Dunaliella specifically, the highest potential is in the co-production of biofuels with high-value animal feeds based on their carotenoid content.

  18. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    substituting for current imported oil sources, by 2030 the industry would employ a small (excluding agriculture from the view that investment in biofuels skills development will be at the leading edge of efforts wage. The growth of a biofuels industry in Hawai'i is likely to require some significant investment

  19. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    for biofuel production. Bioethanol produced from plantto utilize xylose for bioethanol fermentation, xyloseT, Makino K, Sawayama S: Bioethanol production from xylose

  20. Screening Prosopis (Mesquite or Algarrobo) for Biofuel Production on Semiarid Lands1

    E-Print Network [OSTI]

    Screening Prosopis (Mesquite or Algarrobo) for Biofuel Production on Semiarid Lands1 Peter Felker of Prosopis have been screened in field experiments for biomass production, frost tolerance, and heat with 600 mm total water applica- tion. Dry matter production of 14,000 kg/ha has been obtained at projected

  1. Assignment for Monday, 2/11 Monday's class will introduce you to the business dimension of the biofuels development. Here

    E-Print Network [OSTI]

    Iglesia, Enrique

    of the biofuels development. Here is what you need to do to prepare for the in class exercises on Monday: First: · Meet with your group to pick a biofuel to focus on for this exercise. This may or may or may not become make progress toward choosing your group's biofuel). · Read the Soleki et als reading very carefully

  2. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    costs and benefits of biodiesel and ethanol biofuels. Proc3):264-271. Chisti Y: Biodiesel from microalgae. Biotechnolcoli: implications for biodiesel production. Metab Eng 2008,

  3. Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production

    E-Print Network [OSTI]

    California at Riverside, University of

    Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production Jaclyn D. DeMartini,abe Sivakumar Pattathil,ce Utku Avci,ce Kaitlyn Szekalski,c Koushik Mazumder Lignocellulosic biomass is the only sustainable resource for large-scale production of liquid transportation fuel

  4. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  5. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    associ- ated with biofuel production and model the effectspolicymakers blame biofuel production mandates for the foodfood crisis struck as biofuel production, driven largely by

  6. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01

    and estimate that biofuel production in 2007 increased fuelcompetitive. About 50% of biofuel production costs come fromelasticity is above 8.5, biofuel production meets the RFS2

  7. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

  8. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01

    agriculture and in biofuel production that improve feedstockagricultural or biofuel production, requires a tax paymentemissions from biofuel production increases. Therefore, the

  9. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01

    case studies of specific biofuel production pathways using aenvironmental impacts of biofuel production and use are notimpacts. In addition, biofuel production facilities can use

  10. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    pathways for biofuel production because the engineeredincrease the yield of a biofuel production strain. Resultsalso enhanced biofuel production. Two pumps consistently

  11. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    the indirect effects of biofuel production on biodiversity:to incremental Brazilian biofuel production of 39 billionChair Accelerating biofuel production has been promoted as

  12. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01

    The rapid rise in biofuel production is driven by governmentprices. Globally, biofuel production is dominated bysoybeans) and current biofuel production processes are many

  13. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01

    engineering for biofuel production: towards affordablebiomass feedstocks for biofuel production. Genome Biol 2008,sugar yields for biofuel production. Nat Biotechnol 2007,

  14. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

  15. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

  16. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    2 fixation and biofuel production”, Journal of Quantitativeunder open raceway pond for biofuel production”, Bioresourceof microalgae for biofuel production be- tween 400 and 750

  17. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  19. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    Synthesis of three advanced biofuels from ionic liquid-Synthesis of three advanced biofuels from ionic liquid-C. Somerville. 2009. Cellulosic biofuels. Annual review of

  20. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    of second generation biofuel technologies. Bioresourceas biocatalysts in the biofuel industry. Advances in appliedas biocatalysts in the biofuel industry. Adv Appl Microbiol

  1. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  2. future science group 9ISSN 1759-726910.4155/BFS.11.151 2012 Future Science Ltd Synthetic biology approaches to biofuel production

    E-Print Network [OSTI]

    Hasty, Jeff

    approaches to biofuel production Editorial Biofuels (2012) 3(1), 9­12 "...it is important for synthetic will focus on the use of synthetic biology to engineer organisms for the more efficient production of biofuel over the current production level of about 13 billion gallons [1]. Given the expanding mar- ket

  3. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  4. Obama Administration Announces New Investments to Advance Biofuels...

    Energy Savers [EERE]

    energy efficiency, and speeding development of biofuels and other alternatives. Domestic oil and gas production has increased each year the President has been in office. At the...

  5. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  6. Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first be demonstrated in tobacco before being applied in Camelina.

  7. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

  8. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01

    Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

  9. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

  10. Designer synthetic media for studying microbial-catalyzed biofuel production

    SciTech Connect (OSTI)

    Tang, Xiaoyu [Biogas Inst. of Ministry of Agriculture, Chengdu (China); da Costa Sousa, Leonardo [Michigan State Univ., East Lansing, MI (United States); Jin, Mingjie [Michigan State Univ., East Lansing, MI (United States); Chundawat, Shishir [Michigan State Univ., East Lansing, MI (United States); State Univ. of New Jersey, Piscataway, NJ (United States); Chambliss, Charles [Baylor Univ., Waco, TX (United States); Lau, Ming W [Michigan State Univ., East Lansing, MI (United States); Xiao, Zeyi [Sichuan Univ., Chengdu (China); Dale, Bruce E [Michigan State Univ., East Lansing, MI (United States); Balan, Venkatesh [Michigan State Univ., East Lansing, MI (United States)

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.

  11. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir; Chambliss, Charles; Lau, Ming W; Xiao, Zeyi; Dale, Bruce E; Balan, Venkatesh

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore »SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.« less

  12. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ha, Miae; Wu, May

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. With this study, it evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) wasmore »employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. The results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production.« less

  13. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  14. BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled “MEGA-BIO: Bioproducts to Enable Biofuels.” This FOA supports BETO’s goal of meeting its 2022 cost target of $3/gallon gasoline equivalent for the production of hydrocarbon fuels from lignocellulosic biomass.

  15. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    SciTech Connect (OSTI)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  16. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  17. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  18. Understanding and engineering enzymes for enhanced biofuel production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  19. The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production

    E-Print Network [OSTI]

    Thomas, David D.

    for terrestrial carbon sequestration and potential biofuel production. For P. strobus, above- ground plant carbonThe impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production R A M E S H L A U N G A N I and J O H A N N E S M . H . K N O P S School of Biological Sciences

  20. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore »policies and programs.« less

  1. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  2. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  3. Recycling of Nutrients and Water in Algal Biofuels Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not substantially improve nutrient solubilization after anaerobic and aerobic digestions. Biogas production increased by 15%, but that is insufficient to cover the energy input of...

  4. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Environmental Management (EM)

    Achieving Water-Sustainable Bioenergy Production Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006...

  5. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  6. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  7. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  8. Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies 

    E-Print Network [OSTI]

    Capunitan, Jewel Alviar

    2013-01-15

    product properties (lower moisture, TAN, and highest heating value), and can be a potential feedstock for co-processing with crude oils in existing refineries. Major reactions involved were conversion of phenolics to aromatics and hydrogenation of ketones...

  9. Measurements and predictions of the radiation characteristics of biofuel-producing microorganisms

    E-Print Network [OSTI]

    Heng, Ri-Liang

    2015-01-01

    Biofuel Production fromFigures Lifecycle diagram of microalgal biofuel production [used for CO 2 ?xation and biofuel production”, Journal of

  10. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01

    The rapid rise in biofuel production is driven by governmentprices. Globally, biofuel production is dominated bysoybeans) and current biofuel production processes are many

  11. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01

    negative impacts that biofuel production might have on foodbrought about by biofuel production. Non-convexities inlook at the optimal biofuel production when it competes for

  12. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    associated with biofuel production, including environmental3. Water use in biofuel production. Fig. 4. Water embeddedthe water consumed in biofuel production. By some estimates,

  13. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01

    an increase in biofuel production. According to several;emissions from ILUC. Biofuel production also affects foodfrom increased biofuel production. AEZ- EF takes the GTAP

  14. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01

    Indian certification. Biomass Energy 32:749–80. J Drylandable development of biomass energy in California, calls forpassed federal energy bills emphasizing biomass in 2005 and

  15. Exploring the Optimum Role of Natural Gas in Biofuels Production

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute

  16. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  17. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect (OSTI)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  18. A Green Technology for the Production of Biofuels . The past several decades have been demarcated by growing concerns about

    E-Print Network [OSTI]

    Appanna, Vasu

    A Green Technology for the Production of Biofuels Dan Whalen #12;Abstract . The past several of green technologies and alternative fuel sources in an effort to diminish GHG production. One of hemicellulose, a major component of woody materials, in the production of alternative fuels remains elusive

  19. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  20. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    None

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  1. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect (OSTI)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  2. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect (OSTI)

    None

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  3. Biofuels development in Maine: Using trees to oil the wheels of sustainability -Maine news, sports, obituaries, weather -Bangor Daily News http://bangordailynews.com/2013/03/12/opinion/biofuels-development-in-maine-using-trees-to-oil-the-wheels-of-sustain

    E-Print Network [OSTI]

    Thomas, Andrew

    Biofuels development in Maine: Using trees to oil the wheels of sustainability - Maine news, sports, obituaries, weather - Bangor Daily News http://bangordailynews.com/2013/03/12/opinion/biofuels-development-in-maine-using-trees-to-oil-the-wheels-of-sustainability/print/[3/13/2013 1:54:43 PM] Biofuels development

  4. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  5. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  6. FACTSHEET: Energy Department Investments in Biofuels Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending 1 billion each day...

  7. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2013-01-01

    Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

  8. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    for Sustainable Biofuel Production, Version 2.0. 2010,risk to future biofuel production, a risk that will likely

  9. Emergent environmental issues, ever-shrinking global petroleum reserves, and unstable fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability

    E-Print Network [OSTI]

    costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability of all biofuel fermentations, however, remains limited by numerous factors adsorbents for the recovery of alcohol biofuels from model aqueous solutions as the first step towards

  10. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  11. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    Li H, Cann AF, Liao JC: Biofuels: biomolecular engineeringthe predominant portion of biofuels produced currently, itof biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A

  12. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  13. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    than 1:1 replacement of oil products with biofuel, which isshow how different oil products are affected differently

  14. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  15. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  16. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont�s Energy Needs

    SciTech Connect (OSTI)

    Scott Sawyer; Ellen Kahler

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund�s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont�s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy�s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization� the Biofuels Center of North Carolina�in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm�s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC�s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a �Cow Power� biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont�s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

  17. Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372

    SciTech Connect (OSTI)

    Pienkos, P.

    2012-09-01

    Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

  18. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy Savers [EERE]

    Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from...

  19. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  20. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  1. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  2. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Guess, Adam [ORNL

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  3. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Arora, S. (Energy Systems)

    2011-01-01

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  4. Microsystem product development.

    SciTech Connect (OSTI)

    Polosky, Marc A.; Garcia, Ernest J.

    2006-04-01

    Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

  5. Microsystem Product Development

    E-Print Network [OSTI]

    Polosky, M -A

    2007-01-01

    Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

  6. Triacylglycerol Production from Corn Stover Using a Xylose-Fermenting Rhodococcus opacus Strain for Lignocellulosic Biofuels

    E-Print Network [OSTI]

    Kurosawa, Kazuhiko

    Triacylglycerols (TAGs) are in the spotlight as a feasible source of hydrocarbon-based biofuels. Rhodococcus opacus PD630 produces large amounts of intracellular TAGs in cultivations containing high concentrations of ...

  7. Bio-Economic Analyses of Biofuel-Based Integrated Farm Drainage Management Systems on Marginal Land in a Salinity and Drainage Impacted Region: The Case of California's Central Valley

    E-Print Network [OSTI]

    Levers, Lucia

    2015-01-01

    recovery versus biofuel production.. Env. Sci and Tech. 49:An assessment of biofuel production from perennial grassesfuel production. However, biofuel production using crops has

  8. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  9. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  10. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  11. BESC, Mascoma develop revolutionary microbe for biofuel production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from sugarcane or sorghum) is abundant and cheap, because of recalcitrance - a plant's resistance to releasing sugars for conversion to alcohol - it is much more difficult to...

  12. Product development practices that matter

    E-Print Network [OSTI]

    Gupta, Nisheeth

    2010-01-01

    Product Development consists of activities to transforms a market opportunity and technological innovation into successful products. Several waves of improvements in technological innovation and product development have ...

  13. Biofuel Basics

    Broader source: Energy.gov [DOE]

    Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment.

  14. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  15. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  16. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  17. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  18. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Energy Savers [EERE]

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  19. Simulation Approaches for Drop-in Biofuels | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Approaches for Drop-in Biofuels Biofuels are an important part of our country's plan to develop diverse sources of clean and renewable energy. These alternative fuels...

  20. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  1. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  2. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  3. Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has

    E-Print Network [OSTI]

    Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem

  4. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  5. Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough

    E-Print Network [OSTI]

    Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009 bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State

  6. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  7. Bioproducts to Enable Biofuels Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  8. Production of Advanced Biofuels via Liquefaction Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05TheAdvanced Biofuels

  9. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty

    E-Print Network [OSTI]

    Vicari, Kristin Jenise

    Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic ...

  10. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  11. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  12. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  13. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  14. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  15. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    technologies for bioethanol production from lignocellulose.aqueous ammonia for bioethanol production. Methods Mol Biol

  16. Automotive Component Product Development Enhancement

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Automotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough period

  17. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    Water  from   Production  of  Crude  Oil,  Natural  Gas,  water  required  for  production  of  crude  oil  through  consumption  for  production   of  crude  oil  in  the  

  19. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    bioprocessing for bioethanol production using Saccharomycessugars. The cost of bioethanol production has become moredegraded for bioethanol production. However, the high cost

  20. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  1. Biofuels and Agriculture

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Biofuels and Agriculture Biofuels and Agriculture A Factsheet for Farmers American farmers have "biofuels" like ethanol and biodiesel mean that new markets are opening up. These can provide extra farm as growing markets for other biofuels like biodiesel. What are biofuels? Biofuels (short for "biomass fuels

  2. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  3. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  4. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  5. California: Cutting-Edge Biofuels Research and Entrepreneurship...

    Energy Savers [EERE]

    viable processes for advanced biofuels and biochemical production from grasses, algae, wood, gases, and agriculturalindustrialmunicipal waste leading to efficient...

  6. Biofuels are Helping Your Pocketbook and Our Environment

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet describes some of the financial and environmental benefits of biofuels and dispells myths about ethanol production.

  7. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  8. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  9. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01

    Laurens, “Microalgae as biodiesel and biomass feed- stocks:maximizing microalgae growth rate and biomass productivity.rate and biomass productivity of microalgae. Introduction

  10. Global biofuel drive raises risk of eviction for African farmers

    E-Print Network [OSTI]

    alternatives to oil, global biofuel production trebled between 2003 and 2007 and is forecast to double again to the research, said that the allocation of land for biofuel production by government projects or wealthy have forced millions into poverty. Dr Molony said: "The threat that increased biofuel production poses

  11. Offshore Development and Production

    Reports and Publications (EIA)

    1999-01-01

    Natural gas production in the federal offshore has increased substantially in recent years, gaining more than 400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

  12. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  13. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  14. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  15. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality 

    E-Print Network [OSTI]

    Baker, Justin Scott

    2012-10-19

    emissions and mitigation, commodity prices, production, net exports, sectoral economic welfare, and shifts in management practices and intensity. Direct and indirect consequences of RFS2 and carbon policy are highlighted, including regional production...

  16. Promise and Challenges of Microalgal-Derived Biofuels

    SciTech Connect (OSTI)

    Pienkos, P. T.; Darzins, A.

    2009-01-01

    Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality.

  17. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    R. ; Balachandra, P. Biofuel Production and Implications forAvailability for Biofuel Production. Environmental Science &Carbon Sequestration or Biofuel Production: New Land-Use

  18. Redesign of metabolic pathways for photosynthetic production of n-butanol using cyanobacteria

    E-Print Network [OSTI]

    Lan, Ethan I.

    2013-01-01

    J.C. , Direct biofuel production from carbon dioxide. (Oralfor direct biofuel production from brown macroalgae. Science2012) Cyanobacterial biofuel production. J Biotechnol. Lan

  19. In an international collaboration, Drs Thomas Roscoe and Ljerka Kunst are developing powerful genetic approaches to identify the mechanisms involved in regulating oil production in seeds. Their

    E-Print Network [OSTI]

    genetic approaches to identify the mechanisms involved in regulating oil production in seeds in the regulation of seed oil production in the embryo by the French team; third, the discovery of new information. Their exciting work will lead to the development of new crops for biofuel production As joint project

  20. Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)

    E-Print Network [OSTI]

    Nielsen, David R.

    The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

  1. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  2. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    bioprocessing for bioethanol production using Saccharomycesconversion to bioethanol in a single bioreactor by b) a CBPof lignocellulose to bioethanol refers to the combining of

  3. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    and T. K. Ghose. 2003. Bioethanol in India: recent past andZhao, and M. Emptage. 2006. Bioethanol. Current Opinion intechnologies for bioethanol production from lignocellulose.

  4. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    world,  use  about  7  million   gallons  of  treated  seawater  per  day  in  the  production  of  about  5  million  barrels  of   crude  oil  (

  5. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

  6. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  7. Video: A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  8. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    Development  (2010).  Hydraulic  Fracturing  Research  derived  through  hydraulic  fracturing,  or  “fracking. ”  

  9. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect (OSTI)

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  10. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) supports the development of technologies to sustainably grow and convert algae into advanced biofuels and bioproducts. Biofuels produced from algae have attracted...

  11. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  12. Chapter 2: Sustainable and Unsustainable Developments in the U.S. Energy System

    E-Print Network [OSTI]

    Levine, Mark D.

    2008-01-01

    United States for biofuel production is limited. Dedication6 While domestic biofuel production presents an attractivesustainable. Increased biofuel production, particularly from

  13. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  14. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  15. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    routes to combine eco-friendly and economical processes forarea is focused on developing eco-friendly and economical

  16. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    Sustainable  development  should  be  the  cornerstone  of  our  approach  to  globalization   and  to  the  global  governance  architecture  

  17. Are Latin American and Caribbean Biofuel Policies Consistent with their Comparative Advantages?

    E-Print Network [OSTI]

    that the biofuel production in LAC could be seen as a strategy to achieve environment, energy and agricultural). The US shared 15% of the world production with 841 million gallons, followed by Germany which produced production based on big countries experiences as a strategy to develop rural areas by the creation

  18. Strategic Perspectives on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  19. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent...

  20. Biotests for hazard assessment of biofuel fermentation Sebastian Heger,a

    E-Print Network [OSTI]

    Angenent, Lars T.

    ecotoxicological investigation of a biomass-to-biofuel production process with respect to the generation and biofuel production streams should be conducted very early in the biofuel life cycle in parallelBiotests for hazard assessment of biofuel fermentation Sebastian Heger,a Kerstin Bluhm,a Matthew T

  1. Residence Time Distribution Measurement and Analysis of Pilot-Scale Pretreatment Reactors for Biofuels Production: Preprint

    SciTech Connect (OSTI)

    Sievers, D.; Kuhn, E.; Tucker, M.; Stickel, J.; Wolfrum, E.

    2013-06-01

    Measurement and analysis of residence time distribution (RTD) data is the focus of this study where data collection methods were developed specifically for the pretreatment reactor environment. Augmented physical sampling and automated online detection methods were developed and applied. Both the measurement techniques themselves and the produced RTD data are presented and discussed.

  2. Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels

    E-Print Network [OSTI]

    Gray, Matthew

    in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

  3. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    SciTech Connect (OSTI)

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  4. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  5. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    SciTech Connect (OSTI)

    Devereaux, Charan; Lee, Henry

    2009-06-01

    Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

  6. Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad

    E-Print Network [OSTI]

    Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

  7. FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP

    E-Print Network [OSTI]

    Wildermuth, Mary C

    FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

  8. Nottingham Business School Biofuels Market and Policy Governance

    E-Print Network [OSTI]

    Evans, Paul

    Nottingham Business School Biofuels Market and Policy Governance The last decade has seen a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising number triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

  9. Global Assessments and Guidelines for Sustainable Liquid Biofuel

    E-Print Network [OSTI]

    -GHG environmental impacts of OKEO Chapter 6 Social impacts of liquid biofuel production OEKO Chapter 7 Next), Morelia/Mexico Appendix H Background data for global non-GHG envi- ronmental impacts of biofuels OEKO G Water footprints of biofuel cropping systems in Mexico Red Mexicana de Bioenergía (REMBIO

  10. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  11. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

  12. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    SciTech Connect (OSTI)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  13. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  14. Comparing Product Development Processes and Managing Risk

    E-Print Network [OSTI]

    Unger, Darian W.

    Product Development Processes (PDPs) require careful design to reduce development time, create better products and manage the risks of bringing new products to market. This paper investigates the relationship between product ...

  15. An Update on Ethanol Production and Utilization in Thailand

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2009-10-01

    Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

  16. Overseas Development Institute ODI is the UK's leading independent

    E-Print Network [OSTI]

    crude oil was quoted at $112 a barrel. Returns to tropical feedstock are especially attractive clear frameworks for the development of biofuels Figure 1: World biofuel production, 1991 to 2010.odi.org.uk Project Briefing B iofuel production is booming. Worldwide, production of ethanol for fuel has almost

  17. Economic sustainability modeling provides decision support for assessing hybrid poplar-based biofuel development in California

    E-Print Network [OSTI]

    2015-01-01

    58 p. Parker N, Tittmann P, Hart Q, et al. 2010. Development63:168–77. Prilepova O, Hart Q, Merz J, et al. 2014. DesignNathan C. Parker, Quinn Hart, Mark Jenner, Boon-Ling Yeo,

  18. Algal Biofuels Strategy Workshop- Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State University on November 19-20, 2013, to discuss the research and development (R&D) needed to achieve affordable, scalable, and sustainable algae-based biofuels.

  19. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    ) and methane (CH4) from renewable biomass has the potential to con- tribute to reducing dependence on fossilBiofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, USA James G Ferry, Pennsylvania State University, University Park, Pennsylvania, USA The production

  20. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

  1. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  2. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J Han, MQ Wang. "Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States." 2013. Biotechnology for Biofuels, 6:141. * Z...

  3. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  4. Thailand-Status and Potential for the Development of Biofuels and Rural

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy and Development Plan Jump to:Renewable Energy

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  6. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    cellulosic ethanol. Addthis Related Articles Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Refining Bio-Oil alongside Petroleum...

  7. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for...

  8. Obama Announces Steps to Boost Biofuels, Clean Coal | Department...

    Broader source: Energy.gov (indexed) [DOE]

    the country, the President laid out three measures that will work in concert to boost biofuels production and reduce our dangerous dependence on foreign oil. The Environmental...

  9. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

  10. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  11. Developing Association Mapping in Polyploid Perennial Biofuel Grasses: Final Technical Report

    SciTech Connect (OSTI)

    Buckler, Edward S; Casler, Michael D; Cherney, Jerome H

    2012-01-20

    This project had six objectives, four of which have been completed: 1) Association panels of diverse populations and linkage populations for switchgrass and reed canarygrass (~1,000 clones each) were assembled and planted in two sites (Ithaca, NY and Arlington, WI); 2) Key biofeedstock characteristics were evaluated in these panels for three field seasons; 3) High density SNP markers were developed in switchgrass; and 4) Switchgrass association panels and linkage populations were genotyped. The remaining two original objectives will be met in the next year, as the analyses are completed and papers published: 5) Switchgrass population structure and germplasm diversity will be evaluated; and 6) Association mapping will be established and marker based breeding values estimated in switchgrass. We also completed a study of the chromosome-number variation found in switchgrass.

  12. New membranes could speed the biofuels conversion process and reduce cost

    SciTech Connect (OSTI)

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  13. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema (OSTI)

    Hu, Michael

    2014-08-06

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  14. Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products

    SciTech Connect (OSTI)

    Bhave, Ramesh R [ORNL; Kuritz, Tanya [ORNL; Powell, Lawrence E [ORNL; Adcock, Kenneth Dale [ORNL

    2012-01-01

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. We have evaluated the dewatering of Nannochloropsis sp. with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ~99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, it can be shown that an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.

  15. Planting Food or Fuel: Developing an Interdisciplinary Approach to Understanding the Role of Culture in Farmers’ Decisions to Grow Second-Generation Biofuel Feedstock Crops

    E-Print Network [OSTI]

    White, Stacey Swearingen; Brown, J. Christopher; Gibson-Carpenter, Jane W.; Hanley, Eric; Earnhart, Dietrich H.

    2009-12-01

    Recent interest in biofuels as an alternative energy source has spurred considerable changes in agricultural practice worldwide. These changes will be more pronounced as second-generation biofuels, such as switch grass, gain prominence; this article...

  16. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Embassy RNE aiming at developing bioenergy in rural area of western China Propel Biofuels Propel Biofuels Woodland Park Ave North Seattle Washington Biofuels Sells biodiesel...

  17. Information and Communication in Lean Product Development

    E-Print Network [OSTI]

    Graebsch, Martin

    In this thesis, the implications and influences that information and communication impose on lean product development in general, as well as the development of a lean Product Development Value Stream Display (lean PDVSD) ...

  18. Market Drivers for Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Drivers for Biofuels Market Drivers for Biofuels This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February,...

  19. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  20. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  1. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  2. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme and Development University of Reading EU Support for Biofuels and Bioenergy, Environmental Sustainability Criteria School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy

  3. Developing product platforms:analysis of the development process

    E-Print Network [OSTI]

    Roveda, Marco

    1999-12-08

    Several authors have highlighted the importance of companies enhancing their new product development process through a multiproduct

  4. Evanescent Photosynthesis: A new approach to sustainable biofuel Matthew D. Ooms

    E-Print Network [OSTI]

    Pedersen, Tom

    Evanescent Photosynthesis: A new approach to sustainable biofuel production by Matthew D. Ooms #12;Abstract Evanescent Photosynthesis: A new approach to sustainable biofuel production Matthew D biofuel and other high value compounds through direct conversion of CO2 and water using energy from

  5. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect (OSTI)

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  6. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  7. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  8. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More BETO Deputy Director Publishes Commentary on Development of...

  9. USDA & DOE Release National Biofuels Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plan detailing the collaborative efforts of Federal agencies to accelerate the development of a sustainable biofuels industry. "Federal leadership can provide the vision...

  10. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic,...

  11. Insect Science (2010) 17, 117, DOI 10.1111/j.1744-7917.2009.01310.x Arthropods and biofuel production systems in North America

    E-Print Network [OSTI]

    Landis, Doug

    2010-01-01

    of biofuel crops will likely become more important and new pests will emerge. Beneficial arthropods will also on arthropod dynamics within biofuel crops, their spillover into adjacent habitats, and implications man- agement systems will clearly be needed to mitigate the negative impacts of arthropods as plant

  12. Product Design Specifications Starting Product Development Projects Right

    E-Print Network [OSTI]

    Salustri, Filippo A.

    Product Design Specifications Starting Product Development Projects Right Filippo A What? How? teams must solve same problem unfettered innovation v.risk management need to created balanced designs a structured control document a thinking tool a collaboration tool promotes innovation

  13. Socio-economic dynamics of biofuel

    E-Print Network [OSTI]

    production from coconut oil. - Bioethanol is mainly produced from cassava and sugarcane. Thailand for agricultural staples such as palm oil for the production of biofuel also threatens to crowd out their use promoted as a solution for energy self- sufficiency and reducing greenhouse gas emissions, the production

  14. Applications of Nanotechnology to Pharmaceutical Product Development

    E-Print Network [OSTI]

    Fisher, Frank

    Applications of Nanotechnology to Pharmaceutical Product Development Wednesday January 27, 2010 physical forms can create limitations in terms of product performance and/or safety. Nanotechnology can of the clinical benefits of using nanotechnology in drug product development.. Bill Bosch has been involved

  15. Biofuels Market Opportunities

    Broader source: Energy.gov [DOE]

    Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

  16. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  17. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  18. Risk Management in Lean Product Development

    E-Print Network [OSTI]

    Oehmen, Josef

    This whitepaper summarizes 15 years of research conducted at MIT's Lean Advancement Initiative on the topic of risk management in product design and development. It discusses current challenges in risk management for product ...

  19. New developments in product-line optimization

    E-Print Network [OSTI]

    Hauser, John R.

    Product development is key to profitability. Without well-designed products that meet the needs of customers at a reasonable cost, the firm has no sales. And without sales, the firm has no profit. But designing profitable ...

  20. Essays on new product development alliances 

    E-Print Network [OSTI]

    Kalaignanam, Kartik

    2009-05-15

    Interorganizational alliances are widely recognized as critical to product innovation. A notable trend is the rapid growth of new product development (NPD) alliances between large, well-established firms and small, growing ...

  1. Teaching product development by deterministic design

    E-Print Network [OSTI]

    Graham, Marc Miller

    2006-01-01

    The objective of this work was to develop a deterministic design and teaching process for the creation of new products ranging from books, to music, to consumer products. The foundation of the process is the Peer-Review ...

  2. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  3. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  4. THE POTENTIAL OF FRESHWATER MACROALGAE AS A BIOFUELS FEEDSTOCK AND THE INFLUENCE OF NUTRIENT AVAILABILITY ON FRESHWATER MACROALGAL BIOMASS PRODUCTION

    E-Print Network [OSTI]

    Yun, Jin-Ho

    2014-12-31

    difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore...

  5. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  6. Growth in Biofuels Markets: Long Term Environmental and Socioeconomic Impacts (Final Report)

    SciTech Connect (OSTI)

    Seth D. Meyer; Nicholas Kalaitzandonakes

    2010-12-02

    Over the last several years increasing energy and petroleum prices have propelled biofuels and the feedstocks used to produce them, to the forefront of alternative energy production. This growth has increased the linkages between energy and agricultural markets and these changes around the world are having a significant effect on agricultural markets as biofuels begin to play a more substantial role in meeting the world's energy needs. Biofuels are alternatively seen as a means to reduce carbon emissions, increase energy independence, support rural development and to raise farm income. However, concern has arisen that the new demand for traditional commodities or alternative commodities which compete for land can lead to higher food prices and the environmental effects from expanding crop acreage may result in uncertain changes in carbon emissions as land is converted both in the US and abroad. While a number of studies examine changes in land use and consumption from changes in biofuels policies many lack effective policy representation or complete coverage of land types which may be diverted in to energy feedstock production. Many of these biofuels and renewable energy induced land use changes are likely to occur in developing countries with at-risk consumers and on environmentally sensitive lands. Our research has improved the well known FAPRI-MU modeling system which represents US agricultural markets and policies in great detail and added a new model of land use and commodity markets for major commodity producers, consumers and trade dependent and food insecure countries as well as a rest of the world aggregate. The international modules include traditional annual crop lands and include perennial crop land, pasture land, forest land and other land uses from which land may be drawn in to biofuels or renewable energy feedstock production. Changes in calorie consumption in food insecure countries from changes in renewable energy policy can also be examined with a calorie module that was developed. The econometric model development provides an important tool to examine the indirect but important and potentially substantial secondary effects of the use of agricultural land as an input into renewable energy production including changes in greenhouse gas production and calorie consumption. With the expansion of biofuels support and consumption as well as proposals for similar support of biomass electricity the research and tools developed remain at the forefront of renewable energy policy analysis.

  7. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  8. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors for the production of fuel crops. http://www.iol.co.za/general/news/newsprint.php?art_id=nw20071106135542969C112694&sf= (1 of 3) [11/11/2008 11:48:04 AM] http://www.iol.co.za/index.php?set_id=1&click_id=31&art

  9. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  10. HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for

    E-Print Network [OSTI]

    Kunst, Ljerka

    HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

  11. Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts

    E-Print Network [OSTI]

    Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts Willow on recycled paper #12;1 Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts to agricultural production, including growing biofuels, and (ii) Observed Land Supply Response (OLSR

  12. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness biofuels will have an important part to take in the energy transition as far as fuels are concerned. Using biofuels, the BTL route consists in the production of middle dis- tillates (Diesel and jet fuel) via

  13. MSU biofuels research fills need for new sources July 28, 2006 --By Carol Flaherty

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU biofuels research fills need for new sources July 28, 2006 -- By Carol Flaherty The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol. All refer to fuel collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all

  14. 16 CSA News March 2013 thanol from corn has been the primary biofuel for liq-

    E-Print Network [OSTI]

    DeLucia, Evan H.

    16 CSA News March 2013 E thanol from corn has been the primary biofuel for liq- uid fuels in the United States, but perennial cellulosic biofuels are on the horizon. Intensive corn production with large of nitrogen losses on large, tile-drained fields planted with perennial biofuels in the Midwest of the United

  15. Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

  16. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels

    E-Print Network [OSTI]

    Rismani-Yazdi, Hamid

    Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. ...

  17. Biofuel derived from Microalgae Corn-based Ethanol

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    · E10 vs. E85 choice · Examined of corn-based ethanol fuel systems on the following: - environmentalBiofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol

  18. Sustainability standards for biofuels : analyses of the current standards and recommendations of the future direction

    E-Print Network [OSTI]

    Lee, Leebong

    2014-01-01

    Past decades have seen development and expansion of biofuels industry around the world thanks to the environmental and economic contribution that biofuels have promised. As more and more people became concerned about the ...

  19. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Ming

    2015-06-12

    Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self-powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs-based self-powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical-to-electrochemical energy transformation, thus obviating the requirement of external power sources. Following mymore »previous review (Electroanalysis 2012, 24, 197-209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs-based self-powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs-based self-powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co-stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs-based self-powered electrochemical biosensors and logic biosensors are discussed in the end.« less

  20. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  1. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: NewEmerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman,...

  2. Fungible and Compatible Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fungible and Compatible Biofuels Fungible and Compatible Biofuels The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through...

  3. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  4. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  5. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  6. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  7. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  8. Business Development - Predictive Maintenance Products 

    E-Print Network [OSTI]

    Sceiczina, P.

    2005-01-01

    stream_source_info ESL-IE-05-05-16.pdf.txt stream_content_type text/plain stream_size 697 Content-Encoding UTF-8 stream_name ESL-IE-05-05-16.pdf.txt Content-Type text/plain; charset=UTF-8 BUSINESS DEVELOPMENT...

  9. Part 4: Conclusion "Growing biofuel crops is a considerably long-term investment. We need to frame the food vs.

    E-Print Network [OSTI]

    ." and the following outcomes - "(1) Strategic partnerships for the research, development, testing, and deployment of renewable biofuels technologies and production of biomass crops; (2) Evaluation of Hawaii's potential/or crops, conversion of biomass to useable fuels, distribution infrastructure, and end user markets. Each

  10. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore »that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  11. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  12. Understanding Fire Fighting in New Product Development

    E-Print Network [OSTI]

    Repenning, Nelson

    Despite documented benefits, the processes described in the new product development literature often prove difficult to follow in practice. A principal source of such difficulties is the phenomenon of fire fighting the ...

  13. Lean Product Development: Making Waste Transparent

    E-Print Network [OSTI]

    Bauch, Christoph

    2004-01-15

    Lean manufacturing developed by Toyota is a production philosophy that focuses on streamlining of value added activities and eliminating waste within the process with the goal to better meet customer demand. It constitutes ...

  14. Enabling Factors in Successful Product Development

    E-Print Network [OSTI]

    Tang, Victor

    2005-08-15

    The research literature and industry best-practices report a vast number of enabling factors that contribute to successful product development (PD). Collectively this body of work also establishes the causal linkages between ...

  15. Novel System for Recalcitrance Screening Will Reduce Biofuels Production Costs; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes a high-throughput screening process, developed at NREL, that enables researchers to screen a large variety of biomass feedstocks for traits that indicate they would easily convert to fermentable sugars.

  16. Biofuels and Sustainability Reports January 2010

    E-Print Network [OSTI]

    Pennycook, Steve

    and Sustainability Reports Biofuels, generally defined as liquid fuels derived from biological mate- rials, can be made from plants, vegetable oils, forest products, or waste materials. The raw materials can be grown specifically for fuel pur- poses, or can be the residues or wastes of existing supply and con- sumption chains

  17. 23 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    , for cellulosic biofuel produced through 2015. The $1.00 per gallon tax credit for biodiesel and renewable diesel for small agri-biodiesel producers. In addition, the $1.00 per gallon tax credit for diesel fuel created of the production tax credit. The credit applies to several types of renewable energy projects, including wind

  18. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  19. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    biofuels production. GHG policies18 that create a carbon price either through an emissions trading system analysed in the previous chapter. GHG policies that create an emissions trading system such as the cap

  20. New Online Tool Expands Analysis of Biofuels' Water Impact |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As with the previous two versions, WATER 3.0 quantifies the water footprint of various biofuel pathways, providing details of the water consumption required for the production of...

  1. Energy Department Awards up to $4 Million to Develop Advanced...

    Energy Savers [EERE]

    a 17.3 million investment by the Department to develop technologies that will enable the production of clean, renewable, and cost-competitive drop-in biofuels at 3 per gallon of...

  2. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  3. National Geo-Database for Biofuel Simulations and Regional Analysis

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the practices. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided initial simulation results on the potential of annual and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  4. U.S. and China Increase Biofuels Cooperation Ahead of the Third...

    Energy Savers [EERE]

    and Reform Commission (NDRC) agreed to strengthen and expand cooperation on biofuels production and use, ahead of the third U.S. - China Strategic Economic Dialogue set to...

  5. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect (OSTI)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  7. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  8. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  9. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  10. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  11. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  12. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  13. Increased European biofuel cultivation could harm human health1 by James Morgan for www.scienceomega.com2

    E-Print Network [OSTI]

    South Bohemia, University of

    Increased European biofuel cultivation could harm human health1 by James Morgan for www that the large-scale production of biofuels in4 Europe could result in increased human mortality and crop losses that many biofuel plant species, including poplar and willow, release more isoprene ­ an6 ozone precursor

  14. Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United States

    E-Print Network [OSTI]

    Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United. Building from their work on environmental costs and benefits associated with biofuel production, ORNL positively impact the sustainability of the biofuels industry. Building understanding of land-use change from

  15. Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock

    E-Print Network [OSTI]

    California at Riverside, University of

    -tolerant biofuels feedstock Hongjia Li,abd Marcus B. Foston,cd Rajeev Kumar,bd Reichel Samuel,cd Xiadi Gao,abd Fan lignocellulosic feedstock for biofuels production. Because agave composition will establish the maximum potential for further characterization and conversion of different agave species as biofuels feedstocks for semi

  16. Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some 100 significant cases

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some.riviere(cb.ineris.fr guy.marlair@iineris.fr alexis. vignestcbjneris.fr Abstract A biofuel is most often defined as a liquid. There are numerous potential supply chains for the production of biofuels, depending on feedstock, conventional

  17. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect (OSTI)

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  18. Liquid Biofuels Strategies and Policies in selected

    E-Print Network [OSTI]

    , Kenya 34 Figure 10 Palm oil processing 41 Figure 11 Strategic national choices on biofuels development Ecosystems ­ Africa EU European Union FAO Food and Agricultural Organisation FDI Foreign Direct Investment.2.2 The risks of depending on Climate Change Market Systems and Foreign Direct Investment 16 2.2.3 Risks from

  19. Connecting biotechnology to product development in

    E-Print Network [OSTI]

    Mallin, Michael

    #12;Connecting biotechnology to product development in health, food and energy #12;Collaboration to help build relationships, form new ideas and solve problems. Tenants will have access to more than 80 of the most advanced biotechnology research centers on the East Coast. Operated by the University of North

  20. Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

  1. Solid-State Lighting Commercial Product Development Resulting...

    Energy Savers [EERE]

    Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects...

  2. Co-production of Hydrogen and Electricity (A Developer's Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-production of Hydrogen and Electricity (A Developer's Perspective) Co-production of Hydrogen and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel...

  3. Support to Biofuels in Latin America and the Caribbean

    Broader source: Energy.gov [DOE]

    Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Support to Biofuels in Latin America and the Caribbean Arnaldo Vieira de Carvalho, Lead Energy Specialist, Inter-American Development Bank

  4. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  5. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  6. Development of a process for continuous creation of lean value in product development organizations

    E-Print Network [OSTI]

    Kato, Jin

    2005-01-01

    Ideas and methodologies of lean product development were developed into tools and processes that help product development organizations improve their performances. The definition of waste in product development processes ...

  7. Developing Microalgae as Production Platforms for Natural Products /

    E-Print Network [OSTI]

    Schoepp, Nathan

    2013-01-01

    CO2 fixation and bioethanol production using ScenedesmusGouveia, L. 2012. Bioethanol production from Scenedesmusof products including bioethanol (Ho et al. , 2013; Miranda

  8. Developing Microalgae as Production Platforms for Natural Products /

    E-Print Network [OSTI]

    Schoepp, Nathan

    2013-01-01

    CO2 fixation and bioethanol production using ScenedesmusGouveia, L. 2012. Bioethanol production from Scenedesmusproduction of a range of products including bioethanol (Ho

  9. Developing Microalgae as Production Platforms for Natural Products /

    E-Print Network [OSTI]

    Schoepp, Nathan

    2013-01-01

    production using microalgae biomass of Nannochloropsis.for future production of microalgae biomass in a variety ofas microalgae to be realized, efficient biomass production

  10. BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...

    Office of Environmental Management (EM)

    person in the bioeconomy. BETO partners with the U.S. Department of Agriculture on Biomass Research and Development. Each year, Biofuels Digest, a widely read online...

  11. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  12. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  13. August 7, 2008 We are pleased to announce the formation of the Southwestern Biofuels Association (SWBA), a

    E-Print Network [OSTI]

    Columbia University

    August 7, 2008 We are pleased to announce the formation of the Southwestern Biofuels Association (SWBA), a progressive trade association promoting the development of renewable biofuels in New, August 15th at noon at the New Mexico Capitol Rotunda in Santa Fe. While energy and biofuels

  14. REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands

    E-Print Network [OSTI]

    REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. Könighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

  15. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect (OSTI)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  16. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    Article Steven T. Berry. Biofuels policy and the empiricaluse change impacts of biofuels in the gtap-bio framework.Genomics of cellulosic biofuels. Nature, 454(7206):841–845,

  17. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

  18. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office Biofuels Feedstocks Hawaii Natural Energy Institute Desktop Study October 2012 Photographs, from left ........................................................................... 11 Options for liquid biofuel feedstock transport ...........................................................................

  19. Complexity and Systems Biology of Microbial Biofuels

    E-Print Network [OSTI]

    Rand, David

    Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

  20. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

  1. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  2. Renewable Chemicals and Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  3. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  4. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

  5. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    energy markets: the German biodiesel market. DARE Discussioncosts and bene?ts of biodiesel and ethanol biofuels.Keywords: Biofuels; Ethanol; Biodiesel JEL Codes: Q16; Q42

  6. PUBLICATIONS LIST Louisiana Forest Products Development Center

    E-Print Network [OSTI]

    and Service Suppliers: The Wood Products Industry. Vlosky #5 Opportunities for Quick Response Products and Service Suppliers:

  7. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-09-15

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore »and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less

  8. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    SciTech Connect (OSTI)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-09-15

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  9. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  10. Effects of Biofuel Policies on World Food Insecurity -- A CGE Analysis 

    E-Print Network [OSTI]

    Lu, Jiamin

    2012-02-14

    The food vs. fuel debate has heated up since the 2008 global food crisis when major crop prices dramatically increased. Heavily subsidized biofuel production was blamed for diverting food crops from food production and ...

  11. Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels 

    E-Print Network [OSTI]

    Gore, Matthew

    2013-08-05

    With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods...

  12. Alignment strategies for drug product process development and manufacturing

    E-Print Network [OSTI]

    Garvin, Christopher John

    2012-01-01

    The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

  13. Towards an InTerdIscIplInary approach To nexT-GeneraTIon BIofuels EnvironmEntal, tEchno-Economic, and GovErnancE

    E-Print Network [OSTI]

    Iglesia, Enrique

    Towards an InTerdIscIplInary approach To nexT-GeneraTIon BIofuels EnvironmEntal, t. 2010. The Ecological Impact of Biofuels. Pages 351-377 in D. J. Futuyma, H. B. Shafer, and D. Huffer, S., Roche, C.M., Blanch, H.W., and Clark, D.S. (2012). Escherichia coli for biofuel production

  14. Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and

    E-Print Network [OSTI]

    Collins, Gary S.

    are currently considered as a renewable source of liquid and gaseous biofuels and a practical technology of the most sustainable and promising of biofuel feedstock, demonstrating particularly high growth rates, and their entrained lipids, can offer several different types of biofuel and bioenergy production options including

  15. E2 Advanced Biofuel Market Report 2014 1 E2 ADVANCED BIOFUEL MARKET REPORT 2014

    E-Print Network [OSTI]

    E2 Advanced Biofuel Market Report 2014 1 E2 ADVANCED BIOFUEL MARKET REPORT 2014 #12;E2 | Environmental Entrepreneurs E2 Advanced Biofuel Market Report 2014 2 Executive Summary E2's fourth annual Advanced Biofuel Market Report catalogs the growths and challenges in the advanced biofuel industry

  16. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  17. Biofuels' Time of Transition Achieving high performance in a world

    E-Print Network [OSTI]

    Kammen, Daniel M.

    the challenges of 2007, biofuels production will probably exceed the International Energy Agency predictions was approximately 20 percent in the United States and approxi- mately 30 percent in Germany.1 ·High and volatile increase).2 ·Low product prices. Ethanol spot prices went from a high of $4/gallon in 2006 to an average

  18. FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

    SciTech Connect (OSTI)

    LaCourt, Donna M.; Miller, Raymond O.; Shonnard, David R.

    2012-04-24

    A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All other sub-tasks supported the development of these two tools either directly or by building out supporting information in the forest biomass supply chain. Outreach efforts have, and are continuing to get these user friendly models and information to decision makers to support biomass feedstock supply chain decisions across the areas of biomass inventory and availability, procurement, harvest, forwarding, transportation and processing. Outreach will continue on the project website at http://www.michiganforestbiofuels.org/ and http://www.michiganwoodbiofuels.org/

  19. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpowerBiocar JumpSued GmbH JumpGMediaBiofuels

  20. Sandia Energy - Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificAppliedBiofuels Home Analysis Final

  1. Global product development : a framework for organizational diagnosis

    E-Print Network [OSTI]

    Martínez, Víctor Takahiro Endo

    2008-01-01

    The main purpose of this thesis is to present an approach for analyzing product development organizations in a globalizing world. The fragmentation and distribution of several product development activities in the global ...

  2. The use of process metrics to evaluate product development projects

    E-Print Network [OSTI]

    Kellam, Benjamin A. (Benjamin Alexander), 1972-

    2004-01-01

    Product development success is an important strategic factor in today's business environment. The ability to accurately predict the outcome of product development projects would be a useful strategic tool. This research ...

  3. Nebraska shows potential to produce biofuel crops

    Broader source: Energy.gov [DOE]

    Researchers are searching for ways to change how American farmers and consumers think about biofuels.

  4. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  5. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  6. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  7. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  8. Sandia Energy - Sandia Develops Stochastic Production Cost Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Analysis Analysis Modeling Modeling & Analysis Computational Modeling & Simulation Solar Newsletter Sandia Develops Stochastic Production Cost Model Simulator for Electric...

  9. Information Hiding in Product Development: The Design Churn Effect

    E-Print Network [OSTI]

    Whitney, Daniel

    2002-06-07

    Execution of a complex product development project is facilitated through its decomposition into an interrelated set of localized development tasks. When a local ...

  10. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  11. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  12. National Algal Biofuels Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Algal Biofuels Technology Roadmap National Algal Biofuels Technology Roadmap The U.S. Department of Energy (DOE) Biomass Program's National Algal Biofuels Technology...

  13. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  14. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

  15. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01

    2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

  16. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

  17. Improving the Way We Harvest & Deliver Biofuels Crops | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Thomas Feedstocks Technology Manager, Bioenergy Technologies Office VIDEOS ON BIOFUEL BASICS The basics of biofuels technology explained in Energy 101: Biofuels. Insight...

  18. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

  19. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  20. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  1. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  2. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

  3. Isotope Development & Production | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation...

  4. Developing Microalgae as Production Platforms for Natural Products /

    E-Print Network [OSTI]

    Schoepp, Nathan

    2013-01-01

    triacylglycerol production in microalgae. Microb Cell Fact,V. , Vítová, M. 2011. Microalgae—novel highly efficientL. , Oliveira, A.C. 2009. Microalgae as a raw material for

  5. Vehicle and Heavy Equipment Integrated Product & Process Development (IPPD)

    E-Print Network [OSTI]

    Beckermann, Christoph

    Test & Evaluation Enterprise and Engineering Information Infrastructure Design & Development ConcurrentVehicle and Heavy Equipment Integrated Product & Process Development (IPPD) Technology Development: Casting Process Simulation Christoph Beckermann Associate Professor Department of Mechanical Engineering

  6. CHEMICAL PRODUCTION COMPLEX OPTIMIZATION, POLLUTION REDUCTION AND SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Pike, Ralph W.

    CHEMICAL PRODUCTION COMPLEX OPTIMIZATION, POLLUTION REDUCTION AND SUSTAINABLE DEVELOPMENT, Environmental and Sustainable Costs............2 C. Sustainable Development and Responsible Care)...................................................27 C. Sustainable Development and Sustainable Cost..............................32 C-1

  7. A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium

    SciTech Connect (OSTI)

    Albrecht, Karl O.; Hallen, Richard T.

    2011-03-29

    Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art “downstream” applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

  8. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  9. Recent developments in heavy flavour production

    E-Print Network [OSTI]

    G. Kramer

    2007-07-12

    We review one-particle inclusive production of heavy-flavoured hadrons in a framework which resums the large collinear logarithms through the evolution of the FFs and PDFs and retains the full dependence on the heavy-quark mass without additional theoretical assumptions. We focus on presenting results for the inclusive cross section for the production of charmed mesons in p anti-p collisions and the comparison with CDF data from the Tevatron as well as on inclusive B-meson production and comparison with recent CDF data. The third topic is the production of D^* mesons in photoproduction and comparison with recent H1 data from HERA.

  10. "In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents

    E-Print Network [OSTI]

    production and consumption expansion will depend heavily on incentives frameworks in order to stimulate and hydrogen and production, storage and consumption issues. What impact will biofuels production have fuel production by 2017. A further 25% of respondents thought that biofuels would account for 2

  11. HOME ADVOCACY POLICY DEVELOPMENT PUBLIC OUTREACH PRODUCTION MARKET DEVELOPMENT MARKETING RESEARCH MAGAZINE http://www.ontariograinfarmer.ca/MAGAZINE.aspx?aid=172

    E-Print Network [OSTI]

    Raizada, Manish N.

    ­ from fields and then sell them to various bio-product industries or as a bio-fuel for electrical power for sustaining its quality and health, says a University of Guelph soil science professor. Dr. Paul Voroney says THE SECRETS OF CORN ROOT ARCHITECTURE Natalie Osborne Corn's extensive root system can account for up to half

  12. Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)

    SciTech Connect (OSTI)

    Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

    2014-10-01

    In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

  13. Enhancing Product Development Through Parametric and Product Data Management Tools

    E-Print Network [OSTI]

    data management (PDM) software tools can be utilized better in the furniture industry. The central Trends In Computer-Aided Design And Manufacturing In The Furniture Industry, TR# 95-03) revealed that CAD in product engineering and in the factory for programming CNC machinery. In many companies, the use of CAD

  14. Product development risk management and the role of transparency

    E-Print Network [OSTI]

    Olechowski, Alison L. (Alison Louise)

    2012-01-01

    Risks in product development lead to schedule and cost over-runs and poor product quality. While numerous risk management frameworks have been published and research on specific risk management practices and methods has ...

  15. Modeling distributed product development processes in small and medium enterprises

    E-Print Network [OSTI]

    Mkrtchyan, Armen A

    2015-01-01

    Effective and efficient product development (PD) is critical to the success of many firms. The market's emphasis on getting faster and cheaper products has forced firms to shift their PD practices from sequential to ...

  16. Electrical build issues in automotive product development : an analysis

    E-Print Network [OSTI]

    Chacko, John

    2008-01-01

    To be competitive and successful within the automotive industry the Original Equipment Manufacturers (OEMs) have to bring new products with features fast to market. The OEMs need to reduce the Product Development cycle ...

  17. Standardization of product development processes in multi-project organizations

    E-Print Network [OSTI]

    Rupani, Sidharth

    2011-01-01

    An important question for a large company with multiple product development projects is how standard or varied the sets of activities it uses to conceive, design, and commercialize products should be across the organization. ...

  18. Accelerating the development of complex products in extended enterprises

    E-Print Network [OSTI]

    Dawson, Benjamin Alan

    2011-01-01

    This thesis examines strategies to accelerate product development in a large commercial aerospace program structured as an extended enterprise where first and second tier suppliers perform most of the detailed product ...

  19. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  20. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...