Sample records for biofuels product biofuels

  1. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  2. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02T23:59:59.000Z

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  3. Water gunks up biofuels production | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gunks up biofuels production Water gunks up biofuels production Released: August 21, 2014 Findings provide scientific principles to speed up biofuel development Green gold -...

  4. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01T23:59:59.000Z

    TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

  5. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  6. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01T23:59:59.000Z

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  7. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  8. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to bisabolane, an advanced biofuel with physico-chemical properties similar to D2 diesel. High titer microbial bisabolene production was achieved using Abies grandis...

  9. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  10. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01T23:59:59.000Z

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  11. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

  12. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

  13. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01T23:59:59.000Z

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  14. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    E-Print Network [OSTI]

    Hollister, E.B.

    2012-01-01T23:59:59.000Z

    carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

  15. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01T23:59:59.000Z

    fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

  16. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  17. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  18. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01T23:59:59.000Z

    enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

  19. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    sp. used for fixation and biofuel produc- tion”, Journal ofas feedstocks for biofuel production: per- spectives andPhotobioreactors Used for Biofuel Production A dissertation

  20. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

  1. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01T23:59:59.000Z

    of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

  3. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30T23:59:59.000Z

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  4. Lipid Biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lipid Biofuels Lipid Biofuels Released: March 30, 2015 Enhancing microbial lipid production By revealing a novel molecular pathway involved in microbial lipid accumulation in the...

  5. biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels biofuels Leads No leads are available at this time. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella...

  6. Metabolic Engineering of oleaginous yeast for the production of biofuels

    E-Print Network [OSTI]

    Tai, Mitchell

    2012-01-01T23:59:59.000Z

    The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

  7. Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production

    E-Print Network [OSTI]

    Spatial Modeling of Geographic Patterns in Biodiversity and Biofuel Production How can the US of biodiversity. The future of the biofuel industry will depend on public investment and trust that industry for increasing biofuel production have already come under fire because of real and perceived threats

  8. Global Biofuel Production and Food Security: Implications for Asia Pacific

    E-Print Network [OSTI]

    Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

  9. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk fuels make up a much larger share of the global energy demand (66%). Biofuels are therefore rapidly for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food

  10. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01T23:59:59.000Z

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  11. USDA Biofuels Strategic Production Report June 23, 2010

    E-Print Network [OSTI]

    USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022 I. INTRODUCTION The U.S. Department of Agriculture. The strategy targets barriers to the development of a successful biofuels market that will achieve, or surpass

  12. United Nations Conference on Trade and Development Biofuel production technologies

    E-Print Network [OSTI]

    ................................................................................................... 5 3 Second-generation biofuels............................................................................................... 9 3.1 Second-generation biochemical biofuels................................................................. 10 3.2 Second-generation thermochemical biofuels

  13. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    from feedstock crops. Microalgae biofuels and differentproduction of biofuels from microalgae. One strategy toin the current world, microalgae biofuels provide such an

  14. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01T23:59:59.000Z

    tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

  15. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01T23:59:59.000Z

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  16. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

  17. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01T23:59:59.000Z

    D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

  18. Biofuel Production in the Western U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Production in the Western U.S. March 25, 2015 Analysis & Sustainability Mark Wigmosta PNNL This presentation does not contain any proprietary, confidential, or otherwise...

  19. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Broader source: Energy.gov (indexed) [DOE]

    International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf More Documents &...

  20. Assessing Impact of Biofuel Production on Regional Water Resource...

    Energy Savers [EERE]

    12 webinar presentation on the environmental impacts attributable to wastewater from biofuels production. wuwebinar.pdf More Documents & Publications Breaking the Biological...

  1. BESC, Mascoma develop revolutionary microbe for biofuel production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 BESC, Mascoma develop revolutionary microbe for biofuel production A yeast engineered by Mascoma and BESC could hold the key to accelerating...

  2. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30T23:59:59.000Z

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  3. Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic

    E-Print Network [OSTI]

    Zhao, Huimin

    Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

  4. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  5. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  6. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  7. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  8. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  9. EMSL - biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels en New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella http:www.emsl.pnl.govemslwebpublications...

  10. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-Print Network [OSTI]

    Quinn, Nigel

    Creek, California Energy Biosciences Institute University of California Berkeley of microalgae biofuels production through an analysis of five production scenarios. These scenarios, or cases, including raceway ponds for microalgae cultivation, bioflocculation for algae harvesting, and hexane

  11. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01T23:59:59.000Z

    2009) 55. M. Tredici, Biofuels, 1: 143 (2010) 56. Q. Hu, A.Barbosa, M. H. M. Eppink, Biofuels Bioproducts Biorefining,and recent trends in biofuels. Prog. Energy Combust. Sci. ,

  12. Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

  13. Economic Policy and Resource Implications of Biofuel Feedstock Production

    E-Print Network [OSTI]

    Adusumilli, Naveen

    2012-10-19T23:59:59.000Z

    Page 3-4 Net Biofuel Production From Biomass Feedstocks Taking Into Account The Net Energy Ratio Associated With Each Of The Biomass Feedstocks, Switchgrass And High Energy Sorghum In This Case....S. energy supply and the consequent impact on cost of production of biofuels, 4 4 expanding to a national analysis viewing the macro implications of the RFS related to biomass feedstock. The results are of value to decision and policy makers. 1...

  14. Algal Biofuels

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing billions of gallons of renewable diesel, gasoline, and jet fuels. These activities are integrated with BETO's longstanding approach to accelerate the commercialization of lignocellulosic biofuels.

  15. Biofuel breakdown | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel breakdown Biofuel breakdown SCF1 frees plant sugars in lignin for sustainable biofuels Lignin, the tough woody polymer in the walls of plant, binds and protects cellulose...

  16. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

  17. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Energy Agency, Biofuels for Transport, Organization forJohnson, Potential for Biofuels for Transport in DevelopingMitigation Through Biofuels in the Transport Sector, Status

  18. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  19. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production targets established by the Renewable Fuels Standard (RFS-2) as part of the Energy Independence and Security Act (EISA) of 2007. Advanced biofuels derived from...

  20. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  1. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOE Patents [OSTI]

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05T23:59:59.000Z

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  2. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    L.  (2004).  Biofuels  for  transport:  an  international  renewable  electric  transport  and  biofuels  made  from  “and  transport  consumption  associated  with  biofuels  

  3. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

  4. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2011 DOE Hydrogen and Fuel Cells...

  5. Impacts of Biofuel Production and Navigation Impediments on Agricultural Transportation and Markets

    E-Print Network [OSTI]

    Ahmedov, Zafarbek

    2013-08-22T23:59:59.000Z

    This study investigated the impacts of U.S. biofuel production and barge navigation impediments on agricultural transportation and markets. Both past and future impacts of U.S. biofuel production levels mandated by the Renewable Fuel Standards...

  6. Sandia National Laboratories: Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Biofuels Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass,...

  7. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

  8. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01T23:59:59.000Z

    Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

  9. Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production

    E-Print Network [OSTI]

    Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production David F. Savage , Jeffrey production is pre- dicted to peak soon, it is reason- able to assume that unconventional fossil fuel sources and economic energy volatility, and smoothing the transition from fossil fuels in the distant future

  10. Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production.

    E-Print Network [OSTI]

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning

  11. Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse

    E-Print Network [OSTI]

    Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

  12. Photobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R. Bruce Eldridge

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    neutral fuel), and increased biofuel production would supplement nonrenewable energy sources.2 MicroalgaePhotobioreactor Design for Commercial Biofuel Production from Microalgae Aditya M. Kunjapur* and R This review paper describes systems used to cultivate microalgae for biofuel production. It addresses general

  13. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  14. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Gasch, Audrey P.

    Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Dana J. Wohlbacha for review February 24, 2011) Cellulosic biomass is an abundant and underused substrate for biofuel creates specific challenges for microbial biofuel production from cellulosic material. Although engineered

  15. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01T23:59:59.000Z

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  16. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  17. Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies

    E-Print Network [OSTI]

    Capunitan, Jewel Alviar

    2013-01-15T23:59:59.000Z

    explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product...

  18. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  19. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    productivity (e.g. , second-generation biofuels), are showndependence on land. Second generation biofuels are much moreas well as second generation biofuels, may be needed to

  20. Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon

    E-Print Network [OSTI]

    Watson, Andrew

    Biofuels and Regulatory Co-Production Critical Stakeholder Perceptions of Carbon and Sustainability are the responsibility of the author(s) alone and not the Tyndall Centre. #12; BIOFUELS AND REGULATORY and, to a lesser extent, industry, stakeholder views on biofuels as of late

  1. Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels The biofuel supply chain affects quantity and quality of water in a variety of ways. The biofuel supply chain affects quantity and quality of water in a variety of ways....

  2. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  3. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  4. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  5. Sandia National Laboratories: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyBiomassBiofuels Biofuels Sandia researchers are turning cellulosic biomass into jet fuel. Global demand for energy has risen dramatically in recent years, yet the world...

  6. Strategic Perspectives on Biofuels

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  7. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase...

  8. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  9. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  10. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  11. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01T23:59:59.000Z

    History of biofuels in the UnitedCO 2 and producing biofuels and biomass. . . . . . .Reed, “National Algal Biofuels Technology Roadmap”, Tech.

  12. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    Indirect  emissions  from  biofuels:  How   important?"  study  of  the  EU  biofuels  mandate.  Washington,  DC,  in  India  and   Sweden."  Biofuels,  Bioproducts  and  

  13. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    potential for great impact. Biofuels are a promising form ofbe engineered to produce biofuels, the fuels are often toxicKeywords Feedback control Á Biofuels Á Biological control

  14. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect (OSTI)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14T23:59:59.000Z

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  15. Sandia National Laboratories: Biofuels Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SystemsRenewable EnergyBiomassBiofuelsBiofuels Publications Biofuels Publications Undergirded by the powerful capabilities, state-of-the-art facilities, and brilliant minds that...

  16. Biofuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used...

  17. Environmental indicators for sustainable production of algal biofuels

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann [ORNL; Dale, Virginia H [ORNL

    2014-01-01T23:59:59.000Z

    For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of the stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.

  18. Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization

    E-Print Network [OSTI]

    Collins, Gary S.

    Diagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization that aims to create a sustainable aviation biofuels to determine the atmospheric emissions and emission sources that may be released from proposed NARA biofuels

  19. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14T23:59:59.000Z

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  20. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01T23:59:59.000Z

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  1. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading 

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    Increasing environmental concerns over greenhouse gas emissions, depleting petroleum reserves and rising oil prices has stimulated interest on biofuels production from biomass sources. This study explored on biofuels production from pyrolysis...

  2. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect (OSTI)

    Chowdhury, Kamal

    2011-07-20T23:59:59.000Z

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU, it will soon be possible to provide other technical information for the development of process flow diagrams (PFD’s) and piping and instrumentation diagrams (P&ID’s). This information can be used for the equipment layout and general arrangement drawings for the proposed process and eventual plant. An efficient bio-butanol pilot plant to convert ligno-cellulosic biomass feedstock from bagasse and wood chips will create significant number of green jobs for the Orangeburg, SC community that will be environmentally-friendly and generate much-needed income for farmers in the area.

  3. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  4. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    than 1:1 replacement of oil products with biofuel, which isshow how different oil products are affected differently

  5. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  6. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01T23:59:59.000Z

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  7. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production. RSB, pages 1–and Tyner, W. (2008b). Impact of Biofuel Production on WorldClifford, P. (2009). Assessing Biofuel Crop Invasiveness: A

  8. Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy, these

    E-Print Network [OSTI]

    Hill, Wendell T.

    Viability Studies of Biofuels Though biofuels (like ethanol) promise renewable "green" energy cannot possibly meet U.S. energy demands, and current methods of biofuel production often consume as much energy as they produce. If biofuels are to be viable long-term energy solutions, we need new sources

  9. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  10. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect (OSTI)

    Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

    2010-10-01T23:59:59.000Z

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  11. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01T23:59:59.000Z

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  12. Agriculture - Sustainable biofuels Redux

    SciTech Connect (OSTI)

    Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research; Dale, Virginia H [ORNL; Doering, Otto C. [Purdue University; Hamburg, Steven P [Brown University; Melillo, Jerry M [ORNL; Wander, Michele M [University of Illinois, Urbana-Champaign; Parton, William [Colorado State University, Fort Collins

    2008-10-01T23:59:59.000Z

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  13. The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production

    E-Print Network [OSTI]

    Weiblen, George D

    The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel for terrestrial carbon sequestration and potential biofuel production. For P. strobus, above- ground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant

  14. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  15. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  16. Use of tamarisk as a potential feedstock for biofuel production.

    SciTech Connect (OSTI)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01T23:59:59.000Z

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  17. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  18. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  19. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01T23:59:59.000Z

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  20. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  1. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  2. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02T23:59:59.000Z

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  3. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    E-Print Network [OSTI]

    Caiazzo, Fabio

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes ...

  4. Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    E-Print Network [OSTI]

    Placido Escobar, Jersson Emir

    2014-12-02T23:59:59.000Z

    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment...

  5. australian biofuel industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  6. assessing biofuel crop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  7. analysis biofuels implications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terms of subsidies for biofuel production such that the supply-side responses by fossil fuel producers may more than offset the substitution to biofuels. Analytical results are...

  8. Sandia National Laboratories: lignocellulosic biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lignocellulosic biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  9. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  10. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15T23:59:59.000Z

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  11. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01T23:59:59.000Z

    Q. ; Tyner, W.E. ; Lu, X. Biofuels, cropland expansion, andfor lignocellulosic biofuels. Science 2010, 329, 790–792.feedstocks for cellulosic biofuels. F1000 Biol. Rep. 2012,

  12. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2013-01-01T23:59:59.000Z

    Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

  13. future science group 9ISSN 1759-726910.4155/BFS.11.151 2012 Future Science Ltd Synthetic biology approaches to biofuel production

    E-Print Network [OSTI]

    Hasty, Jeff

    approaches to biofuel production Editorial Biofuels (2012) 3(1), 9­12 "...it is important for synthetic there is a tendency, par- ticularly in the algae biofuel space, to prioritize high yields without sufficient regard large enough volumes of biofuels at a low enough cost to make this significant leap in the national

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Environmental Management (EM)

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

  15. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  16. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

  17. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  18. Biofuel Economics

    SciTech Connect (OSTI)

    Klein-Marcuschamer, Daniel; Holmes, Brad; Simmons, Blake; Blanch, Harvey

    2011-07-15T23:59:59.000Z

    As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.

  19. Biofuel Production in the Western U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture, andBiofuel

  20. The Future of Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers...

  1. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01T23:59:59.000Z

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  2. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  3. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  4. Enzymes with agriculture and biofuel applications | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes with agriculture and biofuel applications Enzymes with agriculture and biofuel applications Released: November 20, 2014 Enzyme insights may help agriculture, biofuels Plant...

  5. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    of ?rst and second generation biofuels: A comprehensive re-of the second generation biofuels and a successful develop-R. Timilsina. Second generation biofuels: Economics and

  6. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  7. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John...

  8. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28T23:59:59.000Z

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  9. The President's Biofuels Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Initiative Neil Rossmeissl Office of the Biomass Program Energy Efficiency and Renewable Energy Why Can't We Regulate Our Way There? 25 20 15 10 5 0 1970 1980 1990 2000...

  10. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  11. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22T23:59:59.000Z

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  12. Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

  13. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2022 (EISA 2007) RENEWABLE FUEL STANDARD * BETO Office Goal: "Enable nation-wide production of biofuels compatible with today's transportation infrastructure, reduce...

  14. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  15. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Parish, Esther S [ORNL; Kline, Keith L [ORNL

    2015-01-01T23:59:59.000Z

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  16. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  17. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biofuels and Biofuel Blends Bob McCormick (PI) With Teresa Alleman, Jon Burton, Earl Christensen, Gina Chupka, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon...

  18. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01T23:59:59.000Z

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  19. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    cell However, the fuel synthesis stage can be limited by the fact that biofuels are often toxic to microbial

  20. Slab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung,a

    E-Print Network [OSTI]

    Erickson, David

    Slab waveguide photobioreactors for microalgae based biofuel production{{ Erica Eunjung Jung Erickson*a Received 1st May 2012, Accepted 19th June 2012 DOI: 10.1039/c2lc40490g Microalgae productivity. Introduction Concerns surrounding global climate change and foreign energy dependency have led

  1. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  2. Biofuels from Microalgae and Seaweeds

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01T23:59:59.000Z

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  3. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  4. National Algal Biofuels Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and...

  5. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01T23:59:59.000Z

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  6. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  7. Alternative Transportation Technologies: Hydrogen, Biofuels,

    E-Print Network [OSTI]

    11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug and projected improvements in gasoline internal combustion engine technology are introduced rapidly 3) BIOFUELS Large scale use of biofuels, including ethanol and biodiesel 4) PLUG-IN HYBRID SUCCESS PHEVs play

  8. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

  9. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

  10. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  11. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  12. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  13. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23T23:59:59.000Z

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  14. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect (OSTI)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19T23:59:59.000Z

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  15. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  16. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01T23:59:59.000Z

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  17. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    ]. However, studies on suitability of various biomass feedstocks and development of efficient and carbon-neutral technologies for biomass-to- biofuel conversion may be required to meet this demand. Biomass for fuel production ranges from food and oil crops...

  18. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect (OSTI)

    Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

    2010-01-01T23:59:59.000Z

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  19. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

  20. Video: A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  1. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    SciTech Connect (OSTI)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01T23:59:59.000Z

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  2. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    REPORT Engineering microbial biofuel tolerance and export using efflux pumps Mary J Dunlop1 16.9.10; accepted 6.4.11 Many compounds being considered as candidates for advanced biofuels for biofuel production because the engineered microbes must balance production against survival. Cellular

  3. Global Assessments and Guidelines for Sustainable Liquid Biofuel

    E-Print Network [OSTI]

    Global Assessments and Guidelines for Sustainable Liquid Biofuel Production in Developing Countries Biofuel Production in Developing Countries FINAL REPORT A GEF Targeted Research Project Organized by Bernd for Sustainable Liquid Biofuels. A GEF Targeted Research Project. Heidelberg/Paris/Utrecht/Darmstadt, 29 February

  4. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  5. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  6. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

  7. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

  8. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

  9. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01T23:59:59.000Z

    Article Steven T. Berry. Biofuels policy and the empiricaluse change impacts of biofuels in the gtap-bio framework.Genomics of cellulosic biofuels. Nature, 454(7206):841–845,

  10. Complexity and Systems Biology of Microbial Biofuels

    E-Print Network [OSTI]

    Rand, David

    Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

  11. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  12. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

  13. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  14. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  15. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

  16. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle...

  17. BioFuels Atlas Presentation

    Broader source: Energy.gov [DOE]

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  18. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer Review...

  19. The President's Biofuels Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed...

  20. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    J. Huijbregts. Biofuels for road transport: A seed to wheelof 2% of biofuels to be used in the transport sector by 2005

  1. Sandia National Laboratories: commercializing algae biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercializing algae biofuels The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels, Energy, News, News...

  2. Sandia National Laboratories: producing advanced biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  3. Algal Biofuels Strategy Workshop - Spring Event | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Workshop - Spring Event Algal Biofuels Strategy Workshop - Spring Event The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's...

  4. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los...

  5. Engineering Biofuels from Photosynthetic Bacteria | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to...

  6. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  7. Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad

    E-Print Network [OSTI]

    Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

  8. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    15 II. Greenhouse gas markets, carbon dioxide credits and biofuels17 The previous chapter analysed biofuels production. GHG policies18 that create a carbon price either through an emissions trading system or directly by taxing GHG emissions also generate increased demand for biofuels. They do so by raising

  9. Nottingham Business School Biofuels Market and Policy Governance

    E-Print Network [OSTI]

    Evans, Paul

    Nottingham Business School Biofuels Market and Policy Governance The last decade has seen a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising number triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

  10. FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP

    E-Print Network [OSTI]

    Wildermuth, Mary C

    FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

  11. Europe report discloses biofuels' embarrassing secret

    SciTech Connect (OSTI)

    NONE

    2010-06-15T23:59:59.000Z

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  12. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01T23:59:59.000Z

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  13. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  14. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  15. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels

  16. Sandia Energy - Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6AndyBenjamin KarlsonBiofuels Home

  17. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels) Jump to: navigation,

  18. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07T23:59:59.000Z

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  19. Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels

    E-Print Network [OSTI]

    Gray, Matthew

    in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

  20. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    None

    2012-02-15T23:59:59.000Z

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  1. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  2. Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives that are renewable and

    E-Print Network [OSTI]

    Hill, Wendell T.

    Biofuel Science Research at the University of Maryland Biofuels promise energy alternatives of biofuels would absorb as much pollution as the fuels release during combustion, since plant stocks can-neutral energy to be realized, new sources of biofuels must be found. The current manufacture of biofuels from

  3. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  4. Socio-economic dynamics of biofuel

    E-Print Network [OSTI]

    i Socio-economic dynamics of biofuel development in Asia Pacific Christina Schott Jakarta, 2009 #12;ii Socio-economic dynamics of biofuel development in Asia Pacific Socio-economic dynamics of biofuel of many biofuels has turned out to be far from sustainable. The carbon balance often proves to be negative

  5. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  6. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  7. LIHD biofuels: toward a sustainable future

    E-Print Network [OSTI]

    Palmer, Michael W.

    LIHD biofuels: toward a sustainable future 115 Linda Wallace, Department of Botany and Microbiology of America www.frontiersinecology.org Will biofuels help to wean the US off of oil, or at least off simple. First, we need to understand what is meant by the term "biofuel". All biofuels are organic

  8. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  9. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  10. Nebraska shows potential to produce biofuel crops

    Broader source: Energy.gov [DOE]

    Researchers are searching for ways to change how American farmers and consumers think about biofuels.

  11. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01T23:59:59.000Z

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  12. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

  13. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01T23:59:59.000Z

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  14. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei [Cellana LLC; Sabarsky, Martin

    2013-09-30T23:59:59.000Z

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  15. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect (OSTI)

    None

    2010-07-16T23:59:59.000Z

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  16. Versatile microbial surface-display for environmental remediation and biofuels production

    SciTech Connect (OSTI)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14T23:59:59.000Z

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  17. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality 

    E-Print Network [OSTI]

    Baker, Justin Scott

    2012-10-19T23:59:59.000Z

    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual...

  18. The Impact of Biofuel and Greenhouse Gas Policies on Land Management, Agricultural Production, and Environmental Quality

    E-Print Network [OSTI]

    Baker, Justin Scott

    2012-10-19T23:59:59.000Z

    This dissertation explores the combined effects of biofuel mandates and terrestrial greenhouse gas GHG mitigation incentives on land use, management intensity, commodity markets, welfare, and the full costs of GHG abatement through conceptual...

  19. Triacylglycerol Production from Corn Stover Using a Xylose-Fermenting Rhodococcus opacus Strain for Lignocellulosic Biofuels

    E-Print Network [OSTI]

    Kurosawa, Kazuhiko

    Triacylglycerols (TAGs) are in the spotlight as a feasible source of hydrocarbon-based biofuels. Rhodococcus opacus PD630 produces large amounts of intracellular TAGs in cultivations containing high concentrations of ...

  20. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp.

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Benemann, John R.

    2009-12-31T23:59:59.000Z

    There is currently great interest in using microalgae for the production of biofuels, mainly due to the fact that microalgae can produce biofuels at a much higher productivity than conventional plants and that they can be cultivated using water, in particular seawater, and land not competing for resources with conventional agriculture. However, at present such microalgae-based technologies are not yet developed and the economics of such processes are uncertain. We review power generation by direct combustion, production of hydrogen and other fuel gases and liquids by gasification and pyrolysis, methane generation by anaerobic digestion, ethanol fermentations, and hydrogen production by dark and light-driven metabolism. We in particular discuss the production of lipids, vegetable oils and hydrocarbons, which could be converted to biodiesel. Direct combustion for power generation has two major disadvantages in that the high N-content of algal biomass causes unacceptably high NOx emissions and losses of nitrogen fertilizer. Thus, the use of sun-dried microalgal biomass would not be cost-competitive with other solid fuels such as coal and wood. Thermochemical conversion processes such as gasification and pyrolysis have been successfully demonstrated in the laboratory but will be difficult to scale up commercially and suffers from similar, though sometimes not as stringent, limitations as combustion. Anaerobic digestion of microalgal cells yields only about 0.3 L methane per g volatile solids destroyed, about half of the maximum achievable, but yields can be increased by adding carbon rich substrates to circumvent ammonia toxicity caused by the N-rich algal biomass. Anaerobic digestion would be best suited for the treatment of algal biomass waste after value-added products have been separated. Algae can also be grown to accumulate starches or similar fermentable products, and ethanol or similar (e.g., butanol) fermentations could be applied to such biomass, but research is required on increasing solvent yields. Dark fermentation of algal biomass can also produce hydrogen, but, as for other fermentations, only at low yields. Hydrogen can also be generated by algae in the light, however, this process has not yet been demonstrated in any way that could be scaled up and, in any event, Dunaliella, is not known to produce hydrogen. In response to nutrient deficiency (nitrogen or silicon), some microalgae accumulate neutral lipids which, after physical extraction, could be converted, via transesterification with methanol, to biodiesel. Nitrogen-limitation does not appear to increase either cellular lipid content or lipid productivity in Dunaliella. Results from life cycle energy analyses indicate that cultivation of microalgal biomass in open raceway ponds has a positive energy output ratio (EOR), approaching up to 10 (i.e., the caloric energy output from the algae is 10 times greater than the fossil energy inputs), but EOR are less than 1 for biomass grown in engineered photobioreactors. Thus, from both an energetic as well as economic perspective, only open ponds systems can be considered. Significant long-term R&D will be required to make microalgal biofuels processes economically competitive. Specifically, future research should focus on (a) the improvement of biomass productivities (i.e., maximizing solar conversion efficiencies), (b) the selection and isolation of algal strains that can be mass cultured and maintained stably for long periods, (c) the production of algal biomass with a high content of lipids, carbohydrates, and co-products, at high productivity, (d) the low cost harvesting of the biomass, and (e) the extraction and conversion processes to actually derive the biofuels. For Dunaliella specifically, the highest potential is in the co-production of biofuels with high-value animal feeds based on their carotenoid content.

  1. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  2. advanced biofuels production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this...

  3. advanced biofuel production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this...

  4. Algal Biofuels Strategy Spring Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Algal Biofuels Strategy Spring Workshop Agenda algaeworkshopagenda.pdf More Documents &...

  5. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

  6. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    yields for selected biofuels. (A) Plasmid levels for each ofas candidates for advanced biofuels are toxic to micro-seven representative biofuels. By using a competitive growth

  7. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01T23:59:59.000Z

    D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

  8. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

  9. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

  10. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  11. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  12. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  13. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  14. New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development

    E-Print Network [OSTI]

    Minnesota, University of

    New Studies Portray Unbalanced Perspective on Biofuels DOE Committed to Environmentally Sound Biofuels Development DOE Response based on contributions from Office of Biomass Program; Argonne National, Hill, Tilman, Polasky and Hawthorne study ("Land Clearing and the Biofuel Carbon Debt") claims

  15. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

  16. Economic Policy and Resource Implications of Biofuel Feedstock Production 

    E-Print Network [OSTI]

    Adusumilli, Naveen

    2012-10-19T23:59:59.000Z

    with huge taxpayer expenditures without due diligence to the consequences. The evaluation of the water quality impacts of converting pastureland to intensive biomass production for fuel in a southern Texas watershed suggest significant increases erosion...

  17. Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies 

    E-Print Network [OSTI]

    Capunitan, Jewel Alviar

    2013-01-15T23:59:59.000Z

    Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were...

  18. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect (OSTI)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01T23:59:59.000Z

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  19. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01T23:59:59.000Z

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  20. Conversion Technologies for Advanced Biofuels Â… Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex(GC-72) |Reserve | DepartmentControls(FactProduction

  1. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Todd J. Toops, Andrew A. Wereszczak, John M.E. Storey, Dane F. Wilson, Bruce G. Bunting, Samuel A. Lewis Sr., and Andrea...

  2. Biofuels Impact on DPF Durability

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Impact on DPF Durability Michael J. Lance, Bruce G. Bunting, Andrew A. Wereszczak, Todd J. Toops, and Matt Ferber Oak Ridge National Laboratory May 15 th , 2012 PM040 This...

  3. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  4. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  5. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    SciTech Connect (OSTI)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24T23:59:59.000Z

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  6. Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

  7. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

  8. The Science Behind Cheaper Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The...

  9. Whole Turf Algae to biofuels-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whole Turf Algae Polyculture Biofuels The production and conversion of whole turf algae polyculture maximizes fuels, chemicals and nutrients New Approach to Algal Biomass...

  10. Introduction slide 2 Biofuels and Algae Markets, Systems,

    E-Print Network [OSTI]

    Introduction slide 2 Biofuels and Algae Markets, Systems, Players and Commercialization Outlook http://www.emerging-markets.com Consultant, Global Biofuels Business Development Author, Biodiesel 2020: A Global Market Survey (2008) Algae 2020: Biofuels Commercialization Outlook (2009) Columnist, Biofuels

  11. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect (OSTI)

    Not Available

    2006-08-01T23:59:59.000Z

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  12. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  13. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results...

  14. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  15. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  16. Economics of Current and Future Biofuels

    SciTech Connect (OSTI)

    Tao, L.; Aden, A.

    2009-06-01T23:59:59.000Z

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  17. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors to Madagascar, Senegal to South Africa, biofuels is the buzzword as African countries wake up to the possibility of using their vast spaces to grow crops that reduce their fossil fuel bill. Biofuels also carry

  18. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office ........................................................................... 11 Options for liquid biofuel feedstock transport ............................................................................. agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid

  19. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  20. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  1. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

  2. Development of Agave as a dedicated biomass source: production of biofuels from whole plants

    SciTech Connect (OSTI)

    Mielenz, Jonathan R [ORNL; Mielenz, Jonathan R [White Cliff Biosystems, Rockwood, Tennessee; Rodriguez Jr, Miguel [ORNL; Thompson, Olivia A [ORNL; Yang, Xiaohan [ORNL; Yin, Hengfu [ORNL

    2015-01-01T23:59:59.000Z

    Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.

  3. Biofuels and indirect land use change

    E-Print Network [OSTI]

    Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

  4. Oil To Biofuels Case Study Objectives

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

  5. How sustainable are current transport biofuels?

    E-Print Network [OSTI]

    How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

  6. Can biofuels justify current transport policies?

    E-Print Network [OSTI]

    Can biofuels justify current transport policies? Jérémie Mercier IARU Climate Congress - Copenhagen is growing 2) Today biofuels bring little or no greenhouse gas benefits 3) We need to change #12;IARU Climate;IARU Climate Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 4 Biofuels consumption growing

  7. School of Engineering and Science Algae Biofuels

    E-Print Network [OSTI]

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  8. Liquid Biofuels Strategies and Policies in selected

    E-Print Network [OSTI]

    June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

  9. Legislating Biofuels in the United States

    E-Print Network [OSTI]

    Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

  10. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,Biofuels Biofuels

  11. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01T23:59:59.000Z

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

  12. Estimates of US biofuels consumption, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  13. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness available for the production of bio-product or biofuels. In comparison with wood lignins which contain

  14. Technology Roadmap Biofuels for Transport

    E-Print Network [OSTI]

    2035 2040 2045 2050 Technology Roadmap Biofuels for Transport #12;INTERNATIONAL ENERGY AGENCY Agency (IEA), at the request of the G8, is developing a series of roadmaps for some of the most important roadmap develops a growth path for the covered technologies from today to 2050, and identifies technology

  15. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  16. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Guess, Adam [ORNL

    2013-03-01T23:59:59.000Z

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  17. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    demand: Comparison of models and results for marginal biofuels production from different feedstocks; EC Joint Research Centre - Institute for Energy:

  18. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Arora, S. (Energy Systems)

    2011-01-01T23:59:59.000Z

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  19. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  20. The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the

    E-Print Network [OSTI]

    Gray, Matthew

    1 The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the Indiana Bat of Forestry, Wildlife and Fisheries Introduction · Biofuel: ­ National Security ­ Stimulate Local Economies Negative Impacts of Biofuel Production ­ Decreased Site Productivity/Decreased Soil Conservation

  1. Evanescent Photosynthesis: A new approach to sustainable biofuel Matthew D. Ooms

    E-Print Network [OSTI]

    Pedersen, Tom

    Evanescent Photosynthesis: A new approach to sustainable biofuel production by Matthew D. Ooms #12;Abstract Evanescent Photosynthesis: A new approach to sustainable biofuel production Matthew D biofuel and other high value compounds through direct conversion of CO2 and water using energy from

  2. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    much superior bridge to second-generation biofuels than corncommercialization of second generation biofuels. In addition

  3. Biofuels technology blooms in Iowa | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels technology blooms in Iowa Biofuels technology blooms in Iowa May 7, 2010 - 4:45pm Addthis Cellulosic biofuels made from agricultural waste have caught the attention of...

  4. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01T23:59:59.000Z

    Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

  5. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

  6. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

  7. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

  8. NextSTEPS White Paper: Three Routes Forward for Biofuels

    E-Print Network [OSTI]

    California at Davis, University of

    NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

  9. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  10. Engineering of bacterial methyl ketone synthesis for biofuels

    E-Print Network [OSTI]

    Goh, Ee-Been

    2012-01-01T23:59:59.000Z

    ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

  11. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  12. Developing genome-enabled sustainable lignocellulosic biofuels technologies

    E-Print Network [OSTI]

    Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

  13. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

  14. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  15. Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

  16. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    the international oil market. Applied Economic Perspectivesand Lucia Baldi. Vegetable oil market and biofuel policy: Anspillover from the crude oil market to the corn market.

  17. Watershed Modeling for Biofuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

  18. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01T23:59:59.000Z

    modi?cations. The advances in the biofuel feedstock relevantbiofuel feedstocks will be in- ?uenced by policy concerns and by advances

  19. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

  20. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu...

  1. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D

    2015-01-01T23:59:59.000Z

    Current Sustainable and Renewable Energy Reports, 1(3):104–Current Sustainable and Renewable Energy Reports, 1(3):104–extreme. Biofuel (and renewable energy) policies are multi-

  2. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

    2012-06-07T23:59:59.000Z

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  3. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

  4. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  5. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Office of Environmental Management (EM)

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  6. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

  7. Microbial who-done-it for biofuels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who-done-it for biofuels Microbial who-done-it for biofuels New technique identifies populations within a microbial community responsible for biomass deconstruction The microbial...

  8. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

  9. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  10. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and diesel transport fuels with biofuels by 2010 [4]. Owingtransport systems, the improvement of the resistance of biofuelstransport to consumers. Although discussion of the properties for the biofuels

  11. Sandia National Laboratories: and algae-based biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and algae-based biofuels Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration,...

  12. Biofuels and Barbecue Chips: Small Business Develops Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile Chemicals Biofuels and Barbecue Chips: Small Business Develops Process to Create Versatile...

  13. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Breakout Session 3D-Building...

  14. Bioproducts: Enabling Biofuels and Growing the Bioeconomy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts: Enabling Biofuels and Growing the Bioeconomy Bioproducts: Enabling Biofuels and Growing the Bioeconomy Breakout Session 2B-Integration of Supply Chains II:...

  15. Brazil's Biofuels Scenario: What are the Main Drivers Which will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

  16. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010,...

  17. Algal Biofuels Strategy: Report on Workshop Results and Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Strategy: Report on Workshop Results and Recent Work Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply Chains...

  18. Five Harvesting Technologies are Making Biofuels More Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17, 2015...

  19. Biofuels for the future-Seth Snyder | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels for the future-Seth Snyder Share Description Argonne researcher Seth Snyder talks about the innovations in biofuel technology. Topic Energy Energy sources Renewable energy...

  20. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Environmental Management (EM)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10,...

  1. California: Cutting-Edge Biofuels Research and Entrepreneurship...

    Office of Environmental Management (EM)

    Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground California: Cutting-Edge Biofuels Research and Entrepreneurship Provide a Proving Ground April 18, 2013...

  2. Maine biofuels project saves livelihood of town | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist,...

  3. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  4. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics...

  5. Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

  6. 16 CSA News March 2013 thanol from corn has been the primary biofuel for liq-

    E-Print Network [OSTI]

    DeLucia, Evan H.

    16 CSA News March 2013 E thanol from corn has been the primary biofuel for liq- uid fuels in the United States, but perennial cellulosic biofuels are on the horizon. Intensive corn production with large of nitrogen losses on large, tile-drained fields planted with perennial biofuels in the Midwest of the United

  7. MSU biofuels research fills need for new sources July 28, 2006 --By Carol Flaherty

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU biofuels research fills need for new sources July 28, 2006 -- By Carol Flaherty The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol. All refer to fuel collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all

  8. Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts

    E-Print Network [OSTI]

    Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts Willow on recycled paper #12;1 Impacts of Land-Use and Biofuels Policy on Climate: Temperature and Localized Impacts to agricultural production, including growing biofuels, and (ii) Observed Land Supply Response (OLSR

  9. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness biofuels will have an important part to take in the energy transition as far as fuels are concerned. Using biofuels, the BTL route consists in the production of middle dis- tillates (Diesel and jet fuel) via

  10. Energy Policy 36 (2008) 15381544 Promoting biofuels: Implications for developing countries

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Energy Policy 36 (2008) 1538­1544 Promoting biofuels: Implications for developing countries Jo¨ rg 2008 Abstract Interest in biofuels is growing worldwide as concerns about the security of energy supply, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result

  11. HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for

    E-Print Network [OSTI]

    Kunst, Ljerka

    HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

  12. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    Upgrading Why Bio-Oil Turns to Gunk - 90 Seconds of Discovery Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production Refining Bio-Oil alongside Petroleum...

  13. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy Savers [EERE]

    Addthis Related Articles Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Refining Bio-Oil alongside Petroleum Why Bio-Oil Turns...

  14. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01T23:59:59.000Z

    the production of a primary resource, such as crude oil,production: the transformation of a primary resource, such as crude oilproduction facility. For example, the transport of crude oil

  15. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16T23:59:59.000Z

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  16. Acciona Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00About OpenEIAcciona Biofuels Place:

  17. Shirke Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirke Biofuels Jump to: navigation, search

  18. Keystone Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility |Keystone Biofuels Jump to:

  19. Yokayo Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayo Biofuels Jump to: navigation,

  20. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake, Minnesota:Piedmont Biofuels Jump to:

  1. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons Biomass FacilityBioethanolBiofuels

  2. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorA Mostbio BioFuels Renewable

  3. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo PowerMcLeodMead Biofuel Jump

  4. Mint Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesotaMint Biofuels

  5. Border Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022Illinois: Energy Resources JumpBoone,Biofuels Jump

  6. Rusni Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasementsRushville,Rusni Biofuels

  7. Evaluation of Microbial Communities from Extreme Environments as Inocula in a Carboxylate Platform for Biofuel Production from Cellulosic Biomass

    E-Print Network [OSTI]

    Cope, Julia Lee

    2013-08-06T23:59:59.000Z

    The carboxylate biofuels platform (CBP) involves the conversion of cellulosic biomass into carboxylate salts by a mixed microbial community. Chemical engineering approaches to convert these salts to a variety of fuels (diesel, gasoline, jet fuel...

  8. Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)

    E-Print Network [OSTI]

    Nielsen, David R.

    The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

  9. THE POTENTIAL OF FRESHWATER MACROALGAE AS A BIOFUELS FEEDSTOCK AND THE INFLUENCE OF NUTRIENT AVAILABILITY ON FRESHWATER MACROALGAL BIOMASS PRODUCTION

    E-Print Network [OSTI]

    Yun, Jin-Ho

    2014-12-31T23:59:59.000Z

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative...

  10. Regional Algal Biofuel Production Potential in the Coterminous United States as Affected by Resource Availability Trade-offs

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-15T23:59:59.000Z

    The warm sunny climate and unoccupied arid lands in the American southwest are favorable factors for algae cultivation. However, additional resources affect the overall viability of specific sites and regions. We investigated the tradeoffs between growth rate, water, and CO2 availability and costs for two strains: N. salina and Chlorella sp. We conducted site selection exercises (~88,000 US sites) to produce 21 billion gallons yr-1 (BGY) of renewable diesel (RD). Experimental trials from the National Alliance for Advanced Biofuels and Bio-Products (NAABB) team informed the growth model of our Biomass Assessment Tool (BAT). We simulated RD production by both lipid extraction and hydrothermal liquefaction. Sites were prioritized by the net value of biofuel minus water and flue gas costs. Water cost models for N. salina were based on seawater and high salinity groundwater and for Chlorella, fresh and brackish groundwater. CO2 costs were based on a flue gas delivery model. Selections constrained by production and water were concentrated along the Gulf of Mexico and southeast Atlantic coasts due to high growth rates and low water costs. Adding flue gas constraints increased the spatial distribution, but the majority of sites remained in the southeast. The 21 BGY target required ~3.8 million hectares of mainly forest (41.3%) and pasture (35.7%). Exclusion in favor of barren and scrub lands forced most production to the southwestern US, but with increased water consumption (5.7 times) and decreased economic efficiency (-38%).

  11. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    SciTech Connect (OSTI)

    Dr. Theresa L. Selfa; Dr. Richard Goe; Dr. Laszlo Kulcsar; Dr. Gerad Middendorf; Dr. Carmen Bain

    2013-02-11T23:59:59.000Z

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producersâ?? attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A â??multi-methodâ?ť or â??mixed methodâ?ť research methodology was employed for each case study.

  12. Algae to Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic| NationalAlexander

  13. EPA and RFS2: Market Impacts of Biofuel Mandate

    E-Print Network [OSTI]

    Noble, James S.

    July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

  14. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  15. Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities

    E-Print Network [OSTI]

    Review Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities interests in biofuels. Biofuels are viewed by many policy makers as a key to reducing reliance on foreign concerns, and by reports questioning the rationale that biofuels substantially reduce carbon emissions. We

  16. Special Seminar Realizing the Full Potential of Algal Biofuels

    E-Print Network [OSTI]

    Garfunkel, Eric

    of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

  17. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  18. Scrap biofuels targets and focus on improved public transport

    E-Print Network [OSTI]

    Scrap biofuels targets and focus on improved public transport Friends of the Earth's biofuels campaigner Kenneth Richter argues that biofuel targets are a distraction from tried-and-tested ways to biofuel crops such as rapeseed have changed as more research has been done into their impact

  19. US Biofuels Baseline and impact of extending the

    E-Print Network [OSTI]

    Noble, James S.

    June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

  20. VIEWLS Final recommendations report Shift Gear to Biofuels

    E-Print Network [OSTI]

    VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

  1. Global Biofuel Use, 1850-2000.

    SciTech Connect (OSTI)

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30T23:59:59.000Z

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  2. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  3. Traffic lights for crop-based biofuels

    E-Print Network [OSTI]

    Phalan, Ben

    Traffic lights for crop-based biofuels Ben Phalan Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK Email: btp22@cam.ac.uk Nobody likes to have limits put on their freedom. However, in all areas of life... of having to slow down is an acceptable price to pay if it reduces the number of pedestrians killed and injured. How is this relevant to biofuels? There are many different kinds of biofuels, including some with considerable potential to generate cleaner...

  4. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04T23:59:59.000Z

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  5. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  6. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.

    E-Print Network [OSTI]

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

    2013-01-01T23:59:59.000Z

    fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

  7. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps

    E-Print Network [OSTI]

    DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

    2013-01-01T23:59:59.000Z

    United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

  8. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

  9. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    investment into second generation biofuels, and the amountinvestment in second generation biofuels and GHG abatement.investment into second generation biofuels. Because of the

  10. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

  11. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

  12. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01T23:59:59.000Z

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  13. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01T23:59:59.000Z

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  14. Insect Science (2010) 17, 117, DOI 10.1111/j.1744-7917.2009.01310.x Arthropods and biofuel production systems in North America

    E-Print Network [OSTI]

    Landis, Doug

    2010-01-01T23:59:59.000Z

    Insect Science (2010) 17, 1­17, DOI 10.1111/j.1744-7917.2009.01310.x REVIEW Arthropods and biofuel 000 ha of US crop and forest lands to meet federally-mandated targets for renewable biofuels that inhabit them. We review the literature on dedicated biofuel crops and biomass harvest from forests to look

  15. NREL: Biomass Research - Microalgal Biofuels Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgal Biofuels Projects A photo of a man in a white lab coat holding a glass flask that contains a small amount of clear green liquid. An NREL researcher analyzes algae...

  16. Overview of Governor's Biofuels Coalition and Updates

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

  17. Biofuels: Anywhere, anytime | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for diesel fuel that can be used alone or in blends to power vehicles or generators. Biofuels: Anywhere, anytime By Jared Sagoff * August 2, 2012 Tweet EmailPrint Five questions...

  18. Advanced Drop-In Biofuels Initiative Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roundtable - USDADOEDONDOT-FAA Advanced Drop-In Biofuels Initiative Agenda May 18, 2012 8:00 a.m. - 5:00 p.m. Jefferson Auditorium U.S. Department of Agriculture South Building...

  19. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

  20. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14T23:59:59.000Z

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  1. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect (OSTI)

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-12-02T23:59:59.000Z

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  2. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect (OSTI)

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-08-19T23:59:59.000Z

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  3. U.S. and China Increase Biofuels Cooperation Ahead of the Third...

    Broader source: Energy.gov (indexed) [DOE]

    and Reform Commission (NDRC) agreed to strengthen and expand cooperation on biofuels production and use, ahead of the third U.S. - China Strategic Economic Dialogue set...

  4. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

  5. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  6. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01T23:59:59.000Z

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  7. Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock

    E-Print Network [OSTI]

    California at Riverside, University of

    -tolerant biofuels feedstock Hongjia Li,abd Marcus B. Foston,cd Rajeev Kumar,bd Reichel Samuel,cd Xiadi Gao,abd Fan lignocellulosic feedstock for biofuels production. Because agave composition will establish the maximum potential for further characterization and conversion of different agave species as biofuels feedstocks for semi

  8. Increased European biofuel cultivation could harm human health1 by James Morgan for www.scienceomega.com2

    E-Print Network [OSTI]

    South Bohemia, University of

    Increased European biofuel cultivation could harm human health1 by James Morgan for www that the large-scale production of biofuels in4 Europe could result in increased human mortality and crop losses that many biofuel plant species, including poplar and willow, release more isoprene ­ an6 ozone precursor

  9. Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some 100 significant cases

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Learning of the rootfactors of incidents potentially impacting the biofuel supply chains from some.riviere(cb.ineris.fr guy.marlair@iineris.fr alexis. vignestcbjneris.fr Abstract A biofuel is most often defined as a liquid. There are numerous potential supply chains for the production of biofuels, depending on feedstock, conventional

  10. Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United States

    E-Print Network [OSTI]

    Impacts of Land-use Changes on Biofuels ORNL History of Exploring Changes in Land Use in the United. Building from their work on environmental costs and benefits associated with biofuel production, ORNL positively impact the sustainability of the biofuels industry. Building understanding of land-use change from

  11. Biofuels News, Spring/Summer 2001, Vol. 4, No. 2

    SciTech Connect (OSTI)

    Tuttle, J.

    2001-07-13T23:59:59.000Z

    Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

  12. From Processing Juice to Producing Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

  13. The Farmer's Conundrum: Income from Biofuels or Protect the Soil...

    Broader source: Energy.gov (indexed) [DOE]

    The Farmer's Conundrum: Income from Biofuels or Protect the Soil? The Farmer's Conundrum: Income from Biofuels or Protect the Soil? July 1, 2010 - 11:39am Addthis Lindsay Gsell...

  14. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Biofuel on the International Oil Market Gal Hochman, Deepakof biofuel on the international oil market ? Gal Hochman,are dominated by cartel of oil-rich countries, and that

  15. 5th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Energy Savers [EERE]

    5th International Conference on Algal Biomass, Biofuels and Bioproducts 5th International Conference on Algal Biomass, Biofuels and Bioproducts June 7, 2015 8:00AM EDT to June 10,...

  16. Unintended Environmental Consequences of a Global Biofuels Program

    E-Print Network [OSTI]

    Melillo, Jerry M.

    Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

  17. BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

  18. World Biofuels Assessment; Worldwide Biomass Potential: Technology Characterizations (Milestone Report)

    SciTech Connect (OSTI)

    Bain, R. L.

    2007-12-01T23:59:59.000Z

    Milestone report prepared by NREL to estimate the worldwide potential to produce and transport ethanol and other biofuels.

  19. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

  20. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect (OSTI)

    Aden, A

    2007-05-23T23:59:59.000Z

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  1. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar transcript. sustainabilityglobalbiofuelswebinar.doc More Documents & Publications Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing...

  2. Sustainability for the Global Biofuels Industry Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    nationalpresentation.pdf More Documents & Publications Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript...

  3. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Office of Environmental Management (EM)

    Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Introduction slides for the webinar describing bioenergy and...

  4. Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems for biofuels production have

    E-Print Network [OSTI]

    Grazing Strategies for Beef Production Escalating energy costs and alternative cropping systems with pasture-feedlot manage-· ment alternatives. Assess economic implications of beef production using an array character- istics of beef that may provide an alternative lean-to-fat composition for consum- ers. http

  5. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  6. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  7. UNU-IAS Policy Report Biofuels in Africa

    E-Print Network [OSTI]

    UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human Well-being #12;#12;UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human........................................................................................................... 9 1.2 Biofuel drivers, feedstocks and policies in Africa

  8. For discussion purposes only Biofuel and Poverty Nexus

    E-Print Network [OSTI]

    For discussion purposes only Biofuel and Poverty Nexus in Asia 13th Poverty and Environment Partnership Meeting Myo Thant Manila, 11 June 2008 #12;For discussion purposes only Interest in Biofuels has and policies · Number of countries · Different biofuel feedstock · Research on second generation technology #12

  9. Metabolic Engineering for Improved Biofuel Yield in a Marine

    E-Print Network [OSTI]

    Petta, Jason

    Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

  10. ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

  11. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

  12. The Impact of Biofuel Mandates on Land Use Suhail Ahmad

    E-Print Network [OSTI]

    The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

  13. California Policy Should Distinguish Biofuels by Differential Global Warming Effects

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

  14. International Symposium Transport and Air Pollution Session 6: Biofuels 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

  15. Global biofuel drive raises risk of eviction for African farmers

    E-Print Network [OSTI]

    Global biofuel drive raises risk of eviction for African farmers African farmers risk being forced from their lands by investors or government projects as global demand for biofuels encourages changes at risk if African farmland is turned over to growing crops for biofuel. With growing pressure to find

  16. Recycling Water: one step to making algal biofuels a reality

    E-Print Network [OSTI]

    Fay, Noah

    Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

  17. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  18. Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum

    E-Print Network [OSTI]

    9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

  19. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  20. September 2010 FAPRI-MU US Biofuels, Corn Processing,

    E-Print Network [OSTI]

    Noble, James S.

    September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

  1. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  2. Biofuels, Climate Policy, and the European Vehicle Fleet

    E-Print Network [OSTI]

    Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

  3. Biofuels' Time of Transition Achieving high performance in a world

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

  4. Biofuels Report Final | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture,BiofuelsBiofuels

  5. Assessing the environmental sustainability of biofuels

    E-Print Network [OSTI]

    Kazamia, Elena; Smith, Alison G.

    2014-09-30T23:59:59.000Z

    Corresponding author: Kazamia, E (ek288@cam.ac.uk) 5 6 Key Words 7 Biofuels, sustainability, life cycle analysis, evidence-based policy 8 9 Highlights 10 1. Liquid biofuels can be produced from a range of biomass feedstocks, but not all 11 approaches... in the transport sector, 46 without change in infrastructure. In theory it is possible to convert any biomass feedstock 47 into a liquid or gas fuel using appropriate chemical engineering techniques, but the 48 efficiency of conversion, cost and scale of demand...

  6. Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,

    E-Print Network [OSTI]

    Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

  7. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  8. Essays on the Effect of Biofuels on Agricultural Markets 

    E-Print Network [OSTI]

    Maisashvili, Aleksandre

    2014-04-23T23:59:59.000Z

    . The results also indicate that post extracted algae residue will have value lower than that of soybean meal and menhaden fishmeal. The third part of this research estimates the economic feasibility of biofuel production and high value squalene from a tobacco...

  9. Essays on the Effect of Biofuels on Agricultural Markets

    E-Print Network [OSTI]

    Maisashvili, Aleksandre

    2014-04-23T23:59:59.000Z

    . The results also indicate that post extracted algae residue will have value lower than that of soybean meal and menhaden fishmeal. The third part of this research estimates the economic feasibility of biofuel production and high value squalene from a tobacco...

  10. Biofuel derived from Microalgae Corn-based Ethanol

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Comparing both Energy Sources (1) 0 500 1000 1500 2000 Corn Microalgae Land Area Needed (M ha) 0 20000 40000 60000 80000 100000 Corn Microalgae Oil Yield (L/ha) #12;Comparing both Energy Sources (2) BackgroundBiofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each

  11. Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough

    E-Print Network [OSTI]

    the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from cellulosic biomass. The company's Consolidated Bioprocessing method converts non-food biomass feedstocks #12;into cellulosic ethanol through the use of a patented process that eliminates the need

  12. A GIS COST MODEL TO ASSESS THE AVAILABILITY OF FRESHWATER, SEAWATER, AND SALINE GROUNDWATER FOR ALGAL BIOFUEL PRODUCTION IN THE UNITED STATES

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2013-03-15T23:59:59.000Z

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a limited techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply, and cost models for supplying seawater and saline groundwater. We estimate that combined, within the coterminous US these resources can support production on the order of 9.46E+7 m3 yr-1 (25 billion gallons yr-1) of renewable biodiesel. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Geographically, water availability is most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate and various saline waters are economically available. As a whole, barren and scrub lands of the southwestern US have limited freshwater supplies so accurate assessment of alternative waters is critical.

  13. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness: Towards a Shared Vision of the Possible Deployment of Algae to Biofuels Xavier Montagne1 *, Pierre Porot1 production de biocarburants pour le transport routier et ae´ rien, filie` re que l'on a coutume de qualifier

  14. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01T23:59:59.000Z

    Li H, Cann AF, Liao JC: Biofuels: biomolecular engineeringthe predominant portion of biofuels produced currently, itof biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A

  15. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  16. future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS

    E-Print Network [OSTI]

    S: advanced FeedStockS For advanced bioFuelS An overview of lignocellulosic biomass feedstock harvest, processing and supply for biofuel production editorial Biofuels (2013) 4(1), 5­8 "The questions here petroleum consumption with biofuels by 2030 [1­3]. This goal implies that the demand for cellulosic feed

  17. Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels 

    E-Print Network [OSTI]

    Gore, Matthew

    2013-08-05T23:59:59.000Z

    With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods...

  18. Effects of Biofuel Policies on World Food Insecurity -- A CGE Analysis 

    E-Print Network [OSTI]

    Lu, Jiamin

    2012-02-14T23:59:59.000Z

    The food vs. fuel debate has heated up since the 2008 global food crisis when major crop prices dramatically increased. Heavily subsidized biofuel production was blamed for diverting food crops from food production and diverting resources from food...

  19. Effects of Biofuel Policies on World Food Insecurity -- A CGE Analysis

    E-Print Network [OSTI]

    Lu, Jiamin

    2012-02-14T23:59:59.000Z

    The food vs. fuel debate has heated up since the 2008 global food crisis when major crop prices dramatically increased. Heavily subsidized biofuel production was blamed for diverting food crops from food production and diverting resources from food...

  20. Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels

    E-Print Network [OSTI]

    Gore, Matthew

    2013-08-05T23:59:59.000Z

    With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods...

  1. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01T23:59:59.000Z

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  2. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect (OSTI)

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01T23:59:59.000Z

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  3. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    optimal subsidy of biofuels. For the fossil fuel component,fossil fuel and underinvestment in second generation biofuel. With biofuel subsidies,fossil fuel. The flatter the marginal cost function, the higher the subsidy,

  4. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

  5. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01T23:59:59.000Z

    biomass = second- generation biofuels. Source: Fingerman andIFPRI 2005). A second generation of biofuels will yieldsecond generation of biofu- els (high-yield biomass) will fare bet- ter than existing biofuels.

  6. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

  7. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  8. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

  9. Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2011-01-01T23:59:59.000Z

    of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

  10. Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

  11. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    in  tar  sand  petroleum  production  becomes  mixed  with  water  used  in  petroleum  production  varies  greatly,  of  oil  sand  petroleum  production.   Their  application  

  12. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01T23:59:59.000Z

    Water  from   Production  of  Crude  Oil,  Natural  Gas,  water  required  for  production  of  crude  oil  through  consumption  for  production   of  crude  oil  in  the  

  13. An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

  14. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  15. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Biofuel on the International Oil Market Gal Hochman, Deepakon the international oil market ? Gal Hochman, Deepakand biodiesel GEG to oil markets reduce gasoline consumption

  16. Algal Biofuels Research Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biofuels Research Laboratory Enabling fundamental understanding of algal biology and composition of algal biomass to help develop superior bioenergy strains NREL is a...

  17. New tech could be "Mr. Fusion" for biofuel | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    convert waste from kitchens or latrines into an alcohol that can power diesel engines. The photosynthetic bacteria in the Endurance Biofuel Reactor efficiently convert...

  18. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

  19. Supply chains and carbon......2 Biofuels logistics research ......3

    E-Print Network [OSTI]

    Minnesota, University of

    · Supply chains and carbon......2 · Biofuels logistics research ......3 · Transport and land use ..........4 · Career expo .............................4 A monthly report on transportation research

  20. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  1. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and...

  2. Argonne model analyzes water footprint of biofuels | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tool predicts the amount of water required to generate various types of cellulosic biofuels. Image courtesy May Wu; click to view larger. An Argonne-developed online analysis...

  3. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Broader source: Energy.gov (indexed) [DOE]

    aabbsynopsisreport.pdf More Documents & Publications National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report 2015 Peer Review Presentations-Algal...

  4. advancing biofuels technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Websites Summary: the flexibility to run on numerous biomass feedstocks including wood chips, tall grasses, corn stover (residual biofuels from...

  5. NREL Algal Biofuels Projects and Partnerships (Brochure), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources. Despite its huge potential, the technology of using microalgae as biomass feedstocks for advanced biofuels faces major challenges from both technical and economic...

  6. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01T23:59:59.000Z

    costs and benefits of biodiesel and ethanol biofuels. Proc.History and policy of biodiesel in Brazil. Energy Policyincluding ethanol and biodiesel is expected to grow rapidly

  7. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  8. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  9. An Assessment of Land Availability and Price in the Coterminous United States for Conversion to Algal Biofuel Production

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Coleman, Andre M.; Wigmosta, Mark S.

    2012-12-01T23:59:59.000Z

    Realistic economic assessment of land-intensive alternative energy sources (e.g., solar, wind, and biofuels) requires information on land availability and price. Accordingly, we created a comprehensive, national-scale model of these parameters for the United States. For algae-based biofuel, a minimum of 1.04E+05 km2 of land is needed to meet the 2022 EISA target of 2.1E+10 gallons year-1. We locate and quantify land types best converted. A data-driven model calculates the incentive to sell and a fair compensation value (real estate and lost future income). 1.02E+6 km2 of low slope, non-protected land is relatively available including croplands, pasture/ grazing, and forests. Within this total there is 2.64E+5 km2 of shrub and barren land available. The Federal government has 7.68E+4 km2 available for lease. Targeting unproductive lands minimizes land costs and impacts to existing industries. However, shrub and barren lands are limited by resources (water) and logistics, so land conversion requires careful consideration.

  10. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont�s Energy Needs

    SciTech Connect (OSTI)

    Scott Sawyer; Ellen Kahler

    2009-05-31T23:59:59.000Z

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund�s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont�s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy�s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization� the Biofuels Center of North Carolina�in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm�s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC�s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a �Cow Power� biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont�s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

  11. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect (OSTI)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28T23:59:59.000Z

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  12. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect (OSTI)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01T23:59:59.000Z

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  13. Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsJennifer B....

  14. U.S. Baseline Briefing Book Projections for Agricultural and Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    U.S. Baseline Briefing Book Projections for Agricultural and Biofuel, biofuel, government cost and farm income projections in this report were prepared by the team at FAPRIMU

  15. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  16. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01T23:59:59.000Z

    45 2.4.2 Biofuelwith Non-convex iii 2.4.1 Biofuelal. Model estimates food-versus-biofuel trade-o?. California

  17. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01T23:59:59.000Z

    petroleum in the transport sector are biofuels from varioustransport fuel stakeholders as real and significant [Parliament, 2009, O’Hare et al. , 2010, Biofuels,

  18. D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    D o s s i e r Second and Third Generation Biofuels: Towards Sustainability and Competitiveness chemicals and biofuels since it could r

  19. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  20. OAS Support for the Implementation of the US-Brazil Biofuels...

    Open Energy Info (EERE)

    Implementation of the US-Brazil Biofuels Bilateral Agreement Jump to: navigation, search Name OAS Support for the Implementation of the US-Brazil Biofuels Bilateral Agreement...